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Resumen  

En los circuitos tecnológicos diseñados con tecnologías de fabricación por 

debajo de la micra, las altas temperaturas provocan fallos críticos en la fiabilidad, el 

temporizado, los costes de refrigeración y la potencia de pérdidas. Hasta el 

momento se han propuesto varias técnicas de migración de tareas para manejar 

eficientemente la distribución térmica en los sistemas multiprocesador, pero con un 

alto coste en cuanto a la eficiencia del sistema.  

Aunque las técnicas tradicionales se han centrado en reducir la temperatura 

media del chip, no han considerado los efectos que los gradientes térmicos tienen en 

la fiabilidad del sistema. 

En este trabajo, se exploran los beneficios de las técnicas de migración de 

tareas basadas en la temperatura en sistemas empotrados multiprocesador. En 

particular se proponen algunas políticas que son capaces de reducir la temperatura 

media del chip y los gradientes térmicos con un impacto en el rendimiento 

prácticamente despreciable. 

Con nuestras técnicas, la aparición de puntos calientes (hot spots) y 

variaciones térmicas se ven drásticamente reducidos con respecto a otras 

propuestas, con lo que la fiabilidad del sistema se mejora significativamente cuando 

la comparamos con las técnicas de migración de tareas tradicionales 

Abstract 

In deep submicron circuits, high temperatures have created critical issues in 

reliability, timing, performance, cooling costs and leakage power. Task migration 

techniques have been proposed to manage efficiently the thermal distribution in 

multi-processor systems but at the cost of important performance penalties.  

While traditional techniques have focused on reducing the average 

temperature of the chip, they have not considered the effect that temperature 

gradients have in system reliability.  

In this work, we explore the benefits of thermal-aware task migration 

techniques for embedded multi-processor systems. We propose several policies that 

are able to reduce the average temperature of the chip and the thermal gradients 

with a negligible performance overhead. 

With our techniques, hot spots and temperature variations are decreased, 

and the reliability of the system is significantly improved when compared to 

traditional task migration techniques. 
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Palabras Clave 

 Temperatura, migración de tareas, algoritmo adaptativo, sistemas 

multiprocesador, fiabilidad, preocupación térmica, colocación de floorplan. 

 

Keywords 

Temperature, task migration, adaptive algorithm, multi-processor system, 

reliability, thermal aware, floorplan placement. 
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Introduction 

 In this section a global view of the problem is presented. The state of 

the art is also revised doing a comparison between the proposed traditional 

techniques and ours. 
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Structure of the Memo 
 
  This work has four main parts, each one described as follows: 
 

I. In this first part a slight description of the whole work is presented, 

introducing the formalism and establishing the formalism and 

lexicon that will be common to the whole work. 

II. In this second part of the memo, a more intensive description of the 

work done will be presented. The work done is divided in three main 

blocks: 

a. Hardware 

i. Understand the FPGA design and configuration when 

collecting and sending data to the mainframe. 

b. Software 

i. Understand and edit operative system allocated in the 

FPGA cores, which will have the task migration 

policies included in it. 

ii. Understand the two dimension thermal model, which 

will give us the temperature of each cell in the 

floorplan thanks to the information provided by the 

emulation FPGA platform. 

c. Analyze 

i. Analysing the results given by the thermal model 

using the developed graphic tool. 

ii. Offline extraction of thermal statistics, which will help 

us to know how good the thermal policy is. 

III. In this third block, discussed results obtained are presented. 

In this last part conclusions and comments about the work done are described. Also 
possible future work is proposed, basing it in the work done. 
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Introduction 
 
Mobile System-on-Chip (SoC) devices count nowadays with multiple 

processors in their implementation to fulfil the demanding performance 

requirements. Besides that, these mobile Multi-Processor System-on-Chip (MPSoC) 

platforms will represent a significant portion of the media market in a near future 

[1]. However, the increase in power density (due to the integration of many active 

components per area unit), and the capability to control their thermal behaviour are 

two of the key factors that limit the performance in MPSoC architectures [2]. 

Recent works have demonstrated that large temperature variations could 

cause low reliability and they also negatively impact on leakage current. 

Temperatures over a threshold in localized areas of the chip (hot spots) as can be 

seen in Figure 1 can produce timing delay variations, transient reduction in overall 

system performance or even permanent damages in the devices [3]. 

 

 

 

Figure 1: Hotspots in a Niagara broadband processor 
 

Packaging, heat sinks and cooling solutions can be proposed to minimize the 

impact of temperature in performance, but their high cost complicates the general 

adoption of such techniques [4]. Moreover, the reliability factors do not only 

depend on the average temperature of the chip, but also the spatial and temporal 
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variations have a strong influence in phenomena like electromigration, negative 

bias temperature instability or thermal cycles [5]. 

 

 

Figure 2: Electromigration seen with a microscope 

 

 
The reliable and efficient functioning of MPSoCs can be satisfied by 

guaranteeing the operation below a temperature threshold and power budget. It is 

in this control problem where thermal management and balancing policies come 

into play. Task and thread migration policies can be proposed to manage efficiently 

the thermal profile in high performance and embedded multi-processor systems [6, 

7]. 

While traditional dynamic thermal management (DTM) techniques have 

been devoted to decrease the peak and average temperature of the chip, they have 

not considered the spatial and temporal gradients that determine the meantime-to-

failure of the devices. 

The evaluation of thermal policies and task migration techniques is a very 

computational intensive analysis. Thermal simulation of complex MPSoCs, where 

the exploration of the interaction between the hardware architecture and the 

software layer that performs the task migration is also crucial, can take an 

unaffordable time. 

