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The problem of demixing in the Asakura–Oosawa colloid-polymer model is considered. The critical
constants are computed using truncated virial expansions up to fifth order. While the exact analytical
results for the second and third virial coefficients are known for any size ratio, analytical results for
the fourth virial coefficient are provided here, and fifth virial coefficients are obtained numerically
for particular size ratios using standard Monte Carlo techniques. We have computed the critical
constants by successively considering the truncated virial series up to the second, third, fourth, and
fifth virial coefficients. The results for the critical colloid and (reservoir) polymer packing fractions
are compared with those that follow from available Monte Carlo simulations in the grand canonical
ensemble. Limitations and perspectives of this approach are pointed out. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4904891]

I. INTRODUCTION

Characterizing the phase behavior of a soft matter
complex fluid, such as a colloidal suspension, is in general
a very difficult task. This is due to the widely different time
and length scales involved. Therefore, the analysis of simple
but tractable models capturing the essential features of real
systems has proven to be a very valuable tool in this regard.
Since the structure of a dense fluid is known to be largely
determined by the repulsive intermolecular forces, hard-core
potentials have been extensively employed to model simple
fluids and fluid mixtures. In the case of mixtures of colloids
and polymers and other colloidal systems, binary hard-sphere
(HS) mixtures are widely recognized as standard models
for such systems.1 A particularly interesting problem from the
theoretical point of view is the possible existence of fluid-fluid
separation in HS mixtures. The origin of a demixing transition
in fluid mixtures is usually ascribed to the asymmetry of
the interactions between the different components of the
mixture. When one deals with a binary additive hard-sphere
(AHS) mixture, the only possible asymmetry is that due
to the different sizes of the spheres of both components.
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This means that the fluid-fluid separation that may occur in
such a mixture, based only on the size asymmetry of the
spheres, is entropically driven, an issue that has attracted
a lot of attention in the literature.2 A plausible mechanism
for demixing in these mixtures is osmotic depletion: when
the separation of the surfaces of two large spheres (colloids)
is less than the diameter of the small ones (polymers), the
depletion of the latter from the gap between the colloids leads
to an unbalanced osmotic pressure which, in turn, results
in an effective attraction between the two large spheres.
In this way, a fluid phase rich in large spheres may form
and coexist with another fluid phase rich in the small ones.
If the mixture is a nonadditive hard-sphere (NAHS) one
with positive nonadditivity (which means that the distance
of closest approach between two spheres of different species
is larger than the sum of their radii), it is well known that
for sufficiently large nonadditivity it will present fluid-fluid
separation into two fluid phases of different composition.
Thus, one may affirm that fluid-fluid phase separation in HS
mixtures may be due either to size asymmetry or to positive
nonadditivity or to a combination of both effects.3

The Asakura–Oosawa (AO) model4,5 (also developed
later independently by Vrij6) was perhaps the first work in
which the depletion mechanism was described. This model
was introduced to study mixtures of colloidal particles and
nonadsorbing polymers (see Ref. 7 for a recent review and
references therein). In it, the colloid-colloid interactions were
taken to be those of HS, the polymer-polymer interactions
were assumed to vanish (i.e., the polymers were considered
as an ideal gas of point particles), and the polymer-colloid
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interactions were of the excluded volume type and took into
account the radius of gyration of the polymer. This model
may also be considered as a limiting case of a NAHS mixture
with positive nonadditivity. Hence, the AO model incorporates
simultaneously the two mechanisms responsible for fluid-fluid
phase separation in HS systems, namely, size asymmetry
(leading to osmotic depletion) and positive nonadditivity.
Not surprisingly, there is already a wealth of studies in
the literature concerning the phase behavior of polymer-
colloid mixtures using the AO model. On the theoretical side,
mention must be made of the thermodynamic perturbation
theory approach,8–10 of the free-volume (FV) theory,11–14 and
of the density functional approach.15–17 On the other hand,
another rather successful and often employed approach in
the colloids literature is that of coarse graining. The idea
is to integrate out the irrelevant degrees of freedom (those
associated with the small particles) to end up with a one-
component system of colloidal particles described by effective
interactions (see for instance Refs. 18–20 and references
therein). An important result in this context is the proof
that for a size ratio q (see below for its definition) equal
to or smaller than 2/

