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Degradation of Instrumentation Amplifiers Due to
the Nonionizing Energy Loss Damage

F. J. Franco, J. Lozano, J. P. Santos, and J. A. Agapito

Abstract—Tests on instrumentation amplifiers exposed to neu-
tron radiation have been done. The tested devices were com-
mercial instrumentation amplifiers or designed with rad-tol
commercial operational amplifiers. The results show changes
in frequency behavior, gain, offset voltage, output saturation
voltages, and quiescent current. The radiation tolerance is bigger
in amplifiers with JFET input stage or with large frequency
bandwidth and is smaller if the amplifier has been designed for
reducing the power consumption. The IAs built with OPAMPs
have a higher tolerance than the commercial ones, but they have
disadvantages: high temperature influence, low CMRR, etc.

Index Terms—COTS, displacement damage, instrumentation
amplifiers, neutron tolerance, operational amplifiers.

I. INTRODUCTION

HE electronic instrumentation that will be used in the

large hadron collider (LHC) cryogenic system will re-
ceive a neutron radiation between 10'3-104 particles/cm? and
a gamma radiation dose in the order of several hundreds of
Gy during ten years. The measure of the control sensors will
require the use of instrumentation amplifiers. These amplifiers
must guarantee to work with such radiation dose.

A. The Radiation Inside the Collider

The LHC that is being built nowadays at the European
Organization for the Nuclear Research (CERN) needs the
use of powerful electromagnets so that heavy particles flying
near light velocity could turn and keep confined inside the
accelerator ring. The electric current that flows through the
magnets is very high, and the use of a NbTi superconducting
alloy at 1.8 K is needed [1]. The collider ring must be covered
with liquid helium to reach this temperature, and it is essential
to know the He characteristics.

The correct functioning of the electronic control instrumen-
tation must be guaranteed during the full collider lifetime. If
the particles are charged, they will not be able to escape from
the collider because of the magnetic field. The charged particle
leakage will be important only at the intermediate gap between
the magnets. On the other hand, if the particle is neutral, it
will pierce the metallic armor that isolates the beam and arrive
at the electronic instrumentation that measures the He param-
eters. Most of the escaped particles will be neutrons, although
other neutral particles, such as pions, mesons, etc. can affect
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the electronic system. Also, the gamma radiation produced
by the particles can alter the measurement instrumentation.
A 10-Gy/year dose is expected along the tunnel, but it will
be increased up to 50 Gy/year in the gap between magnetic
dipoles due to the charged particle leakage. Definitively, the
electronic instrumentation will receive a dose about 5-10'3
n-cm? and several hundreds of Gy during ten years.

B. About Instrumentation Amplifiers

An instrumentation amplifier is a gain differential device
ready to work in a hostile environment for accurate measures.
These devices need very high input impedance, low bias and
offset currents, and balanced inputs to minimize the common
mode gain. Moreover, the internal parameters must be very
stable to avoid the effect of temperature and power supplies
variations [2].

The instrumentation amplifier gain is controlled with an
external resistance that is calculated with a mathematical
expression given by the manufacturer. The output stage is
designed for grounded loads. There is an additional input
called “Reference” that is joined to ground or to the load
if it is far away from the measurement network. Two other
inputs and the negative power supply can be connected by a
potentiometer to remove the output offset voltage.

Generally, the design of instrumentation amplifiers is based
on the operational amplifier properties. In spite of the fact
that there are several circuits with a global behavior like the
instrumentation amplifiers [3], [4], [5], the most used network
is shown in Fig. 1 and is known as a “classic three opamp
network.” In this network, the gain is selected by an external
resistor called Rs and the value is

2-R
OUT = REF + <1+> (Vg =Vo) (1)
R
This network can be found inside the tested integrated in-
strumentation amplifiers. The great advantage of this structure
is the very large value of CMRR due to the symmetry ratio
possibility since the number of basic devices is reduced [2].

However, in these networks, the CMRR reduction is ob-
tained by building identical transistors, and in the classical
network, only matched resistors are needed. Due to its sim-
plicity, this topology is widely used instead of the other ones
with less number of devices.

