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We introduce three deformations, called α–, β– and γ–deformation respectively, of a N–body
probabilistic model, first proposed by Rodŕıguez et al. (2008), having q–Gaussians as N → ∞
limiting probability distributions. The proposed α– and β–deformations are asymptotically scale–
invariant, whereas the γ–deformation is not. We prove that, for both α– and β–deformations,
the resulting deformed triangles still have q–Gaussians as limiting distributions, with a value of q
independent (dependent) on the deformation parameter in the α–case (β–case). In contrast, the γ–
case, where we have used the celebrated Q–numbers and the Gauss binomial coefficients, yields other
limiting probability distribution functions, outside the q–Gaussian family. These results suggest that
scale–invariance might play an important role regarding the robustness of the q–Gaussian family.

I. INTRODUCTION

It is well known that the (properly centered and
rescaled) sum of N independent (or weakly dependent)
random variables with finite variance approaches a Gaus-
sian distribution in the N →∞ limit [7]. This fundamen-
tal classical result, known as the Central Limit Theorem
(CLT), is at the basis of the ubiquity of Gaussian distri-
butions in Nature. The classical CLT, however, cannot
be applied to a set of strongly correlated random vari-
ables. Therefore, in the context of nonextensive statis-
tical mechanics [28], it has been argued the existence of
a generalized CLT for random variables correlated in a
specific way [33, 34], called q–independence. Alternative
CLTs, based on a different kind of correlations [36] or on
exchangeability [8], have also been proposed in the liter-
ature. In all these theorems, the (properly centered and
rescaled) sum of N correlated random variable has, in
the N →∞ limit, a q–Gaussian distribution Pq(x),

Pq(x) :=


√

q−1
π

Γ( 1
q−1 )

Γ( 3−q
2q−2 )

e−x
2

q q ∈ (1, 3),

1√
π
e−x

2

q = 1,√
1−q
π

3−q
2

Γ( 3−q
2−2q )

Γ( 1
1−q )

e−x
2

q q ∈ (−∞, 1),

(1)

where q is a real parameter depending on the nature of
the correlations, and the q–exponential function is de-
fined as follows:

exq :=

{
ex q = 1,

[1 + (1− q)x]
1

1−q
+ q 6= 1,

(2)

∗ sicuro@cbpf.com

with [x]+ := x θ(x), θ(x) Heaviside function. In what
follows, we will use also the inverse function of the q–
exponential, the q–logarithm, defined as

logq(x) :=

{
ln(x) q = 1,
x1−q−1

1−q q 6= 1,
x > 0. (3)

Like Gaussian distributions, q–Gaussians also are ubiq-
uitous in Nature. Indeed, analytical, experimental and
numerical investigations in biology [35], economics [4, 30],
high energy physics [37], anomalous diffusion processes
[1, 31], dynamics of many-body classical Hamiltonian sys-
tems [2, 5, 14, 18], cold atoms [6, 15, 16], dissipative and
conservative low dimensional maps [25, 26], turbulence
[3] among others1, have shown that q–Gaussian distribu-
tions appear in the probabilistic analysis of many systems
in which long–range interactions are present, or ergodic-
ity lacks. These evidences strongly support the existence
of a generalized CLT involving q–Gaussians.

To investigate the conditions under which such a gen-
eralized CLT holds, analytically solvable probabilistic
models yielding q–Gaussian limiting distributions are of
paramount importance. In particular, in [20] a proba-
bilistic model for N correlated binary random variables
was introduced, generalizing the celebrated Leibniz tri-
angle [19]. The proposed model preserves the scale–
invariance property (see Ref. [20] and below for a defi-
nition) of the Leibniz triangle and it can be rigorously
proved that this model has q–Gaussians with q ∈ [0, 1]

1 For a regularly updated bibliography on nonex-
tensive thermostatistics and related topics, see
http://tsallis.cat.cbpf.br/biblio.htm
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as limiting distributions for N → ∞. Subsequently, it
was shown [21, 22] that particular d–dimensional scale–
invariant probabilistic models with d ≥ 1 have, as lim-
iting distributions, Dirichlet distributions for d > 1,
whereas for d = 1 q–Gaussians were obtained. The
ultimate relationship between scale–invariance and q–
Gaussianity, i.e. the appearance of q–Gaussians as proba-
bility distributions for statistical models in the thermody-
namic limit, is not yet completely clear. In Refs. [20, 32]
it was already conjectured that (asymptotic) scale invari-
ance could be possibly a necessary but not sufficient con-
dition, for the emergence of q-Gaussians. Indeed, in [12]
two scale–invariant probabilistic models which are differ-
ent from the one analyzed here, are analytically stud-
ied, showing a limiting distribution different from a q–
Gaussian.

With the aim of shedding further light on this problem,
we address here the robustness under small perturbations
of the general one–parameter family of scale–invariant
probabilistic models introduced in [20]. In particular, we
investigate the stability of the q–Gaussian family in the
space of probability distributions: this property is indeed
fundamental for the existence of a generalized CLT yield-
ing q–Gaussian distributions in Nature. In this context,
exactly solvable probabilistic models are essential tools
for a rigorous study of the type of correlations and the
properties required for such generalized theorem.

We consider two new families of asymptotically scale–
invariant triangles, namely the α–triangles and β–
triangles, which generalize the aforementioned family.
These deformations are based on the introduction of two
classes of real numbers, the α–numbers and β–numbers
respectively, in the same spirit of the Q–numbers, typical
of the Q–deformations of Lie groups and algebras [13].
As we shall see, despite the deformation, the limiting
distributions remain q–Gaussians, but with a value of q
which might depend on the perturbation strength.

