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Abstract

Ebola virus disease is a lethal human and primate disease that requires a particular attention from the
international health authorities due to important recent outbreaks in some Western African countries and
isolated cases in European and North-America continents. Regarding the emergency of this situation,
various decision tools, such as mathematical models, were developed to assist the authorities to focus
their efforts in important factors to eradicate Ebola. In a previous work, we have proposed an original
deterministic spatial-temporal model, called Be-CoDiS (Between-Countries Disease Spread), to study the
evolution of human diseases within and between countries by taking into consideration the movement
of people between geographical areas. This model was validated by considering numerical experiments
regarding the 2014-16 West African Ebola Virus Disease epidemic. In this article, we propose to perform
a stability analysis of Be-CoDiS. Our first objective is to study the equilibrium states of simplified versions
of this model, limited to the cases of one an two countries, and to determine their basic reproduction
ratios. Then, in order to give some recommendations for the allocation of resources used to control
the disease, we perform a sensitivity analysis of those basic reproduction ratios regarding the model
parameters. Finally, we validate the obtained results by considering numerical experiments based on
data from the 2014-16 West African Ebola Virus Disease epidemic.

keywords: Epidemiological modelling, Deterministic models, Stability analysis, Sensitivity analysis,
Ebola Virus Disease.
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1 Introduction

Modeling and simulation are important decision tools that can be used to control human and animal diseases
[1, 18, 26, 31]. However, as each disease exhibits its own biological characteristics, the considered simulation
models need to be adapted to each specific case in order to handle real situations [5].

In a previous work published in [19], we have presented a spatial-temporal epidemiological model, called
Be-CoDiS (Between-Countries Disease Spread), to the study of the spread of human diseases between and
within countries. This model was an adaptation of a previous software, called Be-FAST (Between Farm
Animal Spatial Transmission), which simulates the spread of animal diseases between and within farms
[18, 26, 24, 25, 23]. Be-CoDiS is based on the combination of a deterministic Individual-Based model
(where the countries are considered as individuals) [9], simulating the between-country interactions (here,
migratory flux) and disease spread, with a deterministic compartmental model [5] (a system of ordinary
differential equations), simulating the within-country disease spread. At the end of a simulation, Be-CoDiS
returns outputs referring to outbreaks characteristics (for instance, the epidemic magnitude, the risk of
disease introduction or diffusion per country, etc.). The principal characteristic of this approach is the
consideration of the following effects at the same time: migratory flux between countries, control measure
effects and dynamic model parameters fitted to each country. Then, as a second part of this work, Be-CoDiS
was validated by considering the case of the 2014-16 West African Ebola Virus Disease (EVD) epidemic
[13, 6, 14, 39]. EVD is a human and primates virus disease that causes a high mortality rate (between 50%
and 90%) [12, 28]. During the period from December 2013 to March 2016, several important outbreaks have
been reported in West Africa (Guinea, Liberia, Sierra Leone and Nigeria). Furthermore, 16 isolated cases
were detected in Mali, Senegal, the USA, the United Kingdom, Italy and Spain. The main pandemic was
considered over at December 2015. Currently, the disease remains active in Guinea and Liberia with some
sporadic cases (the last cases were reported at 24 rmth April 2016). It is estimated that the around 28616
persons were infected during those outbreaks and 11310 deaths have been reported. Starting with data from
December 2013, our model predicted a total of 28475 infected persons, 11797 deaths and that the epidemic
will end at April 19th, 2016.

Here, we are interested in performing a stability analysis of continuous simplified versions of Be-CoDiS.
To this aim, we first analyze the equilibrium states of the model by considering only one country. More
precisely, we estimate an analytical expression of the disease basic reproductive ratio [3, 10, 11] according to
the model parameters. The basic reproduction ratio, denoted by R0, is a threshold used in epidemiology to
determine the behavior of an epidemic. It is defined as the average number of new infections caused by one
infected individual in an entirely of susceptible population [1, 5]. It is generally observed that if R0 > 1 then
the epidemic becomes endemic, whereas if R0 ≤ 1 then the epidemic disappears [1, 3]. We note that the
mathematical definition of R0 used in this paper is specific to deterministic finite dimensional systems such
as the ones considered here [32]. Then, we extend this study to the case of two countries, when one country
send infected persons to other country. Finally, we validate and illustrate the obtained theoretical results by
presenting numerical experiments based on data from the 2014-16 West African Ebola virus epidemic. In
particular, we perform a sensitivity analysis of the estimated basic reproductive ratio regarding the model
parameters. One of the objective of this work is to propose a methodology to give some recommendations
when allocating the resources for fighting a disease, such as the EVD, in cases of future outbreaks.

This work is organized as follows. In Section 2, we recall the formulation of the Be-CoDiS model presented
in [19]. In Section 3, we study the equilibrium states of simplified versions of this model for one and two
countries with movement of people. In Section 4, considering data from the 2014-16 West African Ebola
virus epidemic, we validate and illustrate the theoretical results with numerical experiments and perform a
sensitivity analysis of the basic reproductive ratio with respect to the model parameters. Finally, in Section
5, we discuss the obtained conclusions and present some perspectives of this work.

2 Be-CoDiS model formulation

We consider a disease with the following states for persons (see [20, 27, 28, 39]):
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• Susceptible (denoted by S): The person is not infected by the disease pathogen.

• Infected (denoted by E): The person is infected by the disease pathogen but cannot infect other people
and has no visible clinical signs (e.g., fever, hemorrhages, etc.). Then after an incubation period, the
person passes to the infectious state.

• Infectious (denoted by I): The person can infect other people and start developing clinical signs. The
mean duration of a person in this state is called infectious period. After this period, infectious persons
are taken in charge by sanitary authorities and we classify them as Hospitalized.

• Hospitalized (denoted by H): The person is hospitalized and can still infect other people. At the end
of this state, the person can pass either to the Recovered state or to the Dead state. We point out
that state H does not include hospitalized persons which cannot infect other people any more. This
last category of persons is included in the Recovered state explained below.

• Dead (denoted by D): The person has not survived to the disease. The cadaver of infected persons
can infect other people until they are buried. After a fixed mean period, the body is buried.

• Buried (denoted by B): The person is dead because of the disease. Its cadaver is buried and can no
longer infect other people.

• Recovered (denoted by R): The person has survived to the disease, is no longer infectious and develop
a natural immunity to the disease pathogen.