C. Tested Instrumentation Amplifiers

The search for rad-tol instrumentation amplifiers was done
following two investigation lines. First, commercial instrumen-
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Figure 1. Classic three opamp network.

tation amplifiers from different manufacturers and technolo-
gies were tested. Second, the networks of the amplifiers were
built with rad-tol operational amplifiers, 1% accuracy resistors,
and potentiometers. These were used to decrease the offset
voltage and increase CMRR.

The tested commercial instrumentation amplifiers are shown
in Table I. The main characteristics are provided by the
manufacturers. The standard values of some parameters, the
device purpose, and the technology are shown in Table I.
The internal design is based on the topology of Fig. 1,
although some of them have been improved. The INA114,
INA116, INA118, and INA121 amplifiers have an over voltage
protection system, and the scheme can be found in the device
datasheet. On the other hand, the INA116 amplifier has guards
to insulate the inputs and its design is unknown.

OPAG627AP and TLE2071CP operational amplifiers were
used to build the instrumentation amplifier with discrete de-
vices. They were chosen because they had shown a great
tolerance to radiation [6]. Overall, 22-k€) accurate resistors
were used to assemble the network, although the resistor
between the output and the node 5 were replaced by an 18-k2
resistor and a 10-k{2 potentiometer. This potentiometer is used
to tune the amplifier and increase the CMRR value. In order
to trim the operational amplifier offset, other potentiometers
were placed.

II. TEST CONDITIONS
A. Description of Neutron Source

The devices were irradiated in a thermally conditioned
facility built at the Portuguese Research Reactor (ITN). A 0.7
cm thick boral shield removes the thermal neutron components
of the beam emitted by the reactor core. The neutron energy
spectrum is rather constant between 0.6-3.0 MeV, and the
other components are negligible. A 5 - 102 n/cm? fluence
is reached after five days with 14 h of activity and 10 of
standby. A 4-cm-thick lead shield reduces the gamma dose
below 2 kGy in the center of the cavity. The fission neutron
fluence was measured with Ni detectors placed in the center
of the boxes containing the test boards. They showed that

the samples received a neutron fluence between 3.46 - 1013
& 1.1-10" n/cm?. Integration dosimeters were placed on the
first and last board and revealed that the gamma dose inside the
cavity was between 1.3-2.3 kGy.t Also, an ionization chamber
monitorized the total gamma dose in the center of the cavity
and its value reached 1.6 kGy.

B. Data Acquisition System

During the irradiation, the amplifiers, both integrated and
built, were assembled on PCBs with a Rg = 47012, a gain of
about 107, and biased with £15 V supplies. A minimum of
three samples of each device were exposed. Every ten minutes,
an input voltage sweep was applied to measure the values
of gain, offset voltage, and bias currents. During the sweep
standby period, mechanical relays insulated the amplifiers. A
PC controlled system with a Keithley 236 current source,
Keithley 7002 switch system, and Keithley 2002 9% digit
multimeter was built. The instruments were connected to the
test boards with a 4 m shield pipe with a resistivity less than
0.075 Q - m. The instruments were controlled by a program
developed in Testpoint.

Other magnitudes as those related to frequency bandwidth
or supply could only be measured after the irradiation when
the samples did not have any activity. The samples had to be
isolated at room temperature for a month.

ITIT. RESULTS IN INTEGRATED AMPLIFIERS

Several amplifiers were destroyed when they reached radi-
ation doses much lower than the final value. Table II shows
the highest dose that they could bear.

Table II
HIGHEST NEUTRON TOLERANCE OF INSTRUMENTATION
AMPLIFIERS
ADG620AD 102 nrem™?  INA116PA  2-10'% n-em™

INA118PB 3.6:102 n-cm™ AD624AD  2-10 n-em™
INA12IPA 2108 n-em? INA114AP 2.5:10" n-em™

These values are repeated on all the samples of each
amplifier. Only a few disagreements were observed on the
most separated samples from the reactor core. On these ones,
the dose is slightly higher, although it can be attributed to the
higher number of reactor standby periods where a fraction of
defects were removed from the semiconductor and the lattice
was partially regenerated.