To the best of our knowledge, this is the first article ad-
dressing, for specific probabilistic models, the important
problem of the robustness of q–Gaussians as attractors,
a fundamental property involved in the existence of a
generalized CLT.

The aforementioned deformations may be considered
as nontrivial ones, since there is no a priori guarantee
that an arbitrary deformation should preserve the same
q–Gaussian behavior for large values of N . As a coun-
terexample, we introduce and study here an alternative
deformation, that we call γ–deformation, based on the
classical definition of Q–number [13] used in combina-
torics. This deformation does not generically preserve
q–Gaussian forms for the limiting distributions. Since
scale–invariance is violated by the γ–deformation, in con-
trast with the α– and β– ones, a possible conjecture
might emerge on the necessity of (at least asymptotic)
scale-invariance for q–Gaussianity (see also [32]).

II. PRELIMINARIES: LEIBNIZ-LIKE
TRIANGLES AS PROBABILITY MODELS

Let us consider a system with N identical elements,
whose states are characterized by binary variables xi ∈
{0, 1}, i = 1, . . . , N . Let us introduce also the proba-
bility rN,n of having a given configuration {x1, . . . , xN}
with

∑N
i=1 xi = n. The probability pN,n of having any

configuration such that
∑N
i=1 xi = n is obtained taking

into account the proper degeneracy

pN,n :=

(
N

n

)
rN,n. (4)

The set of values rN,n can be organized in a triangle,
in such a way that the element rN,n is the nth element
of the Nth row. We require that the following Leibniz
triangle rule (or scale–invariance property) holds:

rN,n+1 + rN,n = rN−1,n. (5)

The Leibniz triangle r
(1)
N,n [19] can be constructed using

the Leibniz rule and defining r
(1)
N,0 as follows:

r
(1)
N,0 :=

1

N + 1
⇒ r

(1)
N,n =

1(
N
n

) 1

N + 1
. (6)

The N → ∞ limiting distribution is the uniform distri-
bution. Considering instead rN,0 = pN , p ∈ (0, 1), the
N → ∞ limiting distribution is a Gaussian distribution,
being in this case pN,n =

(
N
n

)
pn(1 − p)N−n, i.e., the bi-

nomial distribution.
The aforementioned Leibniz triangle has been general-

ized in [20]: for ν ∈ N,

r
(ν)
N,0 :=

Γ(2ν)Γ(N + ν)

Γ(ν)Γ(N + 2ν)
⇒ r

(ν)
N,n =

r
(1)
N+2(ν−1),n+ν−1

r
(1)
2(ν−1),ν−1

.

(7)
The triangle (6) is recovered as the ν = 1 particular case.
Remarkably, it has been proved [20] that, for N →∞ and
ν = 2, 3, . . . , we have2

p
(ν)
N,n :=

(
N

n

)
r

(ν)
N,n

N�1∼ 2
√
ν − 1

N
Pq1(ν)(x),

x := 2
√
ν − 1

(
n

N
− 1

2

)
, (8)

where Pq1(ν)(x) is a q–Gaussian with q ≡ q1(ν),

q1(ν) = 1− 1

ν − 1
< 1 ; (9)

the subindex 1 will become transparent later on. In the

ν → ∞ limit, r
(ν)
N,0 → 2−N and q1(ν) → 1 as expected

from the CLT.

2 Observe that in
∑N
k=0

(N
k

)
r
(ν)
N,k = 1; this result can be proved

using the identity 1
n+1

(n
k

)−1
=
∫ 1
0 x

k(1 − x)n−kdx and the bi-

nomial theorem.
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III. ASYMPTOTICALLY SCALE–INVARIANT
DEFORMATIONS OF THE GENERALIZED

LEIBNIZ TRIANGLE

In this Section, we introduce two asymptotically scale–
invariant deformations of the probabilistic model ana-
lyzed in [20].

A. The α–numbers and the α–triangles

The basis of our construction is the notion of α–
number.

Definition III.1. Given n ∈ N ∪ 0, and α > 0, α 6= 1,
an α–number is the real number defined as follows:

{n}α := (n+ 1)

(
1− 1− α

1− αn+1

)
=

{
nan(α) n ≥ 1 ,

0 n = 0 ,

(10)
where we have introduced (n ≥ 1)

an(α) :=
n+ 1

n

(
1− 1− α

1− αn+1

)
α→1−−−→ 1 . (11)

The previous definition is such that

{n}1 ≡ lim
α→1
{n}α = n , (12)

so in the α→ 1 limit we recover the ordinary numbers.
The following is a generalization of the factorial of a

natural number.

Definition III.2. Given n ∈ N ∪ 0, we shall call α–
factorial the number defined as

{0}α! := 1 and {n}α! :=

n∏
k=1

{k}α = n!

n∏
k=1

ak(α), n ∈ N.

(13)

The ordinary factorial is recovered in the α→ 1 limit,
{n}1! ≡ limα→1{n}α! = n!. We define now an extension
of the binomial coefficients.

Definition III.3. Given the nonnegative integers N and
n ≤ N , the α–binomial coefficient is defined as{

N
n

}
α

:=
{N}α!

{n}α!{N − n}α!

=

{
1 if n = 0 or n = N,(
N
n

)∏N−n
k=1

ak+n(α)
ak(α) 1 ≤ n ≤ N − 1.

