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Abstract

We propose a new procedure to detect unit roots based on subspace
methods. It has three main original features. First, the same method can
be applied to single or multiple time series. Second, it employs a flexible
family of information criteria, which loss functions can be adapted to the
statistical properties of the data. Last, it does not require the specification
of a stochastic process for the series analyzed. Also, we provide a consistent
estimator of the cointegrating rank and the cointegrating matrix. Simulation
exercises show that the procedure has good finite sample properties. An
example illustrates its application to real time series.
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1 INTRODUCTION

This article describes a method to detect unit roots in time series. It derives from
an important tradition of time series analysis in aeronautics and telecommuni-
cations engineering, which powerful instruments have not been fully assimilated
by mainstream Statistics. These techniques are generically described as “system
identification” and, since the seminal work of Ho and Kalman (1966), concentrate
in modeling a data set using a state-space (SS) representation with no a priori
restrictions. The literature usually treats this problem from a geometric or alge-
braic point of view, although there are also statistical approaches such as those of
Akaike (1975, 1976) and Larimore (1983, 1990).

Since the 90s, system identification has been led by subspace methods. Many
of these procedures build on the idea that, if the states of a system were observed,
its parameter matrices could be estimated by ordinary least squares. Since the sta-
tes are typically unobserved, the identification problem reduces to approximating
the states from the data, with no a priori constraints on the system structure. In
this context, the data is structured in past and future information matrices. From
them, one may derive the state sequences by solving a reduced-rank weighted least
squares problem.

In comparison with mainstream time series analysis (Box and Jenkins, 1976;
Jenkins and Alavi, 1981; Tiao and Box, 1981; Tiao and Tsay, 1989) these methods
have four main advantages:

1. They allow the specification of a general linear model directly from the data,
without a priori knowledge of the process structure.

2. They make no distinction between the univariate and multivariate cases.

3. They are based on robust and computationally efficient tools of numerical
algebra and, as a consequence,

4. iterations are not required, therefore avoiding convergence problems.

On the other hand, applying subspace methods to non-physical time series pre-
sents important challenges. For example, time series in engineering are typically
non-seasonal and stationary. Consequently, current methods cannot accommodate
these features so common in other contexts.

This paper deals with one of these topics: the detection of unit roots. To this
end, we build on the Canonical Correlation Analysis algorithm (CCA) by Lari-
more (1983). This method is convenient because its choice of weighting matrices
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provides, as a by-product, an efficient computation of the canonical correlation
coefficients (CCC) between the past and future information subspaces. This pro-
perty provides both, a statistical interpretation of the procedure and the main
foundation of our method.

The basic idea is that the CCCs corresponding to unit roots converge exponen-
tially to their true values, while the rest exhibit a much slower convergence. This
property, known as superconsistency, allows distinguishing both kinds of correla-
tions and has been used in some previous works. Poskitt (2000) used this property
to detect unit roots and test for cointegration relationships. Later Bauer and
Wagner (2002), hereafter BW, refined this approach by deriving an information
criterion and several tests for the cointegrating rank using subspace methods. Our
starting point is, therefore, similar to that of BW, with three main differences.

First, our work is focused on using information criteria, not statistical tests.
Second, the information criterion suggested by BW does not take into account a re-
levant variable which inclusion in the criterion improves substantially its discrimi-
nation capacity. Third, BW describes the mathematical form of their information
criterion as “somewhat heuristic”, meaning that the weight of the different terms
is arbitrary fixed. By contrast, we choose these weights empirically by means of
simulation methods.

The structure of the paper is as follows. Section 2 defines the notation and sum-
marizes the basic results that will be used later. Section 3 presents the procedure
to detect unit roots and Section 4 derives consistent estimates of the cointegrating
matrix. In section 5 we analyze the properties of these methods in finite samples
by a set of simulation exercises. Section 6 illustrates the empirical application
of the method with a real case and finally, Section 7 provides some concluding
remarks and indicates how to obtain, via internet, a MATLAB toolbox for time
series modeling which implements all the computational procedures required.

2 SUBSPACE METHODS AND CANONICAL

CORRELATIONS

Consider a linear fixed-coefficients system that can be described by a SS model in
innovations form,

xt+1 = Φxt +Eψt (1)

zt = Hxt +ψt (2)
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where xt ∈ Rn is a state vector, zt ∈ Rm is an observable output vector and
ψt ∈ Rm is an innovation vector such that iidN(0, Q). Assume also that the
system does not include exogenous variables. No generality is lost by these as-
sumptions. First, this model is general in the sense that any fixed-coefficients SS
model can be written in innovations form (see, Casals et al., 1999, Theorem 1).
Second, any model with inputs can be decomposed into an input-related model
and an error-related model, being this a rather standard result of linear system
theory (see e.g., Chui and Chen, 1999).

Subspace methods derive from the representation of (1-2) in matrix form. Re-
cursively from (1) we obtain,

xt = Φtx0 +
t−1∑
i=0

ΦiEψt−i−1 (3)

and substituting (3) into the observation equation (2),

zt = HΦtx0 +H
t−1∑
i=0

ΦiEψt−i−1 +ψt (4)

Therefore the endogenous variable, zt, depends on the initial state vector, x0, and
the present and past innovation values, ψt. Equation (4) can be written in matrix
form as,

Zk = OiX0 + ViΨk (5)

where the subscript k denotes the row space of Zk. This equation requires the
following matrices related to the data:

1) Block-Hankel Matrices (BHM): BHMs are partitioned in two blocks with
row spaces p and f . Different choices for both, p and f , are discussed by Viberg
(1995), Peternell et al. (1996) or Chui (1997) but, for convenience and simplicity,
we assume here that p = f = i. Under these conditions, the output BHM would
be given by:

(
Zp

Zf

)
=

(
Z0:i−1

Zi:2i−1

)
=



z0 z1 . . . zT −2i

z1 z2 . . . zT −2i+1
...

...
...

zi−1 zi . . . zT −i−1

zi zi+1 . . . zT −i

zi+1 zi+2 . . . zT −i+1
...

...
...

z2i−1 z2i . . . zT −1


(6)
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Hereafter, we will consider for any BHM A, that Ap = A0:i−1 and Af = Ai:2i−1,
where the subscripts p and f denote the past and the future blocks respectively.

2) State sequences: This vector is defined as,

Xt = (xt xt+1 xt+2 . . . xt+T −2i) (7)

Taking this expression as starting point, the past and future state sequences begin-
ning, respectively, at t = 0 and t = i, can be written as Xp = X0 and Xf = Xi.

On the other hand, the following matrices are related to the parameters in
model (1-2):

3) The Extended Observability Matrix:

Oi =


H
HΦ
HΦ2

...
HΦi−1

 ∈ Rim×n (8)

4) The lower block triangular Toeplitz matrix:

Vi =


Im 0 0 . . . 0
HE Im 0 . . . 0
HΦE HE Im . . . 0

...
...

...
...

...
HΦi−2E HΦi−3E HΦi−4E . . . Im

 ∈ Rim×im (9)

The future state sequence can be defined as Xf = MZp, where M has rank
n. Consequently, displacing time subscripts in (5) and substituting, we obtain,

Zf = OiMZp + ViΨf (10)

whereZf , Zp and Ψf are as in (6), andOi and Vi are respectively as in (8) and (9).

