
Proyecto Fin de Máster en

Ingeniería de Computadores

"Máster en Investigación en Informática, Facultad de

Informática, Universidad Complutense de Madrid"

Adaptive task-migration policies

for thermal optimization in

MPSoCs

Autor: David Cuesta Gómez

Directores: José Ignacio Hidalgo Pérez

 José Luis Ayala Rodrigo

Curso 2008-2009

Departamento de Arquitectura de Computadores y Automática.

Facultad de Informática

El/la abajo firmante, matriculado/a en el Máster en Investigación en

Informática de la Facultad de Informática, autoriza a la Universidad

Complutense de Madrid (UCM) a difundir y utilizar con fines académicos, no

comerciales y mencionando expresamente a su autor el presente Trabajo Fin de

Máster: “Adaptive task-migration policies for thermal optimization

in MPSoCs”, realizado durante el curso académico 2008-2009 bajo la

dirección de José Ignacio Hidalgo y José Luis Ayala en el Departamento

de Arquitectura de Computadores y Automática, y a la Biblioteca de la

UCM a depositarlo en el Archivo Institucional E-Prints Complutense con el

objeto de incrementar la difusión, uso e impacto del trabajo en Internet y

garantizar su preservación y acceso a largo plazo.

Firmado:

David Cuesta Gómez

A mi hermano, padres

tíos, primos y abuelos.

A Belén.

Agradecimientos

Gracias a los que han transmitido sus conocimientos para
hacer posible la realización de este proyecto.

A mi familia y amigos que siempre me han apoyado.

Al Politecnico di Torino por haberme permitido la
oportunidad aprender de ellos y sobre todo por darme su
amistad.

A Iñaki, José Luis y David, que desde el primer momento me
abrieron las puertas y me acogieron como uno más.

A Dios porque me gusta tenerlo presente.

Index

Resumen..11

Abstract...11

Palabras Clave..12

Keywords ..12

Introduction ...13

Structure of the Memo ...15

Introduction..15

State of the Art...19

Objectives..22

Chapter I:

Thermal Model and Emulation Platform ..23

Thermal Model..23

Equivalent RC Thermal Model..25

Emulation Platform ..27

Graphic Interface...32

Chapter II:

Adaptive and Floorplan Aware Policies for Thermal Balancing37

State of the Art Policies ...38

Atomic Policies Pre-Characterization...39

Proposed Policies ..42

Heuristic Algorithm (Heu) ..42

Adaptive Policy (Adapt) ...44

Floorplan-Aware Policy (FloorAdapt)..45

Chapter III:

Experimental Results... 47

Description of the Application ... 48

Evaluation of the Policies.. 49

Extrapolation to N-cores .. 54

Chapter IV:

Conclusions and Future Work... 57

References .. 59

Bibliography... 61

Figures Index .. 64

Tables Index .. 65

Equation Index.. 65

11

Resumen

En los circuitos tecnológicos diseñados con tecnologías de fabricación por

debajo de la micra, las altas temperaturas provocan fallos críticos en la fiabilidad, el

temporizado, los costes de refrigeración y la potencia de pérdidas. Hasta el

momento se han propuesto varias técnicas de migración de tareas para manejar

eficientemente la distribución térmica en los sistemas multiprocesador, pero con un

alto coste en cuanto a la eficiencia del sistema.

Aunque las técnicas tradicionales se han centrado en reducir la temperatura

media del chip, no han considerado los efectos que los gradientes térmicos tienen en

la fiabilidad del sistema.

En este trabajo, se exploran los beneficios de las técnicas de migración de

tareas basadas en la temperatura en sistemas empotrados multiprocesador. En

particular se proponen algunas políticas que son capaces de reducir la temperatura

media del chip y los gradientes térmicos con un impacto en el rendimiento

prácticamente despreciable.

Con nuestras técnicas, la aparición de puntos calientes (hot spots) y

variaciones térmicas se ven drásticamente reducidos con respecto a otras

propuestas, con lo que la fiabilidad del sistema se mejora significativamente cuando

la comparamos con las técnicas de migración de tareas tradicionales

Abstract

In deep submicron circuits, high temperatures have created critical issues in

reliability, timing, performance, cooling costs and leakage power. Task migration

techniques have been proposed to manage efficiently the thermal distribution in

multi-processor systems but at the cost of important performance penalties.

While traditional techniques have focused on reducing the average

temperature of the chip, they have not considered the effect that temperature

gradients have in system reliability.

In this work, we explore the benefits of thermal-aware task migration

techniques for embedded multi-processor systems. We propose several policies that

are able to reduce the average temperature of the chip and the thermal gradients

with a negligible performance overhead.

With our techniques, hot spots and temperature variations are decreased,

and the reliability of the system is significantly improved when compared to

traditional task migration techniques.

12

Palabras Clave

 Temperatura, migración de tareas, algoritmo adaptativo, sistemas

multiprocesador, fiabilidad, preocupación térmica, colocación de floorplan.

Keywords

Temperature, task migration, adaptive algorithm, multi-processor system,

reliability, thermal aware, floorplan placement.

13

Introduction

 In this section a global view of the problem is presented. The state of

the art is also revised doing a comparison between the proposed traditional

techniques and ours.

15

Structure of the Memo

 This work has four main parts, each one described as follows:

I. In this first part a slight description of the whole work is presented,

introducing the formalism and establishing the formalism and

lexicon that will be common to the whole work.

II. In this second part of the memo, a more intensive description of the

work done will be presented. The work done is divided in three main

blocks:

a. Hardware

i. Understand the FPGA design and configuration when

collecting and sending data to the mainframe.

b. Software

i. Understand and edit operative system allocated in the

FPGA cores, which will have the task migration

policies included in it.

ii. Understand the two dimension thermal model, which

will give us the temperature of each cell in the

floorplan thanks to the information provided by the

emulation FPGA platform.

c. Analyze

i. Analysing the results given by the thermal model

using the developed graphic tool.

ii. Offline extraction of thermal statistics, which will help

us to know how good the thermal policy is.

III. In this third block, discussed results obtained are presented.

In this last part conclusions and comments about the work done are described. Also
possible future work is proposed, basing it in the work done.

16

17

Introduction

Mobile System-on-Chip (SoC) devices count nowadays with multiple

processors in their implementation to fulfil the demanding performance

requirements. Besides that, these mobile Multi-Processor System-on-Chip (MPSoC)

platforms will represent a significant portion of the media market in a near future

[1]. However, the increase in power density (due to the integration of many active

components per area unit), and the capability to control their thermal behaviour are

two of the key factors that limit the performance in MPSoC architectures [2].

Recent works have demonstrated that large temperature variations could

cause low reliability and they also negatively impact on leakage current.

Temperatures over a threshold in localized areas of the chip (hot spots) as can be

seen in Figure 1 can produce timing delay variations, transient reduction in overall

system performance or even permanent damages in the devices [3].

Figure 1: Hotspots in a Niagara broadband processor

Packaging, heat sinks and cooling solutions can be proposed to minimize the

impact of temperature in performance, but their high cost complicates the general

adoption of such techniques [4]. Moreover, the reliability factors do not only

depend on the average temperature of the chip, but also the spatial and temporal

18

variations have a strong influence in phenomena like electromigration, negative

bias temperature instability or thermal cycles [5].