Thus, in order to explore the HW/SW interaction, FPGA based emulators 

have been developed [8, 9]. These platforms provide the required accuracy and 

flexibility in the thermal hardware-software analysis without impacting the 

emulation time. Moreover, these infrastructures include the software layers and 

libraries needed to support the task migration and dynamic voltage and frequency 

scaling (DVFS) policies, namely, the multi-processor operating system (MPOS), the 
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middleware and the communication library. The experimental work carried out in 

this work is developed for an FPGA-based emulation platform that speeds up the 

simulation time and provides high flexibility in thermal analysis. 

Thus, this work focuses on the design an implementation of three different 

task migration policies that are able to minimize the average temperature in 

MPSoCs as well as the spatial and temporal variations of the thermal profile. These 

policies are embedded in a real MPOS that applies them on a real life MPSoC, and 

our results show that they reduce the impact on the system performance to a 

minimum as compared to previous published approaches [10, 6, 7, 11]. The specific 

contributions of our work are the followings: 

 

• Three task migration policies are proposed (one heuristic, one adaptive 

technique and a third floorplan-aware adaptive policy), capable of optimizing 

the thermal diffusion in MPSoCs. 

• The proposed policies minimize the peak temperature and the thermal 

gradients, with a reduced performance overhead. 

• The reliability of the system is improved by the minimization of the 

number of hot spots and the thermal cycles. 

• The experimental work has been carried out in a realistic emulation 

platform, and the task migration policies have been implemented in a real-

life uClinux-based [27] multiprocessor operating system. 

 

State of the Art 
 
Load balancing techniques have been deeply studied for general purpose 

parallel computers in the last decade [12,13]. However, embedded systems and 

MPSoCs impose constraints, as the low-cost packaging and the portability, that 

make necessary to develop new techniques. Nollet et al. [14] proposed a reuse 

technique that uses the debug registers of the processor to get the system workload 

information. Therefore, the initial overhead of a heterogeneous MPSoC task 

migration is diminished by considering these hardware devices which are not 

always available in current architectures.  

Bertozzi et al. [15] presented an approach that dealt with MPSoCs task 

migration. They proposed a strategy where the user is responsible for setting the 
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possible migration points in the application code. The architecture used in this work 

was composed by one master and an arbitrary number of slaves cores. Even though 

this paper shows interesting results for such specific architecture, our work deals 

with amore general system where the task migration is dynamically performed. 

Götz et al. [16] present a design flow for dynamic relocation of hybrid 

tasks. These tasks may be executed either in hardware or software and are 

represented through a state transition graph, where each state is known as 

computation block and stands for a given task operation. Our work outperforms 

this approach by a careful selection of the threshold mechanism that decides the 

migration point while preserving system performance. Barcelos et al. [17] 

proposed a hybrid memory organization approach which supports the task 

migration algorithms with low-energy consumption constraints. In this approach, 

the data to be migrated can be provided either by the source node or from the 

shared memory. Barcelos’ work is extended by Brião et al. [18] who takes into 

account the task migration overhead in a dynamic environment and discusses its 

impacts in terms of energy, performance and real-time constraints for MPSoCs 

based on Network on Chips (NoCs). Following this line, our work considers the 

impact of task migration and minimizes this factor to optimize both performance 

and energy dissipation. 

In the area of temperature optimization, several approaches have been 

proposed to reduce the peak temperature through task-migration techniques. 

Donald et al. [7] introduced several thermal management policies such as DVFS 

and thread migration based on current temperature, but their work do not consider 

the thermal history of the cores. This information gives meaningful information 

about the future behaviour of the system and can be exploited to improve the 

results of the migration. The work by Puschini et al. [19] also manages 

dynamically the voltage and frequency assignment of each core based on game 

theory. This scheme is aimed to target a scalable mechanism with many cores. 

However, the DVFS as a thermal optimization technique is limited by the 

implementation and its impact on performance. 

On the other hand, Powell et al. [20] described techniques that, using the 

information provided by performance hardware counters, tried to balance the 

temperature by thread migration. However, it is considered that performance 

counters do not represent accurately the thermal profile. In [21], Yang et al. 

showed an execution ordering approach that swaps hot and cool threads in cores to 
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control the temperature. This idea can only be applied once the application has been 

profiled to obtain the thermal information per thread, which means sometime an 

unaffordable time.  

Finally, a recent work by Yeo et al. [22] presented a temperature-aware 

scheduler based on thermal grouping of the applications using a K-means 

clustering. This work provided interesting results but requires a very complex 

analysis phase, which grows largely in complexity with the number of considered 

cores. 

Our work outperforms previous approaches with the provision of three task 

migration techniques that optimize the thermal profile of MPSoCs with very low 

performance overhead. Moreover, our techniques are able to minimize the risk of 

system failure by the minimization of temperature driven reliability factors, and can 

be applied to complex systems with a large number of integrated cores. 
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Objectives 
 
Main objective of our work is to establish Operative System policies which 

will be able to manage task loading among the cores to keep a homogeneous 

thermal distribution in the whole chip through task migration policies. 

 

To make this work several steps must be done in order to follow a normal 

project execution. These steps will be considered as previous work or partial 

objectives, and they will be: 

 

• Previous study of the related work 

o Migration policies 

o Thermal aware methods 

o Simulation / emulation methods 

• Analysis of the experimental environment 

o Emulation platform 

o Linux distribution 

o Operative system characteristics. 

• Design and test of some simple task migration policies 

• Design of a graphic user interface to analyze results. 

• Qualitative and quantitative study of the results, creating a thermal 

metric to evaluate the goodness of a policy, evaluating: 

o Mean temperature 

o Maximum temperature 

o Temperature gradient 

• Design of optimized policies. 

• Test and validation of the proposed policies. 

