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Abstract 

We study real algebraic plane curves, at an elementary level, using as little algebra 
as possible. Both cases, affine and projective, are addressed. A real curve is infinite, fi- 
nite or empty according to the fact that a minimal polynomial for the curve is indefinite, 
semi-definite nondefinite or definite. We present a discussion about isolated points. By 
means of the P operator, these points can be easily identified for curves defined by minimal 
polynomials of order bigger than one. We also discuss the conditions that a curve must 
satisfy in order to have a minimal polynomial. Finally, we list the most relevant topological 
properties of affine and projective, complex and real plane algebraic curves. 

1 I n t r o d u c t i o n  

What  are the qualitative differences between the following subsets of  ]R 2: 

Cj = { (x ,y )  C R 2 : f j ( x , y )  = 0}, 

where f l ( x ,  y )  = - x  2 + y2 _ x 3, f 2 ( x ,  y)  = x 2 + y2 _ x 3, f 3 ( x ,  y)  = x + y2 _ x 3, f 4 ( x  ' y )  = 

x 2 + y ' (y  - 1) 6, A(~ ,  y) = - z  2 - y4(y _ 1)0 _ 1, and A ( ~ ,  Y) = x 2 + 11y  ~ - 107 

This paper contains results and techniques to prove some properties of these sets, such as 

• The sets C1, C2, Ca and C6 are infinite, C4 consists of two points and C5 is empty. 

• The point (0, 0) belongs to C1, C2, C3 and C4; it is isolated in C2 and C4 but not so in C1 
and C3. 
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Figurel: _ X  2 + Y 2 _ X  3 = 0  

X 

• The sets C4 and C6 are bounded, while C1, Cz and C3 are not. 

See figures 1, 2 and 3, for C1, de and C3 andnote that C6 is an ellipse. 

Y 

X 
1 

Figure 2: X 2 + y2 _ X 3 = 0 

These and other topological and geometrical properties of the sets Cj partially depend on 
properties of the polynomials fj and, very particularly, on whether fj has a constant sign when 
evaluated at points of R 2 . Let us say that f j  is indefinite if there exist points x and y in ~2 such 
that f j  (x) < 0 < fj  (y) and that fj is semi-definite otherwise. It is easy to check that 

* f j  is indefinite for j e {1, 2, 3, 6} since, say f j(3,  0) < 0 < f3-(0, 1). 

• f4(x, y) _> 0 and fs(x, y) < O, for all (x, y) E R ~. 
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Figure 3: X + Y 2 - X  3 = 0  

In this paper we study sets like the Cj above, called real algebraic plane affine curves. A real 
algebraic plane affine curve is the zero-set of one nonconstant real polynomial in two variables. 
Now the first question arises: is it fair to say that C4 and C5 are curves? 

One can plot real plane curves with the help of a computer, in order to visualize them: there 
are several computer programs which plot any polynomial equation in two variables. However, 
to any good observer further questions will come up. Indeed, these computer plots are somewhat 
unreliable. For instance, one cannot be totally sure that a curve is empty, based on the fact that 
the plot on the screen looks empty. Also, plots are not very precise near singular points of 
curves. (In fact, the figures shown in this paper have not been plotted by a computer, merely 
using their equations, due to the lack of accuracy near singular points.) These facts make it 
necessary to have some theoretical results about real plane algebraic curves at hand. However, 
every elementary text on algebraic curves that we know of gives up the study of real curves at a 
very early stage. 

Our favorite book on plane (complex) algebraic curves is [ 18]. Based on it, we have searched 
in the literature on real algebraic sets, for statements about real curves analogous to those found 
in the first chapters of [18]. Sometimes our search has been fruitless but we have been able 
to provide a result ourselves. The result is this paper, where we present a theory of real plane 
algebraic curves, at an elementary level. Both cases, affine and projective, are addressed. It 
is often better to work with projective curves, for global problems, and with affine ones, for 
local problems. Being a projective curve the closure of an affine one, we know how to draw 
conclusions for the affine case from the projective case and conversely. For the study of a real 
curve, affine or projective, it is always useful to examine the curve first over the field of complex 
numbers. 

The material presented here comes from various sources; it includes: 

• results already published by different authors and generally well-known. These go from 
Whitney's example up to the real Study's lemma, and again from the sign change criterion 
up to the crucial theorem 25. 

• examples, which are either well-known or easy to propose. 
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• results due to the author. These go from corollary 14 up to lemma 16, lemma 19, the 
real projective Study's lemma, and from corollary 26 up to the end of the second section. 
Some of these are just real versions of results known for complex curves. The author 
should also be credited for putting all this material together. 

Some true statements about the zero-set, say in the affine complex plane C 2, of a complex 
polynomial f E C[X, Y] also hold true for the zero-set in IR 2 of a real polynomial f C R[X, Y], 
as long as f is indefinite; see corollary 9 and theorems 12 and 15. This means that the zero-set of 
a semi-definite real polynomial may have unexpected properties. Indeed, a definite polynomial 
has empty zero-set and the converse is also true, by continuity. Now let us think of semi-definite 
nondefinite polynomials f E II{[X, Y] and, for the time being, let us consider only polynomials 
without multiple factors, since they are easier to deal with. In corollary 26 we show that the 
zero-set of f is finite nonempty. 

These results are known, in far more generality, to real algebraic geometers. And only to 
them, mostly. Our intention has been to present real algebraic plane curves, in elementary terms, 
to a broader audience, including students. Why do most algebraic geometers like to work over 
an algebraically closed field, such as C? It is essentially due to the fundamental theorem of 
algebra and its many consequences. 

In this paper, we use as little algebra as possible: just basic properties of polynomials (such 
as: order and degree, irreducibility, including some irreducibility criteria, unique factorization, 
greatest common divisor, Gauss's lemma and Euclid's algorithm). We do not mention ideals, 
although some are behind the curtains, whenever we talk about minimal polynomials. Further, 
three more tools suffice. First, the continuity of polynomials as functions on R 2, and conse- 
quences of this, such as the intermediate value theorem. Second, the character (indefinite, 
semi--definite or definite) of polynomials, and third, a very mild version of the implicit function 
theorem. 

We give a number of examples and it is possible to apply the techniques presented here to 
other instances. Of course, only those of low degree will be feasible to work by hand. 

These notes are organized as follows. 
The second section starts with the basic properties of affine algebraic sets and, in particular, 

of curves. After a couple of algebraic lemmas, we come to the properties of real affine curves. 
Next, we recall some facts of complex projective curves. Only then can we study real curves 
(affine and projective). This is so bec~iuse the proof of theorem 25, which is crucial in our 
presentation, is based on a well-known upper bound for the number of singular points of an 
irreducible complex projective curve. Latter on, we present a discussion about isolated points. 
The question of whether a point in a real curve (affine or projective) is isolated can be completely 
settled down by means of Puiseux expansions, rational over R, see [5]. We do not go into this 
topic, because it would make this paper too long. Instead, we will obtain some partial results, 
using elementary methods. At the end of this section we define, in very elementary algebro- 
geometric terms, the class )r  of all plane real algebraic curves having a minimal polynomial 
and henceforth, admitting a notion of degree. These real curves behave like complex curves, 
in many respects. It may not be easy to determine by hand if a given real algebraic curve 
C = Ve(f) belongs to the class ~r, for a given polynomial f with rational coefficients, if the 
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degree of f is big; however this can be decided with a computer. The details of this assertion 
will be developed elsewhere. 