(14)

The α–binomial coefficients share with the Pascal co-
efficients the property {Nn }α =

{
N

N−n
}
α

, ∀α. Again, we
recover the ordinary binomial coefficients in the α → 1
limit. In the same fashion as the Pascal triangle, the α–
binomial coefficients can be displayed forming a Pascal
α–triangle:

1

1 1

1 1

1 1

3(1+α)2

2(1+α+α2)

2+ 2α
1+α2 2+ 2α

1+α2

1 1

N = 0

N = 1

N = 2

N = 3

{
N
n

}
α

a. Deformation of the Leibniz–like triangles using the
α–numbers We want now to deform the family of tri-
angles obtained in [20] using the aforementioned α–
numbers. Let us start introducing the Leibniz–like α–
triangle as

r
(1)
N,n,α :=

1

{N + 1}α {Nn }α
, n = 0, . . . , N, (15)

which is related to the original Leibniz triangle as

r
(1)
N,n,α = µ

(1)
N,n,αr

(1)
N,n, (16)

with

µ
(1)
N,n,α :=

1 for N = 0,
1

aN+1(α)
for N > 0 and n = 0 or n = N ,∏N−n

k=1
ak(α)
ak+n(α)

aN+1(α)
for N > 0 and n = 1, . . . , N − 1.

(17)

In addition, limα→1 µ
(1)
N,n,α = 1. As an illustration, the

α = 1
2 instance of family (15) is given by

3
2

7
9

7
9

15
28

5
18

15
28

31
75

31
210

31
210

31
75

21
62

7
75

9
140

7
75

21
62

N = 0

N = 1

N = 2

N = 3

N = 4

r (1)
N,n, 1

2

The product of the Leibniz α–triangle by the Pascal
triangle (which takes into account the degeneracies) does
not generically yield a set of probabilities, since

N∑
n=0

(
N

n

)
r

(1)
N,n,α 6= 1.
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Nevertheless we can circumvent this difficulty by prop-
erly renormalizing the triangle to get a new one with
coefficients

r̂
(1)
N,n,α :=

r
(1)
N,n,α∑N

k=0

(
N
k

)
r

(1)
N,k,α

, (18)

and associated probabilities

p̂
(1)
N,n,α :=

(
N

n

)
r̂

(1)
N,n,α. (19)

The normalized Leibniz α–triangle for α = 1
2 looks like

1

1
2

1
2

27
82

7
41

27
82

7
29

5
58

5
58

7
29

11025
58909

3038
58909

4185
117818

3038
58909

11025
58909

N = 0

N = 1

N = 2

N = 3

N = 4

r̂ (1)
N,n, 1

2

Following Ref. [20], we can define a two–parametric
family of triangles from the Leibniz α–triangle (15) for
α > 0 and ν ∈ N:

r
(ν)
N,n,α :=

r
(1)
N+2(ν−1),n+ν−1,α

r
(1)
2(ν−1),ν−1,α

= µ
(ν)
N,n,αr

(ν)
N,n, (20)

where, for ν > 1, we have3

µ
(ν)
N,n,α :=

a2ν−1(α)

aN+2ν−1(α)

N−n+ν−1∏
k=1

ak(α)

ak+n+ν−1(α)

ν−1∏
k=1

ak+ν−1(α)

ak(α)

=
a2ν−1(α)(α− 1)

(
αN+2ν − 1

)
α(αN−n+ν − 1)(αn+ν − 1)

·

· (N − n+ ν)(n+ ν)

N + 2ν

ν−1∏
k=1

ak+ν−1(α)

ak(α)
. (22)

As before, normalization is needed to obtain the family

r̂
(ν)
N,n,α :=

r
(ν)
N,n,α∑N

k=0

(
N
k

)
r

(ν)
N,k,α

, (23)

3 To obtain Eq. (22) we used the following identities for K ∈ N
and a, b ∈ R+:∏K
k=1

k+a+1
k+a

= 1+a+K
1+a

,
∏K
k=1

(
1− 1−a

1−ak+b

)
= ab+K−aK

ab+K−1
.

(21)

with associated probabilities

p̂
(ν)
N,n,α :=

(
N

n

)
r̂

(ν)
N,n,α (24)

trivially satisfying
∑N
n=0 p̂

(ν)
N,n,α = 1.

Observe that triangle (23) does not generically fulfill
the scale–invariance condition (5). Nevertheless, it is
asymptotically scale–invariant, i.e.,

lim
N→∞

n
N≡η fixed

r̂
(ν)
N−1,n,α

r̂
(ν)
N,n,α + r̂

(ν)
N,n+1,α

= 1. (25)

This follows from the fact that the normalization∑N
n=0

(
N
n

)
r

(ν)
N,n,α has a power–law scaling behavior (as we

will see later by evaluating
(
N
n

)
r

(ν)
N,n,β for large N), and

from the limit

r
(1)
N−1+2(ν−1),n+ν−1,α

r
(1)
N+2(ν−1),n+ν−1,α + r

(1)
N+2(ν−1),n+ν,α

N→∞−−−−→ 1, (26)

obtained using the limit aN
N→∞−−−−→ min{1, α}.

b. A theorem on the robustness of Leibniz–like α–
triangles In this Section, we prove that the family of
deformed triangles (23) still possesses a q–Gaussian as
limiting distribution for N → ∞, after proper centering
and rescaling. However, the limiting value of q is different
from q1(ν), although not dependent on α.

Theorem III.1. The family of triangles (20) with ν ∈
(1,+∞) and α ∈ R+ \ {0} satisfies the property

N

2
√
ν − δα,1

p̂
(ν)
N,n,α

N�1∼ Pqα(ν)(x), (27)

where we have introduced the properly centered and
rescaled variable

x := 2
√
ν − δα,1

(
n

N
− 1

2

)
. (28)

In Eq. (27), Pqα(ν)(x) is a q–Gaussian with

qα(ν) := 1− 1

ν − δα,1
=

{
1− 1

ν for α 6= 1,

1− 1
ν−1 for α = 1.

(29)

See Appendix A for the proof.

