
1

Configuration Mapping Algorithms to Reduce
Energy and Time Reconfiguration Overheads in

Reconfigurable Systems
Juan Antonio Clemente, Member, IEEE, Elena Pérez Ramo, Javier Resano, Daniel Mozos, Member, IEEE,

and Francky Catthoor, Fellow, IEEE

Abstract—In spite of the increasing success of reconfigurable
hardware, the dynamic reconfiguration can introduce important
overheads, both in terms of energy consumption and time,
especially when configurations are fetched from an external
memory. In order to address this problem, this article presents a
configuration memory hierarchy including two on-chip memory
modules with different access time and energy consumption fea-
tures. In addition, we have developed two configuration mapping
algorithms that take advantage of these memories to reduce the
system energy consumption, while increasing its performance.
The first algorithm has been optimized for systems with reduced
dynamic behavior, hence it optimizes the system for each given
set of tasks. The second algorithm targets dynamic systems where
the active tasks change unpredictably. Thus, its objective is also to
decrease the pressure on the on-chip memories to reduce capacity
conflicts. The presented results will demonstrate that, with the
proper management, our configuration memory hierarchy leads
to an energy consumption reduction up to 81% with respect
to fetching the configurations from the external memory, while
keeping the system performance very close to the ideal upper-
bound one.

Index Terms—FPGA, Configuration Energy Consumption,
Configuration Time Overheads, Configuration mapping.

I. INTRODUCTION

RECONFIGURABLE hardware has emerged as a promi-
sing technology that offers a very interesting trade-off

between flexibility, reusability, performance and low power for
embedded systems. Thus, reconfigurable devices (especially
FPGAs) have gained popularity for use in various fields,
such as digital signal processing, aerospace, cryptography,
and computer vision [1], [2], [3]. However, one of its main
drawbacks is that the configuration process that needs to be
carried out prior to a task execution in the device involves

Manuscript received August 23, 2012; revised 05 January, 2013 and
May 28, 2013; accepted June 09, 2013. This work was supported by the
Spanish Ministry of Education, Culture and Sports under grants TIN2009-
09806, AYA2009-13300 and Consolider CSD2007-00050; by the Spanish
Government and European ERDF under grant TIN2010-21291-C02-01; by the
Autonomous Aragon Government and European ESF under grant gaZ: T48
research group; and by HiPEAC under grant HiPEAC-3, FP7/ICT 287759.

J. A. Clemente and D. Mozos are with the Computer Architecture Depart-
ment, Universidad Complutense de Madrid, Madrid 28040, Spain (e-mails:
ja.clemente@fdi.ucm.es, mozos@fis.ucm.es).

E. Pérez Ramo is with the Business Research Department, Telefónica
España, Madrid 28013, Spain (e-mail: elena.perezramo@gmail.com).

J. Resano is with the Computer Engineering Department, Universidad de
Zaragoza, Zaragoza 50015, Spain (e-mail: jresano@unizar.es).

F. Catthoor is with the Katholieke Universiteit Leuven, Department ESAC
- IMEC, Leuven 3000, Flanders, Belgium (e-mail: catthoor@imec.be).

not only important delays in the task execution, but also a
significant additional energy consumption that does not exist
in Application Specific Integrated Circuits (ASICs) [4], [5].

Typically, this configuration process consists of copying the
configuration data of the tasks from an off-chip memory to the
configuration memory of the device, usually using a dedicated
reconfiguration circuitry. However, an important drawback of
this scheme is that loading a configuration from the off-chip
memory involves a high overhead in terms of performance
(typically in the order of hundreds of milliseconds [6]), but
also in terms of energy consumption [7]. This trend has
been observed especially during the last decade [8]. Thus,
at the end of the 20th century, off-chip memory bandwidth
almost doubled every two years, but over the past few years,
this trend has slowed down significantly, which has led to
an increasing gap between off-chip memory bandwidth and
the system computing capabilities. And at the same time,
an on-chip memory access with the current technology costs
approximately 250 times less energy per bit on average than
an off-chip one.