Figure 2: Electromigration seen with a microscope

The reliable and efficient functioning of MPSoCs can be satisfied by

guaranteeing the operation below a temperature threshold and power budget. It is

in this control problem where thermal management and balancing policies come

into play. Task and thread migration policies can be proposed to manage efficiently

the thermal profile in high performance and embedded multi-processor systems [6,

7].

While traditional dynamic thermal management (DTM) techniques have

been devoted to decrease the peak and average temperature of the chip, they have

not considered the spatial and temporal gradients that determine the meantime-to-

failure of the devices.

The evaluation of thermal policies and task migration techniques is a very

computational intensive analysis. Thermal simulation of complex MPSoCs, where

the exploration of the interaction between the hardware architecture and the

software layer that performs the task migration is also crucial, can take an

unaffordable time.

Thus, in order to explore the HW/SW interaction, FPGA based emulators

have been developed [8, 9]. These platforms provide the required accuracy and

flexibility in the thermal hardware-software analysis without impacting the

emulation time. Moreover, these infrastructures include the software layers and

libraries needed to support the task migration and dynamic voltage and frequency

scaling (DVFS) policies, namely, the multi-processor operating system (MPOS), the

19

middleware and the communication library. The experimental work carried out in

this work is developed for an FPGA-based emulation platform that speeds up the

simulation time and provides high flexibility in thermal analysis.

Thus, this work focuses on the design an implementation of three different

task migration policies that are able to minimize the average temperature in

MPSoCs as well as the spatial and temporal variations of the thermal profile. These

policies are embedded in a real MPOS that applies them on a real life MPSoC, and

our results show that they reduce the impact on the system performance to a

minimum as compared to previous published approaches [10, 6, 7, 11]. The specific

contributions of our work are the followings:

• Three task migration policies are proposed (one heuristic, one adaptive

technique and a third floorplan-aware adaptive policy), capable of optimizing

the thermal diffusion in MPSoCs.

• The proposed policies minimize the peak temperature and the thermal

gradients, with a reduced performance overhead.

• The reliability of the system is improved by the minimization of the

number of hot spots and the thermal cycles.

• The experimental work has been carried out in a realistic emulation

platform, and the task migration policies have been implemented in a real-

life uClinux-based [27] multiprocessor operating system.

State of the Art

Load balancing techniques have been deeply studied for general purpose

parallel computers in the last decade [12,13]. However, embedded systems and

MPSoCs impose constraints, as the low-cost packaging and the portability, that

make necessary to develop new techniques. Nollet et al. [14] proposed a reuse

technique that uses the debug registers of the processor to get the system workload

information. Therefore, the initial overhead of a heterogeneous MPSoC task

migration is diminished by considering these hardware devices which are not

always available in current architectures.

Bertozzi et al. [15] presented an approach that dealt with MPSoCs task

migration. They proposed a strategy where the user is responsible for setting the

20

possible migration points in the application code. The architecture used in this work

was composed by one master and an arbitrary number of slaves cores. Even though

this paper shows interesting results for such specific architecture, our work deals

with amore general system where the task migration is dynamically performed.

Götz et al. [16] present a design flow for dynamic relocation of hybrid

tasks. These tasks may be executed either in hardware or software and are

represented through a state transition graph, where each state is known as

computation block and stands for a given task operation. Our work outperforms

this approach by a careful selection of the threshold mechanism that decides the

migration point while preserving system performance. Barcelos et al. [17]

proposed a hybrid memory organization approach which supports the task

migration algorithms with low-energy consumption constraints. In this approach,

the data to be migrated can be provided either by the source node or from the

shared memory. Barcelos’ work is extended by Brião et al. [18] who takes into

account the task migration overhead in a dynamic environment and discusses its

impacts in terms of energy, performance and real-time constraints for MPSoCs

based on Network on Chips (NoCs). Following this line, our work considers the

impact of task migration and minimizes this factor to optimize both performance

and energy dissipation.

In the area of temperature optimization, several approaches have been

proposed to reduce the peak temperature through task-migration techniques.

Donald et al. [7] introduced several thermal management policies such as DVFS

and thread migration based on current temperature, but their work do not consider

the thermal history of the cores. This information gives meaningful information

about the future behaviour of the system and can be exploited to improve the

results of the migration. The work by Puschini et al. [19] also manages

dynamically the voltage and frequency assignment of each core based on game

theory. This scheme is aimed to target a scalable mechanism with many cores.

However, the DVFS as a thermal optimization technique is limited by the

implementation and its impact on performance.

On the other hand, Powell et al. [20] described techniques that, using the

information provided by performance hardware counters, tried to balance the

temperature by thread migration. However, it is considered that performance

counters do not represent accurately the thermal profile. In [21], Yang et al.

showed an execution ordering approach that swaps hot and cool threads in cores to

21

control the temperature. This idea can only be applied once the application has been

profiled to obtain the thermal information per thread, which means sometime an

unaffordable time.

Finally, a recent work by Yeo et al. [22] presented a temperature-aware

scheduler based on thermal grouping of the applications using a K-means

clustering. This work provided interesting results but requires a very complex

analysis phase, which grows largely in complexity with the number of considered

cores.

Our work outperforms previous approaches with the provision of three task

migration techniques that optimize the thermal profile of MPSoCs with very low

performance overhead. Moreover, our techniques are able to minimize the risk of

system failure by the minimization of temperature driven reliability factors, and can

be applied to complex systems with a large number of integrated cores.

22

Objectives

Main objective of our work is to establish Operative System policies which

will be able to manage task loading among the cores to keep a homogeneous

thermal distribution in the whole chip through task migration policies.

To make this work several steps must be done in order to follow a normal

project execution. These steps will be considered as previous work or partial

objectives, and they will be:

• Previous study of the related work

o Migration policies

o Thermal aware methods

o Simulation / emulation methods

• Analysis of the experimental environment

o Emulation platform

o Linux distribution

o Operative system characteristics.

• Design and test of some simple task migration policies

• Design of a graphic user interface to analyze results.

• Qualitative and quantitative study of the results, creating a thermal

metric to evaluate the goodness of a policy, evaluating:

o Mean temperature

o Maximum temperature

o Temperature gradient

• Design of optimized policies.

• Test and validation of the proposed policies.

• Analysis of the results.

Thermal model and Emulation Platform

23

Chapter I

Thermal Model and

Emulation Platform

Thermal Model

The thermal model used in this work is thought a Rthermal – Cthermal model in

which thermal behaviour will be modelled as an electric circuit. We will see an

example presented by G. Paci et al. [23].

It shows a typical low power multiprocessor on chip (LP-MPSoc). This

system is showed in Figure 3, where a 16 ARM7 cores and 16 32KB shared

memories are presented.

Figure 3: Floorplan of a LP-MPSoC

Thermal model and Emulation Platform

24

Each core, is attached to a local 8KB data cache and to a 8KB instruction

cache. The memories and the cores are connected using a XPipes Network-on-Chip.

