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Abstract 

We regularize QCD using the combination of higher covariant derivatives and Pauli-Villars determinants proposed by 
Slavnov. It is known that for pure Yang-Mills theory the Pauli-Villars determinants generate unphysical logarithmic radiative 
corrections at one loop that modify the beta function. Here we prove that when the gauge fields are coupled to fermions so 
that one has QCD, these unphysical corrections translate into a violation of unitarity. We provide an understanding of this 
by showing that Slavnov’s choice for the Pauli-Villars determinants introduces extra propagating degrees of freedom that 
are responsible for the unitarity breaking. This shows that Slavnov’s regularization violates unitarity, hence that it should be 
rejected. 

1. Introduction 

The advantages of using gauge invariant regular- 
ization methods are well known to the quantum field 

theory practitioner. The problem is that there are not 
so many gauge invariant regularization methods avail- 

able. The two most popular ones proposed to date 
are probably dimensional regularization [ 1 ] and the 

method of higher covariant derivatives [ 21. Dimen- 
sional regularization works well for vector gauge the- 

ories, for which the algebraic structure is not altered 
by a change in the number of dimensions of space- 

time. Unfortunately, when it comes to chiral gauge 
theories, it is not clear [ 3,4] whether it is possible to 

consistently define dimensional regularization, the rea- 
son being that the properties of chiral objects depend 
on the dimensionality of spacetime and this conflicts 
somehow with the ideas behind dimensional regular- 
ization. 

The situation for the method of higher covariant 

derivatives is more confusing. To describe it, we 

will restrict ourselves to QCD, the theory we will be 
discussing here. As is well known, higher covariant 

derivatives only provide a partial regularization, since 
they leave one-loop divergences unregularized. To 

achieve full regularization, a second regulator taking 

care of the unregularized one-loop divergences must 

be introduced. Choosing such a regulator is not a 
simple issue, since one would like to pick one that 

preserves gauge invariance and that at the same time 
does not jeopardize what has been gained at two and 

higher loops with the introduction of higher covariant 
derivatives. Slavnov [ 51 proposed in the seventies to 

use as second regulator a certain combination of gauge 
invariant Pauli-Villars determinants [see Eq. (8) for 
their expression]. Adopting his proposal, one ends 
up with a hybrid regularization that combines higher 
covariant derivatives with Pauli-Villars determinants 
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of a certain form and that keeps the dimension of 
spacetime at its physical value. We will call this reg- 
ularization prescription Slavnov’s regularization and 
denote it by SR. Keeping the dimensionality of space- 
time unchanged and preserving gauge invariance, SR 
looks like a good starting point to formulate a suitable 
regularization method for chiral gauge theories. Un- 
fortunately, there is no agreement as for whether or 
not SR is a consistent regularization method. On the 
one hand, there are claims that (i) the Pauli-Villars 
determinants spoil regularization at two and higher 
loops [ 61 and (ii) that, even at one loop, renormal- 
ization is inconsistent with gauge invariance [ 71. On 
the other, there are calls [ 81 rebating these claims. 

To settle the dispute, and motivated by its potential- 
ity for chiral gauge theories, SR was used in Ref. [ 91 
to explicitly regularize and renormalize Yang-Mills 
theory at one loop. There it was proved that the Pauli- 
Villars determinants on which SR is based generate 
unphysical logarithmic radiative corrections that mod- 
ify the beta function of the theory at one loop, giv- 
ing for the latter an unphysical value. The purpose of 
this paper is to show that these unphysical corrections 
produce a violation of unitarity when the Yang-Mills 
fields are coupled to fermionic matter, so that one has 
full QCD. 

2. Slavnov’s regularization 

Let us start by briefly recalling the basics of SR. 
We are interested in N,-coloured, Nr-flavoured QCD 
in four dimensions. Not to fall short of rigour in the 
computation of Feynman integrals, we will work in 
Euclidean space and recover Minkowski spacetime re- 
sults by Wick rotating the final results. In Euclidean 
space, QCD’s classical action in a covariant gauge 
JAa + a b” = 0 takes the form 

S = 
s 

d4x (&CD + GF) , 

where Loco and J&Z are given by 

(1) 

&CD = i F;” Fapv - 5 I& ( i? + ig@T’ - mq > $q 

Q=l 

&-jF = -2 ff baba - b” (JA”) + pa (aDc)a 

(2) 