• Analysis of the results. 
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Chapter I 

Thermal Model and 

Emulation Platform 

 

Thermal Model 

The thermal model used in this work is thought a Rthermal – Cthermal model in 

which thermal behaviour will be modelled as an electric circuit. We will see an 

example presented by G. Paci et al. [23]. 

It shows a typical low power multiprocessor on chip (LP-MPSoc). This 

system is showed in Figure 3, where a 16 ARM7 cores and 16 32KB shared 

memories are presented.  

  

 

Figure 3: Floorplan of a LP-MPSoC 
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Each core, is attached to a local 8KB data cache and to a 8KB instruction 

cache. The memories and the cores are connected using a XPipes Network-on-Chip.  

To know the power consumption and then the temperature of all the blocks 

inside our chip a simulation environment must be created. This environment must 

estimate the power consumption of the components of the chip. This power will 

depend on the workload in the processors and memories. In this model leakage 

power is not contemplated because the system is implanted in an embedded system 

so to assure a sufficient battery-life time the leakage must be reduced to negligible 

values. So power estimation values are provided by this work [23]. These values 

are shown in Table 1. 

 

 
Max power 

@100MHz (mW) 

Max. Power 

density (W/mm2) 

ARM7 5.5 0.03 

DCache 43 0.012 

ICache 11 0.03 

Shared memory 15 0.02 

 

Table 1: Power for the most important components of a LP-MPSoC in CMOS 

technology 

 
After having a power consumption estimation an horizontal heat flow model 

is needed. The heat flow is permitted by the package, and this package is the one in 

charge of dissipating this heat to the environment. This model considers every 

surface as adiabatic but the die package. In Figure 4 the heat flow parts can be seen. 

 

 

Figure 4: Chip package solution 
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Equivalent RC Thermal Model 

 

This model as we said before, is based in the well known analogy between 

electrical circuits and thermal models. The silicon is decomposed in elementary 

cells which have a cubic shape. This work is also done with the heat spreader of the 

chip. To solve each cell, a RC computation model is needed. Each cell is associated 

with a capacitance and five thermal resistances which are used for modelling both, 

horizontal thermal spreading and vertical thermal behaviour. This can be seen in 

Figure 5. The values for the resistances and the capacitance are calculated taking 

into account the values for silicon thermal conductivity and cupper thermal 

conductivity.  

 

 

Figure 5: Cells division and equivalent RC circuit of a cell 

 

We will ise the following description:  kth
si/cu is the thermal conductivity and 

cth
si/cu is the capacitance. Both are considered per unit volume. The cell size units 

are represented by l,w and h, as shown in the Figure. The following equations show 

in detail how the values are calculated: 
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Equation 1: Admittance for a cell 

 

whlcC thth ⋅⋅⋅=  

Equation 2: Capacitance value for a cell 

 
 

With these values calculated for each cell the thermal model solver is 

executed. It consists in solving several differential equations in an iterative way. 

Every cell in the floorplan has an associated equation which describes its iteration 

with its neighbours. This equation is written as follows: 

 

[ ] [ ]
[ ] [ ] )(|)()(...)()(

...)()(1)()1( 1

iSiTiTGiTiTGnx

iTiTGniTiT
t

C

cellcellnmnmcellnx

cellncellcell
cell

−++−+

++−=−+
∆  

Equation 3: Differential equation for each cell 

Where: 

Gnx : conductance between the n cell and neighbour x  

n: number of cell 

x: 1 ≤ x ≤ m is the position number of the neighbour cell 

m: total number of neighbours cells 

Tcell(i): cell temperature at ith time step 

Tnx(i): temperature of the neighbour x of the cell n at ith time step 

Ccell: cell capacitance 

Scell(i): power burned at ith time step 

∆t: time between two time step. 

It must be noted that silicon thermal conductivity is not linear and it 

depends on the temperature. To ease the computation, we have approximated it by 

its first order Taylor series. 

Technologic values for our parameters are depicted in  

Table 2. 
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Silicon thermal conductivity 150⋅(300/T)4/3 W/mK 

Silicon specific heat 1.628e-12 J/µm3K 

Silicon thickness 350 µm 

Copper thermal conductivity 400 W/mK 

Copper specific heat 3.55e-12 J/µm3K 

Copper thickness 1000 µm 

Package-to-air conductivity 20 K/W (in low power) 

 

Table 2: Thermal properties 

 

Emulation Platform 

The thermal analysis conducted in this work requires an efficient mechanism 

to evaluate the performance and thermal statistics of the multi-processor system. 

The accuracy and the fast emulation of the system are the main constraints for the 

platform. Also, it is needed an MPOS that implements and manages the task 

migration policies. 

 

 

Figure 6: Virtex II Pro, VP30 

 
In this work, we have used a complete FPGA-based estimation framework, 

implemented in a Virtex II pro VP30 (Figure 6) and inspired by the work in [9]. 

Figure 7 shows a schematic view of this emulation platform detailing a single core 
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system. As can be seen, within this framework we can retrieve the memory and 

processor statistics required by the thermal model and the migration policies 

(power consumption, memory misses and memory matches) by mean of hardware 

sniffers. The work in [9] has also been extended to allow the characterization of a 

system with three working cores and one arbiter as the one considered [8]. 

 

 

Figure 7: Description of the emulation platform 
 

 

In this emulation platform, the collected statistical data are sent to the host 

PC through the serial port. In the multiprocessor system, a dedicated PowerPc is 

the one in charge of processing and sending the statistics to the host PC. 
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The host translates the received information into temperature values by 

means of a thermal library. This thermal library splits the floorplan of the emulated 

system in unitary cells, which are modelled as simple RthermalCthermal circuits as said 

before. 

The resolution of the linear equations created by the RC grid provides the 

evolution in time of the temperature of the system [23]. 