Hence, reducing the energy consumption associated to the
configuration process becomes an issue of great importance in
order to make reconfigurable systems an interesting alternative
to ASICs. A straightforward way to achieve this objective is
to store the configurations in on-chip memories optimized for
low-energy consumption. Most design libraries for embedded
systems offer this kind of memories. For instance, Micron
TechnologyTMprovides memory families designed not only
for low-latency [9], but also for low-power [10]. However,
this lower energy features come at the price of a higher
configuration memory access time, which may further degrade
the performance of the system.

Thus, in order to reduce the energy consumption generated
by the dynamic reconfigurations while still optimizing the
system performance, in this article we propose a configuration
memory hierarchy that combines high speed (HS) and low
energy (LE) modules. This scheme provides fast reconfi-
gurations when they are especially critical for the system
performance, and at the same time, it greatly reduces the
average energy consumption generated by the dynamic recon-
figurations.

In addition, we have developed two configuration mapping
algorithms that take advantage of the special features of this
hierarchy, which adapt very well to different task execution



2

contexts. On the one hand, the first one has been optimized for
systems with only one active task graph, or systems with sev-
eral active task graphs, but where the switch in the execution
from a task graph to another is infrequent. In the remainder
of the paper we will refer to these systems as static systems.
On the other hand, the second algorithm has been optimized
for systems with several active task graph competing for the
resources, following an unpredictable pattern (referred in the
remainder of the article to as dynamic systems).

We have validated our techniques both for fine-grain and
coarse-grain reconfigurable platforms. The presented experi-
mental results will demonstrate that, with the proper ma-
nagement, the proposed algorithms achieve very significant
reductions in the configuration energy consumption and time
penalty generated by the task reconfigurations.

The remainder of this article is structured as follows:
Section II briefly describes the proposed configuration memory
hierarchy. Section III provides an overview of recent works
involving energy consumption minimization on reconfigurable
systems. Section IV describes the architectural model that
has been assumed during the development of the presented
techniques, whereas Sections V and VI describe the proposed
techniques. Section VII compares them by means of a practical
example and Section VIII presents the experimental results.
Finally, Section IX concludes the article.

II. THE PROPOSED CONFIGURATION MEMORY
HIERARCHY

Figure 1.a shows the typical configuration memory hierar-
chy for reconfigurable hardware, which comprises a reconfi-
gurable fabric that stores the configurations of the tasks that
are ready to be executed, plus an off-chip memory where the
remaining configurations are stored.

An interesting enhancement to this scheme that allows to
reduce the energy consumption and that has been introduced
for reconfigurable devices [11] is shown in Figure 1.b. It
consists on adding a smaller on-chip Internal Configuration
Memory between the off-chip memory and the reconfigurable
fabric. This on-chip memory is sometimes called configuration
cache, although normally it is not a real cache, but a SRAM
controlled by software (i.e., a scratchpad). If used properly,
it may drastically improve the performance of the memory
hierarchy, as well as the energy consumption, since it prevents
the system from accessing a high-capacitance off-chip bus
[12]. These on-chip memories are frequently high-speed (HS)
SRAMs. However, unfortunately these memories still generate
an important percentage of the total energy consumption of the
embedded system.

For this reason, most memory vendors have developed
memories with low energy (LE) consumption features for
embedded systems. Nevertheless, the energy savings achieved
always come at a cost of additional delays, which make the
LE memories slower than the HS ones, but still much faster
than an off-chip memory.

Frequently in an embedded system, a few tasks are espe-
cially critical for the performance of the system, and including
additional delays to their execution is not acceptable. Hence

Fig. 1. (a) Typical configuration memory hierarchy for fine-grain devices.
(b) Enhanced memory hierarchy introduced for coarse-grain devices. (c) The
proposed configuration memory hierarchy. In (b) and (c) the Reconfigurable
HW is also connected to the off-chip memory by means of a dedicated
connection, which is not shown in the figure for simplicity

these tasks must be loaded from a HS configuration memory.
In contrast, other tasks are less critical, and a small additional
delay in their execution is completely acceptable. Hence, it
is interesting to take advantage of this flexibility in order to
reduce the energy consumption of the system. This can be
achieved by loading those tasks from a LE memory.