Subspace methods consists of estimating the matrices Oi,M and Vi in (10) by
solving a reduced-rank weighted least square problem defined over a set of subspace
regressions, using the Singular Value Decomposition SVD (Eckart and Young,
1936) of the W1ZfW2 matrix, where W1 and W2 are two weighting matrices.

When W1 = (ZfZ
′
f)

−1
2 and W2 = Z′

p(ZpZ
′
p)

−1Zp, the Singular Values (SV)
resulting from the SVD are estimates of the CCCs between Zf and Zp. Then, the
parameter matrices of (1-2) can be straightforwardly obtained from Oi,M and
Vi.
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3 DETECTION OF UNIT ROOTS

BW propose a fast procedure to detect unit roots which, instead of calculating the
CCC between zt and zt−1 (see Poskitt, 2000), uses the CCCs between the block-
past information Zp and the block-future information Zf . The authors compare a
transformation of the j first SVs, σ̂j (where j ≤ i), with a penalty function C(T )
depending on the sample size:

1− σ̂2
j − C(T ) < 0 (11)

Any SV fulfilling this inequality can be considered as equal to one, corres-
ponding to a unit root of the system. Note that the penalty function C(T )
represents a threshold such as when 1 − σ̂2

j is lesser than this level, it will be
regarded equal to zero, and so the criterion will give, at least, j unit roots, since
σ̂1 ≤ σ̂2 ≤ ... ≤ σ̂i ≤ 0. BW specify the following loss function:

C(T ) =
log(T )2

T
(12)

which collapses to zero as the sample size grows.

The use of C(T ) poses two main problems: 1) it only assures consistency when
d = 1, being d the number of unit roots, and 2) it does not depend on the row
space of the information blocks, i. The first issue is relevant, since this penalty
function does not assure good results in processes with two or more non-stationary
series. The second fact means that changes in i may produce important changes in
the computed CCCs. Basically, larger subspace dimension implies higher CCCs,
in the same way that the determination coefficient of a regression grows when the
number of explanatory variables increase.

To solve both limitations, we will formulate a decision criterion similar to that
of BW which, 1) it is based on Poskitt (2000) ideas and on a simulation study and
2) can be applied to systems with multiple unit roots. The procedure consists of
obtaining the penalty function that distinguishes the σ̂j considered equal to 1 and
the others, using the superconsistency property. For this purpose, we impose two
conditions on this function.

• Condition 3.1: It should depend on the sample size (T ), the dimension of
the information blocks (i) and the number of unit roots (d) that we wish to
test.

• Condition 3.2: It should converge to zero when T tends to infinite, to as-
sure the consistency of the estimated number of unit roots, d̂. Formally,
limT→∞ Gl(T, i, d) = 0, where Gl represents different loss functions.
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A general representation of the criterion proposed is, therefore:

f(σ̂j)−Gl(T, i, d) ≤ 0 (13)

where f(σ̂j) is a transformation measuring the distance between the j-th SV and
the unity.

3.1 Univariate processes

To find a specification for Gl(T, i, d), we analyze the empirical distribution of the
σ̂js corresponding to non-unit roots. To this end, we simulate 1000 replications of
models near to non-stationarity for T = 20, 21, . . . , 500. The transformation f(·) is
applied to the first SV resultant of each simulation, summarizing all the informa-
tion in a determined percentile (τ) and denoting this series by y1T . Therefore, an
empirical function measuring the distance to zero of σ̂1 is obtained. The question
is how to find a penalty function fulfilling conditions (3.1) and (3.2) and correctly
fitting y1T .

For d = 0, the following loglinear model is considered:

log(y1T ) = α + β1 log(T ) + β2 log(i) + εT (14)

where εT corresponds to an error term and i refers to the row space of the past
and future blocks.

Equation (14) generates a particular penalty function for every set of α, β1 and
β2 values. These parameters depend on the value of the CCC which generates the
simulations (σ̄) and the percentile (τ), needed to define the yjT variable. Table 1
shows estimated parameters of the model (14) corresponding to different f(·), τ
and σ̄.

[INSERT FIGURE 1 AND TABLE 1]

For comparison, Table 1 includes the penalty function proposed by BW. When
model (14) is fitted to BW’s function, its estimates are close to those obtained
with our family of criteria. We denote our different loss functions by Gl, with
l = 1, 2, ..., 6. But how do we decide which one to use? To choose the best
penalty function it is reasonable to minimize the size of the decision criterion
(defined as the probability of rejecting the null hypothesis when it is true) and
maximize its power (the probability of rejecting the null hypothesis when it is
false). Unfortunately, size and power move in opposite directions. Then we select
the empirical distributions that fulfills, at least, one of the following two conditions:
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• Condition 3.3: Minimize the size, with a power of the criterion which tends
to the unity when the sample size increases.

• Condition 3.4: Minimize the size, requiring a minimum power for a specific
sample size.

In the univariate case, in which the basic decision is if d > 0, we require that
the minimum power in condition (3.4) is equal to 0.5 for T = 50. The probability
of misestimating the number of unit roots in a random walk (∇zt = at), as an
approximation to the size of the criterion in univariate models, is used to choose
the penalty functions and criteria. In the same way, we approximate the power
as the probability of d̂ = d in a stationary model with a persistent autoregressive
process, (1 − .9B)zt = at. The results for a 1000 replications simulation exercise
are presented in Tables 2 and 3.

[INSERT TABLES 2-3]

Tables 2 and 3 show the performance in finite samples, both in size and power,
of the criteria. Note that some of them beat the ADF-test in such properties. In
view of the results, G5 is chosen as the penalty function that fulfills the condition
(3.3), hereafter called Ga(d > 0). We will choose, the loss function G2, from now
on Gb(d > 0), which fulfills condition (3.4).

3.2 Multivariate processes

The main advantage of the method lies in the treatment of multivariate models.
First, only a few authors as Phillips and Durlauf (1986), Abuaf and Jorion (1990),
Flôres et al. (1999) or BW study the identification of unit roots in vector series.
Second, the ability to deal with vector of time series leads naturally to the cointe-
gration analysis.

Estimated penalty functions not only depend on the sample size and the di-
mension of the information blocks, but also on the minimum number of unit roots
we want to test. Therefore, each σ̂j candidate to be equal to 1 should be compa-
red with a different penalty function. So far, the criteria only indicate whether
the series are stationary or not. In this Section, we devise criteria to sequentially
evaluate if d > 1, d > 2, d > 3 and d > 4. To estimate the penalty functions,
we simulate vectors of two, three, four and five series with unit and less than unit
SVs. Each system contains at least one stationary, but close to unity, CCC. Then,
different empirical distributions are estimated for every process, finally choosing a
model that fits correctly, as we did in the univariate case.
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Figure 2 compares the empirical distributions y1T and y2T corresponding to
(τ = 90, σ̄ = 1.0) and (τ = 90, σ̄ = .95), for a bivariate system. Note that the first
SV, corresponding to a unit root of the bivariate process, stays under Gb(d > 0)
which is the penalty function used in the criterion with biggest power to contrast
d > 0. Indeed, if we compare a multivariate process (At) having d unit roots, with
the same system (Bt) that incorporates a non-stationary new series (process Bt

would have d + 1 unit roots) then σ̂j(Bt) ≥ σ̂j(At) for j = 1, ..., d + 1. Hence one
might use these criteria in a sequential way, to decide how many SVs are equal to
1.

