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Abstract

We present a method to compute the genus expansion of the free energy of Hermitian matrix models from
the large N expansion of the recurrence coefficients of the associated family of orthogonal polynomials. The
method is based on the Bleher–Its deformation of the model, on its associated integral representation of the
free energy, and on a method for solving the string equation which uses the resolvent of the Lax operator
of the underlying Toda hierarchy. As a byproduct we obtain an efficient algorithm to compute generating
functions for the enumeration of labeled k-maps which does not require the explicit expressions of the
coefficients of the topological expansion. Finally we discuss the regularization of singular one-cut models
within this approach.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider the ensemble of random Hermitian matrices

ZN(g) =
∫

RN

exp

(
−N

N∑
i=1

V (xi,g)

)∏
i<j

(xi − xj )
2 dx1 · · ·dxN, (1)
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for a given polynomial potential

V (z,g) =
2p∑

n=1

gnz
n (2)

of degree 2p with real coefficients g = (g1, . . . , g2p) such that g2p > 0 (we will not make ex-
plicit the dependence on g of the functions associated with the model (1) unless there is risk of
ambiguity). For more than thirty years [1–6] the asymptotic behavior of the free energy

FN = − 1

N2
lnZN (3)

as N → ∞ and its relation to the counting of Feynman graphs have been subjects of intensive
research. However, rigorous proofs of the existence of an asymptotic expansion of FN in powers
of N−2 were provided only rather more recently by Ercolani and McLaughlin [7] and by Bleher
and Its [2]. These analyses prove the existence of a genus expansion of the form

FN(g) − F G
N ∼

∑
k�0

F (k)(g)N−2k, (4)

where F G
N stands for the Gaussian free energy,

F G
N = − 1

N2
ln

(
2πN/2

(2N)N
2/2

N∏
n=1

n!
)

, (5)

under the assumption that there is a path g(t) in the space of coupling parameters connecting
V (z,g) to the Gaussian potential z2 in such a way that V (z,g(t)) is a regular one-cut model for all
t . The functions F (k)(g) are important objects because the coefficients of their Taylor expansions
at the Gaussian point gG

k = δk,2 are generating functions for the enumeration of labeled k-maps
with vertices involving valences 1, . . . ,2p, where 2p is the number of nonvanishing coupling
parameters gn. The general aim of the present work is the characterization of the structure of
these functions F (k)(g). (Incidentally, for multi-cut models it has been shown [8,9] that in general
the free energy exhibits an oscillatory behavior as a function of N , and consequently topological
expansions cannot exist.)

The large N asymptotics of the matrix model (1) is intimately connected with the asymptotics
of the recurrence coefficients rn,N and sn,N in the three-term recursion relation

xPn,N (x) = Pn+1,N (x) + sn,NPn,N (x) + rn,NPn−1,N (x), (6)

for the orthogonal polynomials Pn,N(x) = xn + an−1x
n−1 + · · · with respect to the exponential

weight
∞∫

−∞
Pk,N (x)Pl,N (x)e−NV (x) dx = δk,lhk,N . (7)

In particular [10,11], in the limit

n → ∞, N → ∞,
n

N
→ T , (8)

the density of zeros of Pn,N(x) reduces to the eigenvalue density of the matrix model ZN(g/T ),
and if ZN(g/T ) is a regular one-cut model then [3,12] the recurrence coefficients rn,N and sn,N

can be expanded in powers of N−2 [2].
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The methods that exploit this relation with orthogonal polynomials to calculate the asymp-
totics of the free energy essentially consist of three steps:

1. Determine the free energy in terms of the recurrence coefficients.
2. Obtain the asymptotic expansion of the recurrence coefficients.
3. Use 1 and 2 to obtain the asymptotic expansion of the free energy.

There are alternative methods based on solving the Ward identities for the partition function
(loop identities) [13] (cf. also [14]) or on formulating the matrix model as a conformal field
theory [15]. However, the structure of the expressions for the F (k)(g) that these methods provide
is less suitable than ours to compute generating functions for the enumeration of labeled k-maps.

In this paper we present an efficient method to calculate the topological expansion of the free
energy and to characterize its coefficients. For simplicity we restrict our analysis to Hermitian
models associated to even potentials V (λ), where λ = z2. We now preview how our approach
performs the three steps and point out the differences with respect to other schemes.

The classical method of Bessis, Itzykson and Zuber [6,16–21] is based on the following iden-
tity (step 1):

FN = − 1

N2
ln(N !) − 1

N

(
lnh0,N +

N−1∑
n=1

(
1 − n

N

)
ln rn,N

)
, (9)

wherein the expansion of rn,N is substituted (step 2), and the asymptotic behavior of FN is ob-
tained by means of the Euler–Maclaurin summation formula (step 3). However, some objections
to this approach were raised by Ercolani and McLaughlin (cf. Section 1.5 in [7]) due to the use
of the asymptotic series of rn,N as a uniform expansion valid even for n = 1 as N → ∞. This
objection triggered the interest in alternative strategies for step 1 [2,7,22]. For example, Ercolani,
McLaughlin and Pierce [22] derived a hierarchy of second-order differential equations to deter-
mine the coefficients of the expansion (4) from those of the asymptotic expansion of rn,N . In our
work we use instead the Bleher–Its integral representation [2]

FN(g) = F G
N +

∞∫
1

1 − t

t2

[
rN,N

(
g(t)

)(
rN−1,N

(
g(t)

)+ rN+1,N

(
g(t)

))− 1

2

]
dt, (10)

where g(t) denotes the Bleher–Its deformation [2]

V
(
λ,g(t)

)= (1 − 1/t)λ + V (λ/t,g), 1 � t < ∞, (11)

or explicitly in terms of the coupling parameters,

g2(t) = 1 − 1

t
+ g2

t
, g2k(t) = g2k

tk
, k � 2. (12)

For step 2 the standard methods [2,5] use recursive equations for the coefficients rn,N (string
equations) to determine expansions of the form

rn,N (g) ∼
∑
k�0

rk(T ,g)ε2k, ε = 1

N
. (13)

Bessis, Itzykson and Zuber [17,23] formulated the string equation in terms of summations of
paths over a certain staircase. Some years later Shirokura [19,20] developed a general method to
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perform these summations and characterize the coefficients of the expansion (13) in terms of the
single function

W(r0,g) =
p∑

n=1

(
2n

n

)
ng2nr

n
0 . (14)

To solve the string equation, in this paper we introduce a generating function Un,N(λ) associated
to the resolvent of the finite-difference Lax operator L of the underlying Toda hierarchy [24]

LPn,N = Pn+1,N + rn,NPn−1,N , (15)

and determine the coefficients of (13) from the function (14) as rational functions of the leading
coefficient r0. This approach is simpler that Shirokura’s method, is particularly suitable for sym-
bolic computation, can be applied to a generic potential, and permits an easy characterization of
the asymptotics of the Bleher–Its deformation rn,N (g(t)) of the recurrence coefficient.

Finally, regarding step 3, the Bleher–Its representation (10) allows us to express the coeffi-
cients of the topological expansion as

F (k)(g) =
r0∫

0

Rk(ξ,g)dξ, k � 1, (16)

where the integrands Rk(ξ,g) are rational functions of ξ which can be computed explicitly in
terms of the function (14).

The layout of this paper is as follows. In Section 2 we briefly review the basic facts about
matrix models which are required to discuss the Bleher–Its deformation and the conditions that
ensure the existence of the expansion (4). Then we apply our results to the quartic model and
to the sixtic model of Brézin, Marinari and Parisi [25]. Section 3 is devoted to the asymptotic
expansion (13) of the recurrence coefficient for general models V (λ,g) and their respective
Bleher–Its deformations V (λ,g(t)). In particular, we rederive in a much shorter way the ex-
pressions for the coefficients r1(T ,g) and r2(T ,g) found by Shirokura [19,20]. Section 4 deals
with the asymptotics of the free energy. From the Bleher–Its representation (10) and the expan-
sion of the recurrence coefficients we obtain the integral expression (16). We evaluate explicitly
the integrals for the F (k) up to genus 3 in the general case and find, except for a coefficient in
the expression of F (3), the same results found by Shirokura [19,20]. We also check that the ex-
pressions of these coefficients for general two-valence models reduce to those obtained using the
Ercolani–McLaughlin–Pierce method [22]. In the brief Section 5 we discuss how to apply our
method to compute counting maps functions and present explicit calculations for two and three
valence models. In Section 6 we formulate a “triple scaling” method to regularize the free energy
expansion of a class of singular models (the singular one-cut case) and show how the Painlevé I
hierarchy emerges in our approach. The paper ends with a brief summary.