The emulated architecture is a homogeneous multiprocessor system with 

three 32-bit RISC cores and the PowerPC. These processors do not include a 

memory management unit (MMU) and the access to the cacheable private 

memories and to a non-cacheable shared memory is managed by the OS. Each core 

runs a uClinux OS [26]. This is based on a Linux 2.4 kernel for microprocessors 

without an MMU, but upgraded to support the interprocessor communication 

found in our target system.  

There are two techniques to migrate tasks among cores: [10] 

• Task recreation 

• Task replication 

The first one kills the process on the original processor, and then it recreates the 

same process from the scratch memory to the destination core. This strategy only 

works  in those operative systems which support dynamic loading. In our case, our 

uClinux distribution is not prepared for that. This technique is based on the 

execution of fork - exec system calls, which take care of allocating the memory 

space required for the incoming task. In order to support task recreation in a 

system without MMU, extra hardware is required to prevent the generation of 

wrong reference of pointers, since the starting address of the memory can change 

during the execution. This is a great withdraw in our system because our core does 

not support this extra hardware called PIC. 
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Figure 8: Migration cost as a function of task size for task replication 

 

Because this limitation, and also because of its migration speed we 

implemented in our system the second technique for task migration, task replication. 

With this technique only one processor at a time can run one replica of the 

task. While in one processor the task is executed normally, in the other ones, it is in 

a queue of suspended tasks. This means that a memory area is reserved for each 

replica in the local memory, while kernel-level task-related information is allocated 

by each OS in the Process Control Block. Therefore, task replication is suitable for 

deeply embedded operating systems without dynamic loading because the absolute 

memory address space does not change upon migration, since it can be statically 

allocated at compile time. In fact, even if this technique leads to a waste of memory 

for our tasks, it has the advantage of being faster, since it cuts down on memory 

allocation time with respect to a task recreation.  

A quantification of the memory overhead due to task replication is shown in  

Figure 8. In this figure, the costs are shown in terms of processor cycles needed to 

perform a migration as a function of the task size. In both techniques the major part 

of the overhead is due to the data transferred through the shared memory. For task 

recreation technique, another overhead must be taken into account. This overhead 

is produced due to the time required to reload the program code from the file 

system; thus the offset that can be seen in the figure as the gap between the two 

curves. 
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Moreover, the task recreation curve has a larger slope because the larger the 

memory transfer is, the more it takes to re load the program, besides it leads to an 

increasing contention on the bus. Hence, the contribution on the execution time 

increases as file size increases in comparison to the task replication case. 

The task migration takes place only at predefined checkpoints chosen by the 

programmer. A master daemon runs in one of the cores, which dispatches then 

tasks to the processors. 

Several modifications have been done in the OS kernel to support the 

floorplan-aware policy. First, the identifier and weight of the cores (used by the 

policies to select the candidate in the task migration, as it will be presented later) 

are allocated in the shared memory. Second, the OS can then access this information 

to apply the task migration algorithm and achieve the thermal optimization. In 

summary, the complete emulation platform is composed of the following abstraction 

layers:  

� Application layer: built as a set of independent tasks found in every 

processor of the system. The tasks are executed under the OS demand. 

� OS/Middleware layer: controls the task migration and the 

communication and synchronization of the cores through the shared 

memory. 

� HW layer: composed of three core-subsystems and a shared memory. 

 

 

 

Figure 9: a) Target hardware architecture  b) Scheme of the software abstraction 

layer 
 

 
 



Thermal model and Emulation Platform 

 
 

32 

Finally, the emulation system has also been upgraded with a representation 

graphical tool for instrumentation purposes. This tool communicates with the 

thermal library and, in real time, provides a coloured thermal map of the emulated 

system. 

The developed tool enables a rapid inspection of the hot spots, the evolution 

in time of the temperature and the spatial and temporal heat spread. 

 

Graphic Interface 

To communicate with the host PC, as we said before, the FPGA sends the 

information related to power consumption via serial port, so the host PC can know 

what the power consumption in each functional unit is. 

This information is collected by the thermal model, which computes the 

temperature of each cell and sends cores and memories temperature back to the 

FPGA so the OS can manage the thermal policies. 

 

 

Figure 10: Platform graphic user interface 
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In the host PC the information is showed in a graphical interface, designed 

in order to understand what is going on with our emulated system. 

This interface shows the temperature of each core, their workload, their 

frequency and finally it computes temperature deviation. 

A snapshot of this interface is shown in Figure 10 where all these values can 

be seen. 

Apart from this interface, 5 minicom terminals open at the same time, to get 

information and statistics of each core and the whole system in real time. 

There is a minicom for each core. Another one shows the frequency and 

temperature information of the cores, and finally the last one shows the tasks 

queues identifiers. 

Using this minicoms communication with the cores is allowed so we can 

change the DVFS policy or the migration policy we are using in real time. 

A view of the minicoms is showed in Figure 11. 

 

 

Figure 11: From high left to bottom right. Minicom Core 1, Minicom Core 2, 

Minicom Tasks queues, Minicom Core 3, Minicom temperatures and frequencies 

information 
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Using these graphical tools a rapid inspection of the system can be done. 

Getting information in real time is very important to know if the OS is managing 

the task migration policies correctly. 

Combined with these tools another graphical tool was included to allow the 

user watching how the temperature evolves in real time. An offline study is also 

possible because temperature data are logged. 

In Figure 12 a vision of this tool is showed. In it we can see how the blocks 

are painted in different colours according to their temperature. 