In Fig. 1 we plot some numerical results both for p̂
(ν)
N,n,α

and for the q–logarithm

w(ν)
α (x) := logqα(ν)

Pqα(ν)(x)

Pqα(ν)(0)
= −x2, (30)

comparing with the theoretical predictions. Observe that
the following relation between qα(ν) and q1(ν) holds:

1

1− qα(ν)
=

1

1− q1(ν)
+ 1. (31)



5

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

×10−4

n
N

p̂(2
)

N
,n
,α

α = 1
3

α = 2
3

α = 1
α = 2
α = 3

0 1 2

−2

−1.5

−1

−0.5

0

x2

w
(2)
α

FIG. 1: Probability distributions (24) and w
(ν)
α (x) := logqα(ν)

Pqα(ν)(x)

Pqα(ν)(0) for ν = 2, N = 104 and different values of α;

the derived asymptotic behavior is also depicted as continuous line for α 6= 1. The corresponding values of qα(2) are
given by Eq. (29).

c. Entropy Let us now focus on which entropic func-
tional is extensive for the above model. A natural candi-
date is in principle the nonadditive entropy [27]

S(ν,α)
qent

:=
1−

∑N
n=0

(
N
n

) (
r̂

(ν)
N,n,α

)qent
1− qent

. (32)

Using a generalized entropic form [9, 23, 24], including
the nonadditive entropy as particular case, in [10] it has
been shown that for a wide class of triangles, the number
of microstates Ω, as a function of the system size N , in-
creases according to the law Ω(N) = 2N . This leads to a
scenario in which the only possible value of qent making
the entropy (32) extensive for α = 1 is qent = 1, which
corresponds to the Boltzmann–Gibbs entropy. Similar
arguments, based on the Laplace–de Finetti theorem,
also yield qent = 1 [11].

The same kind of reasoning of [10, 11] applies for the
class of models we address here, and, therefore, also here
we expect qent = 1. This has been confirmed by a numer-
ical analysis. In Fig. 2, the q–entropy (32) is plotted as
a function of N for the particular case ν = 2 and α = 1

2 .
In agreement with the above, we find that the value of

qent which makes the entropy S
(ν,α)
qent extensive is indeed

qent = 1.

B. The β–numbers and the β–triangles

Let us consider another deformation of the generalized
Leibniz triangles introduced in Section II.

Definition III.4. Given n ∈ N∪0, and β > 0, β 6= 1, we

10 15 20 25 30
0

10

20

30

40

N

S
( 2,

1 2

)

q
en

t
qent = 0.8
qent = 0.9
qent = 1.0
qent = 1.1
qent = 1.2

FIG. 2: Values of the S
(2,α)
qent entropy (32) for α = 1

2
versus N for different values of qent.

shall call β–numbers the real numbers defined as follows:

[n]β :=

{
0 if n = 0,

n
(

1− 1−β
1−βn

)
+ 1 ≡ n bn(β) if n ≥ 1,

(33)

where we introduced

bn(β) := 1 +
1

n
− 1− β

1− βn
. (34)

Note that, so defined, the β–numbers are related to
the α–numbers as

[n]β = {n− 1}β + 1. (35)
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It follows that [n]1 := limβ→1[n]β = n, hence the β → 1
limit recovers the ordinary numbers. The β–factorial can
now be defined as

[0]β ! := 1, [n]β ! :=

n∏
k=1

[k]β = n!

n∏
k=1

bk(β), n ≥ 1.

(36)
The factorial number is recovered as [n]1! :=
limβ→1[n]β ! = n!. We can further define the β–binomial
coefficient as[

N
n

]
β

:=
[N ]β !

[n]β ![N − n]β !

=

{
1 if n = 0 or n = N,(
N
n

)∏N−n
k=1

bk+n(β)
bk(β) if 1 ≤ n ≤ N − 1.

(37)

where, as expected, limβ→1 [Nn ]β =
(
N
n

)
.

We can introduce therefore the Leibniz–like β–triangle
as

r
(1)
N,n,β :=

1

[N + 1]β

1

[Nn ]β
, n = 0, . . . , N. (38)

The Leibniz triangle (6) is obtained in the β → 1 limit,

limβ→1 r
(1)
N,n,β ≡ r

(1)
N,n. As before, in order to get a set of

probabilities we have to normalize the triangles, obtain-
ing

r̂
(1)
N,n,β :=

r
(1)
N,n,β∑N

k=0

(
N
k

)
r

(1)
N,k,β

, (39)

whose associated probabilities

p̂
(1)
N,n,β :=

(
N

n

)
r̂

(1)
N,n,β (40)

satisfy by construction the normalization condition∑N
n=0 p̂

(1)
N,n,β = 1.

We will now generalize the Leibniz β–triangle by prop-
erly substracting subtriangles of it. In analogy with
the previous deformation, let us now introduce a two–
parameter family of triangles

r
(ν)
N,n,β :=

r
(1)
N+2(ν−1),n+ν−1,β

r
(1)
2(ν−1),ν−1,β

≡ µ(ν)
N,n,βr

(ν)
N,n, (41)

where ν ∈ N and

µ
(ν)
N,n,β :=

b2ν−1(β)

bN+2ν−1(β)

ν−1∏
k=1

bk+ν−1(β)

bk(β)

N−n+ν−1∏
k=1

bk(β)

bk+n+ν−1(β)
.