2. The Bleher–Its deformation

To calculate the asymptotic behavior of FN(g) as N → ∞ using the Bleher–Its formula (10)
we need the asymptotics of the deformed recurrence coefficients rn,N (g(t)) where g(t) is the
Bleher–Its deformation of g. In this section we study the action of this deformation on the space
of coupling parameters. As relevant examples we analyze the Bleher–Its deformation for models
associated to quartic potentials and to the sixtic potentials of Brézin, Marinari and Parisi [25].
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The continuum limit of rn,N (g(t)) depends on the number q of cuts of the model
V (λ,g(t))/T . In Appendix A we summarize the method to determine the number of cuts of
a generic Hermitian model. The endpoints of a q-cut eigenvalue support J =⋃q

j=1(αj ,βj ) are
the solutions of the system of 2q equations (181)–(183) but, in general, several such systems of
equations corresponding to different values of q may have admissible solutions for one and the
same model. Among these candidate solutions, the correct value of q is uniquely determined by
the additional set of inequalities (184)–(186) on the polynomial h(z) defined by

Vz(z)

w1(z)
= h(z) + O

(
z−1) as z → ∞, (17)

where w1(z) is the branch of the function

w(z) =
√√√√ q∏

i=1

(z − αi)(z − βi) (18)

with asymptotic behavior w1(z) ∼ zq as z → ∞. In turn, the polynomial h(z) is related to the
eigenvalue density ρ(x) by

ρ(x) = h(x)

2π i
w1,+(x) for x ∈ J, (19)

where w1,+(x) denotes the boundary value of w1(z) on J from above.
We restrict our considerations to even potentials of the form

V (λ,g) =
p∑

j=1

g2j λ
j , λ = z2, g2p > 0, (20)

where the coupling constants g = (g2, g4, . . . , g2p) run on a certain region G of Rp . The phase
diagram of the corresponding family of matrix models is introduced through the decomposition

G =
p⋃

q=1

Gq, (21)

where g ∈ Gq if and only if g determines a q-cut regular model (cf. Appendix A). We will
refer to Gq as the q-cut phase of the family (20) of Hermitian models. For even potentials the
eigenvalue support J is symmetric with respect to the origin, and in the one-cut case the endpoints
of J = (−α,α) are determined by the single equation (183), which in terms of V reduces to

∮
γ

dλ

2π i
Vλ(λ)

√
λ

λ − α2
= 1. (22)

Regarding the behavior of a particular model g ∈ G with respect to its Bleher–Its deformation,
we will consider two cases in our analysis: the regular one-cut case, in which g(t) ∈ G1 for all
t � 1, and the singular one-cut case in which g(t) ∈ G1 for t > 1 but g = g(1) determines a
singular model (cf. Appendix A).
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2.1. The quartic model

The quartic model

V (λ,g) = g2λ + g4λ
2 (23)

in the region

G = {g = (g2, g4) ∈ R2: g4 > 0
}
, (24)

only exhibits q = 1 and q = 2 phases [26]. The q = 1 phase G1 can be written as the union

G1 = G
(1)
1 ∪ G

(2)
1 , (25)

where

G
(1)
1 = {(g2, g4) ∈ R2: g2 � 0, g4 > 0

}
, (26)

G
(2)
1 = {(g2, g4) ∈ R2: g2 < 0, g4 > 0, g2 > −2

√
g4
}
, (27)

and the q = 2 phase G2 is given by

G2 = {(g2, g4) ∈ R2: g4 > 0, g2 < −2
√

g4
}
. (28)

The phase diagram features the critical curve

g2 = −2
√

g4, (29)

which demarcates the transition line between the two phases.
Consider now the Bleher–Its deformation (cf. Fig. 1)

g(t) = (g2(t), g4(t)
)= ( t − 1 + g2

t
,
g4

t2

)
. (30)

If g ∈ G
(1)
1 then g2 > 0 and g2(t) > 0 for all t > 1. Therefore g(t) ∈ G1 for all t > 1. If g ∈ G

(2)
1 ,

then g2 > −2
√

g4 and

g2(t) = t − 1 + g2

t
> −2

√
g4

t
= −2

√
g4(t). (31)

Hence if g ∈ G
(2)
1 we also have that g(t) ∈ G1 for all t > 1. On the other hand, it is elementary

to see that if g ∈ G2 or is on the critical curve (29) then g(t0) is on the critical curve for t0 =
1 − g2 − 2

√
g4. Summing up:

1. If g ∈ G1 then g(t) ∈ G1 for all t � 1.
2. If g ∈ G2 then g(t) crosses the critical curve at t0 = 1 − g2 − 2

√
g4.

3. If g is on the critical curve (29) then g(t) ∈ G1 for all t > 1.

2.2. The Brézin–Marinari–Parisi model

In [25] Brézin, Marinari and Parisi considered the potentials V (z)/T with

V (z) = 90z2 − 15z4 + z6 (32)
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Fig. 1. Deformation paths g(t) for the quartic potential. From left to right: a deformation of a two-cut regular model,
a deformation in the singular one-cut case and two deformations in the regular one-cut case.

to generate a nonperturbative ambiguity-free solution of a string model. The models V (z)/T

define a path in the space of coupling constants

G = {g = (g2, g4, g6) ∈ R3: g2 > 0, g4 < 0, g6 > 0
}

(33)

of the family of even sixtic potentials

V (λ,g) = g2λ + g4λ
2 + g6λ

3 (
λ = z2). (34)

We refer to Appendix A for the proof of the following facts: (i) the inequality

5g2g6

2g2
4

> 1 (35)

determines an open subset of the one-cut phase G1; (ii) the boundary Γ of this subset is the
elliptic cone

5g2g6 = 2g2
4; (36)

(iii) the sixtic model (34) is singular on the curve γ given by

5g2g6 = 2g2
4, 4g3

4 = −225g2
6; (37)

and (iv) the model is in G1 for g in Γ − γ .
We apply these results to study the deformations of (32) from the initial point g = (90,−15,1)

in Γ . The homogeneity in T of (36) implies that the curve g/T lies on Γ for all T > 0, while
from (37) it follows that g/T ∈ γ only at T = 60. Then g/T ∈ G1 for all T 	= 60 while g/60
represents the multicritical string model of [25] with potential function

Vc(λ) = 3
λ − 1

λ2 + 1
λ3. (38)
2 4 60
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Finally, if we apply first the Bleher–Its deformation to V (λ,g/T ) the resulting coupling param-
eters are

g2(T , t) =
(

1 − 1

t

)
+ g2

tT
, g4(T , t) = g4

t2T
, g6(T , t) = g6

t3T
. (39)

For the particular values g2 = 90, g4 = −15, g6 = 1 of (32) a direct computation shows that

5

2

g2(T , t)g6(T , t)

g4(T , t)2
= 1 + T (t − 1)

90
, (40)

and using (35) we find that g(T , t) ∈ G1 for all T 	= 60 and t � 1.

3. Asymptotics of the recurrence coefficients

The main equation to determine the asymptotics of the recurrence coefficients is the discrete
string equation [3]

Vz(L)n,n−1 = n

N
. (41)

Here Vz stands for the derivative of the potential with respect to z

Vz(z) =
2p∑
k=1

2kg2kz
2k−1, (42)

the subindex (n,n − 1) denotes the corresponding matrix element between the orthogonal poly-
nomials

vn(x) = Pn,N(x), n � 0 (43)

defined in (7), and the operator L acts on this family of polynomials as

Lvn = vn+1 + rn,Nvn−1, r0,N = 0. (44)

The string equation (41) can be written in the form∮
γ

dλ

2π i
Vλ(λ)Un,N (λ) = n

N

(
λ = z2), (45)

where γ is a large positively oriented circle |λ| = R, and Un,N is the generating function

Un,N(λ) = 1 + 2
∑
k�1

(
L2k−1)

n,n−1λ
−k. (46)

Note that L is the Lax operator of the Toda hierarchy [24] and that Un,N is related to the resolvent
R(z) = (L − z)−1 of L by

Un,N(λ) = 1 − R(z)n,n−1 − R(−z)n,n−1. (47)

In Appendix B we show that Un,N satisfies the quadratic equation

rn,N (Un,N + Un−1,N )(Un,N + Un+1,N ) = λ
(
U2

n,N − 1
)
. (48)
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3.1. The continuum limit of the recurrence coefficient in the one-cut case

We recall that our final goal is to solve the string equation (45) for the recurrence coefficient
in the large N limit. If g ∈ G1 it has been rigorously established [2,12,27] that the asymptotics
of the recurrence coefficients as

n → ∞, N → ∞ and
n

N
→ T (49)

in a neighborhood of T = 1 is given by a series

rn,N (g) ∼ r(ε, T ,g) (ε = 1/N), (50)

of the form

r(ε, T ,g) =
∑
k�0

rk(T ,g)ε2k. (51)