 

 

Figure 12: Floorplan graphic tool 
 

This tool has also another advantage. It easy integrates new floorplans with 

a negligible cost in time. For example testing a new floorplan would only take 15 

minutes. After this time qualitative and quantitave results could be extracted from 

the emulation and the statistic study of the most important parameters such as 

maximum temperature or mean temperature could be done. In Figure 13 we can see 

another example of a floorplan implemented in the system and executed showing 

cells temperature. 
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Figure 13: Extended flooplan example 
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Chapter II 
Adaptive and floorplan aware  

policies for thermal balancing 

 

 As previously mentioned, the task migration policies we present in this work  

are devoted to reduce the thermal gradients and mean temperature in a multi-

processor system, because both facts affect negatively the reliability and the leakage 

of the chip [3]. This assumption is even more critical for embedded systems, where 

the power and temperature constraints must be satisfied in parallel with 

requirements of high-performance execution. 

The FPGA-based multi-processor platform used in our experiments, has 

been extended with a DVFS policy as an effective way to manage the voltage and 

frequency settings of the cores depending on the working load. The DVFS 

technique implemented in the system follows the vertigo policy [24]. The 

application of the vertigo policy requires the previous characterization of the tasks 

attending to their full-speed-equivalent (FSE), defined as the load that a task 

imposes when it is run at full speed in a core. Therefore, if one core is running a 

task that loads it, e.g. 45%, the core can adapt its frequency to 45% of its maximum.  

Task migration policies are proposed to balance the working load in the 

processors of the emulation platform and, consequently, obtain a homogeneous 

distribution of temperature in the system. Figure 14 presents a migration example. 

Three cores are running four tasks exhibiting different workload per processor. 

Workload in the processors is directly translated into temperature due to the 

relation with the electric activity and dynamic energy; hence, this situation will 

create a thermal gradient due to the unbalanced distribution of the load, being core 

1 the hottest one. Thermal balance will be achieved migrating one task from this 

core to one of the colder processors, as can be seen in Figure 14. 
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Figure 14: Task migration example 
 

If the temperature of the chip varies slower than the rate of task migration 

1, thermal balance will be achieved. In this case, we can assume that the real 

workload of each processor is the average of the total, in the example, around 55%. 

However, task migration must be applied carefully because it affects the 

performance of the system due to the overhead introduced by data transfers. 

The following paragraphs analyze the state-of-the-art task migration 

techniques that we have been implemented in the considered emulation platform, 

and the policies we propose to specifically adapt the workload of the system 

depending on the state of the processors.  

 

State of the Art Policies 

Several migration policies have been proposed in the literature. Some were 

implemented in our system to compare them with our proposed policies. 

We are going to vaguely explain what these policies consist on: 

• Enhanced Migration (Mgr) moves the task that is running in a hot core 

when it exceeds a threshold temperature to the coolest core. This policy 

could be considered as an upgrade of the heat & run policy presented in 

[11] because it adds task migration. The implementation of this policy is 

based on the work by [10]. 

• Task rotation (Rot) [6], inspired by a Round Robin mechanism, migrates 

a task between processors every time slot. This policy achieves the thermal 
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balance in the system at the cost of an important overhead due to the 

frequent migrations. 

• Thermal Thresholds (Thres), presented in [10], moves the task running 

in the processor that exceeds an upper or lower threshold to a destination 

core. This is chosen considering the weight of the task that is going to be 

migrated and its impact on the workload of the processor. It acts in both, 

hot and cold cores. 

 

Atomic Policies Pre-Characterization 

The definition of our new task migration policies begins with the 

characterization of atomic policies in the multi-processor system. These atomic 

policies have been designed to perform simple migrations only according to the 

temperature and the workload of the cores. The migration of the task is executed 

from one processor to another with a negligible computation cost. Figure 15 shows 

the overhead introduced by the task replication mechanism for different sizes of the 

migrated task. As can be seen, the impact of migrating a 64 KB task (the one 

considered in our experimental work) is 0.5% in performance. 

 

Figure 15: Impact of the time window 
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The results of the analysis of these policies are classified in several sets 

depending on their response to pre-defined metrics. These metrics evaluate the 

capability of the atomic task to reduce the thermal gradient, the maximum 

temperature or the mean temperature in the chip. We also performed a statistic 

study to classify the policies in these groups and assign a quality mark that goes 

from 1 (very bad response) to 5 (very good response). The granularity of the 

classification is enough to represent the variability expected in the results and to 

reflect the variations found in the metrics. 

 

Atomic Policy 
Mean 

Temperature 

Maximum 

Temperature 

Thermal 

Gradient 

Hot – Cold 4 5 4 

Warm – Cold 2 2 1 

Hot – Warm 5 4 4 

Cold – Warm 1 1 1 

Warm – Hot 3 3 1 

Cold - Hot 1 1 2 

 

Table 3: Characterization of atomic policies 
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Figure 16: Mean and maximum temperatures for atomic policies 

characterization. Temperature polices and load policies 
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Figure 17: Thermal gradient for atomic policies characterization. Temperature 

polices and load policies 

 
 

Table 3 shows a reduced sub-set of the atomic policies that have been 

considered and their classification after the statistic analysis. In this table, the first 

column is the name of the atomic policy (it designs the origin and destination cores 

in the migration), being hot the reference for the hottest processor, cold for the 

coldest one and warm is the name given for those cores whose temperature is in 

between both hottest and coldest ones. As the goal of the analysis is the 

characterization of the policies, these will be always activated and the migrations 

will take place continuously. Finally, the initial workloads in the cores of the system 

are deliberately unbalanced to force the execution of the atomic policies. Next 

columns show the assigned “quality mark” for every metric. 

The pre-characterization study also considered the thermal history of the 

cores (cores that have been cold or hot during a certain period in the past), which 

brought out the possibility to minimize the overhead in terms of number of 

migrations and amount of data transferred due to migrations. 

The time window for task migration has been set experimentally to 300 ms. 