To know the power consumption and then the temperature of all the blocks

inside our chip a simulation environment must be created. This environment must

estimate the power consumption of the components of the chip. This power will

depend on the workload in the processors and memories. In this model leakage

power is not contemplated because the system is implanted in an embedded system

so to assure a sufficient battery-life time the leakage must be reduced to negligible

values. So power estimation values are provided by this work [23]. These values

are shown in Table 1.

Max power

@100MHz (mW)

Max. Power

density (W/mm2)

ARM7 5.5 0.03

DCache 43 0.012

ICache 11 0.03

Shared memory 15 0.02

Table 1: Power for the most important components of a LP-MPSoC in CMOS

technology

After having a power consumption estimation an horizontal heat flow model

is needed. The heat flow is permitted by the package, and this package is the one in

charge of dissipating this heat to the environment. This model considers every

surface as adiabatic but the die package. In Figure 4 the heat flow parts can be seen.

Figure 4: Chip package solution

Thermal model and Emulation Platform

25

Equivalent RC Thermal Model

This model as we said before, is based in the well known analogy between

electrical circuits and thermal models. The silicon is decomposed in elementary

cells which have a cubic shape. This work is also done with the heat spreader of the

chip. To solve each cell, a RC computation model is needed. Each cell is associated

with a capacitance and five thermal resistances which are used for modelling both,

horizontal thermal spreading and vertical thermal behaviour. This can be seen in

Figure 5. The values for the resistances and the capacitance are calculated taking

into account the values for silicon thermal conductivity and cupper thermal

conductivity.

Figure 5: Cells division and equivalent RC circuit of a cell

We will ise the following description: kth
si/cu is the thermal conductivity and

cth
si/cu is the capacitance. Both are considered per unit volume. The cell size units

are represented by l,w and h, as shown in the Figure. The following equations show

in detail how the values are calculated:

Thermal model and Emulation Platform

26

l

wh
kG

l

wh
kG

cusi
th

NESW
th

cusi
th

top
th

⋅⋅=

⋅⋅=

/

/

Equation 1: Admittance for a cell

whlcC thth ⋅⋅⋅=

Equation 2: Capacitance value for a cell

With these values calculated for each cell the thermal model solver is

executed. It consists in solving several differential equations in an iterative way.

Every cell in the floorplan has an associated equation which describes its iteration

with its neighbours. This equation is written as follows:

[] []
[] [])(|)()(...)()(

...)()(1)()1(1

iSiTiTGiTiTGnx

iTiTGniTiT
t

C

cellcellnmnmcellnx

cellncellcell
cell

−++−+

++−=−+
∆

Equation 3: Differential equation for each cell

Where:

Gnx : conductance between the n cell and neighbour x

n: number of cell

x: 1 ≤ x ≤ m is the position number of the neighbour cell

m: total number of neighbours cells

Tcell(i): cell temperature at ith time step

Tnx(i): temperature of the neighbour x of the cell n at ith time step

Ccell: cell capacitance

Scell(i): power burned at ith time step

∆t: time between two time step.

It must be noted that silicon thermal conductivity is not linear and it

depends on the temperature. To ease the computation, we have approximated it by

its first order Taylor series.

Technologic values for our parameters are depicted in

Table 2.

Thermal model and Emulation Platform

27

Silicon thermal conductivity 150⋅(300/T)4/3 W/mK

Silicon specific heat 1.628e-12 J/µm3K

Silicon thickness 350 µm

Copper thermal conductivity 400 W/mK

Copper specific heat 3.55e-12 J/µm3K

Copper thickness 1000 µm

Package-to-air conductivity 20 K/W (in low power)

Table 2: Thermal properties

Emulation Platform

The thermal analysis conducted in this work requires an efficient mechanism

to evaluate the performance and thermal statistics of the multi-processor system.

The accuracy and the fast emulation of the system are the main constraints for the

platform. Also, it is needed an MPOS that implements and manages the task

migration policies.

Figure 6: Virtex II Pro, VP30

In this work, we have used a complete FPGA-based estimation framework,

implemented in a Virtex II pro VP30 (Figure 6) and inspired by the work in [9].

Figure 7 shows a schematic view of this emulation platform detailing a single core

Thermal model and Emulation Platform

28

system. As can be seen, within this framework we can retrieve the memory and

processor statistics required by the thermal model and the migration policies

(power consumption, memory misses and memory matches) by mean of hardware

sniffers. The work in [9] has also been extended to allow the characterization of a

system with three working cores and one arbiter as the one considered [8].

Figure 7: Description of the emulation platform

In this emulation platform, the collected statistical data are sent to the host

PC through the serial port. In the multiprocessor system, a dedicated PowerPc is

the one in charge of processing and sending the statistics to the host PC.

Thermal model and Emulation Platform

29

The host translates the received information into temperature values by

means of a thermal library. This thermal library splits the floorplan of the emulated

system in unitary cells, which are modelled as simple RthermalCthermal circuits as said

before.

The resolution of the linear equations created by the RC grid provides the

evolution in time of the temperature of the system [23].

The emulated architecture is a homogeneous multiprocessor system with

three 32-bit RISC cores and the PowerPC. These processors do not include a

memory management unit (MMU) and the access to the cacheable private

memories and to a non-cacheable shared memory is managed by the OS. Each core

runs a uClinux OS [26]. This is based on a Linux 2.4 kernel for microprocessors

without an MMU, but upgraded to support the interprocessor communication

found in our target system.

There are two techniques to migrate tasks among cores: [10]

• Task recreation

• Task replication

The first one kills the process on the original processor, and then it recreates the

same process from the scratch memory to the destination core. This strategy only

works in those operative systems which support dynamic loading. In our case, our

uClinux distribution is not prepared for that. This technique is based on the

execution of fork - exec system calls, which take care of allocating the memory

space required for the incoming task. In order to support task recreation in a

system without MMU, extra hardware is required to prevent the generation of

wrong reference of pointers, since the starting address of the memory can change

during the execution. This is a great withdraw in our system because our core does

not support this extra hardware called PIC.

Thermal model and Emulation Platform

30

Figure 8: Migration cost as a function of task size for task replication

Because this limitation, and also because of its migration speed we

implemented in our system the second technique for task migration, task replication.

With this technique only one processor at a time can run one replica of the

task. While in one processor the task is executed normally, in the other ones, it is in

a queue of suspended tasks. This means that a memory area is reserved for each

replica in the local memory, while kernel-level task-related information is allocated

by each OS in the Process Control Block. Therefore, task replication is suitable for

deeply embedded operating systems without dynamic loading because the absolute

memory address space does not change upon migration, since it can be statically

allocated at compile time. In fact, even if this technique leads to a waste of memory

for our tasks, it has the advantage of being faster, since it cuts down on memory

allocation time with respect to a task recreation.

A quantification of the memory overhead due to task replication is shown in

Figure 8. In this figure, the costs are shown in terms of processor cycles needed to

perform a migration as a function of the task size. In both techniques the major part

of the overhead is due to the data transferred through the shared memory. For task

recreation technique, another overhead must be taken into account. This overhead

is produced due to the time required to reload the program code from the file

system; thus the offset that can be seen in the figure as the gap between the two

curves.