In particular the leading coefficient is

r0 = α2

4
, (52)

where (−α,α) is the eigenvalue support for the model V (λ,g)/T . We write the asymptotics of
the generating function Un,N as a similar series

Un,N(λ) ∼ U(λ, ε; r), (53)

U(λ, ε; r) =
∑
k�0

Uk(λ; r0, . . . , rk)ε
2k. (54)

Substituting the series (51) and (54), and the corresponding shifted expansions

rn+j,N ∼ r[j ](ε, T ) = r(ε, T + jε), j ∈ Z, (55)

Un+j,N (λ) ∼ U[j ](λ, ε; r) = U(λ, ε; r[j ]), j ∈ Z, (56)

into (48), we get

r(U + U[−1])(U + U[1]) = λ
(
U2 − 1

)
. (57)

Incidentally, we note as a useful consequence of (57) the linear equation

r[1](U[2] + U[1]) − r(U + U[−1]) = λ(U[1] − U). (58)

Identifying powers of ε recursively in (57) or in (58) we find that the coefficients Uk can be
written in the form

Uk = U0

3k∑
j=1

Uk,j (r0, . . . , rk)

(λ − 4r0)j
, k � 1, (59)

where

U0 =
√

λ

λ − 4r
, (60)
0



G. Álvarez et al. / Nuclear Physics B 848 [PM] (2011) 398–429 407
and the functions Uk,j (r0, . . . , rk) are polynomials of degree j in r0, . . . , rk and their T deriva-
tives. Moreover, these polynomials are homogeneous of degree 2k with respect to the weight
w(∂i

T rj ) = i + 2j , and the dependence of Uk in rk comes solely from

Uk,1 = 2rk, (61)

so that

Uk = U0

(
2rk

λ − 4r0
+ · · ·

)
, (62)

where the dots stand for terms in rj , and their T derivatives r ′
j , r

′′
j , . . . with j = 0, . . . , k − 1. We

give explicitly the polynomials Uk,j corresponding to k = 1:

U1,1 = 2r1,

U1,2 = 2r0r
′′
0 ,

U1,3 = 10r0
(
r ′

0

)2
, (63)

and to k = 2:

U2,1 = 2r2,

U2,2 = 2r1r
′′
0 + 2r0r

′′
1 + 6r2

1 + 1

6
r0r

(4)
0 ,

U2,3 = 20r0r
′
0r

′
1 + 22

3
r0r

′
0r

(3)
0 + 10r1

(
r ′

0

)2 + 11

2
r0
(
r ′′

0

)2
+ 20r1r0r

′′
0 + 2r2

0 r
(4)
0 ,

U2,4 = 140r0
(
r ′

0

)2
r ′′

0 + 56r2
0 r ′

0r
(3)
0 + 140r1r0

(
r ′

0

)2 + 42r2
0

(
r ′′

0

)2
,

U2,5 = 924r2
0

(
r ′

0

)2
r ′′

0 + 378r0
(
r ′

0

)4
,

U2,6 = 2310r2
0

(
r ′

0

)4
. (64)

Likewise, the continuum limit of the string equation (45) can be written as∮
γ

dλ

2π i
Vλ(λ)U(λ, ε; r) = T (65)

or in terms of the expansion coefficients Uk ,∮
γ

dλ

2π i
Vλ(λ)Uk(λ; r0, . . . , rk) = δk,0T , k � 0. (66)

Let us introduce the function

W(r0,g) =
∮
γ

dλ

2π i
Vλ(λ)

√
λ

λ − 4r0
=

p∑
n=1

(
2n

n

)
ng2nr

n
0 . (67)

Then, the k = 0 equation in (66) is

W(r0,g) = T , (68)

or explicitly,
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p∑
n=1

(
2n

n

)
ng2nr

n
0 = T . (69)

This is a hodograph-type equation for r0 (i.e., an equation which is linear in the independent
variables g2, . . . , g2p,T ). Our next aim is to prove that (66) permits the recursive calculation of
the rk as functions of T and g.

For an even potential in the one-cut case, using the variable λ = z2 and the relation between
α and r0 given in Eq. (52), we find that w1(z) = √

z2 − α2 = √
λ − 4r0. Therefore the defini-

tion (17) of the polynomial h(λ) can be written as

2

√
λVλ(λ)√
λ − 4r0

= h(λ) + O
(
λ−1), λ → ∞. (70)

Consequently

∂

∂r0
W(r0,g) = 2

∮
γ

dλ

2π i

√
λVλ

(λ − 4r0)3/2
= h(λ)|λ=4r0 . (71)

Thus, given g0 ∈ G1 Eq. (71) implies that ∂r0W(r0,g0) 	= 0, and the hodograph equation (68)
defines implicitly r0 as a locally smooth function of T and g in a neighborhood of T0 = 1 and of
g0. The remaining equations (66) can be written as

3k∑
j=1

Wj(r0,g)Uk,j (r0, . . . , rk) = 0, k � 1, (72)

where

Wj(r0,g) =
∮
γ

dλ

2π i

√
λVλ(λ)

(λ − 4r0)
j+ 1

2

= ∂
j
r0W(r0,g)

2j (2j − 1)!! . (73)

From (61) and (73) it follows that the term (∂r0W(r0,g))rk in Eqs. (72) equals a sum of terms
of in r0, . . . , rk−1 and their T derivatives, and therefore define recursively the coefficients rk as
locally smooth functions of T and g in a neighborhood of T0 = 1 and of g0.

We recall again that the coefficients Uk,j (r0, . . . , rk) in (72) are polynomials of degree j in
r0, . . . , rk and their T derivatives. Repeated differentiation of the hodograph equation (68) with
respect to T give the T derivatives of r0 as a rational function of r0:

r ′
0 = 1

∂r0W
, r ′′

0 = − ∂2
r0

W

(∂r0W)3
, . . . (74)

and we can effectively solve Eqs. (72) for rk as a rational function of r0. Using the standard
notation W ′,W ′′, . . . ,W(j) for the derivatives of W with respect to r0 we find

r1 = r0
2(W ′′)2 − W ′W ′′′

12(W ′)4
, (75)

and

r2 = r0
X + r0Y

1440(W ′)9
, (76)
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where

X = 700W ′(W ′′)4 − 910
(
W ′)2(W ′′)2W ′′′ + 118

(
W ′)3(W ′′′)2

+ 180
(
W ′)3W ′′W(4) − 18

(
W ′)4W(5), (77)

Y = −980
(
W ′′)5 + 1760W ′(W ′′)3W ′′′ − 545

(
W ′)2W ′′(W ′′′)2

− 420
(
W ′)2(W ′′)2W(4) + 102

(
W ′)3W ′′′W(4)

+ 64
(
W ′)3W ′′W(5) − 5

(
W ′)4W(6), (78)

which in turn show that the rk are rational functions of r0. These expressions for r1 and r2 agree
with Eq. (4.25) and Eq. (4.56) obtained by a different method in [19].

Finally, we remark that our method to calculate the coefficients rk of the large N expansion
ultimately depends only on Eqs. (57) and (65), which are invariant under the symmetry transfor-
mation

(ε̃, T̃ , g̃) = 1

c
(ε, T ,g), c � 0. (79)

Hence it follows that r(ε̃, T̃ , g̃) = r(ε, T ,g) and consequently

rk(T ,g) = 1

T 2k
rk(1,g/T ), k � 0. (80)

3.2. The recurrence coefficient under the Bleher–Its deformation in the regular one-cut case

Let g ∈ G1 such that its Bleher–Its deformation is in the regular one-cut case, i.e., g(t) ∈ G1
for all t � 1. Then we can apply the results of the previous subsection with g replaced by g(t) to
conclude that in the limit (8)

rn,N

(
g(t)

)∼ r
(
ε,T ,g(t)

)
(81)

where the coefficients rk(T ,g(t)) of the asymptotic series

r
(
ε,T ,g(t)

)=∑
k�0

rk
(
T ,g(t)

)
ε2k (82)

are determined by

W
(
r0,g(t)

)= T , (83)

3k∑
j=1

Wj

(
r0,g(t)

)
Uk,j (r0, . . . , rk) = 0, k � 1, (84)

as smooth functions of t and T for t � 1 and T near T0 = 1. Our aim in this subsection is to find
a reformulation of (83)–(84) that decouples the dependence on t and g.