Once an infected person is hospitalized, the authorities may apply various control measures in order to
control the disease spread (see [13, 16]):

• Isolation: Infected people are isolated from contact with other people. Only sanitary professionals
are in contact with them. However, depending on the considered disease, contamination of those
professionals may also occur (see [13]). Isolated persons receive an adequate medical treatment that
reduces the disease fatality rate.

• Quarantine: Movement of people in the area of origin of an infected person is restricted an controlled
(e.g., quick sanitary check-points at the airports) to avoid that possible infected persons spread the
disease.

• Tracing: The objective of tracing is to identify potential infectious contacts which may have infected
a person or spread the disease to other people.

• Increase of sanitary resources: The number of operational beds and sanitary personal available to
detect and treat affected persons is increased, producing a decrease in the infectious period. When
necessary, the funerals of infected cadavers are controlled by sanitary personal in order to reduce the
contacts between the dead bodies and susceptible persons.

Considering those general disease and control measures, the Be-CoDiS model is used to evaluate the
spread of a human disease within and between countries during a fixed time interval.

At the beginning of the simulation, the model parameters are set by the user. At the initial time (t = 0),
only susceptible people live in the countries that are free of the disease, whereas the number of persons in
states S, E, I, H, R, D and B of the infected countries are set to their corresponding values. Then, during
the time interval [0, Tmax], with Tmax ∈ IN being the maximum number of simulation days, the within-country
and between-country daily spread procedures, detailed above, are applied. If at the end of a simulation day
t, the number of persons in state E, I, H and D is lower than a fixed threshold, the simulation is stopped.
Else, the simulation ends when t = Tmax. Furthermore, the control measures are also implemented and they
can be activated or deactivated, when starting the model, in order to quantify their effectiveness to reduce
the magnitude and duration of an epidemic.
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The dynamic of the disease spread within a particular contaminated country is modeled by using a
deterministic compartmental model (see [5]). We consider that the people in a country are characterized
to be in one of those states: Susceptible (S), Infected (E), Infectious (I), Hospitalized (H), Recovered (R),
Dead (D) or Buried (B). For the sake of simplicity, we assume that, at each time, the population inside a
country is homogeneously distributed and constant. Thus, the spatial distribution of the epidemic inside a
country can be omitted. We also suppose that new births are susceptible persons and the birth rate is equal
to the death rate (due to the disease or other causes).

The disease spread between countries is modeled by using a spatial deterministic Individual-Based model
(see [9]). We consider that the flow of people between countries i and j at time t (i.e., persons traveling
per day from i to j at time t), is the only way to introduce the disease from country i, infected by the
disease, to country j. To do so, we consider the matrix (τ(i, j))NCO

i,j=1, where τ(i, j) ∈ [0, 1] is the rate of

transfer (day−1) of persons from country i to country j, which is expressed in % of population in i per unit
of time. Furthermore, we assume that only persons in the S and E sates can travel, as other categories are
not in condition to perform trips due to the clinical signs or to quarantine. Moreover, as a result of control
measures in countries i and j, we assume that those rates can vary in time and are multiplied by a function
denoted by mtr(i, j, t).

Under those assumptions, the evolution of S(i, t), E(i, t), I(i, t), H(i, t), R(i, t), D(i, t) and B(i, t),
denoting the number of susceptible, infected, infectious, hospitalized, recovered, dead and buried persons in
country i at time t, respectively, could be modeled by the following system of ordinary differential equations
[19]

dS(i, t)

dt
= −

S(i, t)

(

mI(i, t)βI(i)I(i, t) +mH(i, t)βH(i)H(i, t)

)

NP (i, t)
−

S(i, t)

(

mD(i, t)βD(i)D(i, t)

)

NP (i, t)

−µm(i)S(i, t) + µn(i)

(

S(i, t) + E(i, t) + I(i, t) +H(i, t) +R(i, t)

)

+
∑

i6=j mtr(j, i, t)τ(j, i)S(j, t)−
∑

i6=j mtr(i, j, t)τ(i, j)S(i, t),

dE(i, t)

dt
=

S(i, t)

(

mI(i, t)βI(i)I(i, t) +mH(i, t)βH(i)H(i, t)

)

NP (i, t)
+

S(i, t)

(

mD(i, t)βD(i)D(i, t)

)

NP (i, t)

−µm(i)E(i, t) +
∑

i6=j mtr(j, i, t)τ(j, i)Xǫfit(E(j, t))

−
∑

i6=j mtr(i, j, t)τ(i, j)Xǫfit(E(i, t))− γEXǫfit(E(i, t)),

dI(i, t)

dt
= γEXǫfit(E(i, t))− (µm(i) + γI(i, t))I(i, t),

dH(i, t)

dt
= γI(i, t)I(i, t)−

(

µm(i) + (1− ω(i, t))γHR(i, t) + ω(i, t)γHD(i, t)

)

H(i, t),

dR(i, t)

dt
= (1− ω(i, t))γHR(i, t)H(i, t)− µm(i)R(i, t),

dD(i, t)

dt
= ω(i, t)γHD(i, t)H(i, t)− γDD(i, t),

dB(i, t)

dt
= γDD(i, t),

(1)
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where

• i ∈ {1, . . . , NCO},

• NCO ∈ N is the number of countries,

• NP (i, t) = S(i, t) +E(i, t) + I(i, t) +H(i, t) +R(i, t) +D(i, t) +B(i, t) is the number of persons (alive
and also died or buried because of the disease) in country i at time t,

• µn(i) ∈ [0, 1] is the birth rate (day−1) in country i: the number of births per day and per capita,

• µm(i) ∈ [0, 1] is the mortality rate (day−1) in country i: the number of deaths per day and per capita
(or, equivalently, the inverse of the mean life expectancy (day) of a person),

• ω(i, t) ∈ [0, 1] is the disease fatality percentage in country i at time t: the percentage of persons who
do not survive the disease,

• βI(i) ∈ R
+ is the disease effective contact rate (day−1) of a person in state I in country i: the mean

number of effective contacts (i.e., contacts sufficient to transmit the disease) of a person in state I per
day before applying control measures,

• βH(i) ∈ R
+ is the disease effective contact rate (day−1) of a person in state H in country i,

• βD(i) ∈ R
+ is the disease effective contact rate (day−1) of a person in state D in country i,