The INA110KP and INA111PA were the most tolerant
devices to neutron radiation damage. There is not a fixed
neutron fluence that the amplifiers can receive without being
destroyed, e.g., an INA110KP sample that received 1.1-10'4
n/cm?started to deteriorate with a 4.5-10'® n/cm2dose and
was destroyed at 6.8-10'3 n/cm?. However, other samples
received this dose without great damage. This can be related
to the lattice recovery during the standby periods because the
destroyed sample was the closest to the core.
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Table I
TESTED COMMERCIAL INSTRUMENTATION AMPLIFIERS

Freq -3dB

Name Manufact. Technology Puwrpose  Offsei Bias Curr. {Gain = 100) Slew Rate Quies. Curr. Sh. Circ,
ADAZOAN  Analog Bipolar Low Power 30pV  05nA 120 kH= 1.2 Vius 0.9 ma 18 mé
ADA24AD  Analog Bipolar Precision 200 u¢ 30 n& 130kHz 5.0 Vips 35mA ---
INAIIOKP Burr-Brown 2% pagiseting 1004V 20pA  470KHz  17Vis  30mh 25mA

JFET Input ' H ’ i ‘ -
INAIUIBP Purr-Brown CPCE*  fhoh speed 1000V 2pA 450kHz 17 Vs 3.3 ma 30 méa
JFET Input '
INALI4AP Burr-Brown  Bipolar Precision 10 uV Sné 10 kHz 0.6 Vs 2.2 mh 20 ma
) Bipolar + Wery low
INAL16PA Burr-Brown DIFET Input input current 500 uv IfA 70 kHz 0.8 Vius 1.0 méa 5méi
INAIISPB Burr-Brown Bipolr L 00008t jg vy 1ga T0kHz  09Wus 035m4  Smb
Low Power
INAIZIPA Burr-Brown oF0B* | o Power 2000y 4 ph 50kHz 07 Vs 045m4  14mA
‘ JFET Input K SV :
A. Differential Gain 12 — T T T T T T T
The value of this parameter was measured every ten min-

utes, whereas the amplifiers were irradiated. The gain evolu- 1o - i
tion has two phases: In the first moments of the irradiation, %
the gain remains stable or there is a slight decrease of the gain IR P U ey
about 1% of the initial value (Figs. 2 & 3). When the fluence is a R : T
about to reach the highest one that the amplifiers can tolerate, é 106 - !
the shift of the gain increases. There are two typical behaviors: Z. ' |
The least tolerant devices suffered a sudden gain drop to O E 104 - '
(Figs. 2 & 3), but the INAT10KP and INA111BP showed a E .
soft decrease (Fig. 4). The INA114AP gain increases before % 1wl ' .
the amplifiers were destroyed (Fig. 3). '

110 . | . | . : . — 100 . ! . L . L [

0.0 0.5 10 L5 2.0 25
NEUTRON FLUENCE (10” nrem”)

108 - -
5 Figure 3. INA114AP gain versus neutron fluence.
3 106 —
< voltage could be taken. A growth of several mV was observed
E 104 " before the final collapse.
gj L ] The evolution of the input offset voltage on the more
= L tolerant devices depended on the input stage technology. The
=173 . i models with a bipolar input INA114AP, AD624AD) suffered
A :', a similar offset evolution on all samples (Fig. 5). On the

\ ' other hand, the samples of the devices with JFET input stage
10— 0'5 : 1'0 : 1‘5 : ,,'0 .  (INATIOKP, INA111BP, and INAI21PA) show different shifts

NEUTRON FLUENCE (-10” rem’™)

Figure 2. INA121PA gain versus neutrons.

B. Input Offset Voltage

Due to the fast destruction of the AD620AN, INA116PA,
and INA118PB amplifiers, few values of the input offset

though they belonged to the same manufacturer batch (Fig. 6).

C. Bias & Offset currents

On JFET input amplifiers, no considerable growth of the
currents was observed. Only the INA121PA showed an in-
crease of -20 nA during the exposition. The damage is greater
on the amplifiers with bipolar input stage. The growth was
hardly observed on AD620AN and INA118PB because they
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Figure 6. INA111BP input offset voltage versus neutrons.
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Figure 5. INA114AP input offset voltage versus neutron fluence.

were quickly destroyed, but the INA114AP amplifier reached
a bias input current of -15 nA, and for the AD624AD, the
damage was even higher due to the fact that the bias current
rose up to 150 nA.