Thermal model and Emulation Platform

31

Moreover, the task recreation curve has a larger slope because the larger the

memory transfer is, the more it takes to re load the program, besides it leads to an

increasing contention on the bus. Hence, the contribution on the execution time

increases as file size increases in comparison to the task replication case.

The task migration takes place only at predefined checkpoints chosen by the

programmer. A master daemon runs in one of the cores, which dispatches then

tasks to the processors.

Several modifications have been done in the OS kernel to support the

floorplan-aware policy. First, the identifier and weight of the cores (used by the

policies to select the candidate in the task migration, as it will be presented later)

are allocated in the shared memory. Second, the OS can then access this information

to apply the task migration algorithm and achieve the thermal optimization. In

summary, the complete emulation platform is composed of the following abstraction

layers:

� Application layer: built as a set of independent tasks found in every

processor of the system. The tasks are executed under the OS demand.

� OS/Middleware layer: controls the task migration and the

communication and synchronization of the cores through the shared

memory.

� HW layer: composed of three core-subsystems and a shared memory.

Figure 9: a) Target hardware architecture b) Scheme of the software abstraction

layer

Thermal model and Emulation Platform

32

Finally, the emulation system has also been upgraded with a representation

graphical tool for instrumentation purposes. This tool communicates with the

thermal library and, in real time, provides a coloured thermal map of the emulated

system.

The developed tool enables a rapid inspection of the hot spots, the evolution

in time of the temperature and the spatial and temporal heat spread.

Graphic Interface

To communicate with the host PC, as we said before, the FPGA sends the

information related to power consumption via serial port, so the host PC can know

what the power consumption in each functional unit is.

This information is collected by the thermal model, which computes the

temperature of each cell and sends cores and memories temperature back to the

FPGA so the OS can manage the thermal policies.

Figure 10: Platform graphic user interface

Thermal model and Emulation Platform

33

In the host PC the information is showed in a graphical interface, designed

in order to understand what is going on with our emulated system.

This interface shows the temperature of each core, their workload, their

frequency and finally it computes temperature deviation.

A snapshot of this interface is shown in Figure 10 where all these values can

be seen.

Apart from this interface, 5 minicom terminals open at the same time, to get

information and statistics of each core and the whole system in real time.

There is a minicom for each core. Another one shows the frequency and

temperature information of the cores, and finally the last one shows the tasks

queues identifiers.

Using this minicoms communication with the cores is allowed so we can

change the DVFS policy or the migration policy we are using in real time.

A view of the minicoms is showed in Figure 11.

Figure 11: From high left to bottom right. Minicom Core 1, Minicom Core 2,

Minicom Tasks queues, Minicom Core 3, Minicom temperatures and frequencies

information

Thermal model and Emulation Platform

34

Using these graphical tools a rapid inspection of the system can be done.

Getting information in real time is very important to know if the OS is managing

the task migration policies correctly.

Combined with these tools another graphical tool was included to allow the

user watching how the temperature evolves in real time. An offline study is also

possible because temperature data are logged.

In Figure 12 a vision of this tool is showed. In it we can see how the blocks

are painted in different colours according to their temperature.

Figure 12: Floorplan graphic tool

This tool has also another advantage. It easy integrates new floorplans with

a negligible cost in time. For example testing a new floorplan would only take 15

minutes. After this time qualitative and quantitave results could be extracted from

the emulation and the statistic study of the most important parameters such as

maximum temperature or mean temperature could be done. In Figure 13 we can see

another example of a floorplan implemented in the system and executed showing

cells temperature.

Thermal model and Emulation Platform

35

Figure 13: Extended flooplan example

Adaptive and Floorplan Aware Policies for thermal Balancing

37

Chapter II
Adaptive and floorplan aware

policies for thermal balancing

 As previously mentioned, the task migration policies we present in this work

are devoted to reduce the thermal gradients and mean temperature in a multi-

processor system, because both facts affect negatively the reliability and the leakage

of the chip [3]. This assumption is even more critical for embedded systems, where

the power and temperature constraints must be satisfied in parallel with

requirements of high-performance execution.

The FPGA-based multi-processor platform used in our experiments, has

been extended with a DVFS policy as an effective way to manage the voltage and

frequency settings of the cores depending on the working load. The DVFS

technique implemented in the system follows the vertigo policy [24]. The

application of the vertigo policy requires the previous characterization of the tasks

attending to their full-speed-equivalent (FSE), defined as the load that a task

imposes when it is run at full speed in a core. Therefore, if one core is running a

task that loads it, e.g. 45%, the core can adapt its frequency to 45% of its maximum.

Task migration policies are proposed to balance the working load in the

processors of the emulation platform and, consequently, obtain a homogeneous

distribution of temperature in the system. Figure 14 presents a migration example.

Three cores are running four tasks exhibiting different workload per processor.

Workload in the processors is directly translated into temperature due to the

relation with the electric activity and dynamic energy; hence, this situation will

create a thermal gradient due to the unbalanced distribution of the load, being core

1 the hottest one. Thermal balance will be achieved migrating one task from this

core to one of the colder processors, as can be seen in Figure 14.

Adaptive and Floorplan Aware Policies for thermal Balancing

38

Figure 14: Task migration example

If the temperature of the chip varies slower than the rate of task migration

1, thermal balance will be achieved. In this case, we can assume that the real

workload of each processor is the average of the total, in the example, around 55%.

However, task migration must be applied carefully because it affects the

performance of the system due to the overhead introduced by data transfers.

The following paragraphs analyze the state-of-the-art task migration

techniques that we have been implemented in the considered emulation platform,

and the policies we propose to specifically adapt the workload of the system

depending on the state of the processors.

State of the Art Policies

Several migration policies have been proposed in the literature. Some were

implemented in our system to compare them with our proposed policies.

We are going to vaguely explain what these policies consist on:

• Enhanced Migration (Mgr) moves the task that is running in a hot core

when it exceeds a threshold temperature to the coolest core. This policy

could be considered as an upgrade of the heat & run policy presented in

[11] because it adds task migration. The implementation of this policy is

based on the work by [10].

• Task rotation (Rot) [6], inspired by a Round Robin mechanism, migrates

a task between processors every time slot. This policy achieves the thermal

Adaptive and Floorplan Aware Policies for thermal Balancing

39

balance in the system at the cost of an important overhead due to the

frequent migrations.

• Thermal Thresholds (Thres), presented in [10], moves the task running

in the processor that exceeds an upper or lower threshold to a destination

core. This is chosen considering the weight of the task that is going to be

migrated and its impact on the workload of the processor. It acts in both,

hot and cold cores.

Atomic Policies Pre-Characterization

The definition of our new task migration policies begins with the

characterization of atomic policies in the multi-processor system. These atomic

policies have been designed to perform simple migrations only according to the

temperature and the workload of the cores. The migration of the task is executed

from one processor to another with a negligible computation cost. Figure 15 shows

the overhead introduced by the task replication mechanism for different sizes of the

migrated task. As can be seen, the impact of migrating a 64 KB task (the one

considered in our experimental work) is 0.5% in performance.