• γE(i, t), γI(i, t), γHR(i, t), γHD(i, t), γD(i, t) ∈ (0,+∞) denote the transition rate (day−1) from a
person in state E, I, H, H or D to state I, H, R, D or B, respectively: the number of persons per day
and per capita passing from one state to the other (or, equivalently, the inverse of the mean duration
of one of those persons in state E, I, H, H, or D, respectively). We note that γI(i, t), γHR(i, t) and
γHD(i, t) are time and country dependent, since, due to the applied control measures in country i,
their value could vary in time,

• mI(i, t), mH(i, t), mD(i, t) ∈ [0, 1] (%) are functions representing the efficiency of the control measures
applied to non-hospitalized persons, hospitalized persons and infected cadavers respectively, in country
i at time t to eradicate the outbreaks. Focusing on the application of the control measures, we multiply
the disease contact rates (i.e., βI(i), βH(i) and βD(i)) by decreasing functions simulating the reduction
of the number of effective contacts as the control measures efficiency is improved. Here, we have
considered the functions (see [21]):

mI(i, t) = mH(i, t) = mD(i, t) = exp

(

− κ(i)max(t− λ(i), 0)

)

, (2)

where κ(i) ∈ [0,+∞) (day−1) simulates the efficiency of the control measures (greater value implies
lower value of disease contact rates) and λ(i) ∈ R∪ {+∞} (day) denotes the first day of application of
those control measures,

• Xǫfit(x) = x if x ≥ ǫfit, Xǫfit(x) = 2x − ǫfit if (ǫfit/2) ≤ x ≤ ǫfit, and 0 elsewhere, with ǫfit ≥ 0 (i.e., a
small tolerance parameter). This function is a filter used to avoid artificial spread of the epidemic due
to negligible values of x.

System (1) is completed with initial data S(i, 0), E(i, 0), I(i, 0), H(i, 0), R(i, 0), D(i, 0) and B(i, 0) given
in [0,+∞); for i=1,.., NCO.

This full model (1) is summarized in Figure 1.

Remark 1. We note that the Be-CoDiS model proposed here is not only limited to the study of the EVD
but also can tackle other diseases such as the Middle East respiratory syndrome coronavirus or the Severe
acute respiratory syndrome coronavirus [7], by adapting the model parameters.
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Figure 1: Diagram summarizing the complete version of the Be-CoDiS model.

3 Analytical behavior of the Be-CoDiS model

Here, we are interested in studying the equilibrium states and in estimating the basic reproductive ration of
simplified versions of the Be-CoDiS model presented in Section 2. First, we focus on the case of one country
with an emigration flow of infected persons. Then, we extend the study to the case of two countries, when
one country send persons to the other one. The main notations used in this work are summarized in Table
1. A diagram summarizing both models is presented in Figure 2.
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Figure 2: Diagram summarizing the simplified model considered in Section 3.
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Table 1: Summary of the main notations used in this work. A brief description (Description) and the range
of the considered values (Value) used in Section 4 are also reported.

Notation Value Description
βIi [0.0494,0.2671] Disease contact rate of persons

in state I (day−1.person−1) in country i
βHi [0.020,0.0107] Disease contact rate of persons

in state H(day−1.person−1) in country i
βDi [0.0494,0.2671] Disease contact rate of persons

in state D (day−1.person−1) in country i
δi [0.0120,0.0230] Transition rate of a person in state E (day−1)

in country i,
γi [0.2000,0.5000] Transition rate of a person in state I (day−1)

in country i,
αi [0.148,0.1050] Transition rate of a person in state H

to state R (day−1) in country i,
λi [0.0328,0.1282] Transition rate of a person in state H

to state D (day−1) in country i,
θi [0.5000,1.0000] Transition rate of a person in state D (day−1)

in country i at time t,
µi [0.012,0.023] Natural mortality rate in country i (day−1)
τi [0,2.4·10−5] Daily rate (%) of the movement of people

exiting country i (day−1)
Ni [10,20]·106 Number of persons in country i
Si(t)/E(t)/Ii(t) [0,1] Proportion of persons in state S, E, I, H, R, D
Hi(t)/Ri(t)/Di(t) in country i at time t

3.1 Simplified model for 1 country

Here, we are interested in studying the behavior of the epidemic inside one single country. For the sake of
simplicity, we assume that the population size in the considered country is constant and equals to N ∈ N (i.e.,
emigration or death flows are compensated by birth flows entering the susceptible state). This hypothesis
is reasonable as, due to the size of the population in a country (generally greater than a million of persons)
and the time scale of the study (generally lower than five years) considered here, the global variation of the
population size during a simulation is negligible [17]. Furthermore, to simplify notations during the following
computations, we consider that S, E, I, H, R and D now denotes the proportion of persons in each state
in the considered country. Additionally, we assume that the model coefficients are constant and no control
measures are applied. As no other country is considered, the filter Xǫfit is omitted.
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Under those assumptions, the evolution of the epidemic, is modeled by







































































































































dS(t)

dt
= −S(t)

(

βII(t) + βHH(t) + βDD(t)

)

+ τE(t)

+µ

(

E(t) + I(t) +H(t) +R(t)

)

+ θD(t),

dE(t)

dt
= S(t)

(

βII(t) + βHH(t) + βDD(t)

)

− (µ+ δ + τ)E(t),

dI(t)

dt
= δE(t)− (µ+ γ)I(t),

dH(t)

dt
= γI(t)−

(

µ+ λ+ α
)

H(t),

dR(t)

dt
= αH(t)− µR(t),

dD(t)

dt
= λH(t)− θD(t),

(3)

where

• µ ∈ [0, 1] is the mortality rate (day−1),

• ω ∈ [0, 1] is the disease fatality percentage,

• βI ∈ R
+ is the disease effective contact rate (day−1.person−1) of persons in state I,

• βH ∈ R
+ is the disease effective contact rate (day−1.person−1) of persons in state H,

• βD ∈ R
+ is the disease effective contact rate (day−1.person−1) of persons in state D,

• δ, γ, α and λ denote the transition rates (day−1) from a person in state E to I, I to H, H to R, H to
D and D to S, respectively.

Before starting with the estimation of equilibrium states of System (3), we first want to prove that

Theorem 1. The set Ω = {(S,E, I,H,R,D) ∈ R
6,+/S + E + I +H + R +D = 1} is positively invariant

for the System (3).