The string equation (65) for the deformed model is∮
γ

dλ

2π i
Vλ

(
λ,g(t)

)
U(λ, ε; r) = T . (85)
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If we substitute in this equation

Vλ

(
λ,g(t)

)= 1 − 1

t
+ 1

t
Vλ

(
λ

t
,g
)

, (86)

and take into account that U ∼ 1 + 2r/λ as λ → ∞, we find that

2(t − 1)
r

t
+
∮
γ

dλ

2π i

1

t
Vλ

(
λ

t
,g
)

U(λ, ε, r) = T , (87)

or with the change of variable λ → λt

2(t − 1)
r

t
+
∮
γ

dλ

2π i
Vλ(λ,g)U(λt, ε, r) = T . (88)

Note that the generating function U(λ, ε; r) is uniquely determined by (57) and the asymptotic
behavior U(λ, ε; r) ∼ 1 as λ → ∞. Since U(λt, ε; r) satisfies (57) with the substitution r → r/t

and U(λt, ε; r) ∼ 1 as λ → ∞, we conclude that U(λt, ε; r) = U(λ, ε; r/t). Alternatively, we
can arrive at the same conclusion directly from the explicit expressions (59) and (60) for the Uk

and from the fact that the functions Uk,j are polynomials of degree j in r0, . . . , rk and their T

derivatives. Therefore, if we denote

r(ε, T , t,g) = r(ε, T ,g(t))

t
=
∑
k�0

rk(T , t,g)ε2k, (89)

Eq. (88) becomes

2(t − 1)r +
∮
γ

dλ

2π i
Vλ(λ,g)U(λ, ε, r) = T , (90)

or equivalently

2(t − 1)r0 + W(r0,g) = T , (91)

2(t − 1)rk +
3k∑

j=1

Wj(r0,g)Uk,j (r0, . . . , rk) = 0, k � 1. (92)

Note that the only changes introduced by the Bleher–Its deformation in our calculation of the
recurrence coefficient are the first term 2(t − 1)rk and the substitution ri → ri in Uk,j .

4. Topological expansions in the regular one-cut case

In this section we implement our method to calculate the coefficients of the topological ex-
pansion by means of our equations (91)–(92) and the Bleher–Its representation of the free energy,
which we repeat here for convenience:

FN(g) = F G
N +

∞∫
1

1 − t

t2

[
rN,N

(
g(t)

)(
rN−1,N

(
g(t)

)+ rN+1,N

(
g(t)

))− 1

2

]
dt. (93)

In the first subsection we derive integral expressions for the coefficients of the topological expan-
sion. Next, drawing on an idea that Bleher and Its [2] used to calculate the leading term F (0)(g)
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of the expansion, we give an efficient procedure to calculate higher-order coefficients and com-
pute explicit expressions of the first four coefficients for general models. Finally, we apply our
results to three widely studied models.

4.1. Expressions for the coefficients of the topological expansion

Eq. (93) involves only the recurrence coefficients rN,N and rN±1,N . Therefore to study the
limit (8) in the regular one-cut case we need only the asymptotic series for rn,N in a neighborhood
of T = 1:

rN,N

(
g(t)

)∼ r
(
ε,1,g(t)

)= tr(ε,1, t,g), (94)

rN±1,N ∼ r
(
ε,1 ± ε,g(t)

)= tr(ε,1 ± ε, t,g). (95)

Substituting these expansions in the Bleher–Its formula we have

FN(g) − F G
N ∼

∞∫
1

(1 − t)f (ε, t,g)dt, (96)

where (using again our shifting notation r[±1](ε,1, t,g) = r(ε,1 ± ε, t,g))

f (ε, t,g) = r(ε,1, t,g)
(
r[−1](ε,1, t,g) + r[1](ε,1, t,g)

)− 1

2t2
. (97)

With the method discussed in the previous section we can readily obtain an expansion

f (ε, t,g) =
∑
k�0

fk(t,g)ε2k, (98)

where the first five coefficients are

f0 = 2r2
0 − 1

2t2
, (99)

f1 = r0
(
4r1 + r′′0

)
, (100)

f2 = 2r2
1 + r1r

′′
0 + 1

12
r0
(
48r2 + 12r′′1 + r′′′′0

)
, (101)

f3 = r2r
′′
0 + r1

(
4r2 + r′′1 + 1

12
r
(4)
0

)

+ r0

(
4r3 + r′′2 + 1

360

(
30r

(4)
1 + r

(6)
0

))
, (102)

f4 = 2r0r4 + r3
(
2r1 + r′′0

)+ r2

(
2r2 + r′′1 + 1

12
r
(4)
0

)

+ r1

(
2r3 + r′′2 + 30r

(4)
1 + r

(6)
0

360

)

+ r0

(
2r4 + r′′3 + 1680r

(4)
2 + 56r

(6)
1 + r

(8)
0

20 160

)
. (103)

Here the primes denote derivatives with respect to T evaluated at T = 1. Note also that the term
fk has weight w(fk) = 2k. The analysis of Bleher and Its in [2] shows that in the regular one-
cut case it is legitimate to perform term by term integration in (96), which yields the following
topological expansion of the free energy:
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FN(g) − F G
N ∼

∑
k�0

F (k)(g)ε2k, (104)

where

F (k)(g) =
∞∫

1

(1 − t)fk(t,g)dt. (105)

Therefore the direct method to calculate the coefficients of the topological expansion (104) is as
follows: first, use Eqs. (91)–(92) to determine the coefficients rk , then use Eq. (97) to find the fk ,
and finally perform the integration with respect to t in Eq. (105).

4.2. Efficient calculation of the coefficients of the topological expansion

The direct method to determine the coefficients of the topological expansion outlined in the
preceding paragraph requires explicit calculation of the functions rk(T , t,g) which is, except in
the simplest cases, a difficult task. In [2] Bleher and Its used an ingenious idea to determine the
leading coefficient F (0)(g) for general models V (λ,g). In this section we will show that the same
idea can be applied to evaluate higher-order coefficients F (k)(g).

It follows from our previous results that the functions fk(t,g) can be written as rational func-
tions of t and r0(t,g). Now, if we denote

ξ = r0(1, t,g), (106)

the hodograph equation (91) at T = 1 implies that

t = 1 + 1

2ξ

(
1 − W(ξ,g)

)
, (107)

which suggests to use ξ as integration variable in (105). At the lower limit of integration t = 1 we
have that ξ = r0(1,g), while at the upper limit the new variable ξ ∼ 1/(2t) → 0 as t → ∞ [2].
Therefore, with a trivial sign change absorbed in the definition of Rk , Eq. (105) can be written as

F (k)(g) =
r0∫

0

Rk(ξ,g)dξ, k � 1, (108)

where the Rk(ξ,g) are rational functions of ξ . Note that the evaluation of these integrals yields
the coefficients F (k) as functions of g and r0 = r0(1,g).

The presence of the term 1/(2t2) in the expression of f0 requires a slightly different integra-
tion process [2] to calculate F (0)(g). Using Eqs. (99), (106) and (107) we find:

F (0)(g) = lim
τ→∞

[
2

1/2τ∫
r0

(
1 − t (ξ)

)
ξ2 dt (ξ) + 1

2
ln τ − 1

2

]

= lim
τ→∞

[
1

2
ln ξ |1/2τ

r0 + 1

2
ln τ

]
− 1

2

+
r0∫ (

W(ξ) − 1

2
W(ξ)2

)
dξ

ξ
+ 1

2

r0∫ (
W(ξ) − 1

)
W ′(ξ)dξ. (109)
0 0
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Hence, taking into account that W(r0,g) = 1 at T = 1, it follows that

F (0)(g) = − ln r0

2
− ln 2

2
− 3

4
+

r0∫
0

(
W − 1

2
W 2
)

dξ

ξ
. (110)

Note that (since W does not have a constant term) the integrand in the last term of (110) is a
polynomial in ξ .