In the third section we have gathered the most relevant topological properties of affine and 
projective, complex and real plane algebraic curves. This information is well known, though 
scattered in the literature. For most statements there, we have provided easy examples as well 
as references for the proofs, which are beyond the scope of this paper. 

The bibliography splits into two parts: the first 14 items are the references quoted in this 
paper, whilst the latter items are some standard updated references on algebraic curves. 

These notes owe a lot to [3] and [18]. 

An earlier, somewhat different version of this paper is [10]. 

Acknowledgements 
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2 Affine and projective curves: algebraic aspects 

Let K denote either C or R. Let r~ E N. An algebraic set in the affine space IK '~ is any set of the 
form 

{ ( z l , . . . , z n )  E Kn:  f l ( z l , . . . , z n )  = 0 , . . . , f , ( z l , . . . , z , )  = 0}, 

for some s E N and some polynomials f l , . . . ,  f8 E IK[X1,..., Xn]. It is denoted 
V~;(fl, • • •, fs). It is also called the set of zeros (or zero-set) o f f 1 , . . . ,  f ,  in K n. We mostly use 
n = 2 or 3, in which case we prefer to use variables X, Y or X, Y, Z. 

It is clear that 

V~( f l , . . . ,  f , )  = V~:(fl) A . . .  f? V~(f,). 

Here are a few basic properties s~itisfied by algebraic sets. They all are very easy to check. 

1. VK(f) = 1K '~ if and only i f f  = 0, 

2. V~(c) = O, for all c E 1K \ {0}, 

3. VK(fI/2) = V~(fl) U g~(f2). In particular, if f divides h then V~(f) _C VK(h). 

4. Every finite subset of IK ~ is algebraic. 

An algebraic set C in IK ~ is called irreducible if it cannot be decomposed into the union of 
proper algebraic subsets, i.e., C = C1 U C2 implies C = C1 or C = C2, whenever C1 and C2 are 
algebraic sets in N ~. 

An affine plane algebraic curve over 1K is, by definition, the set of zeros in N 2 of just one 
nonconstant polynomial f 6 [~[X, Y]. We say that f vanishes (precisely) on C. A curve gK(f) 
is irreducible if it is irreducible as an algebraic set. 
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This is the naivest definition of curve possible. At a later stage, the definition of curve may 
be extended by allowing multiplicities. This is needed, for instance, when one studies families 
of curves, such as linear systems. We do not do it here, for these notes are merely introductory. 

Here is a known theorem: 

Every complex plane algebraic curve C C C 2 has infinitely many points. 

This result is very easy to deduce from the fundamental theorem of algebra, as follows: we 
intersect the curve C with an infinite family of complex parallel lines and then we notice that 
there exist points in every intersection, except for possibly finitely many lines. 

I 

Here is another known theorem: 

Every complex plane algebraic curve C C C 2 has a minimal polynomial f .  

By this, we mean that every polynomial vanishing precisely on C is a multiple of f .  Such an f 
is unique up to multiplication by nonzero constants and we write C = Vc(f). The degree of f 
is also called the degree ofC. A famous result follows: 

Bezout's theorem: Two complex plane algebraic curves C and 79 without common irred/lcible 
components, of degrees m and n respectively, intersect in j different points, with 0 < j _< 
mrs. In fact, if the curves are projective and the intersection points are counted with an 
adequate multiplicity, then C and 79 intersect in exactly mn points. 

The theorem is named after the French mathematician l~tienne Bezout (1739-1783). See 
[18] p. 25, for the proof. 

Now, let us look at some examples over R. 

Example. 1 

1. This is taken from [14]. For each c E K set fc = X 2 + 2 e X Y  + Yz c K[X,Y]. 
Then the curve Vg(f~) C N 2 is either the point (0, 0), or a line or the union of two lines, 
according to ]c I < 1, le[ = 1 or [c[ > 1, respectively. To check it, just notice that 
f~ = (X  + cY) 2 + (1 - c2)Y 2. On the other hand, Vc(f~) C C 2 is the union of two lines 
(possibly equal), for all c E C. See figure 4, for e = 2. 

2. The empty set is a real algebraic curve. It is the zero-set of say, y2 + 1 or X 2 + ( X -  1)2 E 
N[X, Y]. However, both Vc(Y 2 + 1) and Vc(X 2 + (X - 1) 2) are unions of  two parallel 
lines. 

We continue with some algebra, on which we base certain arguments; see [13] for more 
details. Given two polynomials f ,  h C K[X, Y], a greatest common divisor (g.c.d.) of f and 
h exists in NIX, Y], by unique factorization. It is unique up to multiplication by nonzero con- 
stunts. If factorizations of f and h into irreducible factors are known, then the product df the 
common factors of f and his a g.c.d, of f and h. This is, of course, well known. 

We may think of elements in NIX, Y] as polynomials in Y having coefficients in NIX]. 
Concerning g.c.d.'s, we can do even better by working in the bigger ring K(X)[Y], where the 
coefficients are rational expressions in X: that is, we allow denominators which are polynomial 
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Figure 4: 

Y 

X 2 + 4 X Y  + y2  = 0 

X 

expressions in X. Being K(X) a field, we can use Euclid's algorithm to express the g.c.d, of 
f and h as a sum I f  + mh, for some l, m ~ K(X)[Y]. This expression cannot be obtained in 
K[X, Y], in general. 

Back in K[X, Y], we say that a nonzero polynomial f = ao(X) + al ( X ) Y  + . . .  + ad(X)Y  d 
is primitive (in Y)  if its coefficients ao( X ), a l  ( X ) , .  . . ,  ad( X ) are coprime. For example, if f 
is a monomial, then f is primitive in Y if and only if f does not depend on X. It is an useful 
result, easy to prove, that the product of primitive polynomials is primitive. This is known as 
Gauss ' s lemma. 

Algebraic Lemma. 2 Let f E K[X, Y] be a polynomial o f  positive degree. I f  f equals a 

product 9 h with 9, h C K(X)[Y], then there exist if, h E K[X, Y] so that f = "~ and the 
degrees with respect to Y of  9 and "~ are equal. 

PROOF. Let us look at the degree of f with respect to Y. If deg v (f) = 0 then f does not 
depend on Y and the same holds for 9 and h, since deg v (f) = deg v (9) + degv (h). In this case 
the result follows from unique factorization in K[X]. 