Figure 15 shows the impact of the time window in the predefined metrics. A too 

small time window will affect the performance because of extra and unnecessary 

task migrations that present an overhead in the system functioning. On the 

contrary, a too big time window will create large temperature gradients, as shown 

in Figure 4, and will increase the probability of hot spots. Therefore, the time 

window has been selected as the largest with the minimum impact on the 
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temperature gradient. This selection is independent of the application run by the 

processors and only should be revisited in case of a new package. 

 

Proposed Policies 

Heuristic algorithm (Heu) 

This algorithm is able to select efficiently among the atomic policies to 

achieve the thermal optimization with a minimum performance impact. The 

implementation of this heuristic is based on the information retrieved by the 

characterization phase, which provides the information about the thermal profile 

under the execution of the different atomic policies. 

The algorithm works as follows: A time window is set and the workload and 

thermal information of the processors is collected at run-time during this time slot. 

At the end of the time window, we evaluate the collected data and compare them 

with the preferred working parameters (in terms of mean temperature, gradient and 

peak temperature). The atomic policy to apply is selected to solve the divergence of 

metrics between the current state and the desired one. Figure 18 shows the decision 

chart that explains the functioning of this heuristic. 

In this Figure several parameters appear. Deviation is the difference between 

the preferred working value (which is 50ºC for the mean temperature, 70ºC for the 

peak temperature and 6ºC difference for the thermal gradient) and the current state 

value. These values have been selected to assure a proper operation of the system. 

Factor has been tuned experimentally to balance the importance of the different 

decision sets. Factor values are, 1 for mean temperature set, 1.5 for maximum 

temperature and 2 for the gradient. 

The proposed heuristic defines a multi-objective optimization problem. The 

implementation of the heuristic applies sequentially the atomic policies in case of 

identical unbalance in the three metrics. In this way, the complexity in the decision 

process is minimized to simplify the heuristic. In order to alleviate the constraint 

imposed by this simplified decisor, an adaptive policy is introduced. 

 



Adaptive and Floorplan Aware Policies for thermal Balancing 

 
 

43 

 

Figure 18: Heuristic algorithm decision chart 
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Adaptive Policy (Adapt) 

This policy extends the work performed by the previous heuristic approach, 

collecting data at run-time and applying the atomic policies to achieve the optimum 

thermal state. 

However, this policy adapts the selection of the atomic policy by means of 

the statistical information of the cores, which predicts the behaviour of the 

processors attending to the information about the past time. 

This policy assigns a probability to every set of atomic policies (mean 

temperature, peak temperature, thermal gradient) and updates this probability 

every time period as follows: 
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Equation 4: Probabilities calculus 
 

 

where W is the weight assigned to the sets every time period; M represents the 

different sets of atomic policies, as explained before; Mpref is the preferred working 

state and Mavg is the current state. The expressions for the increase and decrease of 

the probabilities are parametrized for every set of atomic policies, and the obtained 

probabilities are normalized in order to maintain math consistency. Mpref would also 

denote the safe operating state already defined. 

Using the previous equations, our extended OS updates the probabilities of 

selecting atomic policies every time window, and decides the working state by the 

execution of these policies. The design of the Adaptive Policy is supported by the 

pre-characterization of atomic policies. This initial study gives us the information of 

the best candidates (those atomic policies that obtain the maximum minimization of 

the metrics) for a task migration or task swapping in order to achieve a desired 

working state. 

Finally, if a core trespasses the limit of 75ºC, it migrates all its tasks to the 

other processors in the system. In other words, we shutdown the core to avoid 
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heating it up too much and prevent reliability failures. Even if it is a safety measure, 

in our experiments it never happened. 

The atomic policies implemented in this adaptive technique always migrate 

a task from a source core to a destination core. As the temperature of the 

destination core is the only variable considered in the decision, more than one 

processor can satisfy the requirements. The last proposed policy extends the sensed 

variables with the placement of the core to perform a more accurate selection of the 

destination core. 

 

Floorplan-Aware Policy (FloorAdapt) 

This policy considers the information about the floorplan. In this way, the 

OS is aware of the cores location and accordingly selects the destination processor 

in a task migration. This is implemented in the kernel of the OS with the 

assignment of different weights to each core. The smaller this weight is, the better 

candidate the core is to receive tasks. This factor is calculated with the following 

equation: 

 

shared
core

edge d
d

dG ++=
2

3 1
 

Equation 5: Goodness of a processor to receive a task 

 

where dedge is the distance to the edge of the chip, dcore is the distance to another core 

(which is a heat source), and dshared is the distance to the shared memory (which is a 

heat sink [25]). This expression has been created to resemble the strong influence 

of the ambient as a heat sink (cubic factor), the medium influence of the near cores 

as heat sources (quadratic factor) and the light influence of the shared memory as a 

heat sink (linear factor). The strength of the factors consider the proximity of the 

heat/sink and the thermal resistance of the joint. 

Every time window, the thermal history of the processors is analyzed and 

updated to solve possible hot spots, critical thermal gradients, or values over the 

safe peak temperature. However, if the system is still working in a safe state, the 

task migrations will not occur and the overhead of the policies will be avoided.  
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The knowledge of the thermal characteristics of the cores depending on the 

placement is a precious information for the task migration policies. The location of 

the cores in the chip surface produces very different thermal behaviour due to the 

proximity to heat sinks or heat sources which dissipate the temperature. In our 

floorplan design shown in Figure 19, core 0 is close to core 2 and both processors 

are prone to heat up due to the thermal diffusion from one to the other. On the 

other hand, core 1 is far from the other processors but close to the edge of the chip, 

which increases the possibility to cool easily. Therefore, core 1would be selected to 

receive a heavy workload in case of a task migration. 