√
3− 1 ≃ 0.1547, the mapping to the

effective one-component system is exact.18,19 This threshold
value has a geometric origin: if q < 2/

√
3−1, a polymer can

fit into the inner volume created by three colloids at contact.
Finally, simulations have also been performed using either the
effective one-component depletion potential or the full AO
binary mixture.21–36

Our motivation to carry out the present study rests,
however, on different grounds. Three of us have considered
fluid-fluid demixing in binary AHS mixtures using the
available information on the virial coefficients of those
mixtures.37–39 A similar approach was followed by Vlasov and
Masters.40 Although non conclusive due to the small number
of available virial coefficients, these studies suggest that in
AHS mixtures there would be no (stable or metastable) fluid-
fluid phase separation. But such a conclusion is not free from
controversy since it is not clear whether the limited knowledge
of the first few virial coefficients allows one to get a fair picture
of fluid-fluid demixing caused by a depletion interaction. The
question then arises whether in the AO model, where there is
certainly fluid-fluid demixing, the approach based on the use
of the available virial coefficients is at grips with the known
results for the critical consolute point. The major aim of this
paper is to address this question and assess how well the virial
expansion performs with respect to the critical behavior of the
AO model. To this end, it is important to stress that both the
second and third virial coefficients of the AO model are known
and exact. As far as the fourth one is concerned, to our knowl-
edge, it has not been reported so far that it also turns out to be
exact, its explicit expression being provided below. In general,
however, higher order virial coefficients must necessarily be
evaluated numerically and here we will provide values of the
fifth virial coefficient of the AO model for selected values of
the size ratio. With this limited information, we will consider
the virial series truncated consecutively after the second, third,
fourth, and fifth virial coefficients and compute the critical
constants for a few size ratios. The results will be subsequently
compared with those coming out of computer simulations.

The paper is organized as follows. In Sec. II, we introduce
the AO model and provide the virial coefficients up to the
fifth, this latter only for a few size ratios. This is followed in
Sec. III by the computation of the critical constants and their
representation in different thermodynamic planes. The paper
is closed in Sec. IV with some discussion of the results and a
few concluding remarks.

II. VIRIAL COEFFICIENTS OF THE
ASAKURA–OOSAWA MODEL

Consider a binary fluid mixture of N = N1+N2 spheres
(colloids + polymers) in a volume V . In this mixture, the
distance of closest approach between spheres of species i
and j, denoted by σi j, is such that σ11 = σ1, σ22 = 0, and
σ12=

1
2σ1(1+q), with the size ratio q acting as the (positive)

nonadditivity parameter. This NAHS mixture defines the well
known AO model.7

The usual virial expansion of the compressibility factor
of this mixture reads

Z ≡ p
ρkBT

= 1+
∞
j=2

Bj(x1,q)ρ j−1, (2.1)

where p is the pressure, ρ= N/V is the number density, kB

is the Boltzmann constant, T is the absolute temperature,
and it has been made explicit that the virial coefficients
Bj(x1,q) (in units of σ

3( j−1)
1 ) depend only on the mole

fraction x1 = N1/N of the colloids and on the size ratio q.
For later convenience, we further introduce at this stage
the reduced pressure p∗ ≡ pσ3

1/kBT , the colloid packing
fraction ηc ≡ π

6 ρx1σ
3
1, the (effective) polymer packing fraction

ηp ≡ π
6 ρx2σ

3
1q3 (where x2 = 1− x1 is the polymer mole

fraction), and the (effective) reservoir polymer packing
fraction ηrp ≡ eµ2/kBT π

6 σ
3
1q3/Λ3

2= eµex
2 /kBTηp, where µ2 is the

chemical potential of the polymers, µex
2 is its excess part, and

Λi is the thermal de Broglie wavelength of species i.