Figure 15: Impact of the time window

Adaptive and Floorplan Aware Policies for thermal Balancing

40

The results of the analysis of these policies are classified in several sets

depending on their response to pre-defined metrics. These metrics evaluate the

capability of the atomic task to reduce the thermal gradient, the maximum

temperature or the mean temperature in the chip. We also performed a statistic

study to classify the policies in these groups and assign a quality mark that goes

from 1 (very bad response) to 5 (very good response). The granularity of the

classification is enough to represent the variability expected in the results and to

reflect the variations found in the metrics.

Atomic Policy
Mean

Temperature

Maximum

Temperature

Thermal

Gradient

Hot – Cold 4 5 4

Warm – Cold 2 2 1

Hot – Warm 5 4 4

Cold – Warm 1 1 1

Warm – Hot 3 3 1

Cold - Hot 1 1 2

Table 3: Characterization of atomic policies

300,0

305,0

310,0

315,0

320,0

325,0

330,0

335,0

340,0

345,0

CO
LD

-H
O

T

H
O

T-C
O

LD

H
O

T-W
A
R
M

CO
LD

-W
A
RM

W
A
RM

-H
O

T

W
A
RM

-C
O

LD

M
O

S
T-L

EA
ST

LE
A
ST

-M
O

ST

M
O

ST
-M

ED
IU

M

LE
A
ST

-M
ED

IU
M

M
ED

IU
M

-L
EA

ST

M
ED

IU
M

-M
O

ST

Tmean

Tmax

Figure 16: Mean and maximum temperatures for atomic policies

characterization. Temperature polices and load policies

Adaptive and Floorplan Aware Policies for thermal Balancing

41

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

CO
LD

-H
O

T

H
O

T-
CO

LD

H
O

T-W
A
R
M

CO
LD

-W
A
RM

W
A
RM

-H
O

T

W
A
RM

-C
O

LD

M
O

S
T-

LE
A
ST

LE
A
ST

-M
O

ST

M
O

ST
-M

ED
IU

M

LE
A
ST

-M
ED

IU
M

M
ED

IU
M

-L
EA

ST

M
ED

IU
M

-M
O

ST

Figure 17: Thermal gradient for atomic policies characterization. Temperature

polices and load policies

Table 3 shows a reduced sub-set of the atomic policies that have been

considered and their classification after the statistic analysis. In this table, the first

column is the name of the atomic policy (it designs the origin and destination cores

in the migration), being hot the reference for the hottest processor, cold for the

coldest one and warm is the name given for those cores whose temperature is in

between both hottest and coldest ones. As the goal of the analysis is the

characterization of the policies, these will be always activated and the migrations

will take place continuously. Finally, the initial workloads in the cores of the system

are deliberately unbalanced to force the execution of the atomic policies. Next

columns show the assigned “quality mark” for every metric.

The pre-characterization study also considered the thermal history of the

cores (cores that have been cold or hot during a certain period in the past), which

brought out the possibility to minimize the overhead in terms of number of

migrations and amount of data transferred due to migrations.

The time window for task migration has been set experimentally to 300 ms.

Figure 15 shows the impact of the time window in the predefined metrics. A too

small time window will affect the performance because of extra and unnecessary

task migrations that present an overhead in the system functioning. On the

contrary, a too big time window will create large temperature gradients, as shown

in Figure 4, and will increase the probability of hot spots. Therefore, the time

window has been selected as the largest with the minimum impact on the

Adaptive and Floorplan Aware Policies for thermal Balancing

42

temperature gradient. This selection is independent of the application run by the

processors and only should be revisited in case of a new package.

Proposed Policies

Heuristic algorithm (Heu)

This algorithm is able to select efficiently among the atomic policies to

achieve the thermal optimization with a minimum performance impact. The

implementation of this heuristic is based on the information retrieved by the

characterization phase, which provides the information about the thermal profile

under the execution of the different atomic policies.

The algorithm works as follows: A time window is set and the workload and

thermal information of the processors is collected at run-time during this time slot.

At the end of the time window, we evaluate the collected data and compare them

with the preferred working parameters (in terms of mean temperature, gradient and

peak temperature). The atomic policy to apply is selected to solve the divergence of

metrics between the current state and the desired one. Figure 18 shows the decision

chart that explains the functioning of this heuristic.

In this Figure several parameters appear. Deviation is the difference between

the preferred working value (which is 50ºC for the mean temperature, 70ºC for the

peak temperature and 6ºC difference for the thermal gradient) and the current state

value. These values have been selected to assure a proper operation of the system.

Factor has been tuned experimentally to balance the importance of the different

decision sets. Factor values are, 1 for mean temperature set, 1.5 for maximum

temperature and 2 for the gradient.

The proposed heuristic defines a multi-objective optimization problem. The

implementation of the heuristic applies sequentially the atomic policies in case of

identical unbalance in the three metrics. In this way, the complexity in the decision

process is minimized to simplify the heuristic. In order to alleviate the constraint

imposed by this simplified decisor, an adaptive policy is introduced.

Adaptive and Floorplan Aware Policies for thermal Balancing

43

Figure 18: Heuristic algorithm decision chart

Adaptive and Floorplan Aware Policies for thermal Balancing

44

Adaptive Policy (Adapt)

This policy extends the work performed by the previous heuristic approach,

collecting data at run-time and applying the atomic policies to achieve the optimum

thermal state.

However, this policy adapts the selection of the atomic policy by means of

the statistical information of the cores, which predicts the behaviour of the

processors attending to the information about the past time.

This policy assigns a probability to every set of atomic policies (mean

temperature, peak temperature, thermal gradient) and updates this probability

every time period as follows:

<⋅
>⋅

=

−=
+= −

0;),,(

0;),,(

1

initinitgradientpeakmeandec

initinitgradientpeakmeaninc

avgprefinit

tt

WWTTT

WWTTT
W

MMW

WPP

α
α

Equation 4: Probabilities calculus

where W is the weight assigned to the sets every time period; M represents the

different sets of atomic policies, as explained before; Mpref is the preferred working

state and Mavg is the current state. The expressions for the increase and decrease of

the probabilities are parametrized for every set of atomic policies, and the obtained

probabilities are normalized in order to maintain math consistency. Mpref would also

denote the safe operating state already defined.

Using the previous equations, our extended OS updates the probabilities of

selecting atomic policies every time window, and decides the working state by the

execution of these policies. The design of the Adaptive Policy is supported by the

pre-characterization of atomic policies. This initial study gives us the information of

the best candidates (those atomic policies that obtain the maximum minimization of

the metrics) for a task migration or task swapping in order to achieve a desired

working state.

Finally, if a core trespasses the limit of 75ºC, it migrates all its tasks to the

other processors in the system. In other words, we shutdown the core to avoid

Adaptive and Floorplan Aware Policies for thermal Balancing

45

heating it up too much and prevent reliability failures. Even if it is a safety measure,

in our experiments it never happened.

The atomic policies implemented in this adaptive technique always migrate

a task from a source core to a destination core. As the temperature of the

destination core is the only variable considered in the decision, more than one

processor can satisfy the requirements. The last proposed policy extends the sensed

variables with the placement of the core to perform a more accurate selection of the

destination core.