(3) 

and the notation is as follows. Af denotes the gauge 
field, I,L?~ and 1/14 the quark fields, Ea and ca the Faddeev- 
Popov ghosts, Fftv = cY,Az - &A$ + gf”bCALA; the 
field strength and D; = Sac + gf”&“Ai the covari- 

ant derivative. g is the coupling constant, fabc are the 
structure constants of the gauge algebra, Ta are the 
generators of the gauge algebra in the fundamental 
representation, m4 are the fermion masses and LY is 
the gauge-fixing parameter. The constants fubc and the 
generators T” are normalized so that facd f bcd = N#& 
and tr(T”Tb) = is(lb. SR regularizes QCD in two 
steps. First, it introduces a higher covariant derivative 
term and modifies the gauge-fixing part of the action 
so that now one has 

SA = 
I 

d4.x (&CD + CHCD +-&), (4) 

with 

Lucy = & (D*F,,)’ ( D2Fpv)” 

and 

(5) 

&=_?ba ’ 
2 f (J2/A2> 

b” - ba ( c9Aa) +I? (dDc)O . 

(6) 

Here A is a mass and f (3*/A*> is a function that in 
momentum space is given by 

f=1+$ 

Some simple power counting shows that the only su- 
perficially divergent 1PI Feynman diagrams generated 
by S,, are the one-loop diagrams contributing to the 
two-, three- and four-point 1PI Green functions of the 
gauge field. Thus the modification of QCD’s action 
along the lines of Eqs. (4)-(6) does not regularize 
the theory completely, but leaves some one-loop di- 
vergences unregularized. Before explaining Slavnov’s 
idea to regularize the latter divergences, let us mention 
that the choice of f (3*/A*) is somewhat arbitrary. 
Here we have chosen it as in (7) so as to ensure local- 
ity and make all a-dependent contributions finite by 
power counting. Taking, e.g., f = 1 + (p2/A2) also 
ensures locality but leaves a-dependent contributions 
unregularized at one loop (see Ref. [9] for a discus- 
sion of this point). 
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The second step in SR is to regularize the one-loop 
divergences generated by S,. Slavnov [ 51 proposed 
to do this by introducing Pauli-Villars determinants in 
the generating functional so that it reads 

Z Mxem 

= 
I 

VAVbV~V~VDEVce-(S”‘S”“’ 

x fi (detAi)-“i/2 (det@i)“’ fiif (detlFqj)“j . 
i=l q=l j=l 

(8) 

Here 

S SO”P.32 

= / d4x PA; + b”f + 2 (&;,s, + &,1/1, ) ] 
q=l 

is the source term coupling the fields Af, b’, t,hq and 

I& to their external sources J“p, x’, cq and ,J4, and the 
determinants det Ai, det Cci and det lFqj are defined by 

(dct& )-l” = J VAja(DAj) exp - i 
{ s 

d4X 

X J d4YAy(X) Oj$(x -Y) A?(y) (9) 

det Qli = det - D2 + IPI? 
> (10) 

det F, = det (i? + gdaTa + pqj ) . (11) 

The parameters ai and qqj are arbitrary real parameters 
satisfying the conditions 

I 

c CXi+l=O (12) 
i=l 

J, J4 

c 7Jqj+l=O, mi+CQjA$j- 9 2 -0 (13) 
j=l j=l 

Mi and pqj are masses and the operator Oj~~ ( x - y ) 
in Eq. (9) is given by 

Oj$)(X - y) = 
S2S* 

SAa,W ~A;(Y) 

+ h!l; S”bg”“S(x - y) . 

(4 (b) 
.*. , \ 

-4 ‘l-w- \ I 
\ I 

-w’ 
Q 

(cl (4 
Fig. 1. Contributions from S,, to the vacuum polarization tensor. 