A. Second, third, and fourth virial coefficients

The second and third virial coefficients of a NAHS
mixture with positive nonadditivity are exact and well
known.41 It is a simple matter to obtain the corresponding
expressions for the AO model from them, namely,

B2(x1,q)= x2
1B11+2x1x2B12(q), (2.2)

B3(x1,q)= x3
1C111+3x2

1x2C112(q), (2.3)

with the composition-independent coefficients (in units of σ3
1)

B11=
π

6
4, (2.4)

B12=
π

6
(1+q)3

2
, (2.5)

and (in units of σ6
1)

C111=

(
π

6

)2
10, (2.6)

C112=

(
π

6

)2 1+6q+15q2+8q3

3
. (2.7)
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For a general binary mixture, additional terms x2
2B22 and

3x1x2
2C122+ x3

2C222 should be included in Eqs. (2.2) and (2.3),
respectively. On the other hand, thanks to the property σ22= 0,
the composition-independent coefficients B22, C122, and C222
vanish in the AO model.

The fourth virial coefficient for a general NAHS mixture
is not known exactly. However, in the special case of the AO
model, the fourth virial coefficient reads

B4(x1, q)= x4
1D1111+4x3

1x2D1112(q)+6x2
1x2

2D1122(q), (2.8)

since, analogously to what happens in Eqs. (2.2) and (2.3),
the missing coefficients D1222 and D2222 vanish due to σ22= 0.
D1111 corresponds to the fourth virial coefficient of the one-
component HS fluid, whose analytical value (in units of σ9

1)
reads

D1111=

(
π

6

)3
b4, (2.9)

where

b4=
219
√

2−712π+4131tan−1
√

2
35π

≃ 18.3648. (2.10)

In terms of Mayer diagrams, the coefficients D1112 and D1122
in the AO model are given by

(2.11)

(2.12)

Here and below, a circle represents a colloidal particle and a
single vertex represents a polymer particle. For example,

(2.13)

where f i j(r)=−Θ(σi j−r) is the Mayer function correspond-
ing to the interaction i j, Θ(x) being the Heaviside step
function.

Interestingly enough, the Mayer diagrams in Eqs. (2.11)
and (2.12) are equivalent to the corresponding ones appearing
in general AHS mixtures since they do not actually depend
on the value of σ22. In fact, D1112 is exactly the same as for
general mixtures and it turns out that there exist analytical

expressions42–44 for this partial coefficient, as well as for the
two diagrams appearing in D1122 as given by Eq. (2.12).
Taking into account those results, one finds that D1122 and
D1112 are given (in units of σ9

1) by

D1122=−
(
π

6

)3
q5

(
27
20
+

12q
5
+

51q2

35
+

51q3

140
+

17q4

420

)
, (2.14)

D1112=




D(1)
1112, q ≤ 2/

√
3−1,

D(1)
1112+D(2)

1112, q > 2/
√

3−1,
(2.15)

D(1)
1112 =

(
π

6

)3
(

1
4
+

9q
4
+9q2+

21q3

4
+

27q4

8
+

27q5

40

− 27q6

5
− 162q7

35
− 81q8

56
− 9q9

56

)
, (2.16)

D(2)
1112 =

(
π

6

)3 1
280π


Q
12

�
10Q6−51Q4+210Q2+6976

�

− 486P1(Q2+9)+ q+1
3

P2
�
5Q8−28Q6

+ 129Q4−124Q2+11378
�
, (2.17)

where Q ≡


3q2+6q−1, P1 ≡ tan−1Q, and P2 ≡ tan−1[Q/
(q+1)]. Therefore, we now have the exact analytical results
up to the fourth virial coefficient of the AO model.

B. Fifth virial coefficient

Concerning the fifth virial coefficient, the terms that
survive in the AO model are

B5(x1, q) = x5
1E11111+5x4

1x2E11112(q)
+10x3

1x2
2E11122(q)+10x2

1x3
2E11222. (2.18)

The condition σ22= 0 implies that the coefficients E11222 and
E22222 vanish. The partial term E11111 corresponds to the
fifth virial coefficient of the one-component HS fluid whose
numerical value (in units of σ12

1 ) is

E11111=

(
π

6

)4
b5, b5≃ 28.224512. (2.19)

As for E11112, E11122, and E11222 they can be expressed in
terms of Mayer diagrams as

(2.20)

(2.21)
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(2.22)

As happened with D1112, the number of irreducible graphs of
E11112 remains unchanged with respect to what happens in
the general binary mixture. On the other hand, similarly to
the case of D1122, the number of graphs representing E11122
and E11222 is greatly reduced with respect to the complete set.
Exploiting the fact that only the effective colloid-colloid pair
potential18 contributes to the osmotic pressure to second order
in the colloid density, it is possible to prove that