[INSERT FIGURE 2 AND TABLE 4]

Table 4 presents the estimated parameters of model (14) corresponding to four
alternative penalty functions to contrast d > 1. Figure 2 shows that the model
specification, allowing to different parameter values, fits rather well the empirical
distribution used to test both, d > 0 and d > 1. To discriminate between the
alternative penalty functions, we will use conditions (3.3) and (3.4). Tables 5
and 6 report simulation results designed to assess size and power of the criteria
formulated for d > 1. The exercise has been carried out using the loss function
Gb(d > 0) to decide if d > 0.

[INSERT TABLES 5-6]

We choose the penalty functions G4 and G1 from Table 4 and we respectively
denote them by Ga(d > 1) and Gb(d > 1). The first minimizes the size given a
weak power, while the second minimizes the size with a 0.45 power for T = 50.
We reduce the minimum power required since the properties of the criteria, both
in size and power, are lightly degraded in short samples when increasing d.

The method to obtain the penalty functions for trivariate, tetravariate and
pentavariate processes is similar to that used so far. However, we re-specify the
model to improve the fit to the empirical distribution by modeling two sub-samples:

T < T ∗
j yjT = αj1 + δ1jT + δ2jT

2 + δ3jT
3 + δ4ji + ε1jT

T ≥ T ∗
j log(yjT ) = α2j + β1j log(T ) + β2j log(i) + ε2jT (15)

where T ∗
j refers to the first observation of the second sub-sample.

Estimates of the two penalty functions fulfilling conditions (3.3) and (3.4) to
test the existence of at least j − 1 unit roots (with j = 3, 4, 5) and the parameter
estimates of the models in (15) are depicted in Table 7. Again, we reduce the
minimum power required for T = 50 making reference to condition (3.4): 0.4 for
d > 2, 3, 4. Note, in Table 7, that increasing the row space of the information blocks

9



(i) positively affects σ̂j, and thus, negatively affects f(σ̂j) for every j. Moreover,
a bigger j implies more sensibility of yjT to changes in i.

[INSERT TABLE 7]

Tables 8 and 9 describe the generating processes and simulations done to eva-
luate the size and the power of the criteria, using the penalty functions presented
in Table 7. All the criteria show good finite sample properties when estimating d,
although the results reveal a degradation when the number of unit roots increases.

[INSERT TABLES 8-9]

4 COINTEGRATION

In a multivariate context, when all the series are I(1), one may obtain the cointe-
grating rank (c), as m− d, where m is the system dimension and d is the number
of unit roots. Therefore, we will devise a method to determine the cointegrating
rank using the methodology of multivariate unit root detection which consists of:

1. Make sure the univariate series are I(1), applying the criterion formulated in
Section 1.

2. Estimate the number of unit roots (d) of the multivariate process and,

3. obtain the cointegrating rank estimation ĉ, as the difference between the
dimension system (m) and the estimated number of unit roots (d̂).

We will now motivate why we use two penalty functions, from conditions (3.3)
and (3.4), instead of only one. In the univariate analysis, it is coherent to use
C(Ga), which has greater size than C(Gb), assuming that overdifferencing is bet-
ter than underdifferencing (see Sanchez and Peña, 2001). In contrast, C(Gb) will
be more adequate for multivariate processes, where it can be better overestimate
than underestimate the cointegrating rank. In these cases, one may apply the met-
hodology to verify the I(0) integration order of the series computed as the product
of the cointegration matrix and the original endogenous variables.

An interesting question consists of devising a procedure to estimate the coin-
tegrating matrix. We suggest a method that provides consistent estimates, only
requiring the parameter matrices of the innovation model and the computed coin-
tegrating rank (ĉ). As we have seen, subspace methods can be directly applied
to estimate the matrices in an innovations model (Favoreel et al., 2000; Knud-
sen, 2001). BW show that any model made up for I(1) series can be written as
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an innovation model which divides the state sequences into stationary and non-
stationary. Thus, the system (1-2) can be expressed, with the Φ matrix in Jordan
normal form, as: (

X1,t+1

X2,t+1

)
=

(
Id 0
0 φn−d

) (
X1,t

X2,t

)
+

(
E1

E2

)
ψt (16)

(
Z1,t

Z2,t

)
=

(
H11 H12

H21 H22

) (
X1,t

X2,t

)
+

(
ψ1,t

ψ2,t

)
(17)

where (16) is the state equation and (17) is the observation equation with Z1,t ∈
Rc,Z2,t ∈ Rd,H11 ∈ Rc×d,H12 ∈ Rc×(n−d),H21 ∈ Rd×d and H22 ∈ Rd×(n−d).
Also, n denotes the system order, X1,t+1 designates the state components of the
d-dimensional non-stationary sub-system and X2,t+1 denotes the state compo-
nents of the (n− d)-dimensional stationary sub-system.

To estimate the cointegrating matrix, one must find a matrix Λ that cancels
H11, since it is the only block of H affecting the non-stationary state sequence
for the cointegrated series.

Proposition 4.1 Λ̂ = (Ic −Ĥ11Ĥ
−1
21 ) is a consistent estimate of the cointe-

grating matrix.

Proof. Premultiplying the equation (17) by Λ we obtain:

Λ

(
Z1,t

Z2,t

)
= Λ

(
H11 H12

H21 H22

) (
X1,t

X2,t

)
+ Λ

(
ψ1,t

ψ2,t

)
(18)

taking H11H
−1
21 = λ and operating, we get:

Z1,t − λZ2,t = (H12 − λH22)X2,t +ψ1,t − λψ2,t (19)

Equation (19) is a linear combination of the multivariate process Zt that is not
influenced by the non-stationary sequence X1,t, so it is stationary.

On the other hand, when the sample size grows (and consequently i grows),
the order system estimation (n̂) and the parameter matrices of equations (16-17)
tend to their true values. Specifically, we get that:

lim
T→∞

Λ̂ = Λ (20)

and so Λ̂ is a consistent estimate of Λ.

�
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5 SIMULATION EVIDENCE

To analyze the performance of the criteria proposed for cointegration analysis, we
show the results obtained from several Montecarlo experiments. In the first si-
mulation exercise, the data generating processes (DGP) considered coincide with
those used by Riemers (1992), Toda (1995) and Poskitt (2000).

We start by considering a bivariate process. Table 10 shows the resulting
relative frequency for different estimated cointegrating rank, ĉ. The DGP for the
first system is: (

y1t

y2t

)
=

(
.2 .8
.4 .6

) (
x1t

x2t

)
, (21)

where (
1 .0
.0 ∇

) (
x1t

x2t

)
=

(
.0
δ

)
+

(
κ(B) .0

.0 1

) (
η1t

η2t

)
,

with κ(B) = (1− αB)−1, and(
η1t

η2t

)
= N

((
.0
.0

)
,R2 =

(
1.0 θ
θ 1.0

))
Results have been obtained using different values for α, δ and θ. For each

combination of parameters and sample size, we discard the 50 first (y1t, y2t)
′ ob-

servations to improve randomization.

[INSERT TABLE 10]

The values in Table 10 show the finite sample properties of the C(Ga) and
C(Gb) criteria. Note that results are pretty good even for short samples. Further-
more, Table 10 reveals that results deteriorate in small samples when the process
includes an autoregressive component close to the unit boundary. Obviously, the
performance of the criterion using the Ga penalty function is worse in small sam-
ples than that which uses Gb since, by conditions (3.3) and (3.4), the former has
more tendency to attribute the high autocorrelation to another stochastic trend,
and consequently, to underestimate c.