Now, if degv(f)  > 0, then we write 9 = ag*, with a C K(X) and 9* E K[X, r ]  primitive 
in Y. Similarly, we write h = bh*, with b C K(X) and h* E K[X, Y] primitive in Y. Further, 
we write f = c f*, where c E K[X] is a g.c.d of the coefficients of f in K[X] and f* E K[X, Y] 
is primitive in Y. This expression is unique up to multiplication by nonzero constants from 
By hypothesis we have c f* = abg*h* and Gauss's lemma tells us that 9*h* is primitive. Then 
the uniqueness claimed right above yields ab C K[X]. Thus we may take, say, ~" = abg* and 

~=h*. m 

Algebraic Corollary. 3 Let f, h C K[X, Y] be both ofpositive degree and coprime. Then there 
exist d C K[X] \ {0} and l', m' E K[X, Y] such that d = t' f + m' h. 

PROOF. Assume that f and h are coprime in K[X, Y]. It follows from the algebraic 
lemma 2 that f and h remain coprime in K(X)[Y], so that there exist l, m C K(X)[Y] with 
1 = I f  + mh. Removing denominators we get d E K[X] \ {0} such that d = l ' f  + re'h, with 
l' = dl and m' = d m  C K[X, Y]. • 
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Algebraic Lemma. 4 Let f,  h E NIX, Y] be both o f  positive degree and coprime. Then 

V~(f) fq 7K(h) is finite, possibly empty. 

PROOF. Assume that f and h are coprime in IK[X, Y]. By corollary 3, we get d E 
NIX] \ {0} such that d = l ' f  + ra'h, with l', rd  C IN[X, I:]. If (z0, Y0) lies in V~(f) N V~(h) then 
d(zo) vanishes, i.e., z0 is a root of the polynomial d, so that only finitely many z0 qualify. Now 
reproducing the argument on N(Y)[X], we prove that only finitely many Y0 qualify. Altogether, 
only finitely many (z0, Y0) may lie in VK(f) A VK(h). • 

Another proof of this algebraic lemma can be given, using resultants. 

Now set I( = I~. The following theorem doesn't hold if ]R is replaced by C. 

Theorem. 5 Except f o r  N 2 itself  every algebraic set in N 2 is a real algebraic carve. 

PROOF. WehaveV~(f l , . . . ,  fs) = V~(fl)N. . .AVe(f ;)  = V~(f), with f = f ~ + . . . + f ~ .  

Corollary. 6 Every finite set in R 2 is a real algebraic curve. 

We can easily find the expression of a polynomial vanishing on a given finite set of points 
(el, b l ) , . . . ,  (a~, b~) C 1~ 2. We choose, as in example 1, gc = I-I].=1[( X - aj) 2 + 2c (X  - 

a j ) ( Y  - b~) + ( Y  - bj)2], for any c E R with Ic] < 1. Then we have re(go) = {(al, b l ) , . . . ,  
(a.,b.)}. 

Now we introduce the character of a real polynomial. Later we only use n = 2 or 3. 

Definition. 7 The polynomial f E 1R[X1, . . . , Xn] is indefinite i f  there exist a, b E N ~ such that 
f ( a )  < 0 < f(b) .  Otherwise," f is positive definite i f  f ( a )  > O, for  every a E ~ ,  negative 
definite i f  f (a) < O, for  every a E N ~, positive semi-definite i f  f (a) >_ O, f o r  every a E R n or 
negative semi-definite i f  f (a) < O, f o r  every a C II~ ~. 

By the character of  a polynomial we mean one o f  the following three mutually exclusive 
conditions: 

• indefinite, 

• semi-definite nondefinite, 

• definite. 

Note that the character of a polynomial does not ctiange by an affine/projective change of 
coordinates. In lemma 19 we will see that it (almost) remains unchanged by homogeneization. 

Let us say a few words on positive semi-definite polynomials. An easy example of such 
is X 2 + y2 or, more generally, any sum of squares of polynomials. Hilbert knew that not 
every positive semi-definite polynomial is a sum of squares of polynomials, although he had no 
explicit example. In his famous collection of problems given in the 1900 International Congress 
of Mathematicians, he proposed the following generalization as the 17 th problem: 
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Is every positive semi-definite polynomial equal to a sum of squares of rational expressions? 

The problem was solved by E. Artin in 1927, on the affirmative. The first examples of pos- 
itive semi-definite polynomials which are not sums of squares of polynomials are due to T.S. 
Moztkin, and were published in 1967. R. Robinson gave more examples in 1969. These and 
other examples as well as the references can be found in [11]. Positive semi-definite polynomi- 
als which are not sum of squares of polynomials are rare; however, there is a lot of literature on 
the subject. In this paper, every example of positive semi-definite polynomial is actually a sum 
of squares of polynomials, for easiness. 

First, we will study curves defined by indefinite polynomials. 

Lemma. 8 I f  f E 1~[X, Y] is indefinite then, after an affine change of coordinates, there exists 
an open interval (0 7~ I C ]R such that, for each u E I there exists bu E 11~ with (u, bu) E V~(f). 

PROOF. An affine change of coordinates allows us to assume that there exist a and bl < b2 
in N such that f (a ,  bl) < 0 < f(a,  bz). By continuity, there exists ~ > 0 such that f (u ,  bl) < 
0 < f (u ,  b2), for every u in the open interval I~ := (a - ci, a + ~). By the intermediate value 
theorem, for each u E I~ there exists b~ with bl < b~ < bz such that f (u ,  b~) = 0, i.e., 
(u, bu) E Ve(f) .  • 

Corollary. 9 / f f  E NIX, Y] is indefinite, then V~(f) is infinite. • 

So far, indefiniteness looks like a promising property. Here are some' sufficient conditions 
for it. 

Lemma. 10 Let f E N[X1, . . . ,  X~] be of positive degree d. Then f is indefinite in any of  the 
following circumstances: 

1. if d is odd, 

2. if there exists P E ge( f )  such that the order o f f  at P is odd. 

PROOF. 

1. An affine change of coordinates allows us to assume that 0 ¢ f ( 0 , . . . ,  0). For each A E 
IL consider the nonzero polynomial 9~ E N[X] given by 9a(X) := f ( X ,  A X , . . . ,  ;~X). 
We have deg(9~) _< deg(f) for every A E R, with equality for every A E IR \ S, where 
S c_ R is some finite set (indeed, S = {A : f(d)(X, AX , . . .  ,,~X) = 0}, where f = 
f(o) -b f(1) q - " "  -b f(d), with f(k) homogeneous of degree k, and f(0) ¢ 0 ¢ f(a)). Then 9a 
is a polynomial of odd degree in one variable, for each A E 11~ \ S. Now, it is well known 
that there exist za, z~, E R such that 9a(za) < 0 < 9a(z~), and we conclude. 

2. Similar to part 1. 
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Lemma.  11 Let f ¢ R[X1, . . . ,  X~] be of positive degree d. If there exists P E Vn~(f) such that 
the gradient o f f  at P does not vanish then f is indefinite. 