(42)
The β → 1 limit of the two–parameters family of triangles

(41) yields the undeformed family (7), limβ→1 r
(ν)
N,n,β ≡

r
(ν)
N,n. After the needed normalization, we obtain the fam-

ily r̂
(ν)
N,n,β and the corresponding probabilities

r̂
(ν)
N,n,β :=

r
(ν)
N,n,β∑N

k=0

(
N
k

)
r

(ν)
N,k,β

, (43a)

p̂
(ν)
N,n,β :=

(
N

n

)
r̂

(ν)
N,n,β . (43b)

It can be proved that the triangle (43a) is asymptotically
scale–invariant,

lim
N→∞

n
N≡η fixed

r̂
(ν)
N−1,n,β

r̂
(ν)
N,n,β + r̂

(ν)
N,n+1,β

= 1. (44)

The β–numbers appear as a variation of α–numbers
and, moreover, they have the same asymptotic behavior,

limn→∞
[n]α
{n}α = 1. Therefore, it could be expected that

the behavior of p̂
(ν)
N,n,α is the same of p̂

(ν)
N,n,β for N →

∞ with respect to the parameters of the deformation.
However this is true only when we consider values of the
parameters greater than one. Indeed, for β–triangles, the
following theorem holds:

Theorem III.2. The family of triangles (43) with ν ∈ N
and β > 0 satisfies the property

N

2
√
ν − χ(β)

p̂
(ν)
N,n,β

N�1∼ Pqβ(ν)(x), (45)

where we have introduced the function

χ(β) := 1+δβ,1−max

{
1,

1

β

}
=


0 for β > 1,

1 for β = 1,

1− 1
β for 0 < β < 1,

(46)
and the properly centered and rescaled variable

x := 2
√
ν − χ(β)

(
n

N
− 1

2

)
. (47)

In Eq. (45), Pqβ(ν)(x) is a q–Gaussian with

qβ(ν) = 1− 1

ν − χ(β)
=


1− 1

ν for β > 1,

1− 1
ν−1 for β = 1,

1− β
βν+1−β for 0 < β < 1.

(48)

See Appendix B for the proof.

In Fig. 3 we present some numerical results for β–
triangles for different values of β. We plot also

w
(ν)
β (x) := logqβ(ν)

Pqβ(ν)(x)

Pqβ(ν)(0)
(49)

for ν = 2 and different values of β.
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FIG. 3: Probability distributions (43b) and w
(ν)
β (x) := logqβ(ν)

Pqβ(ν)(x)

Pqβ(ν)(0) for ν = 2, N = 104 and different values of β;

the derived asymptotic behavior is also depicted as continuous line for each value of β: for the sake of clarity not all
data are plotted. The corresponding values of qβ(2) are given by Eq. (48).

Observe that qα(ν) = qβ(ν) when α > 1 and β > 1;
moreover we can write the following relation between the
limiting value qβ(ν) for the deformed triangles (β 6= 1)
and the limiting value q1(ν) for the undeformed triangle:

1

1− qβ(ν)
=

1

1− q1(ν)
+ 1− χ(β). (50)

In particular

lim
β→1±

1

1− qβ(ν)
=

1

1− q1(ν)
+ 1. (51)

Eq. (50) can be written, for β 6= 1, as

min{β, 1}
1− qβ(ν)

=
min{β, 1}
1− q1(ν)

+ 1. (52)

Finally, following the same arguments adopted for the
α–triangles, it can be easily verified that also in this case
we have qent = 1.

IV. A NON ASYMPTOTICALLY
SCALE–INVARIANT DEFORMATION

Inspired by the Q–calculus [13], we shall consider an
alternative deformation of the Leibniz triangle based on
the so called Q–numbers, defined as:

JnKγ :=
1− γn

1− γ
, γ ∈ (0,∞) \ {1}, (53)

where we have used the notations γ and JnKγ instead of
the usual ones in order to avoid confusion with the en-
tropic index q in nonextensive statistical mechanics and

the previously introduced α–numbers and β–numbers.
For this reason, in the remainder of the paper we will
refer to the Q–numbers as the γ–numbers.

Note that γ–numbers (53), α–numbers (10) and β–
numbers (33) are related as follows:

[n]γ = {n− 1}γ + 1 = n

(
1− 1

JnKγ

)
+ 1. (54)

In the limit γ → 1 the γ–numbers reduce to the ordinary
numbers, limγ→1[[n]]γ = n. Moreover, a γ–factorial can
be defined as

J0Kγ ! := 1, JnKγ ! :=

n∏
k=1

JkKγ , lim
γ→1

JnKγ ! = n!, n ≥ 1,

(55)
as well as the standard Gauss binomial coefficients

s
N
n

{

γ

:=
JNKγ !

JnKγ !JN − nKγ !

=

{
1 if n = 0 or n = N ,∏N−n
k=1

1−γk+n
1−γk if 0 < n < N,

(56)

with limγ→1 JNn Kγ =
(
N
n

)
. The Gauss binomial coeffi-

cients can be arranged in a Pascal γ–triangle:
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1

1 1

1 1

1 1

1 + γ

1+γ+γ2 1+γ+γ2

1 1

N = 0

N = 1

N = 2

N = 3

�

N
n

�

γ

which reduces to the Pascal triangle for γ → 1. We define
the Leibniz–like γ–triangle as:

r
(1)
N,n,γ :=

1

JN + 1Kγ
1

JNn Kγ
, (57)

with corresponding normalized triangle

r̂
(1)
N,n,γ :=

r
(1)
N,n,γ∑N

k=0

(
N
k

)
r

(1)
N,k,γ

, (58)

and associated probabilities

p̂
(1)
N,n,γ :=

(
N

n

)
r̂

(1)
N,n,γ . (59)

In the limit γ → 1, triangles (57) and (58) reduce to the
Leibniz triangle.