Results shown in Table 11 are generated by a process similar to the previous
one, but now the (x1t, x2t)

′ vector is defined as:(
∇ .0
.0 ∇

) (
x1t

x2t

)
=

(
.0
δ

)
+

(
κ(B) .0

.0 1

) (
η1t

η2t

)
, (22)
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where κ(B) = 1−µB. In this case, C(Ga) beats C(Gb). Again, the outcomes show
the consistency of both criteria. Moreover, they are rather good when µ remains
relatively far from the unity. When µ = .9 both criteria overestimate c because
the unit root corresponding to the x1t process is close to be cancelled out by the
root of the moving average term, (1− .9B)η1t.

[INSERT TABLE 11]

To allow for more cointegrating relations, we also analyze the results obtained
with the trivariate DGP:y1t

y2t

y3t

 =

.0 .0 1.0
.0 .2 .8
.1 .3 .6

 x1t

x2t

x3t

 , (23)

whered1(B) .0 .0
.0 d2(B) .0
.0 .0 ∇

 x1t

x2t

x3t

 =

.0
.0
δ

 +

κ1(B) .0 .0
.0 κ2(B) .0
.0 .0 1.0

 η1t

η2t

η3t



with (η1t, η2t, η3t)
′ = N(0,R3) y, R3 =

1.0 θ θ
θ 1.0 θ
θ θ 1.0


[INSERT TABLES 12-14]

Tables 12, 13 and 14 present the results obtained in this case. DGP (23) allows
for different number of cointegrating relations. Thus, for the system 1: c = 0,
d1(B) = d2(B) = ∇ and κ1(B) = κ2(B) = 1; for the system 2: c = 1, d1(B) = 1,
d2(B) = ∇, κ1(B) = (1 − .αB)−1 and κ2(B) = 1; and last, for the system 3:
c = 2, d1(B) = d2(B) = 1 and κ1(B) = κ2(B) = (1 − .αB)−1, so that the triva-
riant processes contain three, two and one unit roots, respectively. Table 12 show
that both criteria present favorable results (better with C(Ga) due to its penalty
function) in middle-size samples, e.g. with 100 observations. When α = .9, the
danger to underestimate c using both criteria grows due to the high persistence
of the autoregressives. In all the cases in those the data is generated with the tri-
variant process, C(Gb) has recorded a 70% of corrected identification with T = 300.
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To assess the influence of the system dimension on the performance of the
criteria, we generate the following pentavariate process:

y1t

y2t

y3t

y4t

y5t

 =


.0 .0 .0 .0 1.0
.0 .0 .2 .0 .8
.0 .0 .3 .1 .6
.0 .1 .4 .1 .4
.1 .1 .3 .3 .2




x1t

x2t

x3t

x4t

x5t

 (24)

where the Xt = (x1t, x2t, ..., x5t)
′ vector is generated from Φ(B)Xt = ∆ +

Θ(B)ηt with, Φ(B) = diag(1, 1, 1,∇,∇) and Θ(B) = diag((1 − αB)−1, (1 −
αB)−1, (1−αB)−1, 1, 1) for the pentavariate system 1; Φ(B) = diag(1, 1,∇,∇,∇)
and Θ(B) = diag((1−αB)−1, (1−αB)−1, (1−µB), 1, 1) for the pentavariate sys-
tem 2. Also, in both processes ∆ = (δ, δ, ..., δ)′ and ηt = (η1t, η2t, ..., η5t)

′ with ηt

= N(0,R5), where R5 denotes a diagonal matrix with ones on the main diagonal
and θ elsewhere.

[INSERT TABLES 15-18]

Table 15 presents the results obtained with the pentavariate process 1. Alt-
hough with T = 100 both criteria underestimate the cointegrating rank (in general,
all the methods reveal serious difficulties to correctly estimate c) their behavior is
quite good when T = 300. Therefore both criteria do not need a very large sample
size for the cointegrating rank estimate to converge to its true value. Table 16
shows the results for a highly persistent autoregressive process. Due to the per-
formance decline of all the techniques in these cases and following Poskitt (2000),
the sample size is extended in a Fibonacci sequence to T = 500, 800 and 1300.
When T = 500 and T = 800, C(Gb) clearly dominates C(Ga). Once again, when
the sample grows both criteria lead to the true cointegrating rank.

The results obtained from the pentavariate process 2 are shown in Tables 17
and 18. Despite the fact that this system presents approximate cancellation of real
autoregressive and moving average roots, both criteria estimate c reasonably well.
When the autoregressive persistence and the sample size grow, Table 18 shows
relatively good performance of both, C(Gb) and C(Ga). In fact, when T = 500,
they show a 90% of corrected cointegrating rank detection, widely outperforming
the other considered methods.

Finally, we extend the Monte Carlo experiment to the analysis of the cointe-
grating matrix estimator. Table 19 shows the probability of correctly estimating
the cointegrating rank with C(Gb) and, when this identification is right, the com-
puted cointegrating vector. The process used presents a cointegration relationship
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and two non-stationary common factors with cointegrating coefficients α1 = −1.2
and α2 = .5. The aim of the exercise is to: 1) analyze the performance of the
cointegrating vector estimator and, 2) assess the influence of the contemporaneous
correlation of the innovations.

[INSERT TABLE 19]

The results shown in Table 19 reveal the relevance of the value of the auto-
regressive φ. In fact, when φ = −.8 the estimates of c, α1 and α2 are slightly
less accurate. Besides, the contemporaneous correlation of the innovations affects
on the cointegrating vector estimate, but it is not apparently clear in what way.
The evidence suggests the ability of the algorithm to correctly estimate the coin-
tegrating vector with processes which contain a cointegration relationship and two
non-stationary common factors. The outcomes support the consistency, previously
justified in theory, of the cointegrating rank and the cointegrating vector estimates.

6 EXAMPLE WITH REAL DATA

We will now analyze the integration order and cointegration relationships between
several monthly U.S. interest rate series for August 1985-January 2003. Mart́ın
Manjón and Treadway (1997) highlight that short terms rates (of term two years
or less) operate in bivariate cointegration relationships with the Federal Reserve’s
(Fed) Federal Funds Rate Target, while rates of longer term than two years do not.
The example is divided into two parts. First, we analyze the Federal Funds Rate
Target (RTt) with the Effective Rate (ERt) and the Treasury Bills at 3 (TB3t) and
6 (TB6t) month maturities (secondary market and auction averages). Secondly,
we consider a trivariate system including the Federal Funds Rate Target and the
T-bonds (Treasury Constant Maturity Rate) at terms 5 and 30 years, respectively
TB5t and TB30t.

6.1 Short term interest rates

The analysis of the series one-by-one concludes that all of them are I(1). When
differencing the series, none of them generates a SV high enough for the criteria
to detect a second unit root.

Table 20 summarizes the results of the integration analysis for the vector pro-
cess. In this case, the criteria points out the existence of just one unit root.
Therefore, three cointegration relations are found, each one corresponding to one
of the three unit roots that disappeared when the series were jointly analyzed.

[INSERT TABLE 20]
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As the series are I(1), we can write Z1t = (ERt TB3t TB6t RTt)
′ as in

(16-17). This representation allows to compute an estimate of the cointegrating
matrix Λ:

Λ̂ =

1 0 0 −1.01
0 1 0 −0.92
0 0 1 −0.93

 (25)

such that the series Λ̂Z1t are I(0). Note that these series generated from the coin-
tegrating matrix are roughly the spread of interest rates, characterizing a measure
of the efficiency of the control of the short term interest rates.