D. -3 dB Frequency and Slew Rate

Although an INA111BP sample worked after the irradiation,
the frequency behavior could not be inspected because the
output signal with square or sinusoidal inputs was so distorted
that the former parameters could not be taken. So, only the data
from INA110KP are available. Fig. 7 shows the ratio between
the final and initial values of the -3dB frequency, with G = 10,
G = 100, and slew rate related to the total neutron fluence that
the samples received. A worsening of frequency response is
observed.

E. Quiescent current

The quiescent current is the current supplied by +V¢o if
all inputs are grounded. We could measure this parameter

NEUTRON FLUENCE (10" nrem™)

Figure 7. Degradation of the frequency response of the survived INA110KP
amplifiers.

on all the amplifiers because it does not depend on their
correct behavior. Three typical behaviors were found: For
the AD620AN and INA118PB amplifiers, low-power bipolar
and not rad-tol, a reduction of the current consumption until
a 10-20% of the initial value takes place. The AD624AD,
INA110KP, and INA111NP, which had a high initial quiescent
current, suffer a decrease on this parameter, but the value does
not depend on the total neutron fluence. Depending on the
device, the current values are comprised between 60%—-80%
of the initial current.

The other amplifiers have an intermediate initial quiescent
current, and there is clear dependence on the fluence. Fig. 8
shows the results obtained on the analyzed samples.

F. Input—Output Function

After the deactivation of the devices, the relationship
between input—output of the surviving INA110KP and
INAI111BP at 15V with a gain of 107 was measured in the
full range of input voltage. A straight line with a slope = 107,
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Figure 8. Evolution of quiescent current versus neutron fluence.
which is truncated when the output is near the supply values

was expected. However, the actual results are shown in Figs.
9 & 10.
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Figure 9. Input-output function of several INA110KP samples. They were
irradiated with different doses. Inverting input grounded.

Fig. 9 shows that the saturation voltage value decreases in
proportion to the neutron dose received. This phenomenon
is much more important in the case of positive saturation
voltage. In Fig. 10, we observe that the saturation voltages
do not depend on the sign of the gain. Unlike INA110KP,
the saturation voltage of INA111BP is not horizontal and the
negative saturation voltage is lower than the positive one.

I'V. RESULTS ON BUILT AMPLIFIERS

The instrumentation amplifiers built with OPA627AP and
TLE2071CP operational amplifiers received a total neutron
dose between 2-7-10'3 n/cm? without being strongly altered.
Only a slight gain reduction and an input offset shift were
observed. The shift of the offset voltage is quite similar to
that one observed on the operational amplifiers [7]. No change
on input bias and offset was measured. The degradation of
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Figure 10. Input-output function of an INA111PA sample that received a
total neutron fluence of 5.89-10'3 n/cm?.

their properties is related to the modification of the individual
operational amplifiers.

V. DISCUSSION

The tested devices were built in bipolar technology with
JFET input stage in some of them. Gamma radiation can affect
this kind of technology in the same way as neutrons, but the
damage is much lower than the one caused by displacement
[8], [9]. An additional effect that is produced by ionizing
radiation on integrated bipolar devices is the store of positive
charge inside the epitaxial oxide. This charge allows the
creation of leakage currents and leads to an increase of the
input bias currents [10].

A. Differential Gain

The behavior of the amplifier gain can be explained re-
membering two effects that happen when a semiconductor
is exposed to a radiation that originates NIEL damage: the
reduction of the gain of bipolar transistors due to the growing
importance of base recombination currents and the semicon-
ductor resistivity growth.