Proceeding as in the previous Section, we can introduce
the family

r
(ν)
N,n,γ :=

r
(1)
N+2(ν−1),n+ν−1,γ

r
(1)
2(ν−1),ν−1,γ

, (60)

deformation of the family (7), and the corresponding nor-
malized version and its associated probability

r̂
(ν)
N,n,γ :=

r
(ν)
N,n,γ∑N

k=0

(
N
k

)
r

(ν)
N,k,γ

, (61a)

p̂
(ν)
N,n,γ :=

(
N

n

)
r̂

(ν)
N,n,γ . (61b)

Remarkably, the γ–triangles (61a) are neither strictly nor
asymptotically scale–invariant since

lim
N→∞

n
N≡η fixed

r̂
(ν)
N−1,n,γ

r̂
(ν)
N,n,γ + r̂

(ν)
N,n+1,γ

=

{
1
2 for γ < 1,

0 for γ > 1.
(62)

In addition, probabilities (59) do not approach q–
Gaussians with q 6= 1, as limiting distributions for large
values of N .

Indeed, let us start from γ ∈ (0, 1): for N � 1, ν > 1
and n

N ≡ η fixed. Then

r
(ν)
N,n,γ =

1

r
(1)
2(ν−1),ν−1,γ

1− γ
1− γN+2ν−1

·

·
N(1−η)+ν−1∏

k=1

1− γk

1− γk+Nη+ν−1

∼
(1− γ)

∏∞
k=1

(
1− γk

)
r

(1)
2(ν−1),ν−1,γ

∼ O(1). (63)

The relevant contribution in the probability distribution
shape is therefore simply given by the binomial coeffi-
cient, and therefore, for N � 1, we recover the Gaussian
distribution (see Fig. 4a) for all values of γ ∈ (0, 1):

p̂
(ν)
N,n,γ

N�1∼
√

2

πN
e−2N(η− 1

2 )
2

. (64)

For γ > 1 we can evaluate the asymptotic distribution
as well. We can write

1

p̂
(ν)
N,n,γ

=
1(
N
n

) N∑
k=0

hk(n,N ; γ) , (65)

where

hk(n,N ; γ) :=


(
N
k

)∏k−n
j=1

1−γn+ν−1+j

1−γN−k+ν−1+j for k > n,(
N
n

)
for k = n,(

N
k

)∏n−k
j=1

1−γN−n+ν−1+j

1−γk+ν−1+j for k < n.

(66)
For N � 1, n

N ≡ η, and denoting by k
N ≡ κ, we have

that

hNκ(Nη,N ; γ) ∼
(
N
Nκ

)
γN

2(η−κ)(1−η−κ). (67)

It is easily seen that the quantity
∑
Nκ

hNκ
(Nn)

can be finite

only for η = 0 or η = 1, otherwise at least one of its

addends diverges and p̂
(ν)
N,n,γ

N→∞−−−−→ 0, n = 1, . . . , N − 1.

Finally we get (see Fig. 4b for a numerical comparison)

p̂
(ν)
N,n,γ

N�1∼ δn,0 + δn,N
2

. (68)

V. FINAL REMARKS

We introduced three deformations — the α–, the β–
and the γ–triangles — of the family of triangles pro-
posed in [20], in order to analyze the robustness of the
q–Gaussian family as attractors. Each one of the three
proposed deformations depends on a single parameter in
such a way that the undeformed family is recovered when
the value of that parameter equals 1. We observed that,
in all considered cases, the limiting distribution changes
abruptly with respect to the undeformed case when a



9

−6 −4 −2 0 2 4 610−24

10−18

10−12

10−6

100

1√
N

(
n − N

2

)

√ N
p̂(2

)
N
,n
,γ
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FIG. 4: Numerical results for γ–triangles.
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(a) Function qα(2) and its discontinuity for α = 1,
see Eq. (29).
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(b) Function qβ(2) and its discontinuity for β = 1,
see Eq. (48).

FIG. 5: Functions qα(ν) and qβ(ν) evaluated for ν = 2 and different values of α and β respectively.

deformed triangle is considered. Moreover, asymptot-
ically equivalent deformations of natural numbers (the
α–deformation and the β–deformation) exhibit different
limiting behaviors, thus illustrating the high sensitivity
of the limiting distribution with respect to the exact form
of the deformation. However, for the considered asymp-
totically scale–invariant deformations, the limiting dis-
tribution of the deformed triangles is still a q–Gaussian,
with a different value of q generically depending on the
parameter of the deformation. Moreover, a discontinuity
appears in q as function of the parameters α, β of the
deformations, in correspondence of the undeformed case
α = β = 1 (see Fig. 5). In particular

lim
α→1

1

1− qα(ν)
= lim
β→1

1

1− qβ(ν)
=

1

1− q1(ν)
+ 1. (69)

Remarkably, this discontinuity appears when we switch
from a scale–invariant triangle to an asymptotically
scale–invariant triangle. For β–triangles, and similarly
for α–triangles, this discontinuity expresses the fact that

lim
β→1

lim
N→∞

Np̂
(ν)
N,n,β 6= lim

N→∞
lim
β→1

Np̂
(ν)
N,n,β . (70)

To exemplify this, let us introduce the following function:

∆
(ν)
N (β) :=

√√√√N

N∑
n=0

∣∣∣p̂(ν)
N,n,β − p

(ν)
N,n

∣∣∣2. (71)

The quantity ∆
(ν)
N (β) is defined in such a way that, for

N → ∞, it remains finite. Indeed, Np̂
(ν)
N,n,β = O(1) in

the N →∞ limit, and therefore
∑N
n=0 |p̂

(ν)
N,n,β−p

(ν)
N,n|2 =
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FIG. 6: Values of ∆
(ν)
N (β) for ν = 2 and different values

of N : the limiting function limN→∞∆
(2)
N (β) is also

represented, including its discontinuity for β = 1.

O
(

1
N

)
. In Fig. (6) it can be seen that the convergence

of ∆
(ν)
N (β) to ∆

(ν)
∞ (β) := limN→∞∆

(ν)
N (β) is not uniform

and that a discontinuity for β = 1 appears in the N →∞
limit.