Proof. We consider the following result (see proof in [29])

Lemma 1. Let Z : Rn → R be a differential function, a ∈ R and ∇Z(x) 6= 0 for all x ∈ Z−1(a) = {x ∈
R

n/Z(x) = a}. Let G = {x ∈ R
n/Z(x) ≤ a}. If 〈∇Z(x), X(x)〉 ≤ 0 for all x ∈ Z−1(a), then G is a positive

invariant set of the system ẋ = X(x).

Let Z : R → R defined by Z(x1, x2, x3, x4, x5, x6) = x1 + x2 + x3 + x4 + x5 + x6, a = 1 and ẋ = X(x)
corresponding to System (3).

We have that ∇Z(x) 6= 0 for all x ∈ Z−1(a) and 〈∇Z(x), X(x)〉 = 0 for all x ∈ Z−1(a). Thus,
Ω ⊂ {x ∈ R

n/Z(x) ≤ a} is a positive invariant set of System (3).

Considering System (3), we obtain the following stability results

Theorem 2. System (3) has two positive equilibrium states:
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1. a disease free equilibrium state x1 = (S0
1 , E

0
1 , I

0
1 , H

0
1 , R

0
1, D

0
1) = (1, 0, 0, 0, 0, 0) which is globally asymp-

totically stable if R0 ≤ 1 and unstable if R0 > 1,

2. a disease endemic equilibrium state x2 = (S0
2 , E

0
2 , I

0
2 , H

0
2 , R

0
2, D

0
2) which is locally asymptotically stable

if R0 > 1,

where

R0 =
δ(αθβi + γλβ3 + γθβ2 + λθβi + µθβi)

(µ+ δ + τ)(µ+ γ)(µ+ λ+ α)θ)

is the basic reproductive ration associated to System (3); and S0
2 =

1

R0

, E0
2 = θµ (µ+ γ) (µ+ α+ λ)φ,

I02 = δθµ (µ+ α+ λ)φ, H0
2 = δθγµφ, R0

2 = δθαγφ, D0
2 = δγλµφ with

φ =
1

(δγλ(µ− θ) + (µ+ δ + τ)(µ+ γ)(µ+ λ+ α)θ)

(

1−
1

R0

)

.

Proof. 1.- First, we determine the positive equilibrium states (3) by considering (we note that, as the
population size is constant, the first line of this system can be omitted)







































































0 = S(t)

(

βII(t) + βHH(t) + βDD(t)

)

− (µ+ δ + τ)E(t),

0 = δE(t)− (µ+ γ)I(t),

0 = γI(t)−
(

µ+ λ+ α
)

H(t),

0 = αH(t)− µR(t),

0 = λH(t)− θD(t),

(4)

After computation, we obtain that x1 and x2, defined previously in the enunciate, are the only positives
equilibrium states.

2.- Next, following the steps proposed in [11, 10], we compute the basic reproductive ratio of the considered
system, denoted by R0. To do so, let x = (S,E, I,H,R,D). System (3) can be written in a matrix form as















































(

Ṡ

Ṙ

)

= A

(

S − 1
R

)

+B(x)









E
I
H
D









,









Ė

İ

Ḣ

Ḋ









= C(x)









E
I
H
D









,

(5)

where

A =





0 µ

0 −µ



 , B(x) =





µ µ− βIS µ− βHS θ − βDS

0 0 α 0



 and
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C(x) =





















−(µ+ δ + τ) βIS βHS βDS

δ (µ+ γ) 0 0

0 γ −(µ+ λ+ α) 0

0 0 λ −θ





















.

The Jacobian matrix of this system at the disease free equilibrium state x1 = (1, 0, 0, 0, 0, 0) is given by

J(x1) =

(

A B(x1)
0 C(x1)

)

, (6)

where C(x1) = F + V is a Metzler matrix (see [22]) with

F =





















0 βI βH βD

0 0 0 0

0 0 0 0

0 0 0 0





















and V =





















−(µ+ δ + τ) 0 0 0

δ (µ+ γ) 0 0

0 γ −(µ+ λ+ α) 0

0 0 λ −θ





















.

We note that F is a positive Matrix and V is a Metzler Matrix.
Thus, R0 = ρ(−FV −1), where ρ(.) is the spectral radius of a matrix, and we obtain that

R0 =
δ(αθβI + γλβH + γθβD + λθβI + µθβI)

(µ+ δ + τ)(µ+ γ)(µ+ λ+ α)θ
.

3.- Now, we assume that R0 ≤ 1:
We use the method developed in [30] to determine a Lyapunov function of the disease free equilibrium. Let
Y = (S,R)t, X = (E I H D)t. The model can rewritten as











Ẏ = g(X,Y )

Ẋ = C(x1)X − f(X,Y ) (7)

where

g(X,Y )









−S(t)

(

βII(t) + βHH(t) + βDD(t)

)

+ τE(t) + µ

(

E(t) + I(t) +H(t) +R(t)

)

+ θD(t)

αH(t)− µR(t)









and

f(X,Y ) =

























−S(t)

(

βII(t) + βHH(t) + βDD(t)

)

+ βII + βHH + βDD

0

0

0

























.
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Let w =

(

0
βI

βD

βH

βD

1

)

the left eigenvector of the matrix −V −1F associated with the eigenvalue

R0. We define L(x) = −wV −1x which leads to

L(x) =

(

βIδ

βD (µ+ γ) (µ+ δ + τ)
+

βHγ δ

βD (µ+ δ + τ) (µ+ λ+ α) (µ+ γ)
+

λ γ δ

(µ+ λ+ α) (µ+ γ) (µ+ δ + τ) θ

)

E

(

+
βI

βD (µ+ γ)
+

βHγ

βD (µ+ γ) (µ+ λ+ α)
+

λ γ

(µ+ λ+ α) (µ+ γ) θ

)

I+

(

βH

βD (µ+ λ+ α)
+

λ

(µ+ λ+ α) θ

)

H+
D

θ
.

We note that L is positive in the set {(S,E, I,H,R,D)/0 ≤ S,E, I,H,R,D ≤ 1}, L(1, 0, 0, 0, 0) = 0 and

L̇(x) = −wV −1ẋ
= −wV −1(C(x∗)x− f(X,Y ))
= −wV −1((F + V )x− f(X,Y )
= −wV −1(F + V )x+ wV −1f(X,Y )
= −wV −1Fx− wV −1V x+ wV −1f(X,Y )
= R0wx− wx+ wV −1f(X,Y )
= (R0 − 1)wx+ wV −1f(X,Y ).