Strictly speaking, Slavnov only considered pure Yang- 
Mills theory, so he did not need to introduce deter- 
minants det !?qj to regularize the divergences gener- 
ated by quarks running along internal loops. We will 
see, anyway, that the determinants det lFqj do not pose 
any problem and that the difficulties arise from the 
determinants det hi. It is very easy to see [ 81 that 
det Ai, det Ci and det ll?qj are gauge invariant. This, 
together with the gauge invariance of S,, implies that 
the functional Z[J,x,<,f] satisfies the same BRS 
identities as the unregularized functional one would 
construct starting from QCD’s action S in Eq. ( 1). 
It can also be shown [5,9] that conditions ( 12) and 
( 13) ensure that Z [ J, x, 5, l] generates finite Green 
functions at one loop. So, all in all, one has a gener- 
ating functional which is manifestly gauge invariant 
and that generates finite Green functions at one loop. 

It is very important to understand the regu- 
larization mechanism of one-loop divergences in 
Z[ J, x, 5, l]. To this end, let us consider the vac- 
uum polarization tensor it generates. From the action 
Sk, it receives the contributions of the diagrams in 
Fig. 1. In addition there are the contributions from 
~i(detAi)-“i/2(detCi)~1~,IT, (dctlFqj)‘ls’ in the 
measure of the path integral. Using the very same 
techniques as for ordinary Pauli-Villars regularization 
of QED, it is very easy to see that conditions (13) 
imply that the product & nj (det lF,j)‘g regularizes 
the divergences in diagram la. As for diagrams lb- 
Id, Slavnov [ 51 has argued using formal path integral 
manipulations that violate locality that the product 
l-Ii (dct Ai) -ni/2( det Ci) q cancels the divergences 
in diagrams 1 b-ld provided Eq. ( 12) and the extra 
condition 



534 J.H. L&I er al. / Physics Letters B 355 (19951531-538 

I 

c ffjhl~ = 0 
i=l 

are met. It has been shown [ 91 that, to check whether 

this is actually the case within the framework of local 

regularization, an extra regulator R must be intro- 

duced. It turns out that after introducing such a regula- 

tor and performing calculations at finite R, the 2-point 

divergences that arise in ni( det &) -ai/2( det Ci) nl 

when R -+ 0 cancel the divergences that arise 
in diagrams lb-ld when ‘R -+ 0, provided only 

condition (12) is satisfied. So indeed the sum of 

diagrams la-ld with the 2-point corrections from 

lJ(det hi)-“1’2(det @i)ai f14 nj (det lFqj)“’ is finite 

if Eqs. (12) and (13) hold, but to see it without 

giving up locality, an extra regulator R is needed. 
The fact that one has to introduce an extra regulator 

R means strictly speaking that by itself SR does not 

provide a local regularization of QCD. 

Having a generating functional that generates finite 

Green functions for finite values of the masses A, Mi 
and pqj is not all. One has to devise a subtraction pro- 
cedure that removes the divergences associated to large 

values of the regulators A, Mi and pqj, while preserv- 

ing gauge invariance. There have been claims in the 
past [ 71 that such a procedure does not exist for pure 
Yang-Mills theory and that this is enough to kill SR. In 

Ref. [9], however, it has been proved that this is not 

the case and the most general subtraction procedure 

consistent with gauge invariance for pure Yang-Mills 

theory has been given. Its generalization to QCD being 

straightforward, we will not present here. In what fol- 
lows, we show that the functional Z [ J, x, l,z] gener- 
ates unphysical contributions that, after Wick rotation 
to Minkowski spacetime, spoil unitarity. 

3. Violation of unitarity 

Let us now come to Minkowski spacetime, the cor- 
rect framework to discuss unitarity. As is well known, 
unitarity implies that the transition amplitude rfi for 

a physical process Ii) + If) must satisfy the relation 

21mTfi=~(2~14@(pn -Pi)Tl;T,i, (14) 
n 

where the sum is extended over all physical interme- 
diate states In) connecting Ii) with If) and pn denotes 

the momentum of the state In). Consider the process 
fermion, antifermion going to fermion, antifermion. 