PROOF. The proof is taken from [21. Let P = (Pl , . . . ,P~)  and say ~ ( P )  ¢ 0. Then 
the function R --+ N that maps z to f (z ,  P2,...,  Pn) is strictly monotonous on some neighbor- 
hood of Pl and, by continuity, it must change sign on such a neighborhood, since this function 
vanishes at Pl. • 

Notice that if f E N[X, Y ] is irreducible then Vm (f)  M VR ( f x  ) M VR (fv) is finite. If w e further 
assume that Ve (f)  is infinite, then we conclude that f is indefinite, applying the previous lemma. 

Here comes a couple of well-known results: first, a sort of converse to property 3 in page 
5 and then a consequence of it. The former is named after the German mathematician Eduard 
Study (1862-1930). 

Study's lemma: If f ,  h E C[X, Y] are both of positive degree such that f is irreducible in 
C[X, Y] and Vc(f) C_ re(h), then f divides h. 

Irreducibility Criterion: Given f E C[X, Y] of positive degree, the affine curve r e ( f )  is 
irreducible if and only if there exist 9 C C[X, Y] irreducible in C[X, Y] and k E N such 
that f = 9 k. In particular, if 9 is irreducible in C[X, Y] then Vc (9) is irreducible. 

See [18], pp. 13 and 15 for the easy proofs of these two results. Next, let us prove the 
following analogs over the real field and notice the indefiniteness requirement on f .  

Theorem. 12 (Real Study's lemma). Given f, h C R[X, Y] both of positive degree such that 
f is irreducible in N[X, Y], indefinite and Ve(f) C_ Ve(h), then f divides h. 

PROOF. This is taken from [8], lemma 6.14. The polynomial f is indefinite, so we may 
assume that there exist a and bl < b2 in R such that f(a, bl) < 0 < f(a, b2). It follows from the 
algebraic lemma 2 that if f does not divide h in R[X, Y] then f does not divide h in R(X)[Y] 
either and that f remains irreducible in R(X)[Y]. Then f and h must be coprime. By the 
algebraic corollary 3, there exist l', m' E IR[X, Y] and d C NIX] \ {0} such that d = l ' f  + m'h. 
Moreover, by lemma 8, after an affine change of coordinates, there exists an open interval 
I~ ¢ I C_ R such that, for each u E I there exists by C R with (u, by) E VR(f). By hypothesis, 
it follows that (u, by) E V~(h) and so d(u) = 0, for every u C I .  This implies d = 0, a 
contradiction. • 

Actually, the proof just given shows that the following statement holds true. 

Theorem. 13 (Real Study's lemma -second version-). Let f, h E g{[X, Y] be polynomials 
both of positive degree such that f is irreducible in R[X, Y] and indefinite. Assume that after a 
certain projective change of coordinates, there exists an open interval ~ 7[: 1 C g{ such that, for 
each u C I there exists b~ 6 R with (u, b~) E V~t(f) M V~(h). Then f divides h. 

Corollary. 14 Given f, h C R[X, Y] both of positive degree such that f is irreducible in 
R[X, Y], indefinite and Vm(f) __ Vm(h). If moreover h is semi-definite, then f2 divides h. 
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PROOF. We may assume that h is positive semi-definite. So far, we have that h = fg,  for 
some 9 E N[X, Y]. Take ~, Ie, ba, b2, u and b~ as in the proof of 12, so that (u, b~) C ge(f) .  Thus 
0 = h(u, b~) = f (u ,  b~)9(u, b~). By assumption, 0 < h(u, bl) = f (u ,  bl)9(u, bl) and being 
f (u ,  bl) strictly negative, it follows that 9(u, bl) must be negative. Similarly, 0 _< h(u, b2) = 
f (u ,  b2)9(u, b2) and being f (u ,  b2) strictly positive, then 9(u, bt) must be positive. Letting bl 
and b2 both converge to bu, we conclude that 9(u, b~) must vanish, for every u E I~. If we now 
apply theorem 13 to f and 9, we obtain that f divides 9. • 

In [3] proposition 2.3, this corollary has been proved for a linear polynomial f ,  while the 
general case is claimed to be proved in a paper never published. 

Next, let us find the relationship between the irreducibility of a real polynomial and the 
irreducibility of the curve it defines. 

Theorem. 15 (Real irreducibility condition). I f#  E R[X, Y] is indefinite and irreducible in 
I~[X, Y] then V~(9) is irreducible. 

PROOF. Suppose that Va(9) = C1UC2, with C1 = V~(hl , . . .  ,hs) andC2 = Ve(f l , . . .  , f t)  
for some s, t E N and some h i , . . . ,  hs, f l , . . . ,  ft c R[X, Y] of positive degrees. We have 
C~ = V~(h) and ¢2 = VR(f), with h = h 2 + . . .  + h~ and f = f l  2 + . . .  + ft 2. Then VR(9) = 
Ve(h) U Ve(f) = Ve(hf) and by the real Study's lemma we get 9[hf. By the irreducibility of g, 
either 91h or 9If  holds. Thus, either Ve(9) _C g~(h) or Ve(9) C_ VR(f) holds, so that V~(9) = C1 
or V~(9) = C2. • 

Below we present examples related to the real irreducibility condition. The polynomials 
appearing there are irreducible, by the following lemma. 

Lemma.  16 If  f = X~ + f3 where cb E R[X1, . . . , X~-I] is a positive semi--definite nonzero 
polynomial, then f is irreducible in II~[XI,.. . ,  Xn]. 

PROOF. Suppose that X 2 + c~ = (Xn + a) (X,~ + b) = X 2 + Xn (a + b) + ab, for some 
a, b E R[X1, . . . ,  X,-1].  Then a = - b  and ~b = - b  2. Thus ~b is also negative semi-definite and 
so ~b = 0, a contradiction. • 

Example. 17 

• Take 9 = X2 + y2 and V~(9) = {(0, 0)}. Thus, the irreducibility of V~(9) does not imply 
the indefiniteness of g. 

• Take 9 = X Z + Ye (Y  - 1) 2 C N[XI Y], V~ (9) = { (0, 0), (0, 1) }. Thus, a polynomial may 
be semi-definite and irreducible, having reducible zero-set. 

The moral of the results proved so far is that real affine curves VR(f) with f indefinite have 
similar properties to complex affine curves. Our next question is 

What can be said about VR(f), if f E ~[X, Y] is semi-definite? 
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But, before we can answer it, we must examine projective curves. 

If F1 , . . . ,  Fs E NIX, Y, Z] are homogeneous polynomials (also called forms) then the set 
{(x :  y :  z) E p2(K) : Fl(z ,y ,z)  = 0 , . . . ,F , (x ,y , z )  = 0} is denoted VK(F1,. . . ,Fs).  Itis, 
by definition, an algebraic set in the projective plane p2(IK). It is also called the set of zeros of 
F1,. . . ,  Fs in p2 (K). The same notation VK to denote affine or projective zero=sets should not 
be confusing. 

It is clear why one works only with homogeneous polynomials in the projective case: since 
both (x : y : z) and (Ax : )~y : Az) are homogeneous coordinates of just one point in P2(K) 
(when x, y, z are not simultaneously zero and A ¢ 0) then it is necessary that F(Az, Ay, )~z) 
vanishes if and only if F(x, y, z) vanishes, which occurs only when F is homogeneous. It is 
obvious that the irreducible factors and the partial derivatives of a form are forms. We use 
capital letters to denote forms. 