The instrumentation amplifier shown in Fig. 1 can be
converted into the network of Fig. 11 replacing the operational
amplifier by a dependent voltage source with a very high
but not infinite gain. The resolution of a system with seven
linear equations leads to the following value of the gain
G =Vour/Vin:

-1
G=Goo- 1 1_|”§11 —1 - @
145 (Goo+1) - (AT +437) +2- Ay
G is the value of the gain of the instrumentation amplifier
with ideal operational amplifiers, and its value is (1+2R/Rg).
The bipolar transistor gain decreases with neutron radiation
[8] as

Bl=p"+Kz @ 3)

where Kgis a constant that depends on the semiconductor, the
energy of the neutrons, temperature, and so on, and ®is the
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Figure 11. Instrumentation amplifier with opamps as dependent sources.
total neutron fluence. As the open loop gain of operational

amplifiers is related to the gain of individual transistors, we
conclude that the open loop gain decreases with .
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Figure 12. Gain of an instrumentation amplifier depends on the open loop
gain of integrated op amps.

The relation of G with the operational amplifier gain has
been drawn in Fig. 12. For simplicity, we assumed that
G1 = Gy = G3 = Gop,. So, the reduction of instrumentation
amplifiers gain can be related to the decrease of the open loop
gain of the integrated operational amplifiers. However, other
amplifiers show a gain growth before a sudden drop to zero.
This increase can be justified with the growth of the resistivity
of semiconductors. The internal resistors of the devices are
made with doped silicon and its value grows when they are
irradiated. The resistivity of the semiconductor follows the
mathematical expression [8]:

(0]
P = pPo - €Xp (K) “4)
P

K, is a constant that depends on the material, the neutron
energy, etc. Due to the increase of resistivity, the internal
resistors are higher and, according to 1, the gain must increase
because the external resistance Ry is not a semiconductor

resistor and does not suffer any change. However, we do
not reject that other unidentified mechanisms could cause the
differential gain increase. On the other hand, the difference
among the internal resistances, very similar but not completely
matched, grows exponentially to the neutron fluence and can
lead to more complex evolutions than the one deduced from
the combination of 1 & 4.

Finally, there are mechanisms that modify the gain in two
different ways. Generally, the competition among different
mechanisms on irradiated electronic devices has been de-
scribed in the related literature [11], [12], [13].

B. Input Offset Voltage

Another interesting item is the different evolution of input
offset voltage if the technology is bipolar or JFET. The
appearance of offset voltage in any differential device is due
to the asymmetry of the building of the network parts, mainly
on the input stage [14], [15]. The matching among devices
is much more difficult in JFET technology, and generally,
the amplifiers with JFET input have a higher offset voltage
than the bipolar ones [16], [17]. The great reproducibility in
bipolar technology allows to build similar input stages in the
samples of the same batch. Therefore, the input offset voltage
of bipolar instrumentation must behave in a similar way if
they are irradiated. On the other hand, the input stage of JFET
amplifiers changes from sample to sample. Due to the intrinsic
difference, the evolution is random because it depends strongly
on the manufacturing conditions of the sample.

C. Bias Input Currents and Frequency Behavior

The growth of bias current is due to two reasons. First, the
increase of leakage currents in the PN junction that makes both
the bipolar or JFET input because they depend on the minority
carrier lifetime [8], [18]. On the other hand, leakage currents
appear because of the appearance of charged particles inside
the epitaxial oxide. Both processes have the same consequence
[19], [20], and we do not know which is the main cause.
The worsening of frequency response is directly related to the
decrease of the minority carrier lifetime [8] since this is the
main parameter that controls the frequency behavior of bipolar
devices.

Figure 13. Differential amplifier.
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D. Quiescent Current

The drop of quiescent current values is a consequence of
the alteration of the internal device components. Fig. 13 shows
the simplest differential amplifier. Operational amplifiers are
built with several differential amplifiers. The quiescent current
of this amplifier is determined by R3 and the current mirror
built with Q3& Q4. We suppose that the transistors are similar
so B3 = B4 = B. On the other hand, when a transistor is
irradiated, base recombination currents appear and

Ip =11+ 1Ip (5)
Ic =B 1Ip: (6)

Ip is the current that goes into the transistor base, Ipthe
recombination current and I the collector current. The res-
olution of the network equation gives the following value of
current required by the amplifier:

B Voc +Vbp — Veron)
(B+2)+2- & Ry

Ip=(1+

(N
We have accepted that the recombination currents are simi-
lar in both bipolar transistors. This current decreases if Rs
or Irgrow, and this happens when a device is irradiated.
VBE(onN) can change, but its influence in I, is negligible since
it is added to Voo + Vpp ~ 30 V. Other current mirrors as
base current compensated, cascode or Wilson have the same
behavior when the recombination current grows. Therefore, a
decrease of the current required by the differential amplifiers is
predicted so the quiescent current of instrumentation amplifiers
falls. The measured values shown in Fig. 8 confirm the result.
This phenomenon is opposed to the evolution of consumption
in integrated CMOS devices where a growth of supply current
is expected due to the storage of charged particles inside the
epitaxial oxide [9], [10], [11]. Moreover, in low power design,
the use of low gain transistors and high resistors is advisable
to reduce the currents. So, the action of displacement damage
is more important than in the other amplifiers.

E. Saturation Voltages

Finally, the reason for the decrease of the device saturation
voltage is interesting. First of all, the shift could be at-
tributed to the modification of saturation voltage of individual
operational amplifiers. However, the data of the irradiated
operational amplifiers that were found in the Internet databases
[21], [22] do not support this theory since the shifts are in
the order of one or two tenths of volts. No amplifier shows
a saturation voltage swing as great as the one observed on
the instrumentation amplifiers. Our proposal is the following:
The integrated operational amplifiers are loaded with resis-
tors about 25 k). One of the most affected parameters in
operational amplifiers is the short circuit current. This is the
highest current that an electronic device can supply. The results
of an operational amplifier OP-11, found at ERRIC database,
show that the positive short circuit current falls from 9 to
2.51 mA and the negative one from 10.6 to 1.74 mA when
it was exposed up to 10'® n/cm?. This event is related to the
degradation of the output stage of the operational amplifiers;

e.g., the push—pull output stage like Fig. 14 is commonly used
to build integrated operational amplifiers [23]. The highest
positive current supplied by this network is proportional to
hrg1. The value of this parameter gets low due to the
appearance of recombination current, so the positive output
current decreases. A similar result is obtained in the negative
output current, but it depends on hrpg . Moreover, if the
degradation of the transistors @Q1& ()2 is not similar, the
evolution of the short circuit current depends on their sign.
So, the results shown in Figs. 9 and 10 are caused by the
incapacity of operational amplifiers to supply enough output
current and bias the resistance network of Fig. 1. In addition,
when the output of the instrumentation amplifier is loaded, the
saturation voltage is lower than the values given in Figs. 9 and
10.

+Vee
Ig
Q,
Vo
R,
Vin Q,
_VDD
Figure 14. Push—pull output stage.
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Figure 15. NIEL tolerance of instrumentation amplifiers. The bipolar input
devices are symbolized with empty squares.

F. Built Instrumentation Amplifiers

Finally, the alternative solution of building instrumentation
amplifiers with operational amplifiers has the advantage of a
good radiation tolerance, which is higher than in the integrated
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commercial amplifiers. However, the great problem of tuning
remains. It is very difficult to obtain a high CMRR value
with discrete components. This has been studied at [24],
where other disadvantages are enumerated: higher temperature
influence, nonlinearity, and even a cost increase.

VI. CONCLUSION

The development of the instrumentation that has to be
exposed to neutron radiation can require the use of instru-
mentation amplifiers. It has been shown that broad bandwidth
amplifiers present a high radiation tolerance, that low-power
design decreases the rad-tolerance, and that the JFET input
amplifiers are more tolerant than the completely bipolar ampli-
fiers. Fig. 15 shows their predicted radiation tolerance. The X-
axis is the frequency response, computed from -3 dB frequency
and slew rate, and the Y-axis is the power consumption in
arbitrary units. The distance to the origin allows to estimate
the tolerance of the devices.

The bipolar input amplifiers show the advantage of a similar
evolution of input offset voltage in all of the devices of the
same manufacturer batch. However, the highest input bias
currents were found on amplifiers of this technology. The
output saturation voltage will be lower, and the consumption
is going to decrease.

The building of instrumentation amplifiers is one possible
option, but the response against temperature, common mode
voltage, etc. is not as good as that of integrated commercial
amplifiers.
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