For this process, Eq. (14) takes at first order in per- 
turbation theory the form 

(15) 

The renormalized amplitude Tr = T,,ti+Tf can be 

computed by first regularizing and then by subtract- 
ing the divergences associated to the particular regu- 
lator one has used. This way, the left-hand side be- 

comes regularization and subtraction-dependent. Ac- 

tually, regularization-dependent only, since different 
admissible subtraction schemes differ by finite local 
renormalizations and these carry finite local radiative 

corrections which do not reach the imaginary part of 

the transition amplitude. The right-hand side, however, 

is regularization and subtraction-independent, since it 
only involves the Feynman rules of the unregularized 

theory. Hence Eq. ( 15) can be viewed as a necessary 
condition that the particular regularization and sub- 

traction prescriptions used to renormalize the theory 
must satisfy in order to preserve unitarity. The idea of 

our proof of violation of unitarity by SR is to com- 
pute ImTr in any SR-based renormalization scheme 

and see that it does not satisfy Eq. (15). Now, since 
dimensional regularization (DR) preserves unitarity, 

the right-hand side in Rq. (15) is equal to twice the 

imaginary part of Tr as computed in any DR-based 

renormalization scheme. Thus Eq. ( 15) can be re- 

placed with 

2ImTl,SR = 2ImTl,DR, (16) 

where the subscripts SR and DR refer to the regular- 
ization method used to compute Tr . In the following 

we show that Eq. (16) does not hold. 
As is well known, the imaginary part of the ampli- 

tude Tr receives contributions from the diagrams de- 
picted in Fig. 2, where all external legs are on-shell 
and the shadowed bubble stands for the vacuum po- 
larization tensor at one loop. To compute the contribu- 

tion of these diagrams to Im Tr,sR, we prOCeed as fol- 
lows. We first calculate the renormalized contribution 

of every diagram to the amplitude 7’1,s~ in Euclidean 
space; once we have done this, we Wick rotate to 
Minkowski spacetime; finally, we take the imaginary 
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trIlIl?ri- 
Pz 

(a) pi (b) 

x Yr(A +It-m,)m@;+h%)~A 
[ (PI + k>* + mi I[ <pi + k>* + mi 1 

x D%, -p2 + k,A)DvP(k,A) 

and 

D,(k,A) = & 
k,k, 

% - ~ 
k4+114 

is the gluon propagator for the action S, in Eq. (4) 
with CY = 1. Using the Lebesgue dominated conver- 
gence theorem, it is straightforward to see that the 
A -+ 00 limit of Z,(A) is well defined and equal to 

>im,I,(A) = 4 
s 

d4k 
- 
WI4 

(e) 

k) 
Fig. 2. Diagrams that contribute to the imaginary part of T,, fr_ff. 

part. As concerns the technical aspects of this compu- 
tation, we note that the calculation of the renormalized 
contribution of any of the diagrams involved requires 
computing its limit A, Mi, pqj --+ 00 and subtracting 
the divergences associated to this limit. The evalua- 
tion of such limit is tedious but straightforward if one 
uses the techniques developed in Refs. [ 41 and [ 93. 
For simplicity, and since transition amplitudes are in- 
dependent of the gauge fixing parameter LX, we will 
work in the Feynman gauge LY = 1. 

We start by looking at diagrams 2a and 2b. If we 
amputate the external legs, we are left in both instances 
with a 1PI diagram whose expression in Euclidean 
space in the Feynman gauge is 

Gq(p,,p2,p;;A) =g4TaTbTbTa 2 I,(A), 
q=l 

where 

Z,(A) = J d4k 
- 
(2T)4 

Y/l (4, + II - 1%) (1; + # - +,p 
x [(PI + k)* + m;ll(pj + k)* + w$(p, - p2 + k)*k*’ 

(17) 

Hence no infinite renormalization is necessary. This is 
no surprise since the unregularized 1PI four-fermion 
vertex G4 at one loop is finite by power counting and 
is given by the right hand-side in Eq. (17). This im- 
plies that the renormalized four-vertex G4 at one loop 
as computed with SR agrees with the renormalized 
four-vertex G4 as computed with any other acceptable 
regularization method, and in particular with DR. It 
follows then, after Wick rotating to Minkowski space 
and putting the external legs on-shell, that the contri- 
bution of diagrams 2a and 2b to the imaginary part 
of Tl in any SR-based renormalization scheme is the 
same as in any DR-based renormalization scheme: 

Im T,f2ib = Im T,%kb. (18) 

Next we move on to diagrams 2c and 2d. They both 
have the lP1 diagram in Fig. 3 as subdiagram. For the 
latter subdiagram, SR gives in Euclidean space and in 
the Feynman gauge 

~~:<PI;P~,A) =ig3& e/$$ 
q=l 

x x&2+~-mq)7+.4A +It-mq)yv 

[ (~2 + k)* + m$l[ (PI + k>* + mzl 

x DA’(k,A). 
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Fig. 3. IPI subdiagrams in Figs. 2c and 2d. 