The α–triangle is strictly stable under the action of the
α–deformation for α 6= 1, whereas a dependence of the
limiting value of q on β (for β < 1) appears when the
β–deformation is considered, although the limiting dis-
tribution is still a q–Gaussian (Marsh et al. [17] analyzed
a probabilistic model in which qent has a similar behav-
ior with respect to a certain parameter of the model).
The structure of relations (31) and (52) is quite com-
mon in the literature: it has been observed, indeed, that
for many systems characterized by a set of values of q,
{qm}m∈M , M := {0, 1, . . . } ⊆ Z, a permutation of the
indices m can be found such that ∀m ∈M and ᾱ ∈ (0, 2]
[29]

ᾱ

1− qm
=

ᾱ

1− q0
+m. (72)

Finally, using the γ–deformation, that is not an asymp-
totically scale–invariant deformation, for γ > 1 we ob-
tain a limiting distribution that is not a q–Gaussian dis-
tribution, and for γ < 1 we always obtain a Gaussian.
This fact suggests that the (asymptotic) scale–invariance
property plays a central role in the robustness of the
set of q–Gaussian distributions as limiting distributions.
More specifically, the set of q–Gaussians appears to be ro-
bust under asymptotically scale–invariant deformations.
It may be interesting to investigate further the role of
asymptotically scale–invariant deformations in the sta-
bility of the q–Gaussian limiting distributions, to prop-
erly identify the conditions under which the basin of q–
Gaussians is an attractor for these probabilistic models.
This line of research could ultimately provide a deeper
understanding of why there are so many q–Gaussians and
q–exponentials in Nature.
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Appendix A: Asymptotic behavior of α–triangles

In this Appendix we prove Theorem III.1 on the
asymptotic distribution of α–triangles. We restate the
theorem here for the reader’s convenience.

Theorem. The family of triangles (20) with ν ∈
(1,+∞) and α ∈ R+ \ {0} satisfies the property

N

2
√
ν − δα,1

p̂
(ν)
N,n,α

N�1∼ Pqα(ν)(x), (A1)

where we have introduced the properly centered and
rescaled variable

x := 2
√
ν − δα,1

(
n

N
− 1

2

)
. (A2)

In Eq. (A1), Pqα(ν)(x) is a q–Gaussian with

qα(ν) := 1− 1

ν − δα,1
=

{
1− 1

ν for α 6= 1,

1− 1
ν−1 for α = 1.

(A3)

Proof. The strategy of the first part of the proof consists
in a generalization of the argument in [20]. We want to
evaluate the asymptotic behavior, for N � 1, of(

N

n

)
r

(ν)
N,n,α (A4)

with η := n
N fixed. Let us firstly observe that

r
(ν)
N,0 =

Γ(2ν)Γ(N + ν)

Γ(ν)Γ(N + 2ν)
=

Γ(2ν)

Γ2(ν)

∞∑
k=0

(1− ν)k
k!(N + ν + k)

,

(A5)
where we used the formula for the beta function4

B(a, b) :=
Γ(a)Γ(b)

Γ(a+ b)
=

1∫
0

ta−1(1−t)b−1dt =

∞∑
k=0

(1− b)k
k!(a+ k)

,

(A6)

4 This formula can be obtained using the Newton’s generalized bi-
nomial theorem on the expression B(a, b) :=

∫ 1
0 t

a−1(1− t)b−1dt.
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and (a)k := a(a+ 1) . . . (a+ k− 1) is the rising factorial.
The previous formula allows us to write down a general

expression for the element r
(ν)
N,n as follows:

r
(ν)
N,n =

n∑
i=0

(−1)n−i
(
n

i

)
r

(ν)
N−i,0

=
Γ(2ν)

Γ2(ν)

n∑
i=0

∞∑
k=0

(−1)n−i(1− ν)k
k!

(
n

i

)
1

N + ν − i+ k
.

(A7)

To evaluate the large N behavior, we use the saddle point
approximation,

n∑
i=0

(−1)n−i
(
n

i

)
1

N + ν − i+ k

=

∞∫
0

(
eξ − 1

)n
e−(N+ν+k)ξdξ

∼
√

2π

N
(1− η)

ν+k+N(1−η)− 1
2 ηNη+ 1

2 , (A8)

where η := n
N . Inserting the previous term in the com-

plete expression we have

r
(ν)
N,n ∼

Γ(2ν)

Γ2(ν)

√
2π

N
(1− η)

ν+N(1−η)− 1
2 ην+Nη− 1

2 (A9)

Moreover, using the Stirling formula,

N

(
N

n

)
N�1∼

√
N

2π
(1− η)−N(1−η)− 1

2 η−Nη−
1
2

⇒ N

(
N

n

)
r

(ν)
N,n

N�1∼ Γ(2ν)

Γ2(ν)
[(1− η) η]

ν−1
. (A10)

To complete the proof, we only need to evaluate the

asymptotic behavior of µ
(ν)
N,n,α for large N at fixed η.

Obviously, limα→1 µ
(ν)
N,n,α = 1. For α 6= 1 we have that,

by direct computation on the expression (22)

µ
(ν)
N,n,α

N�1∼Nη(1− η) (A11)

up to a multiplicative constant depending on α and
ν. The thesis follows straightforwardly after a proper
change of variable, η 7→ x

2
√
ν−δα,1

+ 1
2 , and normaliza-

tion. Observe also that the thesis holds for all real values
ν > 1.

Appendix B: Asymptotic behavior of β–triangles

In this Appendix we prove Theorem III.2 on the
asymptotic distribution of β–triangles. We restate the
theorem here for the reader’s convenience.