Properties stated at the beginning of this section for affine algebraic sets as well as def- 
initions of projective (irreducible) algebraic sets and of plane projective algebraic curves are 
analogous. 

We can easily prove the projective versions of theorem 5 and corollary 6: except for P2(R) 
itself, every algebraic subset in P2(R) is a real algebraic curve and every finite subset of P2(R) 
is a real curve. Also, the empty set is a real algebraic projective curve. 

Example. 18 

• V]R(X 2 _[_ y2 _~ Z 2) = O, since (0 : 0 : O) is not a point in P2(R). 

• VR(X 2 + y2) : {(0: 0 :  1)}. 

Let us recall a few well-known facts. Given f E NIX, Y] of positive degree d, we pro- 
duce a form F E K[X, Y, Z] with deg(f)  = deg(F) in a unique fashion, as follows: F = 
z a f ( x / z ,  Y/Z).  Equivalently, F = f(o)Z d + . . .  + f(a-1)Z + f(e), where f = f(0) + " "  + 
f(a-1) + f(a) and f(j) is the homogeneous part of f of degree j or is zero. We call F the ho- 
mogeneization of f.  It is clear that Z VF. Conversely, if F E K[X, Y, Z] is a form of degree 
d > 0 and neither Z, nor Y, nor X divide F, then we define f3 := F(X, Y, 1) E K[X, Y], 
f2 := F(X,  1, Z) E K[X, Z] and f l  :-- F(1, Y, Z) E K[Y~ Z], with deg(fj) = deg(F), 
j = 1, 2, 3. They are called respectively, dehomogeneization o f f  with respect to Z, Y and X. 
It is immediate to verify that if F E K[X, Is, Z] is a form of degree d > 0 and neither Z, nor 
Y, nor X divide F, then F is irreducible if and only if there exists k E {1,2, 3} such that fk is 
irreducible. 

The euclidean topology on K a induces a topology on P2(K) which makes it a connected, 
compact space. All three mappings ja : K  2 ~ p2(K) with ja(x, y) = (x : y : 1), J2 : K 2 -+ 
P2(K) withjz(x,z)  = (x :  1: z) and j l  : l~ --+ P2(K) with jl(y, z) = (1: y :  z) are injective 
and have an open dense image, denoted Kx,y, Kx,z and Kv, z respectively. We have 

p2(~¢) = ~x,v u Kx,z u ~Y,z. 

If we identify VK (fk) with its image by jk, then for each form F E K[X, Y, Z] of positive degree 
we have 

V~(F) = v~(f~) U v~(A) o v~(A).  
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This is an open covering of V~(F) and VK(f3) = VK(F) N {(x : y : z) : z ¢ 0}, 7K(f2) = 
Vm(F) M {(x : V: z) : y • 0} and VK(fl) = Vm(F) M {(x:  y :  z ) :  x # 0}. 

Set N = R. Using continuity,arguments and bearing in mind that ]R e = Rx,y is dense in 
P2(I~), we can easily prove the following lemma, the part 2 of which is mentioned in [1 l] p. 
252. 

Lemma.  19 Let f E ]R[X, Y] be of positive degree and F E I~[X, Y, Z] be its homogeneization. 
Then 

1. f is indefinite if and only if F is indefinite, 

2. f is semi-definite if and only if F is semi-definite, 

3. if f is definite then F is semi-definite, and 

4. if F is definite then f is definite. 

Example. 20 f = X 2 + 1 is definite but F = X 2 + Z 2 is semi-definite nondefinite. 

Combining parts 1 and 2 of lemma 19 with the real Study's lemma and its corollary, we 
obtain the following. 

Theorem. 21 (Real Projective Study's lemma). Given forms F, H C ]R[X, Y, Z] both of posi- 
tive degree such that F is irreducible in ]R[X, ]1", Z] and indefinite. Assume that after a certain 
projective change of coordinates, there exists an open interval ~ ~ I C_ ~ such that, for each 
u E I there exists bu E ]R 2 with (ulb~) E VR(F) M x/~(H). Then F divides H. If  moreover H 
is semi-definite, then F 2 divides H. • 

Now, let us recall a very familiar concept. If the degree of f E C [ X t , . . . ,  X=] is positive 
and f does not have multiple irreducible factors, then a point P in Vc(f) is singular if, by 
definition, the gradient of f at P vanishes. We denote the set of singular points of C = 7~(f) 
by Sing C. The following is well-known. 

Bound for the set of singular points of a plane complex projective curve: An irreducible form 
F C C[X, Y, Z] of positive degree d satisfies 

[ SingWc(F)[ < 
( d -  1 ) ( d -  2) 

See [18] p. 40 for a proof. This bound obviously remains true for projective real curves as well 
as for affine real or complex ones. 

Next we obtain a result which is well-known to real algebraic geometers. In the literature 
one can find different versions of it. 
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Theorem. 22 (Sign Change Criterion). Let F E R[X,  Y, Z] be a form of  positive degree 
without multiple irreducible factors. Then F is indefinite if and only if there exists a nonsingular 
poin~ P C V~(F). 

PROOF. Let F = F 1 . . .  Fs be a factorization of F, with the Fj's irreducible and pairwise 
coprime. Then 

8 

grad(F) = ~ Fi " " Fj_IFy+~ . . . F~ grad(Fj). 
j = l  

If a point P E V~t(F) is nonsingular, then P belongs to VR(Fjo ) for just one J0; say 
P E Vx(F1) and P ~ Ve(F/) for j ¢ 1. Then gradp(F) = F2(P) . . .F~(P)  gradp(F1) 
does not vanish. Conversely, if P E Vx(F1) and P ¢ Va(F/) for j ¢ 1, and if gradp(F) = 
F 2 ( P ) ' ' '  Fs(P) grade(F1) does not vanish, then P is nonsingular. 

It follows that one implication has already been proved in lemma 11. Now suppose that the 
form F is indefinite. Then at least one irreducible factor of F, say Fb is indefinite. Thus Vx(F1) 
is an infinite set, and all of its points but possibly a finite number are nonsingular. Therefore 
V~(F) contains a nonsingular point. • 

Here is real/complex type result on irreducibility, which we will use in the proof of theorem 
24. 

Lemma. 23 Suppose that f E R[X~,. . . ,  Xn] is irreducible in R[X~ , . . . , Xn]. Then f is re- 
ducible in C[X1, . . . ,  Xn] if and only if either f or - f is a sum of two squares in N[Xa , . . . , Xn]. 

PROOF. This is taken from [3]. If f = r~ + r~ with rl , r2 C R[X1, . . . ,Xn]  then f = 
(rx + it2) (r~ - it2), where i = x/Z1. Here, neither factor can be constant, since if one of them 
belonged to C then the other one would do too, and f itself would be constant, contradicting 
the irreducibility of f .  