Using the techniques in Ref. [ 41 to compute the large- 

A limit, and the results in Ref. [lo] to rewrite the 

contributions that do not vanish in this limit, we obtain 

+q (m,,p,,Pz) . 
1 

(19) 

where ua is a numerical constant and the finite part is 

given by 

1 1 

+ ss dx dy 

0 0 

n+yp - 2m, PI ( 
X 

fP2 -2?$&+ (d,- Yjl)%(dz-Y?) 

D(x,Y) 

(20) 

Here D (x, y) and ~7 stand for 

D(x,y) =m2,+(~2-~,)~x(l--x)+y(l -yM2 

and 

We see that I; (pt ,p2, A) diverges as A 4 00. To 
remove the divergence, we perform the most general 
subtraction compatible with gauge invariance and ob- 

tain 

(T being the renormalization mass scale and u ( mi/u2> 

a finite function that does not depend on the momenta 
and that is only restricted by BRS invariance (in a 

minimal scheme, it would be zero). Let us now recall 
what DR gives. In DR, instead of Eq. (19) one has 

+ Fp (m,,pl ,p2) , 

where I/ is the dimensional regularization mass scale 
and ua is a constant different from that in Eq. ( 19). Af- 

ter renormalization, one obtains the same expression 

as in Eq. (21)) modulo finite local radiative correc- 
tions. This implies, after Wick rotating to Minkowski 

space and replacing the subdiagram in Fig. 3 with its 
renormalized expression, that the imaginary part of 

diagrams 2c and 2d is the same for SR-based renor- 

malization schemes as for DR-based renormalization 

schemes: 

Im T,?$ = Im T,$$ . (22) 

Proceeding analogously, it is easy to see that the same 

holds true for diagrams 2e and 2f: 

Im T12:if = Im T,“:if . (23) 

Let us finally look at diagram 2g, and let us con- 
centrate on the one-loop vacuum polarization tensor 
II$ (k) hidden in it. The latter is made of two contri- 

butions. First there is the contribution (we will denote 
it with a prime) from diagram Id and the determinants 
det Fd that regularize it. Its expression can be com- 
puted following the very same steps as for the vacuum 
polarization tensor in Pauli-Villars regularized QED 
[ I1 1. After some calculations, we get 

ig3 Ta 
~;,re”(PI~P2~~) = grr22N 

c 



J.H. L&I et al. / Physics Letters B 355 (1995) 531-538 

x (k,k” - k2g,v) 1 

where h(x) is the function 

(24) 

h(x) =4x+(1 -2x) m In 
JG-Z+1 

&-X&l 

and ~6 is a numerical constant. Then there is the con- 
tribution from diagrams lb-ld and from the Pauli- 
Villars determinants det Ai and det Ci. This contribu- 
tion (we will denote it with a double prime) is the 
same as for pure Yang-Mills theory, and its A, Mi --) 
00 limit has been computed for arbitrary (Y in Ref. [ 91. 
Borrowing the results from there, we have that in the 
Feynman gauge 

II 
g2NC I’,!$ (k, A, Mi) = 5 6ab 

x (k&v - k2g,v) , 

where 

(25) 

A2 - B2 = ; (26) 

and n-t is another numerical constant. The actual val- 
ues of A2 and B2 depend on the way the masses A 
and Mi are sent to infinity. For example, sending A to 
infinity while keeping Mi finite, and taking in the re- 
sult Mi -+ 00 gives different A2 and B2 as proceeding 
the other way around. The difference A2 - B2 is, how- 
ever, independent of the path followed to approach 
A, Mi --) co and is always given by Eq. (26). Sum- 
ming the contributions (24) and (25), performing the 
most general subtraction compatible with gauge in- 
variance, and Wick rotating to Minkowski space, we 
obtain for the renormalized vacuum polarization ten- 
sor 

I$, ren (k (+) 

2 
= ~I-Isn(k*,rr) pb (k,k, - k*s,y) 9 (27) 

where 

(28) 

u is the subtraction point and 7r( mi/(r*) is an arbitrary 
real function carrying local finite radiative corrections 
constrained only by BRS invariance. For momenta kp 
such that k* > 0, the vacuum polarization tensor picks 
an imaginary part since 