Let us proceed now with the calculation of F (1)(g). We repeat here for convenience equa-
tion (91) and particularize equation (92) for k = 1:

2(t − 1)r0 + W(r0,g) = T , (111)

2(t − 1)r1 +
3∑

j=1

Wj(r0,g)U1,j (r0, r1) = 0. (112)

Differentiating with respect to T in (111) it follows that

r′0 = 1

2(t − 1 + W1)
, r′′0 = − 3W2

2(t − 1 + W1)3
, (113)

and substituting these expressions in (112) we find

r1 = r0

[
3W 2

2

2(t − 1 + W1)4
− 5W3

4(t − 1 + W1)3

]
. (114)

Therefore

f1 = r0
(
4r1 + r′′0

)= r0

[
6W 2

2 r0

(t − 1 + W1)4
− 10W3r0 + 3W2

2(t − 1 + W1)3

]
, (115)

and changing the variable from t to ξ with (107) we obtain the following expression for F (1)(g):

F (1)(g) =
r0∫

0

(W − 1)

[
ξ224W 2

2

(1 + 2ξW1 − W)3
− 10ξW3 + 3W2

(1 + 2ξW1 − W)2

]
ξ dξ. (116)

Using (73) we can identify the integrand as a total derivative:

ξ(−1 + W)W ′′(−3 + 3W − 3ξW ′ + 2ξ2W ′′)
12(1 − W + ξW ′)3

− ξ2(−1 + W)W ′′′

12(1 − W + ξW ′)2

= 1

12

d

dξ

(
ln
(−ξW ′ + W − 1

)− (W − 1)ξ2W ′′

(−ξW ′ + W − 1)2

)
. (117)

Thus we arrive at the result

F (1)(g) = 1

12
ln
(
r0W

′(r0,g)
)
, (118)

in agreement with Eq. (4.27) of [20].
The calculation of the next coefficient F (2)(g) of the topological expansion is entirely similar,

and we omit the intermediate steps which are easily performed with a symbolic computation
program. Using (91), (92) for k = 1,2 and (101) we find
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R2(ξ,g) = 3(1 − W)

[
ξ9

σ 8
56 448W 5

2 − ξ7

σ 7

(
10 368W 4

2 + 84 480ξW 3
2 W3

)

+ ξ5

σ 6

[
420W 3

2 + 10 800ξW 2
2 W3

+ ξ2(21 800W2W
2
3 + 23 520W 2

2 W4
)]

− ξ4

σ 5

[
260W2W3 + ξ

(
1110W 2

3 + 2380W2W4
)

+ ξ2(4760W3W4 + 5376W2W5)
]

+ ξ3

σ 4

(
35W4 + 336ξW5 + 770ξ2W6

)]
, (119)

where

σ = 1 − W + 2ξW1 = 1 − W + ξW ′. (120)

Using (73) we can again identify R2(ξ,g) as a total derivative,

R2(ξ,g) = − 1

2880

d

dξ

[
− ξ8

σ 7 280(−1 + W)
(
W ′′)4

+ ξ6

σ 6
(−1 + W)

(
300
(
W ′′)3 + 400ξ

(
W ′′)2W ′′′)

− ξ5

σ 5

[
56ξ
(
W ′′)3 + (−1 + W)

×(260W ′′W ′′′ + 58ξ
(
W ′′′)2 + 88ξW ′′W(4)

)]
+ ξ4

σ 4

[−9
(
W ′′)2 + 58ξW ′′W ′′′

+ (−1 + W)
(
36W(4) + 10ξW(5)

)]
+ ξ2

σ 3

(−12W ′′ + 4ξW ′′′ − 10ξ2W(4)
)− 12

σ 2

]
, (121)

and we finally obtain

F (2)(g) = − 1

240
+ 1

240r2
0W ′(r0)2

+ 7r0W
′′(r0)

3

360W ′(r0)5

+ W ′′(r0)(9W ′′(r0) − 58r0W
(3)(r0))

2880W ′(r0)4

+ 6W ′′(r0) − 2r0W
(3)(r0) + 5r0

2W(4)(r0)

1440r0W ′(r0)3
. (122)

This expression agrees with the result of [20] (up to a trivial mistake in the sign of the first
fraction of his Eq. (1.18), which is fixed in his application to the quartic model in Eq. (4.59)).
Our method can be easily carried on further with a symbolic computation program. For example,
the next coefficient turns out to be
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F (3)(g) = 1

1008
− 1

1008r4
0W ′(r0)4

− W ′′(r0)

504r3
0W ′(r0)5

− 1

6048r2
0W ′(r0)6

[
15W ′′(r0)

2 − 4W(3)(r0)W
′(r0)

]

− 1

6048r0W ′(r0)7

[
15W ′′(r0)

3 + W(4)(r0)W
′(r0)

2

− 10W(3)(r0)W
′(r0)W

′′(r0)
]

− 1

725 760W ′(r0)8

[
1575W ′′(r0)

4 − 24W(5)(r0)W
′(r0)

3

+ 200W(3)(r0)
2W ′(r0)

2 + 300W(4)(r0)W
′(r0)

2W ′′(r0)

− 1800W(3)(r0)W
′(r0)W

′′(r0)
2]

− r0

362 880W ′(r0)9

[−21 420W ′′(r0)
5 − 133W(6)(r0)W

′(r0)
4

+ 1644W(5)(r0)W
′(r0)

3W ′′(r0)

+ 2488W(3)(r0)W
(4)(r0)W

′(r0)
3

− 10 170W(4)(r0)W
′(r0)

2W ′′(r0)
2

+ 40 110W(3)(r0)W
′(r0)W

′′(r0)
3

− 12 783W(3)(r0)
2W ′(r0)

2W ′′(r0)
]

− r2
0

362 880W ′(r0)10

[
34 300W ′′(r0)

6 − 35W(7)(r0)W
′(r0)

5

+ 607W(4)(r0)
2W ′(r0)

4 − 2915W(3)(r0)
3W ′(r0)

3

+ 539W(6)(r0)W
′(r0)

4W ′′(r0)

+ 1006W(3)(r0)W
(5)(r0)W

′(r0)
4

− 4284W(5)(r0)W
′(r0)

3W ′′(r0)
2

+ 22 260W(4)(r0)W
′(r0)

2W ′′(r0)
3

− 81 060W(3)(r0)W
′(r0)W

′′(r0)
4

+ 43 050W(3)(r0)
2W ′(r0)

2W ′′(r0)
2

− 13 452W(3)(r0)W
(4)(r0)W

′(r0)
3W ′′(r0)

]
. (123)

This expression reduces to the result found by Shirokura except for the replacement of 388 by
300 in the fourth coefficient of E

(3)
0 in Eq. (50) of [19].

We apply now (110), (118) and (122) to obtain explicit expressions for the first three coeffi-
cients of the quartic, two-valence and sixtic models (we omit the lengthy expressions for F (3)(g)

which are obtained in exactly the same way using (123)).

4.2.1. The quartic model in the regular one-cut case
We have shown in Section 2.1 that if (g2, g4) ∈ G1 the quartic model (23) is in the regular

one-cut case. Using Eqs. (110), (118) and (122) with

W(r0,g) = 2g2r0 + 12g4r
2 (124)
0
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we find

F (0)(g) = −3

8
+ 5

6
(g2r0) − 1

6
(g2r0)

2 − 1

2
ln(2r0), (125)

F (1)(g) = 1

12
ln
(
2(1 − g2r0)

)
, (126)

F (2)(g) = (2g2r0 − 1)3(41 + 21g2r0 − 6(g2r0)
2)

11 520(1 − g2r0)5
, (127)

where r0 is the positive root of the hodograph equation (69)

2g2r0 + 12g4r
2
0 = 1, (128)

namely

r0 =
−g2 +

√
g2

2 + 12g4

12g4
. (129)

4.2.2. Two-valence models
For the two-valence models

V (λ,g) = g2λ + g2νλ
ν, ν � 2, (130)

in the region g2 > 0, g2ν > 0, the Bleher–Its deformed potential is a convex function of z for all
t � 1, and therefore these models are in the regular one-cut case. Using

W(r0,g) = 2g2r0 + ν

(
2ν

ν

)
g2νr

ν
0 (131)

we find:

F (0)(g) = −3(ν − 1)

4ν
+ (ν − 1)(2ν + 1)

ν(ν + 1)
(g2r0) − (ν − 1)2

ν(ν + 1)
(g2r0)

2 − 1

2
ln(2r0), (132)

F (1)(g) = 1

12
ln
(
ν − (ν − 1)2g2r0

)
, (133)

F (2)(g) = (2g2r0 − 1)(ν − 1)

2880(ν − 2(ν − 1)g2r0)5

× [−ν3(8ν2 + 5ν − 1
)+ 2ν2(ν − 1)

(
16ν2 + 40ν − 1

)
(g2r0)

− 4ν(ν − 1)2(8ν2 − ν + 44
)
(g2r0)

2

− 96(ν − 1)3(4ν + 1)(g2r0)
3 + 192(ν − 1)4(g2r0)

4]. (134)

Here r0 is determined as the positive root of the hodograph equation

2g2r0 + ν

(
2ν

ν

)
g2νr

ν
0 = 1. (135)

Note that (132)–(134) reduce to the quartic results for ν = 2. For g2 = 1/2 the expressions (132)–
(134) reduce to the corresponding results in [22,28].
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4.2.3. Sixtic models
Our last application concerns sixtic potentials