Floorplan-Aware Policy (FloorAdapt)

This policy considers the information about the floorplan. In this way, the

OS is aware of the cores location and accordingly selects the destination processor

in a task migration. This is implemented in the kernel of the OS with the

assignment of different weights to each core. The smaller this weight is, the better

candidate the core is to receive tasks. This factor is calculated with the following

equation:

shared
core

edge d
d

dG ++=
2

3 1

Equation 5: Goodness of a processor to receive a task

where dedge is the distance to the edge of the chip, dcore is the distance to another core

(which is a heat source), and dshared is the distance to the shared memory (which is a

heat sink [25]). This expression has been created to resemble the strong influence

of the ambient as a heat sink (cubic factor), the medium influence of the near cores

as heat sources (quadratic factor) and the light influence of the shared memory as a

heat sink (linear factor). The strength of the factors consider the proximity of the

heat/sink and the thermal resistance of the joint.

Every time window, the thermal history of the processors is analyzed and

updated to solve possible hot spots, critical thermal gradients, or values over the

safe peak temperature. However, if the system is still working in a safe state, the

task migrations will not occur and the overhead of the policies will be avoided.

Adaptive and Floorplan Aware Policies for thermal Balancing

46

The knowledge of the thermal characteristics of the cores depending on the

placement is a precious information for the task migration policies. The location of

the cores in the chip surface produces very different thermal behaviour due to the

proximity to heat sinks or heat sources which dissipate the temperature. In our

floorplan design shown in Figure 19, core 0 is close to core 2 and both processors

are prone to heat up due to the thermal diffusion from one to the other. On the

other hand, core 1 is far from the other processors but close to the edge of the chip,

which increases the possibility to cool easily. Therefore, core 1would be selected to

receive a heavy workload in case of a task migration.

Figure 19: Floorplan design

The floorplan-aware policy incorporates this information about the core

placement to adapt and select the probabilities of migrating or receiving a task.

Experimental Results

47

Chapter III
Experimental Results

The experimental work has been conducted with the emulation platform

described in previous sections, which has been used to model a multi-processor

system with three working processors (µBlaze) and a PowerPC serving as the

arbiter of the communication and statistics collector. The benchmark selected for

the analysis is a real-life streaming application capable of loading the three cores.

The experiments have been run considering a special package derived from

real-life streaming SoCs [2] for mobile embedded devices. In a target system as the

one resembled, the temperature can vary as much as 10 degrees in less than a

second. The chip package has been selected to stress the number of required task

migrations and, therefore, create a worst-case scenario for the validation of our

techniques. Finally, the cores in the system can work at different clock frequencies

under selection of the OS: 100, 200, 300, 400 and 500 MHz.

The validation of the task migration techniques has been accomplished

attending to some pre-defined metrics that cover the spectrum of thermal aware

optimization:

• Spatial variation of the temperature of the processors: measured

as the linear distance per area unit between cores at a different

temperature. This metric quantifies the heat spread on the chip

surface and the probability of thermal gradients.

• Mean temperature of the chip: calculated as the arithmetic mean

of the processor and memory temperatures in the chip. This metric

relates the temperature of the devices to the energy consumption and

cooling necessities.

• Maximum temperature of the chip: measured as the maximum

temperature value on the chip surface. It is related with the

susceptibility to temperature-driven reliability factors.

Experimental Results

48

The results obtained during the validation phase have been also compared

with the results provided by the policies described before.

Description of the Application

The software that is executed by the platform is a Software FM Defined

Radio (SDR) which is a perfect example of streaming application. This application is

composed of several tasks that can be perfectly assigned to the different processors

in the system. The input data is a digitalized PCM radio signal which has to be

processed in several steps to obtain an equalized base-band audio signal.

Figure 20: Schematic view of the SDR application

The first step in the processing phase is a low pass filter (LPF), and the

resulting signal is demodulated (DEMOD) and shifted to the baseband. After that,

the signal is forked in three branches to be equalized by three different band pass

filters (BPF).

Finally a consumer (SUM) collects the data from every BPF. The

communication between tasks is done using FIFO queues that transfer the data.

Each task is allocated in a different processor during the load of the application.

Then, the policy implemented in the OS migrates the tasks depending on

the temperatures of the cores. Figure 20 shows a schematic view of this application

an the relations among the processing steps.

Experimental Results

49

Evaluation of the Policies

The task migration policies implemented in the OS kernel were applied to

the benchmark and the pre-defined metrics were collected to perform the

evaluation.

The execution of the application in the emulation platform consists of two

phases. The first one is the initialization of the OS and the tasks. As this phase does

not exhibit a critical thermal state and it occurs just once during the system boot-

up, the task migration policies are deactivated at this time. When this initial phase

finishes, the thermal and workload state of the system is the one described in

Table 4. Our experimental work starts at this point setting a thermal

unbalance that motivates the activation of the migration policies.

Core (Frequency) Load (%) Temperature (K)

Core 0 (533 MHz) 44 340

Core 1 (533 MHz) 83 339.5

Core 2 (266 MHz) 29 328.5

Table 4: Initial state of the system

In the second phase, when the execution of the application effectively starts,

all the policies described in this paper are evaluated separately.

The analysis performed for the task migration policies is two fold. Firstly, a

visual inspection of the thermal distribution in the chip surface is done using the

developed graphical tool. With this analysis, the evolution of temperature in real-

time is obtained and several conclusions can be extracted. Figure 21 shows the

results of this analysis for the (a) adaptive) and (b) migration policies, where all the

images have been taken at the same execution time.

As can be seen, both policies start similarly, decreasing rapidly the presence

of hot spots. As time evolves, the adaptive policy obtains lower temperature values

and a more homogeneous thermal distribution. In our benchmark, all the cells in

the floorplan are within a range of temperature of 5 degrees when the adaptive

policy is applied. Similar results were found when the adaptive policy was compared

with the other task migration techniques.

Experimental Results

50

 (a) (b)

Figure 21: Thermal maps. (a) Adaptive; (b) migration

Secondly, a statistical study of the distribution of temperatures in the chip

under the execution of the task migration policies is accomplished. This analysis

evaluates which policies have better results when applied in the multiprocessor

system. The mean and sigma values of the temperature for every policy are

calculated in the statistic analysis and fit to a normal distribution (see Figure 22).

As can be derived from the values in the Figure, the best results in terms of

thermal distribution and absolute values are achieved with the three policies

Experimental Results

51

specifically proposed in this paper. In particular, the adaptive algorithm

concentrates the temperature of the cells within a small range of temperatures

centred in the mean temperature (mean temperature 319.038 K with σ of only 2.53

K).

Figure 22: Normalized statistical distributions

The curves for the three proposed policies present: lower mean value

(translated into a decrease in the average temperature of the chip) and narrower

shape of the curve (translated in a smaller sigma and, therefore, a decrease in the

thermal gradient).

The other proposed techniques also obtain very positive results when the

statistics are analyzed. For example, the implemented heuristic is able to decrease

the mean temperature (319.38 K) and the sigma (2.87 K) of the statistical

distribution when compared with rotation or migration.