6.2 Long term interest rates

As in Mart́ın Manjón and Treadway (1997), we do not find any non-stationary
common factor applying the detection algorithm to the process made up by TB5t

and RTt. On the contrary, we discover two unit roots. Indeed, the analysis of
the CCCs reveals two coefficients greater than .965, considered enough close to
1 by both criteria. We investigate then whether there is a cointegration rela-
tionship between these two series and TB30t, making up the new process Z2t =
(TB5t RTt TB30t)

′.

The method returns only two unit roots when analyzing the process. Hence,
it identifies that the T-bonds at term 5 years operates in trivariate CI(1,1) cointe-
gration relationship with the Federal Funds Rate Target and the T-bonds at term
30 years getting the estimated cointegrating vector:

Λ̂ =
(
1 −.30 −.68

)
(26)

such that the series Λ̂Z2t are I(0).

7 CONCLUDING REMARKS

This paper provides a family of information criteria based on subspace methods
and canonical correlation analysis, that allows to estimate the number of unit roots
in both, univariate and multivariate processes. The procedure can also be used to
obtain the estimation of the cointegrating rank. The simulation exercises indicate
that this method has a remarkable capacity to estimate the number of unit roots
and the cointegration rank in different situations. Contrary to other procedures as
Johansen (1988, 1991), requiring a previous VAR specification, the methodology
proposed does not need to fit a model to the data, with the resulting reduction of
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error risk.

The fact that the penalty functions of the proposed criteria are fitted by simula-
tion techniques suggests, in a natural way, the possibility to adapt the information
criterion to samples with specific statistical properties. For example, it is known
that high-frequency financial data often present distributions which have fatter
tails than the Gaussian and, occasionally, a perceptible asymmetry. In this con-
text, our methodology allows to design an optimized criterion for this kind of
samples.

On the other hand, when the series are I(1) and the cointegrating rank is
known, we provide a consistent estimator of the cointegrating matrix from a state
space model in innovations form.

Finally, the procedures described in this article are implemented in a MATLAB
toolbox for time series modeling called E4 that can be download at www.ucm.es/
info/icae/e4. The source code for all the functions is freely provided under the
terms of the GNU General Public License.
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Table 1: Estimated penalty functions to test d > 0

Empirical distribution Estimates Penalty

f(σ̂1) = y1T σ̄ τ α̂ β̂1 β̂2 Function

1− σ̂2
1 0.975 95 1.09 -0.51 -0.17 G1(d > 0)

1− σ̂2
1 0.975 90 0.60 -0.50 -0.10 G2(d > 0)

1− σ̂2
1 0.95 80 0.10 -0.36 -0.10 G3(d > 0)

1− σ̂2
1 0.95 90 0.52 -0.40 -0.10 G4(d > 0)

1− σ̂1 0.95 90 0.10 -0.44 -0.05 G5(d > 0)
1− σ̂1 0.975 95 0.65 -0.56 -0.16 G6(d > 0)

log(T )2/T ? - - 0.98 -0.52 -0.10 C(T )
? Corresponding to the penalty function proposed by BW

Table 2: Size of the criteria to test d > 0
in the process φ(B)zt = at

T ADF† C‡ G1 G2 G3 G4 G5 G6

50 0.050 0.047 0.040 0.121 0.112 0.047 0.030 0.044
100 0.049 0.016 0.014 0.065 0.042 0.011 0.005 0.016
500 0.061 0.004 0.003 0.004 0.003 0.0 0.0 0.003
† Augmented Dickey-Fuller Test at 5% of significance level with one lag
(Dickey and Fuller, 1979).
‡ Corresponding to the penalty function proposed by BW.
φ(B) = 1−B.
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Table 3: Power of the criteria to test d > 0
in the process φ(B)zt = at

T ADF† C‡ G1 G2 G3 G4 G5 G6

50 0.114 0.246 0.208 0.505 0.464 0.246 0.188 0.230
100 0.341 0.451 0.420 0.762 0.628 0.376 0.290 0.451
500 1.0 1.0 1.0 1.0 1.0 0.994 0.981 1.0
† Augmented Dickey-Fuller Test at 5% of significance level with one lag
(Dickey and Fuller, 1979).
‡ Corresponding to the penalty function proposed by BW.
φ(B) = 1− .9B.
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Table 4: Estimated penalty functions to test d > 1

Empirical distribution Estimates Penalty

f(σ̂2) = y2T σ̄ τ α̂ β̂1 β̂2 Function

1− σ̂2
2 0.95 75 0.43 -0.39 -0.07 G1

1− σ̂2
2 0.95 80 0.50 -0.39 -0.07 G2

1− σ̂2
2 0.95 85 0.57 -0.39 -0.07 G3

1− σ̂2
2 0.95 90 0.67 -0.39 -0.06 G4

Table 5: Size of the criteria to test d > 1
in the process Φ(B)zt = at

T G1 G2 G3 G4

50 0.292 0.221 0.163 0.099
100 0.146 0.109 0.076 0.047
500 0.003 0.002 0.001 0.001
Φ(B) = diag(∇,∇)

Table 6: Power of the criteria to test d > 1
in the process Φ(B)zt = at

T G1 G2 G3 G4

50 0.452 0.373 0.293 0.204
100 0.516 0.428 0.337 0.239
500 0.993 0.989 0.968 0.947
Φ(B) = diag(∇, (1− .9B))
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Table 8: Size of the criteria to test d > 2, d > 3 and d > 4
in the processes Φk(B)zt = at

d > 2 d > 3 d > 4
T Ga Gb Ga Gb Ga Gb

50 0.103 0.399 0.097 0.397 0.118 0.400
100 0.081 0.331 0.079 0.336 0.066 0.374
500 0.002 0.004 0.003 0.054 0.010 0.034
Φ1(B) = diag(∇,∇,∇); Φ2(B) = diag(∇,∇,∇,∇);
Φ3(B) = diag(∇,∇,∇,∇,∇)

Table 9: Power of the criteria to test d > 2, d > 3 and d > 4
in the processes Φk(B)zt = at

d > 2 d > 3 d > 4
T Ga Gb Ga Gb Ga Gb

50 0.166 0.402 0.161 0.398 0.110 0.408
100 0.854 0.487 0.741 0.460 0.144 0.438
500 0.940 0.951 0.920 0.994 0.458 0.844
Φ1(B) = diag(∇,∇, (1− .9B)); Φ2(B) = diag(∇,∇,∇, (1− .9B));
Φ3(B) = diag(∇,∇,∇,∇, (1− .9B))
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Table 10: Results for the bivariate process (21).?