E11222 = −
(
π

6

)4 q7

8400
(3240+7695q+6780q2+2706q3

+ 492q4+41q5). (2.23)

To our knowledge, there are no analytical results for the
coefficients E11112 and E11122. Therefore, those coefficients
have to be computed numerically for each q. In order to
do so, a standard Monte Carlo (MC) numerical integration
procedure, similar to those of Refs. 45 and 46, was employed.
The algorithm produces a significant set of configurations
compatible with the Mayer graph one wants to evaluate. We
first fix particle 1 (by convention, a colloid) at the origin
and sequentially deposit the remaining four particles (colloids
or polymers, depending on the graph) at random but in
such a way that particle i+1 overlaps with particle i (where
i = 1, 2, 3, 4). This procedure generates a “trial configuration,”
that is, an open chain of overlapping particles. A “successful
configuration” is a closed-chain configuration where particle 1
overlaps with particle 5 and the residual cross-linked “bonds”
that are present in the Mayer graph that is being calculated
are also retrieved. The ratio of the number of successful
configurations (Ns) to the total number of trial configurations
(Nt) yields, asymptotically, the value of the cluster integral
relative to that of the open-chain graph. The latter, in turn, is
trivially related to a product of the partial second-order virial
coefficients Bαβ.

The numerical accuracy of the MC results obviously
depends on the total number of trial configurations. The
relative error on the cluster integral J is estimated as

J(J−1)/Nt. However, as a result of the accumulation
of statistically independent errors, the global uncertainty
affecting the partial virial coefficients is higher than the error
estimated for each cluster integral that enters its expression.
A typical MC run consisted of 4×1011–1×1013 independent

TABLE I. Numerical values of the partial coefficients E11112 and E11122
(in units of σ12

1 ) for some values of the size ratio q. The error on the last
significant figure is enclosed in parentheses.

q E11112 E11122

0.05 0.0267 (6) ≈−5 × 10−8

0.10 0.0437 (4) −0.0000043 (9)
0.15 0.0666 (8) −0.000034 (8)
0.40 0.296 (4) −0.0075 (2)
0.56 0.575 (5) −0.0546 (5)
0.80 1.257 (7) −0.505 (4)
1.00 E11111 −2.18 (3)

moves, depending on the the value of q. In order to produce
reliable pseudorandom numbers, we adopted the Mersenne
Twister MT19937 pseudorandom number generator,47 which
is characterized by a very long period (219937−1).

The numerically computed values of E11112 and E11122
are presented in Table I for particular values of the size ratio
q. As a confidence test, we have numerically computed the
partial virial coefficients D1112, D1122, and E11222 with the
same MC method and for the same values of q as in the
cases of E11112 and E11122. Comparison with exact expressions
(2.14)–(2.17) and (2.23) shows deviations smaller than the
estimated error bars.

III. THE CRITICAL CONSOLUTE POINT

In order to study the critical behavior, we consider the
Helmholtz free energy per particle f . If virial expansion (2.1)
is truncated after n terms, this quantity reads

f
kBT
= x1 ln

�
x1ρΛ

3
1

�
+ x2 ln

�
x2ρΛ

3
2

�
−1+

n
j=2

Bj

j−1
ρ j−1.

(3.1)

TABLE II. Critical constants xcr, ηc,cr, ηr
p,cr, and p∗cr as obtained from the

truncation of the virial expansion after the nth virial coefficient for different
q-values.

q n xcr ηc,cr ηr
p,cr p∗cr

0.05 2 0.0303 0.2720 0.0015 22.9654
3 0.0298 0.4291 0.0032 50.2366
4 0.0261 0.5328 0.0060 93.6496
5 0.0232 0.6035 0.0097 150.878

0.10 2 0.0356 0.2503 0.0094 18.1964
3 0.0389 0.3903 0.0185 35.9421
4 0.0372 0.4793 0.0313 60.9726
5 0.0356 0.5385 0.0461 90.2842

0.15 2 0.0415 0.2309 0.0256 14.6051
3 0.0494 0.3550 0.0457 26.3274
4 0.0503 0.4312 0.0711 41.2659
5 0.0505 0.4812 0.0983 57.2493