Another interesting quality factor in the development of task migration

techniques is the number of migrations per unit. As has been previously discussed,

task migration policies introduce a performance overhead due to the time required

for the memory allocation, as well as an energy waste. This impact can be

characterized by means of the number of effective migrations per time unit. Figure

23 shows the number of migrations per time unit for all the policies considered in

Experimental Results

52

our study. As can be seen, our proposed policies not only achieve similar results to

the threshold technique [10] in terms of mean temperature and sigma of the

thermal distribution, but they also decrease the impact on performance by 40%

because of the less migrations per time unit are required.

 Adap. FloorAdapt Heu Thres Mgr Rot

Overhead (%) 0.36 0.342 0.36 0.624 0.42 1.2

Table 5: Application performance overhead

Table 5 summarizes the performance overhead imposed by every task

migration technique, where the minimum impact of our proposed policies can be

observed. Besides this reduction could seem not enough, depending on the

application could mean an important upgrade, not only because of performance

gain, but also because of power consumption. It must be remembered that the more

migrations take place the more power is consumed due to data transfer process.

Figure 23: Number of migration per time unit

Experimental Results

53

Finally, two factors with a very strong impact on the reliability of the

system have been evaluated: the percentage of hot spots in the chip area, and the

thermal cycles. Both metrics have been calculated assuming that a hot spot in our

set-up is represented by a temperature value over 328 K. Figure 24 shows the

percentage of hot spots in the chip area, averaged along the execution of the

benchmark, and for every migration policy. As can be seen, our Adaptive policy

behaves better than the traditional approaches, only outperformed by the Rotation

policy which has a strong impact on performance. The percentage of hot-spots is

reduced to 1% and, therefore, the probability of system failure is minimized.

Figure 24:Percentage of hotspots in the chip

Experimental Results

54

Figure 25: Thermal cyles

Figure 25 shows the thermal cycles for the same system configuration and

task migration policies. As can be seen, our proposed approaches are able to reduce

the thermal cycles to a minimum, showing better results than the traditional

approaches and with a reduced performance overhead.

All data presented we can reach the conclusion that floorplan aware policy is

our best proposal because it reduces almost all the metrics to a minimum, compared

with the other policies, with a low performance overhead.

Extrapolation to N-cores

One of the main benefits of the task migration techniques that we have

proposed in this work is their application to more complex systems with many

processing units (N-cores).

While most of the previous techniques are not suitable for a system with a

large number of cores because of the dramatic increase on the performance impact,

our proposed techniques do no exhibit such behaviour and they are still suitable for

Experimental Results

55

large systems. This subsection discusses this extrapolation to systems with N-

cores.

If the size of the chip and the number of integrated cores are scaled

accordingly, it can be predicted that the applicability of migration policies reaches a

limit. This limit is reached due to the constrains imposed by the layout. As more

cores are integrated in the floorplan, our policies achieve a mean value in the

distribution curve of temperatures that depends on the floorplan of the chip and the

number of cores.

Also, as the number of integrated cores is increased, the smaller the

temperature deviation is. This fact is explained because the proposed task migration

techniques have more target cores (cool cores) to balance the workload and,

therefore, the temperature. In this way, they are able to make the cores working

within a range of few degrees. Also, the complexity of the scheduler increases with

the number of processors. However, as the selection of the task to migrate does not

require the analysis of the task content (the migration is driven by those metrics

exceeding a threshold), the scheduler does not constrain the scalability of the

multiprocessor system.

45

]25,5[

5.02
5

2
5

2

5.0

)2(22
25

7

13
5

5

≤
∈

≥

 −+

≥

−+=

=

≤

=

=

N

l

N
wl

NN

NNN

lw
N

lw

l
N

l
N

perim

highwidthperim

width

hifh

Figure 26: Floorplan extension

However, this trend also reaches a limit as the number of cores is increased.

Supposing an extreme scenario where a 50% of the cores are hot spots, the task

migration techniques are not able to eliminate these critic points. In this scenario,

Experimental Results

56

there are too few processors that can be selected as a target for the tasks in the

migration process. Therefore, the result of the migrations is a displacement of the

hot spots in the chip area instead of their elimination. To help on the cooling

process, the cores can be placed at the border of the chip to allow the thermal

dissipation to the environment and be exploited by the floorplan-aware policy.

As the effective area of a single processor with its private memory is 5 × 5

cells in our set-up, an there is a relation of 13/7 between the length and the height

of the chip, we can calculate the maximum number of processors that can be placed

at the border of the chip when both the number of processors and the chip area are

scaled linearly. Figure 26 shows the described set-up and clarifies the calculus. Nhigh

is the number of processors in the Y-axis, Nwidth is the number of processors in the

X-axis, N is the number of processors in the chip and Nperim is the number of

processors placed in the border.

As can be extracted from the previous analysis, our task migration policies

reach a limit in the optimization of the thermal profile when the number of cores

exceeds 46.

Traditional approaches would be limited in their application at a smaller

number of cores.

Conclusions and Future Work

57

Chapter IV
Conclusions

and Future Work

 In this work, we have investigated and proposed 3 OS-level task migration

policies for thermal management in embedded multi-processor systems. We have

showed that the proposed techniques achieve low and balanced temperatures

profiles, diminishing the percentage of hot spots, thermal cycles, and thermal

gradients.

As compared with traditional techniques, our policies incorporate the

floorplan information in the OS, dynamically adapt the migration to the thermal

profile of the application, and improve the thermal behaviour of the chip with a

negligible performance overhead.

Our three proposals achieved great results in terms of temperature

reduction and also in performance overhead introduction. All of them achieved

these great results but floorplaning aware policy was our best result because it

reduced the overhead introduced by task migration effect.

This work could be extended to new ways of design such as 3D floorplan

placement. The thermal model that is used in 2D can be easily extended to a new

dimension just adding a new thermal resistance that spreads heat in the other

direction. Solving the equation system we would get temperatures for each layer of

the chip.

Then a floorplan aware policy for task migration as the one we proposed

here can be used to reduce power dissipation issues that these 3D structures

present.

59

References

 We will present:

• Bibliographic sources

• Figures index

• Tables index

References

61

Bibliography

[1]. Viredaz, M. A. andWallach, D. A. (2003) Power evaluation of a

handheld computer. IEEE Micro, 23, 66–74.

[2]. Skadron, K., Stan, M. R., Sankaranarayanan, K., Huang, W.,

Velusamy, S., and Tarjan, D. (2004) Temperature-aware

microarchitecture: Modelling and implementation. ACM

Transactions on Architecture and Code Optimization, 1, 94– 125.

[3]. Semenov, O., Vassighi, A., and Sachdev, M. (2006) Impact of self-

heating effect on long-term reliability and performance

degradation in CMOS circuits. IEEE Transactions on Device and

Materials Reliability, 6, 17–27.

[4]. Borkar, S. (1999) Design challenges of technology scaling. IEEE

Micro, 19, 23–29.

[5]. Lu, Z.,Huang,W., Stan,M.R., Skadron,K., andLach, J. (2007)

Interconnect lifetime prediction for reliability-aware systems.

IEEE Transactons on Very Large Scale Integration Systems, 15, 159–

172.

[6]. Chaparro, P., Gonzalez, J., Magklis, G., Qiong, C., and Gonzalez,

A. (2007) Understanding the thermal implications of multi-core

architectures. IEEE Transactions on Parallel and Distributed Systems,

18, 1055–1065.