Now assume that f factors nontrivially: f = (ri+ir2)(sl+is2),  with rj, sj E ~ [ X l ,  . • • , Xn], 
and j = 1, 2 .  Taking complex conjugates we get f2 = f ~  = (r~ + r~)(s~ + s~). By unique 
factorization in NIX1, . . . ,  Xn] we have f = a(r~ + r~) for some a E R \ {0}. Since either a or 
- a  is a square in N, the result follows. • 

Following [3], we consider the function 

a(d)  := m a x { ~ ,  ( d - 1 ) ( d - 2  2)}  

for d E N. Clearly a(d)  = -y, l f d < _ 5 a n d a ( d ) =  d2 " (d-!)(d-2)2 , if d _> 6. Taking derivatives, it is 
~(d) easy to check that ~ is monotonically increasing on N. Thus, 

a(d~) < a(dl + d~) 
dj - dl + d2 ' 

for j = 1, 2 so that 

( dl d2 ) a ( d l + d 2 ) = c ~ ( d l + d 2 ) .  a(dl )  + a(de) <_ ~ + 

This property of a is used in the proof of theorem 25. 
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Theorem. 24 Let F E R[X, Y, Z] be a semi-definite irreducible form of positive degree d. 
Then Iv~(F)l _< a(d). 

PROOF. This is taken from [3]. First, assume that F is reducible in C[X, Y, Z]. Then, 
lemma 23 gives + F  = R~ + R22, for some forms R1, R2 E R[X, Y, Z] both necessarily of 
degree ~. Moreover, Ri, R2 are coprime, since F is irreducible in R[X, Y, Z]. Now, by Bezout's 

theorem, the set V~(F) = V~(R1) A V~(R2) contains at most (~)2 different points. 
Suppose now that F remains irreducible in C[X, Y, Z]. By lemma 11, each point of V~(F) 

is singular in Vc (F) and therefore ]Vm(F)[ --< (d-1)(d-2)2 " • 

Theorem. 25 For any semi-definite form F E ~[X, Y, Z] of degree d > 2, the following are 
equivalent: 

1. IV~(F)I > a(d), 

2. v~(F) is infinite, 

3. F is divisible by the square of some indefinite form. 

PROOF. This proof appears in [3]. It is trivial that part 2 implies 1. It follows from 
corollary 9 and lemma 19 that part 3 implies 2. 

Now, we prove that part 1 implies 3, by induction on d. We may assume that F is positive 
semi-definite. For d = 2 we have a(2) = 1 so that F is a positive semi-definite quadratic form 
in three variables having, at least, two real zeros. A projective change of variables allows us to 
write F(X,  Y, Z) = X 2, and the conclusion follows. 

Suppose now IVy(F)[ > a(d), for d _> 2. By theorem 24, F is reducible in R[X,Y,Z]. 
Write F = F i . . .  Fs with s > 2 and Fj E X[X, Y, Z] in'educible for each j (here we do not 
assume that Fi and Fj are coprime, if i ~ j). Set dj = deg(Fj). First assume, in addition, 
that every Fj is semi-definite. There must exist j0 such that [Vn~ (Fj0)l > a(djo); otherwise we 
would have 

IV~(F)I < Ivm(Fj)[ _< E a(dj) _< a ( E  dj) = a(d), 
j=l  j=l  j=l  

a contradiction. Say ]Vm(F1)[ > o~(dl). Since dl < d, then the conclusion follows by induction, 
in this case. If on the other hand, Fj0 is indefinite for some J0 then Vm(Fjo ) is infinite, by 
corollary 9 and lemma 19. The conclusion follows now from the real projective Study's lemma. 

The following result needs no further proof. 

Corollary. 26 If  F E R[X, Y, Z] is a form of positive degree without multiple irreducible fac- 
tors, (in particular, if F is irreducible) then 

• V~(F) is infinite if and only i fF  is indefinite, 

• r e (F )  is finite nonempty if and only i fF  is semi-definite nondefinite, and 
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• V~(F) is empty if and only i f F  is definite. 

Moreover, in case that F is semi--definite nondefinite, then Iv~(F)l _< ~(d), where d is the 
degree o fF.  • 

Of course, there are affine versions of the last four results. 

Let F E IR[X, Y, Z] be a form of positive degree and 

, . F t  (*) " ' k s  ~s+l  " ' ' r t  ~t't+l " 

be the decomposition of F into coprime irreducible factors, with c E R \ {0}, 0 < s < t < r E 
N, and kj C N. Suppose that Fj is indefinite, for all j < s, Fj is semi--definite nondefinite, for 
all j with s + 1 < j < t and Fj is definite, for all j with t + 1 < j < r. Clearly 

Vx(F) = Vx(F1) U " "  U Vx(Fs) CJ Vx(Fs+l) hi . . .  U Vx(F,) 

and V~(Fs+I) tJ . . .  tJ V~(Ft) is a finite set. The irreducible definite factors of F are irrelevant 
concerning the set V~ (F), of course. 

Definition. 27 With the notations above, we define the irreducible components of the curve 
VR(F). These are of two sorts: 

1. each V~(Fj) ,  with j < s and 

t 2. each point in the set Uj=s+I V~(Fj) \ tA~=lV~(Fj). 

Clearly, each irreducible component of type 2 is an isolated point in V~(F), and each one 
of type 1 is an algebraic irreducible infinite curve. We exclude in type 2 any point in the set 
U~=lV~(Fj) due to the fact that, for us, a curve is just a set of points. Note that the gradient of 
F vanishes at any excluded point P, although P might be regular in the curve [..J3= 1VR (F i). 

In connection to this, it is high time to say that a more general theory of real plane curves 
should be elaborated. In this theory, curves would not be just sets because the irreducible 
components of them would carry multiplicites. If this were the case, then the set U}=s+lVa(Fj) \ 
CI~=IV~t (Fj )  in part 2 above should be replaced by U}=~+IVR(Fj). 

For affine curves, a similar definition can be given. 

Example. 28 Consider the curve V~(f), with f = f~ f f  f~ f~4, where fl  = Y + X 5 - 2 X Y  - 2, 
f2 = X2  + y 2  _ X 3, f3 = - X 2  - (Y - 2)4( Y + 4) 6 and f4 = (X  + y)2 + 3 andany a,/3, 7 
and 5 C N. Here, 

• f l  and f2 are indefinite, by lemma 10. 

• f l  is irreducible, because it is linear in Y; and f2 is irreducible, since it is the sum of two 
coprime forms of consecutive degrees. 

• f3 is negative semi-definite nondefinite. It is irreducible, by lemma 16. 

• f4 is positive definite, and is irreducible again by lemma 16. 
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Thus c -= 1, s = 2, t = 3 and r = 4. 
The irreducible components o f  V~( f )  are the following: 

• g~(fl)  and VR(f2) are components o f  type 1. 

• The point (0, - 4 )  is a component o f  type 2. It is isolated in V~(f). 

The point (0, 2) in V~(f3) is not an irreducible component o f  type 2, since it also belongs to 

v (fl). 
The point (0, O) is singular and isolated in '¢~(f). However, it is not an irreducible compo- 

nent o r g y ( f )  because it belongs to the irreducible set V~(f2). 