0.40 2 0.0779 0.1599 0.1879 5.7026
3 0.1165 0.2273 0.2423 7.4719
4 0.1382 0.2691 0.3013 9.3443
5 0.1546 0.3013 0.3577 11.0738

0.56 2 0.1060 0.1294 0.3132 3.4830
3 0.1658 0.1763 0.3582 4.0599
4 0.2035 0.2097 0.4195 4.7754
5 0.2345 0.2386 0.4817 5.4596

0.80 2 0.1520 0.0967 0.4853 1.8668
3 0.2378 0.1255 0.4994 1.9647
4 0.2971 0.1521 0.5628 2.2185
5 0.3518 0.1786 0.6346 2.4837

1.00 2 0.1910 0.0773 0.6071 1.2044
3 0.2903 0.0972 0.5964 1.2115
4 0.3638 0.1202 0.6659 1.3525
5 0.4382 0.1456 0.7481 1.5068
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Considering partial derivatives of f with respect to
composition x (where x = x1) and specific volume v (where
v = 1/ρ), the conditions required for determining the critical
point are

f xx f vv− f 2
xv = 0, (3.2)

f xxx−3 f xxv
f xv
f vv
+3 f xvv

(
f xv
f vv

)2

− f vvv

(
f xv
f vv

)3

= 0, (3.3)

and the chemical potentials are obtained as

µ1= µ2+ f x, µ2= f − v f v− x f x. (3.4)

Table II contains the results for the critical constants
xcr, ηc,cr, ηrp,cr, and p∗cr for particular values of the size
ratio q when the virial expansion is truncated taking n = 2,
3, 4, and 5, respectively, and Eqs. (3.2) and (3.3) are
solved simultaneously. The critical value of the polymer
packing fraction can easily be obtained from the relationship
ηp,cr= ηc,crq3(1− xcr)/xcr.

The same information for the critical parameters ηc,cr,
ηrp,cr, and p∗cr is presented in Figs. 1, 2, and 3, respectively,

FIG. 1. Critical colloid packing fraction (ηc,cr) as a function of the inverse of
the number of retained virial coefficients in the virial series for different size
ratios. The solid symbols represent the values obtained from the exact second
(n = 2), third (n = 3), and fourth (n = 4), as well as from our MC evaluation
of the fifth (n = 5) virial coefficients. The open and crossed symbols represent
the values obtained by truncating the FV11 and SHY48,49 analytical equations
of state, respectively. The critical values provided by the full equations of
state are represented at 1/n = 0 and joined to the last truncated value by
dashed and dashed-dotted lines. Finally, the short horizontal lines at 1/n = 0
represent the critical values obtained from MC simulations.26–30,32,33

for q = 0.10 and 0.15 (top panels) and q = 0.40, 0.56, and
0.80 (bottom panels). In Figs. 1 and 2, we have also
included (at 1/n = 0) the values obtained for ηc,cr and ηrp,cr,
respectively, from MC simulations in the grand canonical
ensemble.26–30,32,33 Also included in Figs. 1–3 are the critical
constants that one gets from the truncation at different orders
of the virial expansion of two analytical equations of state
for the AO model: the FV one by Lekkerkerker et al.11 and
the one proposed by three of us48,49 (here denoted by the
acronym SHY). The critical constants obtained from the full,
nontruncated analytical equations of state are represented in
Figs. 1–3 at 1/n= 0. For the sake of completeness, we display
below the FV and SHY equations of state

ZFV= x1ZCS(ηc)+ x2

1−ηc
+

x2qηc
(1−ηc)2


3+3q+q2

+3q(3+2q) ηc
1−ηc

+9q2 η2
c

(1−ηc)2

, (3.5)

ZSHY= x1ZCS(ηc)+ x2

1−ηc
+ x2q

(
1−5q− 11

3
q2

)
× ηc

1−ηc
+

1
2

(
1+4q+

7
3

q2
)
[ZCS(ηc)−1]


, (3.6)

where ZCS(η) = (1+ η + η2− η3)/(1− η)3 is the Carnahan–
Starling compressibility factor of a one-component HS fluid.
It should be pointed out that these two equations of state yield
only the exact second and third virial coefficients. Despite the

FIG. 2. Same as in Fig. 1, but for the critical (effective) reservoir polymer
packing fraction (ηr

p,cr).
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FIG. 3. Same as in Fig. 1, but for the critical reduced pressure (p∗cr). No MC
simulation data are available for this quantity.