[7]. Donald, J. and Martonosi, M. (2006) Techniques for multicore

thermal management: Classification and new exploration.

Proceedings of the 33rd annual international symposium on Computer

Architecture, pp. 78–88.

[8]. Carta, S., Acquaviva, A., Del Valle, P. G. Atienza, D., De Micheli,

G., Rincon, F., Benini, L., and Mendias, J. M. (2007)Multi-

processor operating system emulation framework with thermal

feedback for systems-on-chip. Proceedings of the 17th ACM Great

Lakes symposium on VLSI, pp. 311–316.

References

62

[9]. Atienza, D., Del Valle, P. G., Paci, G., Poletti, F., Benini, L.,

Micheli, G. D., Mendias, J. M., and Hermida, R. (2007) HW-SW

emulation framework for temperature-aware design in MPSoCs.

ACM Trans. Des. Autom. Electron. Syst., 12, 1–26.

[10]. Mulas, F., Pittau, M., Buttu, M., Carta, S., Acquaviva, A., Benini,

L., and Atienza, D. (2008) Thermal balancing policy for streaming

computing on multiprocessor architectures. Proceedings of the

conference on Design, automation and test in Europe, pp. 734–739.

[11]. Gomaa,M., Powell,M.D., and Vijaykumar, T.N. (2004)Heatand-

run: leveraging SMT and CMP to manage power density through

the operating system. SIGOPS Oper. Syst. Rev., 38, 260–270.

[12]. Suen, T. T.Y. andWong, J. S.K. (1992) Efficient task migration

algorithm for distributed systems. IEEE Transactions on Parallel

and Distributed Systems, 3, 488–499.

[13]. Chang, H. W. D. and Oldham, W. J. B. (1995) Dynamic task

allocation models for large distributed computing systems. IEEE

Transactions on Parallel Distributed Systems, 6, 1301–1315.

[14]. Nollet, V., Avasare, P., Mignolet, J.-Y., and Verkest, D. (2005) Low

cost task migration initiation in a heterogeneous MP-SoC.

Proceedings of the Conference on Design, Automation and Test in

Europe, pp. 252–253.

[15]. Bertozzi, S., Acquaviva, A., Bertozzi, D., and Poggiali, A.(2006)

Supporting task migration in multi-processor systems on-chip: a

feasibility study. Proceedings of the conference on Design, automation

and test in Europe, pp. 15–20.

[16]. Götz, M., Dittmann, F., and Xie, T. (2009) Dynamic relocation of

hybrid tasks: Strategies and methodologies. Microprocessors and

Microsystems, 33, 81–90.

[17]. Barcelos, D., Brião, E.W., and Wagner, F. R. (2007) A hybrid

memory organization to enhance task migration and dynamic task

allocation in NoC-based MPSoCs. Proceedings of the 20th annual

conference on Integrated circuits and systems design, pp. 282–287.

References

63

[18]. Brião, E. W., Barcelos, D., Wronski, F., and Wagner, F. R. (2007)

Impact of task migration in NoC-based MPSoCs for soft real-time

applications. Proceedings of the International Conference on Very Large

Scale Integration, pp. 296–299.

[19]. Puschini, D., Clermidy, F., Benoit, P., Sassatelli, G., and Torres, L.

(2008) Temperature-aware distributed run-time optimization on

MP-SoC using game theory. IEEE Computer Society Annual

Symposium on VLSI.

[20]. Gomaa, M., Powell, M. D., and Vijaykumar, T. N. (2004) Heat-and-

run: leveraging SMT and CMP to manage power density through

the operating system. Proceedings of the 11th international conference

on Architectural support for programming languages and operating

systems, pp. 260–270.

[21]. Yang, J., Zhou, X., Chrobak, M., Zhang, Y., and Jin, L. (2008)

Dynamic thermal management through task scheduling.

Proceedings of the IEEE International Symposium on Performance

Analysis of Systems and software, pp. 191–201.

[22]. Yeo, I. and Kim, E. J. (2009) Temperature-aware scheduler based

on thermal behaviour grouping in multicore systems. Proceedings of

the Conference on Design, Automation and Test in Europe.

[23]. Paci, G., Marchal, P., Poletti, F., and Benini, L. (2006) Exploring

temperature-aware design in low-power MPSoCs. Proceedings of the

Design, Automation and Test in Europe Conference, March, pp. 1–6.

[24]. Flautner, K. and Mudge, T. (2002) Vertigo: automatic

performance-setting for Linux. SIGOPS Oper. Syst. Rev., 36, 105–

116.

[25]. Huang, W., Stant, M. R., Sankaranarayanan, K., Ribando, R. J., and

Skadron, K. (2008) Many-core design from a thermal perspective.

Proceedings of the 45th annual Design Automation Conference, pp. 746–

749.

[26]. Uclinux: Embedded linux/microcontroles project, 2006.

http://www.uclinux.org

References

64

Figures Index

Figure 1: Hotspots in a Niagara broadband processor ... 17

Figure 2: Electromigration seen with a microscope ... 18

Figure 3: Floorplan of a LP-MPSoC ... 23

Figure 4: Chip package solution .. 24

Figure 5: Cells division and equivalent RC circuit of a cell .. 25

Figure 6: Virtex II Pro, VP30.. 27

Figure 7: Migration cost as a function of task size for task replication........................ 30

Figure 8: a) Target hardware architecture b) Scheme of the software abstraction
layer .. 31

Figure 9: Description of the emulation platform... 28

Figure 10: Platform graphic user interface ... 32

Figure 11: From high left to bottom right. Minicom Core 1, Minicom Core 2,
Minicom Tasks queues, Minicom Core 3, Minicom temperatures and frequencies
information ... 33

Figure 12: Floorplan graphic tool ... 34

Figure 13: Extended flooplan example.. 35

Figure 14: Task migration example .. 38

Figure 15: Mean and maximum temperatures for atomic policies characterization.

Temperature polices and load policies... 40

Figure 16: Thermal gradient for atomic policies characterization. Temperature
polices and load policies ... 41

Figure 17: Impact of the time window .. 39

Figure 18: Heuristic algorithm decision chart .. 43

Figure 19: Floorplan design .. 46

Figure 20: Schematic view of the SDR application ... 48

References

65

Figure 21: Thermal maps. (a) Adaptive; (b) migration.. 50

Figure 22: Normalized statistical distributions ... 51

Figure 23: Number of migration per time unit.. 52

Figure 24:Percentage of hotspots in the chip .. 53

Figure 25: Thermal cyles ... 54

Figure 26: Floorplan extension.. 55

Tables Index

Table 1: Power for the most important components of a LP-MPSoC in CMOS
technology .. 24

Table 2: Thermal properties .. 27

Table 3: Characterization of atomic policies... 40

Table 4: Initial state of the system.. 49

Table 5: Performance overhead... 52

Equation Index

Equation 1: Admittance for a cell.. 26

Equation 2: Capacitance value for a cell .. 26

Equation 3: Differential equation for each cell... 26

Equation 4: Probabilities calculus... 44

Equation 5: Goodness of a processor to receive a task... 45