Theorem. The family of triangles (43b) with ν ∈ N and
β > 0 satisfies the property

N

2
√
ν − χ(β)

p̂
(ν)
N,n,β

N�1∼ Pqβ(ν)(x), (B1)

where we have introduced the function

χ(β) := 1+δβ,1−max

{
1,

1

β

}
=


0 for β > 1,

1 for β = 1,

1− 1
β for 0 < β < 1,

(B2)
and the properly centered and rescaled variable

x := 2
√
ν − χ(β)

(
n

N
− 1

2

)
. (B3)

In Eq. (B1), Pqβ(ν)(x) is a q–Gaussian with

qβ(ν) = 1− 1

ν − χ(β)
=


1− 1

ν for β > 1,

1− 1
ν−1 for β = 1,

1− β
βν+1−β for 0 < β < 1.

(B4)

Proof. The proof of the Theorem strictly follows the
proof of Theorem III.1 in A, the only difference being

the evaluation of the asymptotic behavior of the µ
(ν)
N,n,β

coefficient for large N at fixed n
N .

For β = 1, we have simply µ
(ν)
N,n,1 = 1 so there is

nothing to do.
For β 6= 1 and ν = 2, 3, . . . , denoting N −n =: Nη, we

can write

µ
(ν)
N,n,β =

ν−1∏
k=0

bk+ν(β)

∏Nη−1
k=0 bk+ν(β)∏Nη−1+ν

k=0 bk+ν+N(1−η)(β)
. (B5)

Observe that the first product

B0 :=

ν−1∏
k=0

bk+ν(β) (B6)

is only a global factor not depending on N,n. We need
to perform our asymptotic analysis only on the fraction∏Nη−1

k=0 bk+ν(β)∏Nη−1+ν
k=0 bk+ν+N(1−η)(β)

. (B7)

We distinguish the two cases, 0 < β < 1 and β > 1.
For 0 < β < 1

µ
(ν)
N,n,β

N�1∼B−N
1
β [η(1− η)]

1
β , (B8)

where B− is a certain constant. Indeed we have that the
asymptotic behavior of the denominator of the fraction
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(B7) can be evaluated as

1∏Nη−1+ν
k=0 bk+ν+N(1−η)(β)

∼ 1

βNη+ν

Nη−1+ν∏
k=0

(
1− 1

β

1

k + ν +N(1− η)

)

=
Γ
(
N + 2ν − 1

β

)
βNη+νΓ(N + 2ν)

Γ (N(1− η) + ν)

Γ
(
N(1− η) + ν − 1

β

) ∼ (1− η)
1
β

βNη+ν
.

(B9)

Moreover, we have also

Nη−1∏
k=0

bk+ν(β) =

= βNη
Nη−1∏
k=0

bk+ν(β)

β
= βNη

∞∏
k=1

bk+ν(β)

βb′k+ν(β)
. (B10)

In the previous expression we introduced

b′k+ν(β) :=

{
1 for 1 ≤ k ≤ Nη − 1,
bk+ν(β)

β for k ≥ Nη.
(B11)

In the large N limit we have that

Nη−1∏
k=0

bk+ν(β) = βNη
∞∏
k=1

bk+ν(β)

βb′k+ν(β)

N�1∼βNη
∞∏
k=1

bk+ν(β)

βb′′k+ν(β)
= βNηB1(β)

Nη−1∏
k=1

(
1 +

1

β(k + ν)

)

= B1(β)βNη
Γ(ν)

Γ
(
ν + 1

β

) Γ
(
Nη + ν + 1

β

)
Γ (Nη + ν)

∼ B1(β)B2(β)βNηN
1
β η

1
β , (B12)

where we have introduced

b′′k+ν(β) :=

{
1 for 1 ≤ k ≤ Nη − 1,

1 + 1
β(k+ν) for k ≥ Nη,

(B13)

and the constants5

B1(β) :=

∞∏
k=0

1 + 1
k+ν −

1−β
1−βk+ν

min{β, 1}+ 1
k+ν

, (B14a)

B2(β) :=
Γ(ν)

Γ
(
ν + 1

β

)
e

1
β

. (B14b)

Eq. (B8) follows directly identifying B− ≡ B1(β)B2(β).

For β > 1 we have instead that

µ
(ν)
N,n,β

N�1∼B+Nη(1− η), (B15)

where B+ is a certain constant depending on β. Indeed,
in Eq. (B5) we can write

∏Nη−1
k=0 bk+ν(β)∏Nη−1+ν

k=0 bk+ν+N(1−η)(β)

∼
Nη−1∏
k=0

bk+ν(β)

Nη−1+ν∏
k=0

(
1− 1

k + ν +N(1− η)

)

=
N(1− η) + ν − 1

N + 2ν − 1

Nη−1∏
k=0

bk+ν(β) ∼ (1−η)

Nη−1∏
k=0

bk+ν(β).

(B16)

The remaining product can be written similarly as

Nη−1∏
k=0

bk+ν(β) ∼ B1(β)

Nη−1∏
k=0

(
1 +

1

k + ν

)
∼ B1(β)B2(1)Nη,

(B17)
where we used the definitions (B14). Eq. (B15) follows
directly imposing B+ ≡ B1(β)B2(1).

Summarizing, for β > 0, β 6= 1, up to a global multi-
plicative constant,

µ
(ν)
N,n,β

N�1∼ [Nη(1− η)]
max{1, 1β}−δβ,1 . (B18)

Defining the function χ(β) as in (B2), we have

Nχ(β)

(
N

n

)
r

(ν)
N,n,β

N�1∼ [η(1− η)]
ν−χ(β)

. (B19)

Introducing now the variable

x := 2
√
ν − χ(β)

(
η − 1

2

)
(B20)

and properly normalizing we obtain the thesis.
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