ImIIsn(k*,(+) = yB( k2) 

nr 
+~~fJ(k2-4m~) 

q=l 

(29) 

Let us compare this with the DR result. We recall that 
in any DR-based subtraction scheme, one has in the 
Feynman gauge that 

5N 
ImIIoa(k*,a) = LB(k*) 

3 

(30) 

We see that the coefficient in front of O( k* ) is different 
from that in IQ. (29). As explained in Ref. [ 91, the 
difference fi - $ = 4 is originated by the Pauli-Villars 
deterrninams det Ai. It is plain now that the imaginary 
part of the renormalized contribution 

T/s = g* [Ls(p2W‘Tau(p~ 4 n( k*, a> 

x j$ (&A, - k*g,,) [fib; W’T”u(p; ,] 

of diagram 2g to the amplitude TI is not the same for 
SR-based renormalization schemes as for DR-based 
schemes. In other words, 

Im T,T& # Im TpDR. (31) 

Putting together Eqs. (18), (22), (23) and (31), we 
have that 

ImTt,sR + ImTr,nR, 



538 J.H. L&n et al. /Physics Letters B 355 (1995) 531-538 

as we wanted to prove. 

4. Conclusion 

At this point we can draw the following conclusions: 
(i) The regularization method proposed by Slavnov 

violates unitarity, the violation being produced by 
the Pauli-Villars determinants det Ai that the method 
chooses. Let us try to gain some intuition of why this 
is so. Assume that we naively switch off the regulators 
in the regularized path integral in Eq. (8)) that is to 
say, that we send the masses A, h4i and PLyj to infin- 
ity. Then we should recover the unregularized QCD 
path integral. However, this is not the case [9,12]. 
To see the latter, we rescale [ 121 the Pauli-Villars 
field Ayfi -+ M-’ Afp in (det Ai)-‘/*, take the limit 
A, Mj -+ co, exponentiate 6( DAi) and integrate over 
d4x once by parts. This leaves us with 

(det&)-I’* N J DAi’Dbi 

xexp{ -f Jd4x(Af’+2A;Dbi)} 

as A,Mi+Co. 

Completing the square in the exponent and per- 
forming the integral yields (det D*)-I/*. Since 
each (det A,) -‘I* is exponentiated to the power 
Ui and the &i’s satisfy Eq. ( 12), we obtain a fac- 
tor (det D*)‘/*. As for the determinants det Ci and 
det D?,, it is straightforward to see that their limits 
Mi + 00 and pqj + 00 give unity. Thus taking the 
naive A, Mi,pgj -+ 00 limit in Z[J,x,4’,%] yields 
the unregularized QCD path integral plus an extra 
(det D2) 'I*. This extra determinant introduces prop- 
agating degrees of freedom that couple to the gluon 
field through the covariant derivative and which are 
not present in QCD’s action. In other words, SR 
modifies QCD even at the tree level. Obviously the 
properties of the modified QCD are not the same as 
those of the true QCD. In the light of this, it is very 
easy to understand SR’s violation of unitarity. What 
Ti, sn is really standing for is the transition ampli- 
tude Ti for the modified theory. By the cutting rules 
of ‘t Hooft and Veltman [ 131, Im Tt , SR will receive 
contributions from the new propagating degrees of 
freedom. Hence there is no way ImTi,sn will agree 

with the imaginary part of rt, ecu - Ti, Do. All this 
discards SR as an acceptable regularization method. 

(ii) Note that the diagrams whose regularization 
only involves A, namely diagrams 2a to 2f, give 
the correct contribution to Ti ,ocu in the A --+ cc 
limit. This indicates that the higher covariant deriva- 
tives terms in Eq. (5) by themselves do not cause 
problems, in agreement with [ 141. The question 
that remains open is to supplement higher covariant 
derivatives with a suitable local regularization that 
preserves gauge invariance manifestly. Let us recall 
in this regard that for a local regularization method 
to be such, it must provide integrals over loop mo- 
menta which are finite by power counting (this is 
what local regularization is about). If a prescription 
does not provide this finiteness by power counting, it 
should not be called a local regularization; not even 
in the event that the various divergent contributions 
from different divergent Feynman integrals cancel 
among themselves when the latter are properly de- 
fined through yet another regularization. 
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