V (λ,g) = g2λ + g4λ
2 + g6λ

3 (136)

in the region g2 > 0, g4 > 0, g6 > 0. Again the convexity argument proves that these models are
in the regular one-cut case. Using

W(r0,g) = 2g2r0 + 12g4r
2
0 + 60g6r

3
0 (137)

we find:

F (0)(g) = −1

2
+ 7

6
(g2r0) − 1

3
(g2r0)

2 + 8

5

(
g4r

2
0

)− 6

5

(
g4r

2
0

)2 − 6

5
g2g4r

3
0 − 1

2
ln(2r0),

(138)

F (1)(g) = 1

12
ln
(
3 − 4g2r0 − 12g4r

2
0

)
, (139)

F (2)(g) = − 1

240
+ 593

720(12g4r
2
0 + 4g2r0 − 3)2

+ 169g2
2 + 2928g4 − 1716g4g2r0

720g4(12g4r
2
0 + 4g2r0 − 3)3

+ 224g4
2 + 7587g4g

2
2 + 45 765g2

4 − (57 888g2
4g2 + 6756g4g

3
2)r0

6480g2
4(12g4r

2
0 + 4g2r0 − 3)4

+ 7(6g4
2 + 81g4g

2
2 + 243g2

4 − (8g5
2 + 126g4g

3
2 + 486g2

4g2)r0)

405g2
4(12g4r

2
0 + 4g2r0 − 3)5

. (140)

In this case r0 is the positive root of the hodograph equation

2g2r0 + 12g4r
2
0 + 60g6r

3
0 = 1. (141)

5. Counting numbers

The methods of Ercolani and McLaughlin [7] prove the existence of the topological expansion
for matrix models

VEM(λ) = λ

2
+

ν∑
j=1

t2j λ
j , (142)

under the hypothesis that there exists a path in the space of coupling constants connecting t =
(t2, t4, . . . , t2ν) to the origin 0. The corresponding coefficients F (k)(t) are analytic functions of t
near the origin and their Taylor expansions determine graphical enumeration numbers.

To put these results in context, we briefly recall that a k-map is a graph which is embedded
into a surface of genus k in such a way that (i) the edges do not intersect and (ii) dissecting the
surface along the edges decomposes it into faces which are homeomorphic to a disk. We can
formulate the result of [7] as the following representation: if

F (k)(t) = −
∑

n �1

1

n2! . . . n2p! (−t2)
n2 · · · (−t2p)n2pκk(n2, . . . , n2p), (143)
2j
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Table 1
Lowest three counting numbers κk(n2, n4) for the quartic model V (λ) = g2λ + g4λ2 and all combinations of the ni up
to 4.

n2 n4 κ0(n2, n4) κ1(n2, n4) κ2(n2, n4)

0 0 0 0 0
0 1 2 1 0
0 2 36 60 0
0 3 1728 6336 1440
0 4 145 152 964 224 770 688

1 0 1 0 0
1 1 8 4 0
1 2 288 480 0
1 3 20 736 76 032 17 280
1 4 2 322 432 15 427 584 12 331 008

2 0 2 0 0
2 1 48 24 0
2 2 2880 4800 0
2 3 290 304 1 064 448 241 920
2 4 41 803 776 277 696 512 221 958 144

3 0 8 0 0
3 1 384 192 0
3 2 34 560 57 600 0
3 3 4 644 864 17 031 168 3 870 720
3 4 836 075 520 5 553 930 240 4 439 162 880

4 0 48 0 0
4 1 3840 1920 0
4 2 483 840 806 400 0
4 3 83 607 552 306 561 024 69 672 960
4 4 18 393 661 440 122 186 465 280 97 661 583 360

then κk(n2, . . . , n2p) is the number of connected k-maps with a number n2j of 2j -valent vertices
in which all the vertices are labeled as distinct and all the edges emanating from each vertex are
labeled as distinct as well [6,7,29].

It is straightforward to rephrase our results of the previous section in the notation of (143) and
therefore we have a direct method to calculate the κk(n2, . . . , n2p): we introduce the change of
variable λ′ = λ/2 to reduce VEM(λ) to the form (20), which in turn implies the following relation
between our set of g coupling constants and t:

g2k(t) = δk,2 + 2kt2k, k = 1, . . . , p. (144)

As an application of this first, direct procedure, we have carried out these substitutions in the
topological expansion of the quartic model (125)–(127), expanded in Taylor series these coeffi-
cients, and found the corresponding counting numbers κk(n2, n4), the first of which we present
in Table 1.

However, since the counting numbers depend on the coefficients of the Taylor expansion of
the F (k), drawing on our analysis of the previous section we can calculate directly these Taylor
coefficients without requiring the explicit evaluation of the F (k) themselves, which turns out
to be much more efficient. In essence, the idea is to obtain first the Taylor expansion in t of
the integrand of (108), and subsequently to perform the integration in (105) with respect to the
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Bleher–Its deformation parameter t term by term. A similar approach has been recently used
in [4] to investigate counting numbers in the cubic model. In detail, the procedure is as follows:

1. Use (144) to write Eq. (91) at T = 1 as

r0 +
p∑

j=1

(
2j

j

)
j2j−1 t2j

t
r
j

0 = 1

2t
, (145)

and then use implicit differentiation to calculate the Taylor expansion at t = 0

r0 = 1

2t
+

∑
j1,...,jp�0

j1+···+jp�1

cj1j2...jp

t1+j1+2j2+···+pjp
t
j1
2 t

j2
4 · · · t jp

2p. (146)

2. Use the string equations (91)–(92) to write fk as rational functions of r0. Then substi-
tute (146) in the resulting expressions and determine the Taylor expansion of fk at t = 0.

3. Perform the integration

F (k)(t) =
∞∫

1

(1 − t)fk(t, t)dt, (147)

term by term and find the numbers κk(n2, . . . , n2p).

We have implemented this strategy for the two-valence and for the sixtic models, and present
some of our results in Table 2. The κk(n2, . . . , n2ν) grow quickly in number and in magnitude,
and we give a complete table only up to ni = 2. Note that the results in Table 2 with n6 = 0 agree
with the corresponding results in Table 1. Our results also agree with those for κ1(n2,0, . . . , n2ν)

and κ2(n2,0, . . . , n2ν) in [28]. Similarly, in Table 3 we present all the fifth nonvanishing counting
numbers κ4(n2, n4, n6) with 0 � ni � 3 for the sixtic model.

6. Singular one-cut cases

Let g ∈ G be such that its Bleher–Its deformation is in the singular one-cut case, i.e., g(t) ∈ G1
for all t > 1 but g = g(1) determines a singular model. Our discussion in Sections 3 and 4
shows that the integrals for the coefficient of the topological expansion (104)–(105) converge
provided that the function r0(T , t,g) is smooth near (T , t) = (1,1). For this type of singular
cases the topological expansion (104)–(105) still exists. An example of this situation is the quartic
model (23) for g2 = −2

√
g4.

However, in the singular one-cut cases where the function r0(T , t,g) is not smooth near
(T , t) = (1,1) the topological expansion (104)–(105) is ill-defined, because the integrals defining
the coefficients F (k) for k � 1 diverge. This is the case of the Brézin–Marinari–Parisi model (38).
We next discuss this critical behavior in general and present a method of regularization.

6.1. Critical behavior and a triple-scaling method of regularization

Let us consider a singular one-cut deformation such that the string equation (65) has a critical
point of order m � 2 at (r0, T ) = (rc,1). That it to say,
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Table 2
Lowest four counting numbers κk(n2, n4, n6) for the sixtic model V (λ) = g2λ + g4λ2 + g6λ3 and all combinations of
the ni up to 2.

n2 n4 n6 κ0(n2, n4, n6) κ1(n2, n4, n6) κ2(n2, n4, n6) κ3(n2, n4, n6)

0 0 0 0 0 0 0
0 0 1 5 10 0 0
0 0 2 600 4800 4770 0
0 1 0 2 1 0 0
0 1 1 144 600 156 0
0 1 2 43 200 540 000 1 161 360 224 280
0 2 0 36 60 0 0
0 2 1 8640 63 360 56 160 0
0 2 2 4 665 600 85 190 400 329 002 560 217 339 200

1 0 0 1 0 0 0
1 0 1 30 60 0 0
1 0 2 7200 57 600 57 240 0
1 1 0 8 4 0 0
1 1 1 1440 6000 1560 0
1 1 2 691 200 8 640 000 18 581 760 3 588 480
1 2 0 288 480 0 0
1 2 1 120 960 887 040 786 240 0
1 2 2 93 312 000 1 703 808 000 6 580 051 200 4 346 784 000