similarity of Eqs. (3.5) and (3.6), they are derived from quite
different routes. The FV theory is specifically constructed
for the colloid-polymer AO model, while the SHY approach
extends to any HS mixture (additive or not) with any number
of components in any dimensionality. In the FV theory,7,11 the
free energy of the system is expressed as a sum of a term
corresponding to a pure colloidal suspension in the volume
V and a term corresponding to a pure polymer solution in
the volume α(ηc)V , where the free volume fraction α(ηc) is
motivated by scaled particle theory. On the other hand, in the
SHY approximation,48,49 the excess free energy of the mixture
is written as a linear combination of that of a pure system and
−N kBT ln(1−η) with coefficients such that the second and
third virial coefficients are reproduced.

One immediately sees from Table II and Figs. 1–3 that
the exact virial expansion yields a very slow convergence
and that already when the series is truncated after the fourth
virial coefficient, the prediction for ηc,cr is higher than the
MC value irrespective of the size ratio (see Fig. 1). The same
happens with the truncated virial expansions of the FV and
SHY equations of state. These, however, reach a maximum at
a given level of truncation and then slowly decay to their final
(convergent) value, which again is higher than the MC value,
much more when q ≤ 0.15 and with reasonable accuracy for
both q = 0.56 and q = 0.8. As far as Fig. 2 is concerned, we
see that for the small size ratios q ≤ 0.15, one can hardly
distinguish between the predictions for ηrp,cr of the FV and

SHY equations of state and those of the exact virial series up
to the fifth virial coefficient and that the n→ ∞ limit prediction
for both equations of state compares reasonably well with the
MC value. For higher size ratios, again the predictions of the
exact virial series and those that follow from the analytical
equations of state differ after the truncation at the level of
the third virial coefficient, and the predictions of the full
equations of state underestimate the MC values. Less definite
conclusions can be extracted from Fig. 3 due to the absence
of reported MC values for the critical pressure. In any case,
from the behavior of the analytical equations of state, one can
infer that the convergence of p∗cr with increasing n becomes
much smoother as the size ratio increases.

IV. CONCLUDING REMARKS

In view of the results of Sec. III, a few comments are in
order. To begin with, we first provided analytical expressions
for the virial coefficients (up to the fourth) of the AO model
and then computed numerically the fifth one for selected
values of the size ratio q. With this input, by truncating the
virial expansion after the nth term, where n goes from 2 to
5, we computed the critical constants of this model for a few
values of q. The convergence we obtained for the final value
of these constants is generally slow, especially for q ≤ 0.15.

The comparison with the MC values results is
encouraging in the case of the critical reservoir polymer
packing fraction ηrp,cr but not in the case of the critical
colloid packing fraction ηc,cr. In fact, in the former case, the
extrapolation to n→ ∞ of the estimates obtained from the
truncated virial expansions seem to be consistent with the
simulation data. In the case of ηc,cr, on the other hand, as one
adds one more virial coefficient (what should in principle lead
to better results), the observed trend is the increase of the value
of the critical packing fraction and already with three (q= 0.1,
0.05, 0.4, q = 0.56) or four (q = 0.80) virial coefficients such
value is above the simulation one.

The inconsistency between the estimated and simulation
values of ηc,cr suggests two possible scenarios: either (a) the
addition of more terms in the virial expansion will reverse
the observed tendency (and the limit n→ ∞ would eventually
be consistent with the MC value) or (b) the present approach
presents a serious limitation for studying fluid-fluid demixing
(for instance, if the critical density is beyond the radius of
convergence of the virial series). Notice that the coexistence
curve in the ηc vs x plane as obtained from MC simulations26

is very flat, so determining the precise location of the critical
point is not an easy task. Under those circumstances and
maybe others related to the difficulty of estimating the critical
points with grand canonical simulations, as discussed in
Ref. 50, it is conceivable that the reported MC values of
ηc,cr may not be extremely accurate. On the other hand, the
analysis of the truncated virial expansion that follows from two
analytical equations of state indicates that the first scenario is
indeed possible but elucidation of this issue certainly requires
further research. In any event, the usefulness of the virial
approach to the demixing problem cannot be ruled out at this
stage.
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