 

Figure 19: Floorplan design 

 
The floorplan-aware policy incorporates this information about the core 

placement to adapt and select the probabilities of migrating or receiving a task. 
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Chapter III 
Experimental Results 

 
 

The experimental work has been conducted with the emulation platform 

described in previous sections, which has been used to model a multi-processor 

system with three working processors (µBlaze) and a PowerPC serving as the 

arbiter of the communication and statistics collector.  The benchmark selected for 

the analysis is a real-life streaming application capable of loading the three cores.  

The experiments have been run considering a special package derived from 

real-life streaming SoCs [2] for mobile embedded devices. In a target system as the 

one resembled, the temperature can vary as much as 10 degrees in less than a 

second. The chip package has been selected to stress the number of required task 

migrations and, therefore, create a worst-case scenario for the validation of our 

techniques. Finally, the cores in the system can work at different clock frequencies 

under selection of the OS: 100, 200, 300, 400 and 500 MHz. 

The validation of the task migration techniques has been accomplished 

attending to some pre-defined metrics that cover the spectrum of thermal aware 

optimization: 

• Spatial variation of the temperature of the processors: measured 

as the linear distance per area unit between cores at a different 

temperature. This metric quantifies the heat spread on the chip 

surface and the probability of thermal gradients. 

• Mean temperature of the chip: calculated as the arithmetic mean 

of the processor and memory temperatures in the chip. This metric 

relates the temperature of the devices to the energy consumption and 

cooling necessities. 

• Maximum temperature of the chip: measured as the maximum 

temperature value on the chip surface. It is related with the 

susceptibility to temperature-driven reliability factors. 
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The results obtained during the validation phase have been also compared 

with the results provided by the policies described before. 

 

Description of the Application 

The software that is executed by the platform is a Software FM Defined 

Radio (SDR) which is a perfect example of streaming application. This application is 

composed of several tasks that can be perfectly assigned to the different processors 

in the system. The input data is a digitalized PCM radio signal which has to be 

processed in several steps to obtain an equalized base-band audio signal. 

 

 

Figure 20: Schematic view of the SDR application 
 

The first step in the processing phase is a low pass filter (LPF), and the 

resulting signal is demodulated (DEMOD) and shifted to the baseband. After that, 

the signal is forked in three branches to be equalized by three different band pass 

filters (BPF).  

Finally a consumer (SUM) collects the data from every BPF. The 

communication between tasks is done using FIFO queues that transfer the data. 

Each task is allocated in a different processor during the load of the application.  

Then, the policy implemented in the OS migrates the tasks depending on 

the temperatures of the cores. Figure 20 shows a schematic view of this application 

an the relations among the processing steps. 
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Evaluation of the Policies 

 
The task migration policies implemented in the OS kernel were applied to 

the benchmark and the pre-defined metrics were collected to perform the 

evaluation. 

The execution of the application in the emulation platform consists of two 

phases. The first one is the initialization of the OS and the tasks. As this phase does 

not exhibit a critical thermal state and it occurs just once during the system boot-

up, the task migration policies are deactivated at this time. When this initial phase 

finishes, the thermal and workload state of the system is the one described in  

Table 4. Our experimental work starts at this point setting a thermal 

unbalance that motivates the activation of the migration policies. 

 

Core (Frequency) Load (%) Temperature (K) 

Core 0 (533 MHz) 44 340 

Core 1 (533 MHz) 83 339.5 

Core 2 (266 MHz) 29 328.5 

 

Table 4: Initial state of the system 
 

In the second phase, when the execution of the application effectively starts, 

all the policies described in this paper are evaluated separately. 

The analysis performed for the task migration policies is two fold. Firstly, a 

visual inspection of the thermal distribution in the chip surface is done using the 

developed graphical tool. With this analysis, the evolution of temperature in real-

time is obtained and several conclusions can be extracted. Figure 21 shows the 

results of this analysis for the (a) adaptive) and (b) migration policies, where all the 

images have been taken at the same execution time. 

As can be seen, both policies start similarly, decreasing rapidly the presence 

of hot spots. As time evolves, the adaptive policy obtains lower temperature values 

and a more homogeneous thermal distribution. In our benchmark, all the cells in 

the floorplan are within a range of temperature of 5 degrees when the adaptive 

policy is applied. Similar results were found when the adaptive policy was compared 

with the other task migration techniques. 
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     (a)                                                    (b) 

Figure 21: Thermal maps. (a) Adaptive; (b) migration 

  

Secondly, a statistical study of the distribution of temperatures in the chip 

under the execution of the task migration policies is accomplished. This analysis 

evaluates which policies have better results when applied in the multiprocessor 

system. The mean and sigma values of the temperature for every policy are 

calculated in the statistic analysis and fit to a normal distribution (see Figure 22). 

As can be derived from the values in the Figure, the best results in terms of 

thermal distribution and absolute values are achieved with the three policies 
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specifically proposed in this paper. In particular, the adaptive algorithm 

concentrates the temperature of the cells within a small range of temperatures 

centred in the mean temperature (mean temperature 319.038 K with σ of only 2.53 

K).  

 

Figure 22: Normalized statistical distributions 

 
 

The curves for the three proposed policies present: lower mean value 

(translated into a decrease in the average temperature of the chip) and narrower 

shape of the curve (translated in a smaller sigma and, therefore, a decrease in the 

thermal gradient). 

The other proposed techniques also obtain very positive results when the 

statistics are analyzed. For example, the implemented heuristic is able to decrease 

the mean temperature (319.38 K) and the sigma (2.87 K) of the statistical 

distribution when compared with rotation or migration. 