T ĉ C(Ga) C(Gb) ∇T LRT PLRSBC
T PLRLP

T

c = 1, α = .7, θ = .8, δ = .0

100 0 0.0110 0.0075 0.0265 0.3250 0.0 0.1225
1 0.9890 0.9925 0.9732 0.6280 1.0 0.8775

200 0 0.0 0.0 0.0005 0.0010 0.0 0.0050
1 1.0 1.0 0.9995 0.9540 1.0 0.9950

300 0 0.0 0.0 0.0 0.0000 0.0 0.0
1 1.0 1.0 1.0 0.9400 1.0 1.0

c = 1, α = .8, θ = .8, δ = .0

100 0 0.2320 0.0500 0.2275 0.6250 0.0020 0.4175
1 0.7680 0.9500 0.7725 0.3360 0.9980 0.5825

200 0 0.0060 0.0015 0.0260 0.0720 0.0 0.1855
1 0.9940 0.9985 0.9740 0.8840 1.0 0.8145

300 0 0.0 0.0005 0.0010 0.0010 0.0 0.0465
1 1.0 0.9995 0.9990 0.9390 1.0 0.9535

c = 1, α = .9, θ = .8, δ = .0

100 0 0.7765 0.5050 0.6920 0.8150 0.0370 0.7395
1 0.2235 0.4950 0.3080 0.1335 0.9630 0.2605

200 0 0.5645 0.2410 0.6250 0.6035 0.0020 0.8300
1 0.4355 0.7590 0.3745 0.3630 0.9980 0.1700

300 0 0.3555 0.0800 0.4850 0.2390 0.0 0.7975
1 0.6445 0.9195 0.5150 0.7070 1.0 0.2025

?The table shows the relative frequency of obtaining the estimated cointegrating rank denoted
by ĉ. C(Ga) and C(Gb) represent the criteria (13) with the proposed penalty functions Ga

and Gb, respectively. Columns 5-8 show the results achieved by Poskitt’s (2000) criterion (∇T ),
Johansen’s (1988, 1991) likelihood ratio procedure, (LRT ), and some penalized likelihood criteria
(PLRT ). These lasts require an order of the autoregressive model fitted to the data specification
denoted by SBC (Schwartz, 1978) or LP (Lütkepohl and Poskitt, 1998) superscripts. These values
are taken from Poskitt (2000) where they were obtained with the same number of replications
(2000), sample sizes (T = 100, 200, 300) and DGP. See Poskitt (2000) for more details.
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Table 11: Results for the bivariate process (22).?

T ĉ C(Ga) C(Gb) ∇T LRT PLRSBC
T PLRLP

T

c = 0, µ = .3, θ = .8, δ = .0

100 0 0.7880 0.6240 0.6620 0.9510 0.1510 0.8830
1 0.2120 0.3760 0.3380 0.0465 0.8490 0.1170

200 0 0.8815 0.7765 0.8435 0.9445 0.2140 0.9845
1 0.1185 0.2235 0.1565 0.0520 0.7860 0.0155

300 0 0.9415 0.8690 0.9260 0.9455 0.2565 0.9980
1 0.0585 0.1310 0.0740 0.0485 0.7435 0.0020

c = 0, µ = .5, θ = .8, δ = .0

100 0 0.5795 0.4200 0.3185 0.9545 0.1480 0.8890
1 0.4205 0.5800 0.6815 0.0405 0.8520 0.1110

200 0 0.7005 0.5545 0.4760 0.9465 0.2095 0.9845
1 0.2995 0.4455 0.5240 0.0510 0.7905 0.0155

300 0 0.7870 0.6750 0.5925 0.9440 0.2600 0.9980
1 0.2130 0.3250 0.4075 0.0505 0.7400 0.0020

c = 0, µ = .9, θ = .8, δ = .0

100 0 0.0230 0.0095 0.0 0.7015 0.0170 0.4840
1 0.9770 0.9875 1.0 0.2780 0.9830 0.5160

200 0 0.0285 0.0130 0.0 0.4075 0.0095 0.5540
1 0.9715 0.9870 1.0 0.5675 0.9905 0.4460

300 0 0.0535 0.0315 0.0 0.4305 0.0255 0.7650
1 0.9465 0.9680 1.0 0.5415 0.9745 0.2350

?The table shows the relative frequency of obtaining the estimated cointegrating rank denoted
by ĉ. C(Ga) and C(Gb) represent the criteria (13) with the proposed penalty functions Ga

and Gb, respectively. Columns 5-8 show the results achieved by Poskitt’s (2000) criterion (∇T ),
Johansen’s (1988, 1991) likelihood ratio procedure, (LRT ), and some penalized likelihood criteria
(PLRT ). These lasts require an order of the autoregressive model fitted to the data specification
denoted by SBC (Schwartz, 1978) or LP (Lütkepohl and Poskitt, 1998) superscripts. These values
are taken from Poskitt (2000) where they were obtained with the same number of replications
(2000), sample sizes (T = 100, 200, 300) and DGP. See Poskitt (2000) for more details.
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Table 12: Results for the trivariate process (23), system 1.?

T ĉ C(Ga) C(Gb) ∇T LRT PLRSBC
T PLRLP

T

c = 0, θ = .0, δ = .0

100 0 0.9255 0.6470 0.7560 0.9395 0.4085 0.4230
1 0.0740 0.3480 0.2385 0.0570 0.0890 0.5585
2 0.0005 0.0050 0.0055 0.0030 0.5026 0.0185

200 0 0.9500 0.7735 0.9385 0.9410 0.6125 0.8555
1 0.0500 0.2260 0.0615 0.0530 0.0740 0.1455
2 0.0 0.0005 0.0 0.0060 0.3135 0.0

300 0 0.9595 0.8270 0.9860 0.9505 0.7300 0.9690
1 0.0405 0.1725 0.0140 0.0465 0.0695 0.0310
2 0.0 0.0005 0.0 0.0030 0.2005 0.0

?The table shows the relative frequency of obtaining the estimated cointegrating rank denoted
by ĉ. C(Ga) and C(Gb) represent the criteria (13) with the proposed penalty functions Ga

and Gb, respectively. Columns 5-8 show the results achieved by Poskitt’s (2000) criterion (∇T ),
Johansen’s (1988, 1991) likelihood ratio procedure, (LRT ), and some penalized likelihood criteria
(PLRT ). These lasts require an order of the autoregressive model fitted to the data specification
denoted by SBC (Schwartz, 1978) or LP (Lütkepohl and Poskitt, 1998) superscripts. These values
are taken from Poskitt (2000) where they were obtained with the same number of replications
(2000), sample sizes (T = 100, 200, 300) and DGP. See Poskitt (2000) for more details.
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Table 13: Results for the trivariate process (23), system 2.?

T ĉ C(Ga) C(Gb) ∇T LRT PLRSBC
T PLRLP

T

c = 1, α = .8, θ = .0, δ = .0

100 0 0.4620 0.0615 0.2015 0.7760 0.1280 0.1515
1 0.5290 0.8750 0.7485 0.1985 0.0990 0.7850
2 0.0090 0.0630 0.0500 0.0215 0.7730 0.0635

200 0 0.0100 0.0 0.0340 0.3090 0.0140 0.0985
1 0.9835 0.9645 0.9530 0.6455 0.2155 0.8935
2 0.0065 0.0355 0.0130 0.0410 0.7705 0.0080

300 0 0.0 0.0 0.0030 0.0355 0.0 0.0200
1 0.9975 0.9850 0.9920 0.9115 0.2785 0.9780
2 0.0025 0.0150 0.0050 0.0500 0.7215 0.0020

c = 1, α = .9, θ = .0, δ = .0

100 0 0.8510 0.4180 0.5880 0.8925 0.3070 0.3310
1 0.1470 0.5540 0.3970 0.0990 0.0740 0.6445
2 0.0020 0.0280 0.0150 0.0070 0.6190 0.0245

200 0 0.5370 0.1450 0.6275 0.7810 0.2520 0.6090
1 0.4605 0.8360 0.3705 0.1950 0.1200 0.3895
2 0.0025 0.0190 0.0020 0.0210 0.6280 0.0015

300 0 0.2190 0.0175 0.5380 0.5525 0.1190 0.6300
1 0.7810 0.9735 0.4610 0.4110 0.2245 0.3695
2 0.0 0.0090 0.0010 0.0340 0.6565 0.0005

?The table shows the relative frequency of obtaining the estimated cointegrating rank denoted
by ĉ. C(Ga) and C(Gb) represent the criteria (13) with the proposed penalty functions Ga

and Gb, respectively. Columns 5-8 show the results achieved by Poskitt’s (2000) criterion (∇T ),
Johansen’s (1988, 1991) likelihood ratio procedure, (LRT ), and some penalized likelihood criteria
(PLRT ). These lasts require an order of the autoregressive model fitted to the data specification
denoted by SBC (Schwartz, 1978) or LP (Lütkepohl and Poskitt, 1998) superscripts. These values
are taken from Poskitt (2000) where they were obtained with the same number of replications
(2000), sample sizes (T = 100, 200, 300) and DGP. See Poskitt (2000) for more details.
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Table 14: Results for the trivariate process (23), system 3.?