This example shows that not every isolated point in a real algebraic curve is an irreducible 
component of it. 

The question of whether a point in a real curve (affine or projective) is isolated is a local 
one; therefore it is suitable to address it just in the affine setting. 

Let 0 ~ C C R ~ be an algebraic curve and consider a point P E C. If P is nonsingular, 
then P is nonisolated in C, by the implicit function theorem. If P is singular, then P may or 
may not be isolated in C. For instance, the point (0, 0) in the curve VR(X 4 - 2 X 2 Y  - y3)  is 
singular nonisolated. Actually, much more is true in this example, for it can be proved that Y is 
analytic near 0, as an implicit function of X, see [9] p. 12. This curve looks like the parabola 
V~(X 2 - 2Y) ,  near (0, 0); see figure 5. On the other hand, in example 28 we have found that 
(0, 2) and (0, 0) are singular isolated points in the curve V~(f). 

Y 

y 
-1 0 1 

Figure 5: X 4 __ 2 X 2 Y  _ y3  = 0 

X 

Set C = VR(f) C •2, for some nonconstant polynomial f ¢ R[X, Y]. Consider a singular 
point P E C and suppose that C \ {P)  is nonempty. The point P is isolated in C if and only if 
the minimum of the set 

{dist(P, Q) :  Q e C \ {P}} 

exists and is positive, where the distance considered is euclidean. We may assume that the 
coordinates of P are (0, 0). Then note that if Q E C \ {P} is a local extreme for the function 
dist(P, • ), the point Q must belong to the curve V~(p(f)), where p( f )  is defined as Yo°-~x - 
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0j_ This is so because either the vector gradQ(f) is zero or it is nonzero and proportional to X oy. 
the vector from P = (0, O) to Q. Therefore, we may consider the minimum of the set 

{dist(P, Q ) :  Q E C A V~(P(f)) \ {P}}. 

Before we proceed, here are a few properties of the P operator. 

Lemma. 29 

1. P(a) = O, fora  E R. 

2. P(aX + bY) = - b X  + aY, for a, b E R 

3. P(aX 2 + b X Y  + cY 2) = - b X  2 + 2(a - c ) X Y  + bY 2, for a, b, c E ~ Moreover, 
P(aX 2 + b X Y  + cY 2) is reducible in R[X, Y]. 

4. l f  f E NIX, Y] is homogeneous and irreducible, then f ~ p(f) .  

5. If f E R[X, Y] is homogeneous, then 0 = P(f)  if and only if 0 = P(9), for every 
irreducible factor 9 o f f .  

6. If f E ~[X, Y] is homogeneous of odd degree, then 0 ¢ P(f).  

7. Let f = f(o) + f(1) + "'" + f(d) E NIX, Y] be a polynomial of degree d >_ O. The 
homogeneous part of degree j of P(f)  is P(f(j)), for j = O, 1 , . . . ,  d. 

PROOF. Parts 1 and 2 are trivial. Part 3 follows from the fact that the discriminant 4(a - 
c) 2 + 4b 2 is nonnegative. Part 4 follows from 1, 2 and 3. Parts 5 and 7 are easy and part 6 
follows from 2, 3 and 5. • 

Corollary. 30 Let f = f(0) + fo) + "'" + f(d) E R[X, Y] be a polynomial of degree d >_ O. 
Then 0 = P(f)  if and only ifO = fu), for j odd, and f(j) = a~(X 2 + y2)~/2, with aj E ~, for 
j even, with 0 < j < d. In this case, VR(f) is the union of the origin andfinitely many circles 
centered at the origin, if d > O. 

PROOF. Apply parts 7, 6, 5 and 3 to obtain the former assertion. For the latter one, note 
that if 0 = f(j), for j odd, and f(j) = a j (X  2 + y2)j/z, for j even, then there exists 9 E N[Z] of 
order bigger than zero such that f ( X ,  Y)  = 9(X  z + y2). • 

Lernma. 31 If  f E N[X, Y] has order bigger than 1 then p( f )  is reducible. If  moreover, f is 
irreducible, then f and P(f)  are coprime. 

d PROOF. We write f = ~-~j+k=2 aJk X j Y k ,  with d >_ 2. The affine change of coordinates 
X'  + Y '  = X and X '  - Y~ = Y allows us to assume that ajk = 0 if j = 1 or k = 1, perhaps 
with the exception of a21 ~ 0 or a12 ¢ 0. One more change of coordinates makes a12 = 0 too. 
Now an easy computation shows that X divides p( f ) .  Then the second assertion follows, using 
the irreducibility of f and the fact that deg(p(f))  < deg(f) .  • 
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We return to the discussion above, where we had a curve C = V~(f), a singular point 
(0, 0) = P E C such that C \ {P} ~ 0 and we wanted to know whether P is isolated in C. It is 
enough to consider the case that f is irreducible. If the order of f is bigger than 1, then f and 
p(f)  are coprime, by lemma 31. By Bezout's theorem, the set C N VR(P(f)) \ {P} is finite, say 
{Q1, . . . ,  Q~}, for some s _> 0. Then P is isolated in C if and only if the function dist(P, • ) 
attains a local minimum at Q j, for some 1 < j < s. 

The auxiliary polynomial p(f)  already appears in Seidenberg's method for deciding whether 
a real curve is empty, see [7], p. 311. The problem of finding algorithms for a given polynomial 
f E R[X, Y], in order to decide whether VR(f) is empty or not, and further to determine the 
topology of Va(f), is still a matter of research, see [4]. 

Next we present a simple characterization of bounded affine curves. The proof is a straight- 
forward topology exercise. 

Lemma. 32 Let C C ~2 be an algebraic curve and-C C p2(]~) be the projective closure of C. 
Then C is compact if and only if each point in -d \ C is isolated in C. • 

Let us discuss now the issue of which conditions must a projective curve Va(F) satisfy in 
order to have a minimal form. We assume that (,) is a factorization of F. 

1. 

2. 

The empty curve does not have a minimal form. Indeed, this follows from considering the 
forms X ~ + y2 + Z 2 and (X + Z) 2 + y2 + Z 2, both vanishing at no point in p2(•), both 
irreducible, by lemma 16, and coprime. 

I f  Va(F) # 0 and moreover Vg(F) has irreducible components of type 2, then VR(F) 
does not have a minimal form. Indeed, we may assume that every component of type 
2 lie outside the line at infinity Z --- 0. If (al : bl : 1) . . . .  , (aN : b~ : 1) are all the 
irreducible components of type 2 of VR (F) then, taking Gc and Ge the homogeneizations 
of 9e and gc,, as in the comment after corollary 6, we have that He = FI ' "  FsGc and 
He = FI"'" FsGc, are forms vanishing on V~(F), for any [c[ < 1, [c'[ < 1, and tc[ # [c'[. 
Now F1 . . .  Fs is a g.c.d, of He and He,, and it fails to vanish precisely on (aj : bj : 1), 
for every j = 1 , . . . ,  n. 