Additionally, since R0 ≤ 1, f ≥ 0 and V −1 ≤ 0, then L̇(x) ≤ 0. Hence, L is a Lyapunov function of
System (3) at the equilibrium state x1 = (1, 0, 0, 0, 0) and, thus, the equilibrium x1 is globally stable.

To show that x1 is globally asymptotically stable, we use the Lasalle principle [15].
Let Γ = {x ∈ Ω/L̇(x) = 0}. Since R0 ≤ 1, f ≥ 0 and V −1 ≤ 0, we have that L̇(x) = 0 if and only

if (R0 − 1)wx = 0 and wV −1f(X,Y ) =
(

−
βIδ

βD (µ+ γ) (µ+ δ + τ)
−

βHγ δ

βD (µ+ δ + τ) (µ+ λ+ α) (µ+ γ)
−

λ γ δ

(µ+ λ+ α) (µ+ γ) (µ+ δ + τ) θ

)

×
(

βII(t)
(

1− S(t)
)

+ βHH(t)
(

1− S(t)
)

+ βDD(t)
(

1− S(t)
)

)

= 0. This

implies that S = 1 or I = H = D = 0. Thus, Γ = {(S,E, I,H,R,D) ∈ Ω/I = H = D = 0} and System (3)
is then reduced in Γ to







































dS(t)

dt
= τE + µE + µR(t) ,

dE(t)

dt
= −µE(t)− δE − τE ,

dR(t)

dt
= −µR(t).

(8)

Furthermore, in Γ,
dS(t)

dt
+

dE(t)

dt
+

dR(t)

dt
= −δE(t) = 0. As δ > 0, this leads to E(t) = 0 in Γ and

System (8) can be rewritten as

dS(t)

dt
= µR(t) and

dR(t)

dt
= −µR(t).

If 0 < R(t) < 1, then
dS(t)

dt
> µR2(t) ⇒

dS(t)

dt
> −R(t)

dR(t)

dt
⇒

dS(t)

dt
(t) + R(t)

dR(t)

dt
> 0 ⇒

dS(t)

dt
+

dR(t)

dt
> 0, which is absurd as

dS(t)

dt
+

dR(t)

dt
= 0. Thus, Γ = {(S,E, I,H,R,D) ∈ Ω/E = I = H =

D = 0, R = 0or R = 1}.
Let Γ0 the largest invariant set of the System (3) in Γ. In our case, as R = 1 leads to a non invariant

point, Γ0 is reduced to the singleton {x1}.
Due to the Lasalle principle, we conclude that x1 is globally and asymptotically stable.
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4.- Next, we assume that R0 > 1:

Since C(x1) = F + V is a Metzler matrix, if R0 = ρ(−FV −1) > 1 then Matrix C(x1) is unstable [22].
This means that the Jacobian matrix J(x1), defined by (6), is unstable and, thus, x1 is unstable [2].

We now focus on the study of the second equilibrium state x2, which corresponds to the endemic equi-
librium. Since S(t) + E(t) + I(t) +H(t) + R(t) +D(t) = 1, we can remove the second equation of System
(3) and consider















































































































dS(t)

dt
= µ− S(t)

(

µ+ τ + βII(t) + βHH(t) + βDD(t)

)

+τ

(

1− I(t)−H(t)−R(t)−D(t)

)

+ (θ − µ)D(t),

dI(t)

dt
= δ

(

1− S(t)− I(t)−H(t)−R(t)−D(t)

)

− (µ+ γ)I(t),

dH(t)

dt
= γI(t)−

(

µ+ λ+ α
)

H(t),

dR(t)

dt
= αH(t)− µR(t),

dD(t)

dt
= λH(t)− θD(t).

(9)

The linearized system at x2 is given by

Ẋ(t) = MX(t), (10)

where X = (S, I,H,R,D)t and

M =





































−D0
2βD −H0

2βH − I02βI − µ− τ −S0
2βI − τ −S0

2βH − τ −τ −S0
2βD − µ− τ + θ

−δ −µ− γ − τ −δ −δ −δ

0 γ −µ− λ− α 0 0

0 0 α −µ 0

0 0 λ 0 −θ





































.

System (10) can be written as







































Ṡ = −(D0
2βD +H0

2βH + I02βI + µ+ τ)S + (S0
2βI + τ)I

−(S0
2βH + τ)H − τR− (S0

2βD + µ− τ + θ)D,









İ

Ḣ

Ṙ

Ḋ









= V1









I
H
R
D









−









δ(S +H +R+D)
0
0
0









,

(11)
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where

V1 =



























−µ− γ − τ 0 0 0

γ −µ− λ− α 0 0

0 α −µ 0

0 λ 0 −θ



























.

We have that V −1
1 ≤ 0. We denote by w1 = (1, 0, 0, 0) the left eigenvector vector of V1 associated to the

eigenvalue −µ− τ − γ.
Following the ideas introduced in [30], we define L1(y) = −w1V −1

1 y, where Y = (I,H,R,D)t. This
function satisfies that L1(0) = 0 and L1(y) ≥ 0, for all y ≥ 0. Furthermore,

L̇1(y) = −w1V −1
1 ẏ

= −w1V −1
1

(

V1









I
H
R
D









−









δ(S +H +R+D)
0
0
0









)

= −I + w1V −1
1

(

δ(S +H +R+D) 0 0 0
)t

= −I − δ
µ+γ+τ

(S +H +R+D).

Hence, L1 is a Lyapunov function for the linearized System (10) at the equilibrium 0. Thus, 0 is stable for
this system.

Let Γ1 = {x ∈ R
5
+ / L̇1(x) = 0}. We note that Γ1 = {0}. Due to the Lasalle principle, we conclude that

0 is asymptotically stable for System (10).
Hence, the endemic equilibrium state x2 is locally and asymptotically stable for system (3).

3.2 Simplified model for 2 countries

In this section, we are interested in studying the epidemiological behavior of a country (denoted by Country
2) receiving infected persons from another country (denoted by Country 1). To do so, we limit our analysis
to the spread of the considered disease between two countries with movement of people from Country 1 to
Country 2. We note that the methodology presented here can be adapted to the case of more than two
countries.