T ĉ C(Ga) C(Gb) ∇T LRT PLRSBC
T PLRLP

T

c = 2, α = .8, θ = .0, δ = .0

100 0 0.2190 0.0070 0.1690 0.4520 0.0195 0.0485
1 0.4855 0.2680 0.3485 0.4060 0.0020 0.6515
2 0.2955 0.7250 0.4825 0.1175 0.9785 0.3000

200 0 0.0 0.0 0.0340 0.0035 0.0 0.0110
1 0.0395 0.0100 0.0710 0.2085 0.0 0.4535
2 0.9605 0.9900 0.8950 0.7345 1.0 0.5355

300 0 0.0 0.0 0.0020 0.0 0.0 0.0000
1 0.0 0.0005 0.0080 0.0020 0.0 0.1510
2 1.0 0.9995 0.9900 0.9480 1.0 0.8490

c = 2, α = .9, θ = .0, δ = .0

100 0 0.7500 0.2415 0.5255 0.8245 0.2100 0.2660
1 0.2370 0.6545 0.4175 0.1525 0.0340 0.6795
2 0.0130 0.1020 0.0570 0.0185 0.7560 0.0545

200 0 0.2495 0.0200 0.6405 0.4205 0.0525 0.4355
1 0.6735 0.5770 0.2990 0.4175 0.0040 0.5465
2 0.0770 0.3955 0.0650 0.1290 0.9435 0.1800

300 0 0.0415 0.0010 0.6310 0.0535 0.0015 0.4000
1 0.7125 0.2830 0.2550 0.4565 0.0005 0.5740
2 0.2460 0.7075 0.1140 0.4445 0.9980 0.0260

?The table shows the relative frequency of obtaining the estimated cointegrating rank denoted
by ĉ. C(Ga) and C(Gb) represent the criteria (13) with the proposed penalty functions Ga

and Gb, respectively. Columns 5-8 show the results achieved by Poskitt’s (2000) criterion (∇T ),
Johansen’s (1988, 1991) likelihood ratio procedure, (LRT ), and some penalized likelihood criteria
(PLRT ). These lasts require an order of the autoregressive model fitted to the data specification
denoted by SBC (Schwartz, 1978) or LP (Lütkepohl and Poskitt, 1998) superscripts. These values
are taken from Poskitt (2000) where they were obtained with the same number of replications
(2000), sample sizes (T = 100, 200, 300) and DGP. See Poskitt (2000) for more details.
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Table 15: Results for the pentavariate process (24), system 1.?

T ĉ C(Ga) C(Gb) ∇T LRT PLRLP
T

c = 3, α = .8, θ = .8, δ = 1.0

100 0 0.0875 0.1040 0.0370 0.0850 0.0
1 0.7750 0.4665 0.2685 0.5695 0.0830
2 0.1370 0.3485 0.4090 0.2935 0.6705
3 0.0005 0.0800 0.2835 0.0450 0.2435
4 0.0 0.0005 0.0020 0.0060 0.0030

200 0 0.0005 0.0 0.0110 0.0 0.0
1 0.0115 0.0 0.0585 0.0555 0.1035
2 0.7060 0.1130 0.1365 0.5405 0.7075
3 0.2820 0.8830 0.7925 0.4060 0.1890
4 0.0 0.0040 0.0015 0.0320 0.0

300 0 0.0 0.0 0.0005 0.0 0.0
1 0.0 0.0 0.0025 0.0 0.0925
2 0.1390 0.0010 0.0095 0.0915 0.7310
3 0.8610 0.9970 0.9875 0.8555 0.1765
4 0.0 0.0020 0.0 0.0490 0.0

?The table shows the relative frequency of obtaining the estimated cointegrating rank denoted
by ĉ. C(Ga) and C(Gb) represent the criteria (13) with the proposed penalty functions Ga

and Gb, respectively. Columns 5-8 show the results achieved by Poskitt’s (2000) criterion (∇T ),
Johansen’s (1988, 1991) likelihood ratio procedure, (LRT ), and some penalized likelihood criteria
(PLRT ). These lasts require an order of the autoregressive model fitted to the data specification
denoted by SBC (Schwartz, 1978) or LP (Lütkepohl and Poskitt, 1998) superscripts. These values
are taken from Poskitt (2000) where they were obtained with the same number of replications
(2000), sample sizes (T = 100, 200, 300) and DGP. See Poskitt (2000) for more details.
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Table 16: Results for the pentavariate process (24), system 1.?

T ĉ C(Ga) C(Gb) ∇T LRT PLRLP
T

c = 3, α = .9, θ = .8, δ = 1.0

500 0 0.0 0.0 0.4685 0.0 0.0
1 0.0145 0.0 0.2880 0.0015 0.4715
2 0.9530 0.5440 0.1180 0.2715 0.5120
3 0.0325 0.4555 0.1255 0.6800 0.0165
4 0.0 0.0005 0.0 0.0490 0.0

800 0 0.0 0.0 0.1625 0.0 0.0
1 0.0 0.0 0.0825 0.0 0.3540
2 0.5865 0.0650 0.0510 0.0005 0.6085
3 0.4135 0.9350 0.7040 0.9535 0.0375
4 0.0 0.0 0.0 0.0415 0.0

1300 0 0.0 0.0 0.0005 0.0 0.0
1 0.0 0.0 0.0005 0.0 0.0645
2 0.0290 0.0 0.0005 0.0 0.6665
3 0.9710 1.0 0.9985 0.9475 0.2690
4 0.0 0.0 0.0 0.0490 0.0

?The table shows the relative frequency of obtaining the estimated cointegrating rank denoted
by ĉ. C(Ga) and C(Gb) represent the criteria (13) with the proposed penalty functions Ga

and Gb, respectively. Columns 5-8 show the results achieved by Poskitt’s (2000) criterion (∇T ),
Johansen’s (1988, 1991) likelihood ratio procedure, (LRT ), and some penalized likelihood criteria
(PLRT ). These lasts require an order of the autoregressive model fitted to the data specification
denoted by SBC (Schwartz, 1978) or LP (Lütkepohl and Poskitt, 1998) superscripts. These values
are taken from Poskitt (2000) where they were obtained with the same number of replications
(2000), sample sizes (T = 500, 800, 1300) and DGP. See Poskitt (2000) for more details.
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Table 17: Results for the pentavariate process (24), system 2.?