A particular case occurs when 0 = s < t. A more particular case occurs when F is 
irreducible semi--definite nondefinite. 

3. I f  VR(F) # 0 and, in addition, Vm(F) has no irreducible components of type 2, then 
F1. . " F~ is a minimal form for Vm(F). 

A particular case occurs when 1 < s = t. A more particular case occurs when F is 
irreducible and indefinite. 

Definition. 33 The class Up of real projective algebraic curves which have a minimal form 
consists of all nonempty curves having no irreducible components of type 2. 

Assume that (*) is a factorization of F. If  V•(F) E Up then the degree of Va(F) is 
)--is deg(Fj), by definition. j=l 
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For affine curves, the class ~'~ is defined similarly. We set 

Next we list a few properties of forms and of projective curves. The affine case is similarly 
stated and proved. 

Lemma. 34 Let C C pz(•) be an algebraic curve. Then 

• the fact that C belongs to .Tp (if true), 

• the degree o f t ,  for  C E .Tp, and 

• the irreducibility ofC, f o r C E  Yp (if true), 

do not change by a projective change of  coordinates. 

PROOF. Let ¢ : P~(R) --+ p2(~) be a projective transformation and (a~,j) E A43x~(R) 
be a regular matrix representing ¢-1 with respect to a given reference. Let F ~ R[X, I", Z] be 
a given form of positive degree. We have F ( X ,  Y, Z) = F(a11X' + al lY '  + a13Z', a21X' + 
a2z Y '  + a232', a31X' + aa2 Y '  + a33 Z'). Define/~(X', Y' ,  Z') using the latter expression. It is 
easy to verify that: 

• F is irreducible if and only if .P is irreducible. 

• F is indefinite (resp. semi-definite nondefinite) (resp. definite) if and only if F is indefi- 
nite (resp. semi--definite nondefinite) (resp. definite). 

• deg(F) = deg(F). 

Moreover, if (,) is the decomposition of F into coprime irreducible factors, with e E R \ {0}, 
r C N, kj E N and 0 < s < t < r as above, then 

e G~ 1 ...Ck'~k~+~ .~k*~k*+l k~ " :  ~ a  ~ s + l  " "  ~ J t  ~ t + l  ""Gr 

is the corresponding decomposition for F, with Fj = Gj. It follows that U~=s+IVR(Fj) C_ 

Uj=IV~(Fj) if and only if C_ U~=~+IV~(Fj) U~=lTa~(Fj). Therefore V~(F) has irreducible com- 

ponents of type 2 if and only if VR(F) has. Thus, 7~(F) belongs to Up if and only if VR(/~) 
does. The result follows easily. • 

Corollary. 35 

1. Every nonsingular real algebraic curve belongs to :F. 

2. Every real algebraic curve in .T is infinite. 

3. The minimal polynomial of a member of .T is a product of  s > 1 irreducible indefinite 
coprime polynomials. 

4. C E .Ta if and only if-C E .Tp,for any algebraic curve C C R 2 and its projective closure 
C C p2(]~). 

5. An irreducible curve not in ~ consists of a single point. • 
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3 Affine and projective curves: topological aspects 

In this section we compare some elementary topological properties of plane algebraic curves, 
affine and projective, complex and real. We include easy examples and references where the 
missing proofs can be found. The techniques used in these proofs come from topology, complex 
analysis, real algebra, etc. 

Ambient spaces 

For C: C 2 and p2 (C) are connected, orientable R-topological manifolds of dimension 4, 
and P2(C) is compact. 

For ~: ~2 and p2 (1~) are connected R-topological manifolds of dimension 2. Moreover, 
~2 is orientable and P2(R) is nonorientable and compact; see [6]. 

Affine or projective algebraic curves 

Curves are closed nowhere dense sets, i.e., they have empty interior. Real curves, their 
complements and each connected component of the former and of the latter are real semi- 
algebraic sets (see [1] or [2]). It is known that these sets are connected if and only if they are 
pathwise connected; see [2] p. 47. 

For C: As an R-topological manifold, every nonsingular curve has dimension 2. If a 
curve is singular, then the set of its regular points is a dense 2--dimensional manifold and in 
the neighborhood of a singular point of multiplicity m > 1, the curve is homeomorphic to the 
union of m discs, the centers of which are all identified to one point; see [12] chapter 7. The 
complement of a curve is connected, since it has codimension 2. 

For R: Every nonsingular curve has dimension 1, as an R-topological manifold. If a curve 
C is singular, the subset 7) of regular points of C is either empty or a manifold of dimension 1, 
not necessarily dense in C. D is empty if and only ifC is finite, if and only ifC has dimension 0. 
D is not dense in C if and only if C has isolated points. Here the notion of local dimension o f  a 
real curve at a point appears naturally; see [2] p. 53. For instance, the cubic V~(X ~ + y2 _ X 3) 
has dimension 1, but the local dimension at the (isolated) point (0, 0) is 0. The local dimension 
is 1 at any other point in this cubic. See figure 2. 

The complement of a curve may or may not be connected. It is connected if the curve is 
finite (since it is a set of codimension 2). 

For every point x in a curve C and every sufficiently small open ball U with center at z, the 
set U \ {z} is homeomorphic to the union of an even number of open segments; these segments 
are called half-branches o f  C at the point x; see [2] p. 232. For instance, a closed segment or 
the letter T cannot possibly be homeomorphic to a real algebraic curve. 

There exist curves C having points P which are singular, nevertheless in a neighborhood of 
P the curve C is differentiable. For instance, take the point (0, 0) in the curve V~(Yq - Xq+l), 
with q > 3 odd. Here, Y is an implicit function of X of class C ~. See figure 6, with q = 3. 
Another example is the point (0, 0) in the curve V~(X 4 - 2 X 2 Y  - y3) ,  which has already been 
mentioned. 

Affine algebraic curves 

For C: They are unbounded sets; it easily follows by intersecting with lines arbitrary dis- 
tant from the origin. Their connected components are unions of irreducible components; in 
particular, every irreducible curve is connected. 
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Figure 6: y3 _ X 4 : 0 

For ~: They may or may not be bounded. There exist disconnected irreducible curves, such 
as the hyperbola V~(X 2 - y2 _ 1), or the cubics V~(X 2 + y2 _ X 3) and VR(X + y2 _ X3). 
Curves may have isolated points and each of them may or may not be an irreducible component. 
This has been discussed in p. 16. 

Projective algebraic curves 
For C: Curves are compact sets and, by Bezout's theorem, they are connected. 
For 2:  Curves are compact sets too. Also, we have 

Harnack's theorem: The number of connected components of a nonsingular projective curve 
of degree d >__ 2 is less than or equal to (a-l~d-2) + 1. 

See [1] p. 246 or [2] p. 286 for a proof. This is named after the Prussian mathematician Carl 
Gustav Axel Harnack (1851-1888). One can wonder how the connected components of a curve 
are arranged. Actually, this is what the first part of Hilbert's 16 th problem asks for: 

Give a description of the topological types of embeddings of nonsingular algebraic curves in 

This problem remains open. 
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