We take into account the same assumptions and notations (but indexed by i = 1, 2, according to the
country) than the ones introduced in Section 3.1. Furthermore, following the idea described in [19], to avoid
unrealistic spread of the epidemic due to unrealistic negligible values of movement of people in the state E
from one country to another, we only consider the reception of infected individuals from a Country 1 to a
Country 2 when the proportion of infected individuals in Country 1 is greater than a given threshold ǫ > 0.
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Thus, considering those hypothesis, we now consider the following system














































































































































































































































































































dS1(t)

dt
= −S1(t)

(

βI1I1(t) + βH1
H1(t) + βD1

D1(t)

)

+

τ1E1(t) + µ1

(

E1(t) + I1(t) +H1(t) +R1(t)

)

+ θ1D1(t),

dS2(t)

dt
= −S2(t)

(

βI2I2(t) + βH2
H2(t) + βD2

D2(t)

)

− τ̃1Xǫ(E1(t))+

τ2E2(t) + µ2

(

E2(t) + I2(t) +H2(t) +R2(t)

)

+ θ2D2(t),

dE1(t)

dt
= S1(t)

(

βI1I1(t) + βH1
H1(t) + βD1

D1(t)

)

− (µ1 + δ1 + τ1)E1(t),

dE2(t)

dt
= S2(t)

(

βI2I2(t) + βH2
H2(t) + βD2

D2(t)

)

− (µ2 + δ2 + τ2)E2(t) + τ̃1Xǫ(E1(t)),

dI1(t)

dt
= δ1E1(t)− (µ1 + γ1)I1(t),

dI2(t)

dt
= δ2E2(t)− (µ2 + γ2)I2(t),

dH1(t)

dt
= γ1I1(t)−

(

µ1 + λ1 + α1

)

H1(t),

dH2(t)

dt
= γ2I2(t)−

(

µ2 + λ2 + α2

)

H2(t),

dR1(t)

dt
= α1H1(t)− µ1R1(t),

dR2(t)

dt
= α2H2(t)− µ2R2(t),

dD1(t)

dt
= λ1H1(t)− θ1D1(t),

dD2(t)

dt
= λ2H2(t)− θ2D2(t),

(12)

where τ̃1 =
τ1N1

N2

; Ni ∈ N is the population size in country i; and Xǫ(x) = x if x ≥ ǫ, and 0 elsewhere. We

consider

Ri
0 =

δi(αiθiβIi + γiλiβDi
+ γiθiβHi

+ λiθiβIi + µiθiβIi)

(µi + δi + τi)(µi + γi)(µi + λi + αi)θi
, with i = 1, 2.

Now, we enunciate and prove the following result regarding the stability of System (12)

Theorem 3. We consider System (12).

1. if R1
0 ≤ 1 and R2

0 ≤ 1, the system admits a disease free equilibrium which is globally and asymptotically
stable,
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2. if R1
0 ≤ 1 and R2

0 > 1, (S1, E1, I1, H1, R1, D1) tends globally asymptotically to (1, 0, 0, 0, 0, 0) and
(S2, E2, I2, H2, R2, D2) tends locally asymptotically to (S0

2 , E
0
2 , I

0
2 , H

0
2 , R

0
2, D

0
2).

3. if R1
0 > 1 and, for all t > 0, E1(t) > ǫ, (S1, E1, I1, H1, R1, D1) converges locally and asymptotically to

(S0
1 , E

0
1 , I

0
1 , H

0
1 , R

0
1, D

0
1) and (S2, E2, I2, H2, R2, D2) does not converges to the disease free equilibrium.

where S0
i =

1

R2
0

, E0
i = θiµi (µi + γi) (µi + αi + λi)φi, I

0
i = δiθiµi (µi + αi + λi)φi, H

0
i = δiθiγiµiφi, R

0
i =

δiθiαiγiφi, D0
i = δiγiλiµiφi, φi =

1

(δiγiλi(µi − θi) + (µi + δi + τi)(µi + γi)(µi + λi + αi)θi)

(

1−
1

R2
0

)

,

with i = 1, 2.

Proof. 1.- We first assume that R1
0 ≤ 1:

As the equations describing the evolution of (S1, E1, I1, H1, R1, D1) are independent from the values of
(S2, E2, I2, H2, R2, D2) and are similar to System (3), due to Theorem 2, (S1, E1, I1, H1, R1, D1) converges
globally and asymptotically to the disease free equilibrium (1, 0, 0, 0, 0, 0).

This implies that it exists a time tǫ > 0, such that E1(t) < ǫ, for all t > tǫ. Thus, for all t > tǫ,
Xǫ(E1(t)) = 0 and the second and fourth lines of System (12) are of the form















































dS2(t)

dt
= −S2(t)

(

βI2I2(t) + βH2
H2(t) + βD2

D2(t)

)

+τ2E2(t) + µ2

(

E2(t) + I2(t) +H2(t) +R2(t)

)

+ θ2D2(t),

dE2(t)

dt
= S2(t)

(

βI2I2(t) + βH2
H2(t) + βD2

D2(t)

)

− (µ2 + δ2 + τ2)E2(t),

In that case, the system describing the evolution of (S2, E2, I2, H2, R2, D2) is equivalent to System (3).
Hence, due to Theorem 2

• if R2
0 ≤ 1, , (S2, E2, I2, H2, R2, D2) converges globally and asymptotically to the disease free equilibrium

(1, 0, 0, 0, 0, 0),

• if R2
0 ≥ 1, (S2, E2, I2, H2, R2, D2) converges locally and asymptotically to the endemic equilibrium

(S0
2 , E

0
2 , I

0
2 , H

0
2 , R

0
2, D

0
2).

2.- We consider R1
0 ≥ 1:

From Theorem 2, we deduce that (S1, E1, I1, H1, R1, B1, D1) converges locally and asymptotically to the
endemic equilibrium (S0

1 , E
0
1 , I

0
1 , H

0
1 , R

0
1, D

0
1).

Now, we assume that for all t > 0, E1(t) > ǫ. By the absurd, if limt→+∞ E2(t) = 0, it exists t1 > 0

such that for all t > t1, E2(t) <
τ̃1ǫ

2(µ2 + δ2 + τ2)
. Additionally, due to the fourth equation in System

12,
dE2(t)

dt
>

τ̃1ǫ

2
for all t > t1. This implies that limt→+∞ E2(t) = +∞, which is not possible. Thus,

(S1, E1, I1, H1, R1, B1, D1) does not converge to the disease free equilibrium.