2 0 0 2 0 0 0
2 0 1 240 480 0 0
2 0 2 100 800 806 400 801 360 0
2 1 0 48 24 0 0
2 1 1 17 280 72 000 18 720 0
2 1 2 12 441 600 155 520 000 334 471 680 64 592 640
2 2 0 2880 4800 0 0
2 2 1 1 935 360 14 192 640 12 579 840 0
2 2 2 2 052 864 000 37 483 776 000 144 761 126 400 95 629 248 000

W(rc,g) = 1, (148)

∂r0W(rc,g) = · · · = ∂m−1
r0

W(rc,g) = 0, ∂m
r0

W(rc,g) 	= 0. (149)

In this case the implicit function theorem does not apply to Eq. (91) near (T0, t0) = (1,1) with
r0(1,1,g) = rc . In fact, r0(T ,1,g) can be expanded in powers of (T − 1)1/m and, provided
that rc 	= 0, r0(1, t,g) can be also expanded in powers of (t − 1)1/m. As a consequence, the
system (91)–(92) does not yield an appropriate asymptotic series to generate the free-energy
expansion (96). In order to regularize this critical behavior it is natural to introduce two scaling
variables x and y in the form

T = 1 + ε̄mx, t = 1 + ε̄my, (150)

where

ε̄ = ε
2

2m+1 =
(

1

N

) 2
2m+1

. (151)

In terms of these scaled variables the string equation (90) reads
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Table 3
Nonvanishing counting numbers κ4(n2, n4, n6) with 0 � ni � 3 for the sixtic model
V (λ) = g2λ + g4λ2 + g6λ3.

n2 n4 n6 κ4(n2, n4, n6)

0 1 3 1 143 525 600
0 2 3 2 201 217 638 400
0 3 2 24 069 830 400
0 3 3 2 836 746 385 920 000

1 1 3 25 157 563 200
1 2 3 57 231 658 598 400
1 3 2 577 675 929 600
1 3 3 85 102 391 577 600 000

2 1 3 603 781 516 800
2 2 3 1 602 486 440 755 200
2 3 2 15 019 574 169 600
2 3 3 2 723 276 530 483 200 000

3 1 3 15 698 319 436 800
3 2 3 48 074 593 222 656 000
3 3 2 420 548 076 748 800
3 3 3 92 591 402 036 428 800 000

2ε̄myr +
∮
γ

dλ

2π i
Vλ(λ,g)U(λ, ε̄; r) = 1 + ε̄mx, (152)

and we will prove now that there are solutions of the form

r(ε̄, x, y,g) = rc +
∑
k�1

r[k](x, y,g)ε̄k. (153)

Note that the shifts T → T ± ε correspond to x → x ± ε̄1/2, and therefore U(λ, ε̄; r) is deter-
mined by the quadratic equation

r(U + U[−1])(U + U[1̄]) = λ
(
U2 − 1

)
, (154)

where we have denoted f[k̄](x) = f (x + kε̄1/2).
The corresponding expansion of U to be substituted in the string equation (152) is

U(λ, ε̄) =
∑
k�0

U [k](λ; r[1], . . . , r[k])ε̄k (155)

where

U [0] =
√

λ

λ − 4rc
, (156)

U [k] = U [0]
k∑

j=1

U [k,j ](r[1], . . . , r[k−j+1])
(λ − 4rc)j

. (157)

From (154) it follows that the U [k,j ] are polynomials in r[1], . . . , r[k−j+1] and their x derivatives,
which can be determined recursively [30]. In particular
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U [k,1] = 2r[k]. (158)

The first few of these coefficients are

U [2,2] = 6
(
r[1])2 + 2rcr

[1]
xx , (159)

U [3,2] = 12r[1]r[2] + 2r[1]r[1]
xx + 2rcr

[2]
xx + 1

6
rcr

[1]
xxxx, (160)

U [3,3] = 20
(
r[1])3 + 10rc

(
r[1]
x

)2 + 20rcr
[1]r[1]

xx + 2r2
c r[1]

xxxx . (161)

As a consequence of the quadratic equation we find the linear equation

r[1̄](U[2̄] + U[1̄]) − r(U + U[−1]) = λ(U[1̄] − U), (162)

which in turn leads immediately to the recursion relation

∂xU
[k+1,k+1] = (rc∂3

x + 4r[1]∂x + 2r[1]
x

)
U [k,k], U [0,0] = 1. (163)

This relation implies that the U [k,k](r[1]) are the well-known Gel’fand–Dikii differential polyno-
mials of the KdV theory [31].

We now substitute (155) into (152) and take into account (73), (148) and (149) to obtain

2ε̄myr +
∑
k�m

Wk(rc,g)U [k](ε̄, r) = ε̄mx. (164)

Finally, collecting powers of ε̄ we find the system of equations:

Wm(rc,g)U [m,m](r[1])= x − 2rcy, (165)

2yr[k] +
m+k∑
j=m

Wj(rc,g)U [j,m+k](r[1], . . . , r[m+k−j+1])= 0, k � 1. (166)

The first equation constrains r[1](x, y,g) to be of the form u(x−2rcy), with u(x) being a solution
of the m-th member of the Painlevé I hierarchy. The subsequent equations (166) give for each
coefficient r[k](x, y) with (k � 2) an ordinary differential equation in the x variable involving the
previous coefficients r[j ] (1 � j < k). The characterization of the appropriate solutions of these
ordinary differential equations is a difficult problem deeply connected to the regularization of the
free energy expansion [2].

To regularize the expression (96) we partition the domain [1,+∞) of the t variable into an
inner region [1,1 + δ(ε̄)] and an outer region [1 + δ(ε̄),+∞). In the inner region we assume the
triple-scaling limit asymptotics (153) for the recurrence coefficient, while we assume the regular
one-cut asymptotics (89) in the outer region. Thus, we have

FN(g) − F G
N ∼ I1(ε̄,g) + I2(ε,g), N → ∞, (167)

where

I1(ε̄,g) = −ε̄2m

δ(ε̄)/ε̄m∫
0

yf (1)(ε̄, y,g)dy, (168)

f (1)(ε̄, y,g) = r(ε̄,0, y,g)
(
r[−1](ε̄,0, y,g) + r[1](ε̄,0, y,g)

)− 1
m 2

, (169)

2(1 + ε̄ y)
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and

I2(ε,g) =
∞∫

1+δ(ε̄)

(1 − t)f (2)(ε,1, t,g)dt, (170)

f (2)(ε, t,g) = r(ε,1, t,g)
(
r[−1](ε,1, t,g) + r[1](ε,1, t,g)

)− 1

2t2
. (171)

To ensure that the result is independent of the choice of δ(ε̄), the asymptotic series f (1)(ε̄, y,g)

and f (2)(ε, t,g) must be matched on some appropriate intermediate region overlapping the inner
and outer regions. It is at this point where the conditions to determine the coefficients of (153)
emerge.

6.2. The Brézin–Marinari–Parisi critical model

We illustrate these ideas with the Brézin–Marinari–Parisi critical potential (38), which belongs
to the singular one-cut case under the Bleher–Its deformation. In this case

W(r0,g) = r3
0 − 3r2

0 + 3r0, (172)

where g = (g2, g4, g6) = (3/2,−1/4,1/60), and according to (148)–(149) we have a critical
point of order m = 3 at rc = 1. Thus, from (165) it follows that r[1] = u(x − 2y), where u(x) is
a solution of the second member of the Painlevé I hierarchy

uxxxx + 10uuxx + 5u2
x + 10u3 = 10x. (173)

To perform the matching between the triple-scaling and the one-cut regular asymptotics, we
note that as t → 1+, from (91) and (92) we have

r0(1, t,g) ∼ 1 − 21/3(t − 1)
1
3 , (174)

r′′0(1, t,g) ∼ 3−22−2/3(t − 1)−
5
3 , (175)

r1(1, t,g) ∼ 1

72(t − 1)2
. (176)

Hence we get

f (2)(ε, t,g) ∼
(

2r2
0 − 1

2t2

)
+ ε2r0

(
4r1 + r′′0

)∼ 3

2
− ε̄27/3y1/3. (177)

Likewise, in the inner region we have

f (1)(ε̄, y,g) ∼ 3

2
+ ε̄4r[1](0, y,g). (178)

In the matching region we must have both t → 1+ and y → +∞ as N → ∞. Therefore, the
matching between (177) and (178) is achieved provided u(x) is a solution of (173) such that

u(−2y) ∼ −21/3y1/3, y → +∞. (179)

This asymptotic behavior determines a unique formal expansion of the form x1/3 times a series
in powers of x−7/3, which solves (173).
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7. Concluding remarks

In this paper we have developed a method to compute the large N expansion of the free energy
of Hermitian matrix models (4) from the large N expansion of the recurrence coefficients of the
associated family of orthogonal polynomials. It is based on the Bleher–Its deformation, on its
associated integral representation of the free energy, and on a method for solving the string equa-
tion which uses the resolvent of the Lax operator of the underlying Toda hierarchy. Combining
these ingredients we provide a procedure, suitable for symbolic computation, to characterize the
structure of the coefficients F (k)(g) of the topological expansion of the free energy. The proce-
dure can be also used efficiently for the explicit evaluation of these coefficients. As an illustrative
application we compute the expressions of F (k)(g) (k = 0, . . . ,3) for general matrix models
and check their agreement with the expressions derived using the Euler–Maclaurin summation
formula in the Bessis–Itzykson–Zuber method.