T ĉ C(Ga) C(Gb) ∇T LRT PLRLP
T

c = 2, α = .8, µ = .9, θ = .8, δ = 1.0

100 0 0.0120 0.0160 0.0 0.0005 0.0005
1 0.7735 0.5045 0.2990 0.1920 0.0695
2 0.2145 0.4715 0.7335 0.6250 0.6550
3 0.0 0.0080 0.0375 0.1625 0.2730
4 0.0 0.0 0.0 0.0175 0.0020

200 0 0.0 0.0 0.0 0.0 0.0
1 0.0635 0.0035 0.0750 0.0 0.0845
2 0.9365 0.8805 0.9025 0.3190 0.6865
3 0.0 0.1160 0.0225 0.6390 0.2280
4 0.0 0.0 0.0 0.0395 0.0010

300 0 0.0 0.0 0.0 0.0 0.0050
1 0.0170 0.0090 0.0085 0.0 0.1425
2 0.9795 0.9290 0.9145 0.0315 0.7155
3 0.0035 0.0615 0.0770 0.9250 0.1415
4 0.0 0.0005 0.0 0.0395 0.0

?The table shows the relative frequency of obtaining the estimated cointegrating rank denoted
by ĉ. C(Ga) and C(Gb) represent the criteria (13) with the proposed penalty functions Ga

and Gb, respectively. Columns 5-8 show the results achieved by Poskitt’s (2000) criterion (∇T ),
Johansen’s (1988, 1991) likelihood ratio procedure, (LRT ), and some penalized likelihood criteria
(PLRT ). These lasts require an order of the autoregressive model fitted to the data specification
denoted by SBC (Schwartz, 1978) or LP (Lütkepohl and Poskitt, 1998) superscripts. These values
are taken from Poskitt (2000) where they were obtained with the same number of replications
(2000), sample sizes (T = 100, 200, 300) and DGP. See Poskitt (2000) for more details.
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Table 18: Results for the pentavariate process (24), system 2.?

T ĉ C(Ga) C(Gb) ∇T LRT PLRLP
T

c = 2, α = .9, µ = .9, θ = .8, δ = 1.0

500 0 0.0060 0.0 0.0 0.0 0.0
1 0.0985 0.0275 0.4225 0.0 0.4025
2 0.8955 0.9725 0.5775 0.0965 0.5615
3 0.0 0.0 0.0 0.8525 0.0360
4 0.0 0.0 0.0 0.0480 0.0

800 0 0.0 0.0 0.0 0.0 0.0
1 0.0590 0.0255 0.1580 0.0 0.5130
2 0.9410 0.9740 0.8390 0.0 0.4685
3 0.0 0.0005 0.0030 0.9605 0.0185
4 0.0 0.0 0.0 0.0370 0.0

1300 0 0.0 0.0 0.0 0.0 0.0
1 0.0595 0.0055 0.0055 0.0 0.2710
2 0.9405 0.9945 0.9210 0.0 0.7080
3 0.0 0.0 0.0735 0.9440 0.0210
4 0.0 0.0 0.0 0.0515 0.0

?The table shows the relative frequency of obtaining the estimated cointegrating rank denoted
by ĉ. C(Ga) and C(Gb) represent the criteria (13) with the proposed penalty functions Ga

and Gb, respectively. Columns 5-8 show the results achieved by Poskitt’s (2000) criterion (∇T ),
Johansen’s (1988, 1991) likelihood ratio procedure, (LRT ), and some penalized likelihood criteria
(PLRT ). These lasts require an order of the autoregressive model fitted to the data specification
denoted by SBC (Schwartz, 1978) or LP (Lütkepohl and Poskitt, 1998) superscripts. These values
are taken from Poskitt (2000) where they were obtained with the same number of replications
(2000), sample sizes (T = 500, 800, 1300) and DGP. See Poskitt (2000) for more details.
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Table 19: Estimated cointegrating rank and vector for α1 = −1.2 and α2 = 0.5.?1 0 0
0 1 0
0 0 1 + φB

 ∇ 0 0
0 ∇ 0
α1 α2 1

 z1t

z2t

z3t

 =

ε1t

ε2t

ε3t

 ; Σε =

1 θ θ
θ 1 θ
θ θ 1


θ T φ = −0.8 φ = 0 φ = 0.8

ĉ = 1 α̂1 α̂2 ĉ = 1 α̂1 α̂2 ĉ = 1 α̂1 α̂2

50 0.714 -1.213 0.433 0.696 -1.184 0.487 0.653 -1.197 0.505
0.2 100 0.846 -1.198 0.509 0.843 -1.203 0.497 0.807 -1.202 0.504

300 0.984 -1.198 0.505 0.974 -1.198 0.498 0.973 -1.201 0.502

50 0.705 -1.217 0.429 0.752 -1.193 0.520 0.695 -1.163 0.521
0.4 100 0.875 -1.163 0.544 0.874 -1.199 0.504 0.866 -1.184 0.492

300 0.986 -1.185 0.519 0.992 -1.198 0.504 0.992 -1.198 0.502

50 0.736 -1.084 0.446 0.817 -1.185 0.533 0.731 -1.183 0.535
0.6 100 0.876 -1.109 0.535 0.913 -1.193 0.518 0.915 -1.194 0.508

300 0.992 -1.172 0.523 0.994 -1.196 0.508 0.994 -1.197 0.502

50 0.725 -1.131 0.431 0.848 -1.173 0.526 0.788 -1.146 0.525
0.8 100 0.879 -1.085 0.525 0.933 -1.174 0.488 0.918 -1.183 0.501

300 0.992 -1.172 0.523 0.991 -1.194 0.505 0.995 -1.196 0.502

? θ is the contemporaneous correlation of the innovations, ĉ = 1 indicates the relative frequency
of occurrence of this event. α̂1 and α̂2 are the average of the estimated cointegrating parameters
when c is correctly estimated. This table is based on 1000 replications.

Table 20: Integration analysis of the Z1t process

j σ̂j f(σ̂j)−Ga(d > j − 1) f(σ̂j)−Gb(d > j − 1) d̂Ga d̂Gb

1 0.9952 0.0048− 0.0970 < 0 0.0095− 0.1070 < 0 1 1
2 0.8797 0.2261− 0.2205 > 0 0.2261− 0.1797 > 0 1 1
3 0.7324 0.4636− 0.2648 > 0 0.4636− 0.1991 > 0 1 1
4 0.4028 0.8377− 0.2642 > 0 0.8377− 0.1968 > 0 1 1
σ̂j corresponds to the j singular value. d̂Ga

and d̂Gb
are the unit roots number

found in the j firsts singular values with the provided penalty functions Ga and Gb.
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Figure 1: Simulated Singular Values (SV) and penalty functions for univariate
processes. y1T corresponds to a stationary process’ first SV and wT corresponds to
a non-stationary process’ first SV. G4(d > 0) is a loss function provided for uni-
variate processes and C(T ) is the penalty function proposed by Bauer and Wagner
(2002). y1T and wT show the difference between the convergence rates of the SV
to their asymptotic values.
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Figure 2: Simulated Singular Values (SV) and penalty functions for bivariate pro-
cesses. y1T corresponds to the first SV of a bivariate non-stationary system which
univariate processes are I(1) and I(0). y2T corresponds to the second SV of the
same system, G4(d > 1) is a penalty function provided to detect (at least) two unit
roots and Gb(d > 0) is the penalty function used to detect (at least) one unit root.
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