Remark 2. From Theorem 3, we can define a basic reproduction ratio for the disease described by System
(12) as R0 = max(R1

0, R
2
0). Indeed, if R0 ≤ 1, System (12) converges globally and asymptotically to the

disease free equilibrium (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), else, under reasonable hypothesis, it does not converges
to this disease free state. This result means that the worst basic reproduction ratio of the disease in all
considered countries define the basic reproduction ratio of the global system.
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Table 2: Minimum and maximum values of the parameters of System (3) for the 2014-2016 West African
EVD case.

Parameters Mininmum Maximum
µ 0.0120 0.0230
τ 0 2.4×10−5

βI 0.0494 0.2671
βH 0.0020 0.0107
βD 0.0494 0.2671
δ 0.0476 0.5000
θ 0.5000 1.0000
γ 0.2000 0.5000
λ 0.0328 0.1272
α 0.0148 0.1050

4 Application to the 2014-2016 West African EVD epidemics

In this section, in order to validate and illustrate the interest of the theoretical results obtained previously,
we present some numerical experiments based on data from the 2014-2016 West African EVD epidemics
[13, 6, 14, 27, 39]. To do so, in Section 4.1, we perform a sensitivity analysis of the basic reproduction ratio,
estimated in Section 3.1, regarding the model parameters and propose some recommendations to allocate
the resources for fighting EVD. Next, in section 4.2, we present the evolution of the epidemic between two
countries by considering several sets of parameters.

4.1 Sensitivity analysis of the basic reproductive ratio

In Table 2, we show the maximum and minimum values of the parameters of System (3) proposed in [19]
for the 2014-2016 West African EVD case.

Considering those values, we study the impact of variations in each model parameter on the value of the
basic reproductive ratio

R0 =
δ(αθβI + γλβD + γθβH + λθβI + µθβI)

(µ+ δ + τ)(µ+ γ)(µ+ λ+ α)θ)
,

given in Theorem 2. To do so, we first compute Rmin
0 , Rmean

0 and Rmax
0 , the basic reproduction ratio obtained

by considering the minimum, mean and maximum values of the model parameters, respectively. We obtain
Rmin

0 = 0.1171, Rmax
0 = 0.5440 and Rmax

0 = 1.0957.
Then, for each model parameter, indexed by i ∈ N, we compute Rmin

min,i, R
mean
min,i, R

max
min,i, R

min
mean,i, R

mean
mean,i,

Rmax
mean,i, R

min
max,i, R

mean
max,i and Rmax

max,i, the basic reproduction ratios obtained considering the minimum, mean
and maximum value of parameter i and the other model parameters set to their minimum, mean and
maximum values, respectively. Next, we calculate the following percentile differences

Rj
min,i −Rj

0

Rj
0

,
Rj

mean,i −Rj
0

Rj
0

,
Rj

max,i −Rj
0

Rj
0

,

with j ∈ {min, mean, max}. During those experiments, we note that the values of the basic reproduction
ratios were included in the interval [0.0957,1.5537] and their mean value was 0.5838.

For each parameter, we report on Table 3 the maximum and minimum values of the computed percentile
differences and the mean absolute value of those differences. We observe on this table that parameter τ has a
negligible influence on R0. Additionally, parameters λ and θ have a limited impact on the basic reproduction
ratio with variations lower than 10%. Changes on α, µ, βH , βD and δ produce moderated modifications
on R0 of 10%, but may produce differences up to 47% for extreme cases. Finally, βI and γ are the most
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Table 3: Minimum, mean absolute and maximum values of the percentile differences computed in Section 4.1
when studying the sensitivity analysis of R0 with respect to each parameters of System (3) and considering
data from the 2014-2016 West African EVD epidemic.

Parameters Minimum Mean absolute value Maximum
µ -5 6 27
τ -10−4 10−4 10−4

βI -60 80 355
βH -5 10 47
βD -19 12 39
δ -22 14 42
θ -10 5 9
γ -41 32 113
λ -4 3 8
α -9 8 30

Table 4: Values of the parameters in Set 1 and Set 2 used in during the experiments presented in Section
4.2. The basic reproduction ratio (R0) generated by those values is also reported.

Parameters Set 1 Set 2
µ 0.0197 0.0120
τ 2.4×10−5 2.4×10−5

βI 0.1147 0.2671
βH 0.0046 0.0107
βD 0.1147 0.2671
δ 0.3643 0.0476
θ 0.8500 0.5000
γ 0.4100 0.2000
λ 0.0564 0.1272
α 0.0693 0.0148
R0 0.3291 1.3910

sensitive parameters with mean variations greater than 30% and reaching percentile differences up to 355%
for the worst scenarios.

4.2 Disease evolution between 2 countries

We now focus on the case of System (12), when Country 1 send infected persons to Country 2.
To study some representative numerical examples, we consider two set of parameters, denoted by Set

1 and Set 2 and detailed on Table 4, corresponding to basic reproductive ratios of 0.3291 and 1.3910,
respectively. Furthermore, we assume that the population sizes are N1 = 2 · 107 and N2 = 107 in Country 1
and Country 2, respectively. The initial conditions are set to S1(0) = 0.999, E1(0) = 0.001, S2(0) = 1 and
all other proportions set to 0. Additionally, ǫ = 1/N1 to consider emigration flow from Country 1 to Country
2 only in the case that it exists at least one infected individual in Country 1. The model is discretized by
considering an explicit Euler scheme with a step size of 0.1 day. The simulation is stopped after a maximum
number of 3650 days; or if the evolution of people in state S from one iteration to other is lower than 10−9

for both countries; or if the proportion of contaminated persons (e.g., persons either in the state E, I, H or
D) in each country is lower than the inverse of the population size.

Taking into account those parameters and numerical methods, we perform the following four experiments:
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Figure 3: Evolution of the proportion of contaminated persons in Countries 1 and 2 simulated during
experiment Exp11 presented in Section 4.2.

• Country 1 with Set 1 and Country 2 with Set1 (Exp11): The proportion of contaminated per-
sons in both countries is presented in Figure 3. In this case, this proportion is decreasing in Country 1.
In Country 2, the maximum proportion of contaminated persons is 1.3×10−5% and is reached after 8.9
days of simulation. The initial outbreak in Country 2 is due to the transportation of infected people
from Country 1 occurring during the first 77.5 days of the simulation. The simulation stops after 102.7
days due to the low proportion of contaminated persons in both countries.