The main application of our study is a convenient method to compute generating functions for
the enumeration of labeled k-maps. It relies on the structure of the integral representations of the
coefficients F (k)(g) and does not require the explicit expressions of these coefficients. We apply
this method to elaborate several tables of numbers of k-maps with two and three valences and up
to genus k = 4.

Finally, in order to illustrate the regularization of singular models within our scheme we have
formulated a triple-scaling method to regularize singular one-cut models.

Although in this paper we restricted our analysis to the genus expansions of one-cut even mod-
els, since both the Bleher–Its representation of the free-energy [2] and the method for solving the
string equation using the resolvent of the Lax operator [30] can be used for models associated
with general (not necessarily even) potentials, there is no obstacle to apply our analysis to these
problems too. Furthermore, Bleher and Its [2] applied the integral representation (10) to deter-
mine a three-term large N asymptotic expansion for the free energy for the quartic model in the
neighborhood of a critical point at the boundary between the phases G1 and G2. The third of
these terms, which involves the Tracy–Widom distribution function [32], represents a nonpertur-
bative effect. Thus, it is plausible to generalize the present scheme to characterize nonperturbative
contributions to the large N asymptotics of the free energy of multi-cut models. This general-
ization would require the use of nonperturbative solutions of the string equation, e.g., as in the
trans-series method considered by Mariño [33]. In particular it would be interesting to investigate
the asymptotic behavior of the free energy in critical processes such as the birth of a cut in the
eigenvalue support [34–36].
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Appendix A. Multi-cut models

We first recall the following upper bound [36] for the number of cuts q of a model with the
potential V (z):

q � p = degV (z)
. (180)
2
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The conditions that determine the actual value of q among those allowed by this bound can be
stated in terms of the function h(z) defined in (17). It can be shown [10] that in the q-cut case:

1. The endpoints of J satisfy the equations

αj+1∫
βj

h(x)w1,+(x)dx = 0, j = 1, . . . , q − 1, (181)

∮
γ

zj Vz(z)

w1(z)
dz = 0, j = 0, . . . , q − 1, (182)

where γ is a large positively oriented loop around J . Moreover, since
∫
J

ρ(x)dx = 1 we
must have∮

γ

h(z)w1(z)dz = −4π i. (183)

2. The following inequalities hold:

α1∫
x

h
(
x′)w1

(
x′)dx′ � 0, for x < α1, (184)

x∫
βj

h
(
x′)w1

(
x′)dx′ � 0, for βj < x < αj+1, j = 1, . . . , q − 1, (185)

x∫
βq

h
(
x′)w1

(
x′)dx′ � 0, for x > βq. (186)

Eqs. (181)–(183) are 2q conditions that the 2q unknowns α1, . . . , βq must satisfy. However, these
equations may not be sufficient to determine uniquely q because they may have admissible solu-
tions for different values of q . If this is the case, the additional condition ρ(x) > 0 for all x ∈ J

and the inequalities (184)–(186) characterize uniquely the solution of the problem. A model is
said to be a regular if h(x) 	= 0 on J̄ and the inequalities (184)–(186) are strict. Otherwise it is
called singular.

A.1. Sixtic potentials

Let us consider the family of sixtic potentials

V (λ) = g2λ + g4λ
2 + g6λ

3 (
λ = z2), (187)

in the region of coupling constants

G = {g = (g2, g4, g6) ∈ R3: g2 > 0, g4 < 0, g6 > 0
}
. (188)

For q = 1 and J = (−α,α) we have
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w1,+(x) =
⎧⎨
⎩

−|x2 − α2|1/2 for x � −α,

i|x2 − α2|1/2 for − α � x � α,

|x2 − α2|1/2 for x � α,

(189)

and

h(x) = 6g6x
4 + (4g4 + 3g6α

2)x2 + 9

4
g6α

4 + 2g4α
2 + 2g2. (190)

Eq. (22) reads

15g6A
3 + 12g4A

2 + 8g2A − 16 = 0
(
A = α2). (191)

Completing squares in the expression of h(x) we have

h(x) = 6g6

(
x2 + α2

4
+ g4

3g6

)2

+ 15g6

8

(
α2 + 4g4

15g6

)2

+ 2g2 − 4g2
4

5g6
. (192)

Hence the function h(x) is strictly positive for all x ∈ R provided that

5

2

g2g6

g2
4

> 1. (193)

Thus, the inequalities (184)–(186) are strictly satisfied and ρ(x) > 0 on J . Moreover, since the
critical points of the polynomial in the left-hand side of (191) are

A = 4|g4|
15g6

(
1 ±

√
1 − 5

2

g2g6

g2
4

)
, (194)

then (193) implies that there exists a unique positive solution A of (191). Therefore (193) deter-
mines an open subset of G1 with boundary Γ given by

2g2
4 = 5g2g6. (195)

Given g ∈ Γ it follows from (192) that the function h(x) is strictly positive on R unless

α2 = − 4g4

15g6
, (196)

in which h(x) vanishes at x = ±α. But this value of α2 satisfies Eq. (191) only if

4g3
4 = −225g2

6 . (197)

Hence, along the curve γ given by

2g2
4 = 5g2g6, 4g3

4 = −225g2
6, (198)

the model is singular because h(x) vanishes at the end-points ±α of the eigenvalue support,
whereas for points in Γ − γ the model is in G1.

Appendix B. The quadratic equation for Un,N

For clarity in this appendix we drop the subindex N from Un,N . Thus, consider the function

Un(λ) = 1 + 2
∑(

L2k−1)
n,n−1λ

−k, (199)

k�1
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where the matrix elements (L2k−1)n,n−1 are calculated in the basis of orthogonal polynomials

vn(x) = Pn,N(x), n � 0. (200)

From (6) it follows that L2k−1vn(x) = x2k−1vn(x), and therefore

(
L2k−1)

n,n−1 = 1

hn−1,N

∞∫
−∞

x2k−1vn(x)vn−1(x)dμ(x), (201)

where

dμ(x) = e−NV (x) dx. (202)

Hence,

Un = 1 + 2

hn−1,N

∞∫
−∞

xvn(x)vn−1(x)

λ − x2
dμ(x). (203)

Let us prove that Un satisfies the linear equation

λ(Un+1 − Un) = rn+1,N (Un+2 + Un+1) − rn,N (Un + Un−1). (204)

From (203) we deduce that

λ(Un+1 − Un) = 2

hn,N

∞∫
−∞

xvn+1(x)vn(x)dμ(x)

− 2

hn−1,N

∞∫
−∞

xvn(x)vn−1(x)dμ(x)

+ 2

hn,N

∞∫
−∞

x3vn+1(x)vn(x)

λ − x2
dμ(x)

− 2

hn−1,N

∞∫
−∞

x3vn(x)vn−1(x)

λ − x2
dμ(x). (205)

Using xjvn(x) = Ljvn(x) for j = 1,2 we find that

∞∫
−∞

xvn+1(x)vn(x)dμ(x) = hn+1,N , (206)

and
∞∫

−∞

x3vn+1(x)vn(x)

λ − x2
dμ(x)

=
∞∫

xvn+2vn+1 + x(rn+1,N + rn,N )vnvn+1 + xrn,Nrn−1,Nvn+1vn−2

λ − x2
dμ(x). (207)
−∞
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Substituting these identities in (205) and taking into account (203) we conclude that (204) holds.
It is now easy to prove that

rn,N (Un + Un−1)(Un + Un+1) = λ
(
U2

n − 1
)
. (208)

Indeed, the linear identity (204) implies

rn+1,N (Un+2 + Un+1)(Un+1 + Un) − rn,N (Un+1 + Un)(Un + Un−1)

= λ
(
U2

n+1 − U2
n

)
, (209)

and therefore the expression

λU2
n − rn,N (Un+1 + Un)(Un + Un−1) (210)

is independent of n. Since r0,N = 0 and U0 = 1 the identity (208) follows.
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