Another interesting quality factor in the development of task migration 

techniques is the number of migrations per unit. As has been previously discussed, 

task migration policies introduce a performance overhead due to the time required 

for the memory allocation, as well as an energy waste. This impact can be 

characterized by means of the number of effective migrations per time unit. Figure 

23 shows the number of migrations per time unit for all the policies considered in 
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our study. As can be seen, our proposed policies not only achieve similar results to 

the threshold technique [10] in terms of mean temperature and sigma of the 

thermal distribution, but they also decrease the impact on performance by 40% 

because of the less migrations per time unit are required.  

 

 Adap. FloorAdapt Heu Thres Mgr Rot 

Overhead (%) 0.36 0.342 0.36 0.624 0.42 1.2 

 

Table 5: Application performance overhead 
 

Table 5 summarizes the performance overhead imposed by every task 

migration technique, where the minimum impact of our proposed policies can be 

observed. Besides this reduction could seem not enough, depending on the 

application could mean an important upgrade, not only because of performance 

gain, but also because of power consumption. It must be remembered that the more 

migrations take place the more power is consumed due to data transfer process. 

 

 

Figure 23: Number of migration per time unit 
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Finally, two factors with a very strong impact on the reliability of the 

system have been evaluated: the percentage of hot spots in the chip area, and the 

thermal cycles. Both metrics have been calculated assuming that a hot spot in our 

set-up is represented by a temperature value over 328 K. Figure 24 shows the 

percentage of hot spots in the chip area, averaged along the execution of the 

benchmark, and for every migration policy. As can be seen, our Adaptive policy 

behaves better than the traditional approaches, only outperformed by the Rotation 

policy which has a strong impact on performance. The percentage of hot-spots is 

reduced to 1% and, therefore, the probability of system failure is minimized.  

 

 

 

Figure 24:Percentage of hotspots in the chip 
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Figure 25: Thermal cyles 

 

 
Figure 25 shows the thermal cycles for the same system configuration and 

task migration policies. As can be seen, our proposed approaches are able to reduce 

the thermal cycles to a minimum, showing better results than the traditional 

approaches and with a reduced performance overhead. 

All data presented we can reach the conclusion that floorplan aware policy is 

our best proposal because it reduces almost all the metrics to a minimum, compared 

with the other policies, with a low performance overhead. 

Extrapolation to N-cores 

One of the main benefits of the task migration techniques that we have 

proposed in this work is their application to more complex systems with many 

processing units (N-cores). 

While most of the previous techniques are not suitable for a system with a 

large number of cores because of the dramatic increase on the performance impact, 

our proposed techniques do no exhibit such behaviour and they are still suitable for 
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large systems. This subsection discusses this extrapolation to systems with N-

cores. 

If the size of the chip and the number of integrated cores are scaled 

accordingly, it can be predicted that the applicability of migration policies reaches a 

limit. This limit is reached due to the constrains imposed by the layout. As more 

cores are integrated in the floorplan, our policies achieve a mean value in the 

distribution curve of temperatures that depends on the floorplan of the chip and the 

number of cores. 

Also, as the number of integrated cores is increased, the smaller the 

temperature deviation is. This fact is explained because the proposed task migration 

techniques have more target cores (cool cores) to balance the workload and, 

therefore, the temperature. In this way, they are able to make the cores working 

within a range of few degrees. Also, the complexity of the scheduler increases with 

the number of processors. However, as the selection of the task to migrate does not 

require the analysis of the task content (the migration is driven by those metrics 

exceeding a threshold), the scheduler does not constrain the scalability of the 

multiprocessor system. 
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Figure 26: Floorplan extension  

 

 
However, this trend also reaches a limit as the number of cores is increased. 

Supposing an extreme scenario where a 50% of the cores are hot spots, the task 

migration techniques are not able to eliminate these critic points. In this scenario, 
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there are too few processors that can be selected as a target for the tasks in the 

migration process. Therefore, the result of the migrations is a displacement of the 

hot spots in the chip area instead of their elimination. To help on the cooling 

process, the cores can be placed at the border of the chip to allow the thermal 

dissipation to the environment and be exploited by the floorplan-aware policy. 

As the effective area of a single processor with its private memory is 5 × 5 

cells in our set-up, an there is a relation of 13/7 between the length and the height 

of the chip, we can calculate the maximum number of processors that can be placed 

at the border of the chip when both the number of processors and the chip area are 

scaled linearly. Figure 26 shows the described set-up and clarifies the calculus. Nhigh 

is the number of processors in the Y-axis, Nwidth is the number of processors in the 

X-axis, N is the number of processors in the chip and Nperim is the number of 

processors placed in the border. 

As can be extracted from the previous analysis, our task migration policies 

reach a limit in the optimization of the thermal profile when the number of cores 

exceeds 46. 

Traditional approaches would be limited in their application at a smaller 

number of cores. 
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Chapter IV 
Conclusions 

and Future Work 

 

 In this work, we have investigated and proposed 3 OS-level task migration 

policies for thermal management in embedded multi-processor systems. We have 

showed that the proposed techniques achieve low and balanced temperatures 

profiles, diminishing the percentage of hot spots, thermal cycles, and thermal 

gradients.  

As compared with traditional techniques, our policies incorporate the 

floorplan information in the OS, dynamically adapt the migration to the thermal 

profile of the application, and improve the thermal behaviour of the chip with a 

negligible performance overhead. 

Our three proposals achieved great results in terms of temperature 

reduction and also in performance overhead introduction. All of them achieved 

these great results but floorplaning aware policy was our best result because it 

reduced the overhead introduced by task migration effect. 

This work could be extended to new ways of design such as 3D floorplan 

placement. The thermal model that is used in 2D can be easily extended to a new 

dimension just adding a new thermal resistance that spreads heat in the other 

direction. Solving the equation system we would get temperatures for each layer of 

the chip. 

Then a floorplan aware policy for task migration as the one we proposed 

here can be used to reduce power dissipation issues that these 3D structures 

present. 
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