• Country 1 with Set 1 and Country 2 with Set2 (Exp12): The evolution of the proportions of
contaminated and safe (i.e., persons either in the state S or R) persons are depicted in Figure 4. We
can see on this figure, that the proportion of contaminated people decreases in Country 1. On the
opposite, in Country 2 the epidemic starts due to the movement of infected people from Country 1
during 77.5 days and, then, reaches an endemic equilibrium with 23% of contaminated people. The
simulation stops after 1238 days due to the stabilization of the numerical solutions.

• Country 1 with Set 2 and Country 2 with Set1 (Exp21): The evolution of the proportions of
contaminated and safe persons are shown in Figure 5. We can see that the epidemic reaches an endemic
equilibrium of 23% of contaminated people in Country 1. For Country 2, due to the continuous
movement of infected persons coming from Country 1, the epidemic starts and remains endemic with
an equilibrium of 0.01% of contaminated persons in the population. The simulation stops after 1149
days due to the stabilization of the numerical solutions. We note that, as spotted in Theorem 3, despite
the fact that the basic reproduction ratio of country 2 is lower than 1, the emigration of persons from
Country 1 maintains a non disease free state in Country 2.

• Country 1 with Set 2 and Country 2 with Set2 (Exp22): In Figure 6, we report the propor-
tions of contaminated persons in both countries. Endemic states of 23.28% and 23.36% of contami-
nated people are reached in Countries 1 and 2, respectively. The epidemic in Country 2 suffers a delay,
regarding Country 1, due to the time required to move infected people from Country 1 to Country 2.
The simulation stop after 1436 days due to the stabilization of the numerical solutions.

5 Discussion and Conclusions

In this paper, we have performed an analysis of the equilibrium states of simplified versions of the Be-CoDiS
model proposed in [19]. This model aims to study the spread of human diseases between countries.
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Figure 4: Evolution of the proportions of contaminated and safe persons in Countries 1 and 2 simulated
during experiment Exp12 presented in Section 4.2.
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Figure 5: Evolution of the proportions of contaminated and safe persons in Countries 1 and 2 simulated
during experiment Exp21 presented in Section 4.2.
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Figure 6: Evolution of the proportions of contaminated persons in Countries 1 and 2 simulated during
experiment Exp22 presented in Section 4.2.

First, in Section 3.1, we have estimated a basic reproduction ratio (denoted by R0) of a version of the
model for one country. In particular, we have obtained in Theorem 2 an analytical expression of R0 according
to the model parameters. Additionally we have proven that if R0 ≤ 1, then the disease free equilibrium
is globally and asymptotically stable which is a desirable biological situation because the epidemic will
disappear. When R0 > 1, we shown that the disease free equilibrium is unstable and the endemic equilibrium
is locally stable. This leads to the persistence of the epidemic in the considered population.

Then, starting from this R0 expression and data from the 2014-16 West African Ebola epidemic, we have
performed a sensitivity analysis of the basic reproductive ratio regarding the model parameters. We note
that due to biological reasons, one generally does not have control on parameters µ (the mortality rate) and
δ (transition from E to I). Taking into account this observation, due to the control measures applied by the
authorities in order to eradicate the EVD spread (i.e., Isolation, Quarantine, Tracing and Increase of sanitary
resources, see [33, 34, 13]), other model parameters can be regulated according to the technical limitations
of those control measures. In particular, this sensitivity analysis seems to indicate that decreasing the time
of detection of infectious persons (1/γ, the inverse of the transition rate from I to H) and the contact rate
with infectious persons (βI) are the most efficient way to reduce the epidemic evolution. During the 2014-16
EVD epidemic, both variables were controlled, for instance, by surveying the population in areas of EVD risk
with healthcare workers, by performing information campaigns about the disease and by isolating suspicious
cases [8, 6, 38]. For example, considering the case of Guinea, it was estimated that βI and γ have been
controlled from 0.1944 and 0.2000, at December 2013, to 0.0871 and 0.3333, at October 2015, respectively
[19]. Additionally, controlling contact with hospitalized persons (βH) and dead body (βD), should have an
impact on the EVD magnitude, although lower than reducing βI and 1/γ. In particular, it was observed that,
during the first months of this EVD epidemic, around 20% of the infections were due to contacts with dead
bodies [38, 35]. Additionally, the reported number of health workers infected due to contact with hospitalized
persons was around 815 in May 2015, which correspond to 4% of the total number of EVD cases [37]. For
these variables, control measures, such as the increase of sanitary conditions in hospitals and the supervision
of funerals, have allowed to reduce those risk factors. It was estimated that, those contact rates were both
reduced by two from the beginning to the end of the epidemic [19]. The increase of sanitary resources in
hospitals also have allowed to increase the value of α (transition from H to R), for instance, in Guinea from
0.0847 to 0.1250 [19]. Regarding θ and λ, both parameters were controlled by reducing the duration of the
funerals and the death rate (e.g., by improving the healthcare system). In particular, for Guinea, Θ passes
from 0.5 to 1 and λ from 0.2381 to 0.1707 [19]. We note that the classification of the importance of the model
parameters in EVD control proposed here is coherent with the response plan proposed by the international
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community to fight the EDV outbreaks [36]. All those results seem to validate the interest of using System
(3) and its R0 value to identify the most important factors of an epidemic evolution.

Next, in Section 3.2, we have described the behavior of the epidemic evolution when two countries are
connected by an emigration flow. From Theorem 3, we conclude that when the disease is controlled (i.e.,
R1

0 ≤ 1, where R1
0 is computed from Theorem 2) in the country sending infected people (i.e., Country

1), the evolution of the disease in the reception country (i.e., Country 2) only depends on each countries
characteristics. More precisely, if R2

0 ≤ 1 the epidemic disappears in Country 2, whereas if R2
0 > 1 it may

remain endemic in Country 2. On the opposite, in cases when the epidemic is not controlled in Country 1
(i.e., R1

0 > 1), the epidemic may remain active in Country 2. This behavior was illustrated in Section 4.2 by
performing four particular numerical experiments with several sets of parameters estimated from the 2014-16
EVD epidemic. Obtained numerical results were consistent with those found theoretically. Those outcomes
tend to show the necessity to control the emigration flows from countries with serious epidemic scenarios.
This recommendation was also proposed in the literature for the case of the 2014-16 EVD epidemic [4].

In future works, we will perform the stability analysis of the model proposed here for the case of collateral
movements of people between countries. We will also apply the methodology proposed here and in [19] to
the case of other diseases such as the Middle East respiratory syndrome coronavirus or the Severe acute
respiratory syndrome coronavirus [7].
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