Since designers need both HS and LE features, in this article
we propose to include two different memory modules in the
configuration memory hierarchy: one optimized for HS and
other optimized for LE. Thus, we are potentially providing
both features in the same configuration memory hierarchy. The
goal of this scheme is to reduce the energy consumption of
the system, while maintaining high performance. Figure 1.c
depicts this configuration hierarchy memory scheme.

The proposed scheme presents a new challenge, because it is
necessary to decide where to load each involved configuration
from, the HS memory, the LE one or to fetch it directly from
an external memory. In this work we present an extension of
the approach initially presented in [13] by our research group
with two novel configuration mapping algorithms that tackle
this new challenge by making these decisions automatically
and that adapt to different task execution contexts. In our
previous work [13] we already proposed to include an on-
chip configuration memory layer in order to reduce both the
reconfiguration delays and the energy overheads, presenting
a similar figure as Figure 1. In that article we attempted to
demonstrate the potential benefit of including this memory. To
this end, we assumed that the on-chip configuration memory
was big enough to store all the requested configurations and
we analyzed the benefits both in terms of performance and
energy consumption.

However, this was a simplistic assumption because, in
embedded systems on-chip memory resources are frequently
very constrained. Hence, in this article we assume that the
configurations are stored initially on an off-chip memory, and
that the system includes an intermediate on-chip memory layer
that can store a few configurations. In addition, we propose
two novel techniques to efficiently manage this intermediate
level taking into account its size and the dynamism of the



3

applications. These two approaches are described in greater
detail in Sections V and VI.

III. STATE-OF-THE-ART

Many research groups have developed techniques that can
significantly reduce the reconfiguration time overhead [14]. A
straightforward way to attain this objective is to use partial
reconfiguration, which is supported in many FPGAs. The idea
is to reconfigure only a certain region of the device whereas the
remaining area remains unaltered. This is especially interesting
for multi-tasking systems where several tasks can be executed
simultaneously in the reconfigurable device [15].

Another way to reduce the reconfiguration time overhead is
to develop new architectures. Good examples are multi-context
FPGAs [16], which permit loading a new configuration while
another one is being executed, and especially coarse-grain ones
[17], which feature a reduced configuration memory access
time, but at the cost of reducing their programming flexibility.
The techniques presented in this article can be used both for
FPGAs and coarse-grain devices, and the experimental results
demonstrate that they are useful in both cases.

In embedded systems, applications are frequently repre-
sented as task graphs. Hence another good way to reduce the
reconfiguration time overhead is to overlap the computation
of one or several nodes of the graph with the reconfiguration
of their successors. The idea of prefetching the configurations,
i.e. loading them in advance, was initially proposed in [18].
After that, several schedulers developed for reconfigurable
systems have included their own prefetch technique. Some
relevant examples are [19], where the authors propose a list-
based approach; [20], where the authors propose to add more
reconfiguration controllers to carry out several reconfigurations
in parallel; [21] and [22], where the authors present specific
scheduling techniques to take full advantage of the data-
parallelism of a given application; [23], where the authors
propose a novel prefetch technique based on probabilities; and
[24], where the authors present several algorithms to select
which tasks are assigned to hardware at run-time taking into
account the needs of each application, the available resources,
and the reconfiguration time overheads. Our techniques are
fully compatible with a prefetch technique, and in fact, our
simulation environment includes a scheduler that prefetches
the configurations (this scheduler is described in [25]).

Another popular way to reduce the reconfigurations time
overheads is to compress the configurations in order to reduce
its size. Some relevant techniques are [26] and [27]. With this
approach configurations are fetched faster. However, they have
to be decompressed before writing them in the device, and this
may involve additional execution-time and energy penalties.
To reduce these penalties some authors have proposed to
include specific hardware support to efficiently decompress the
configurations. Again, these techniques are fully compatible
with and complementary to our work.

Some works have focused on optimizing the management
of the memories that store the configurations. Most of them
assume that the memory hierarchy for configurations includes
two levels: an external memory and the reconfigurable device.

The focus of these works is to manage the latter trying to
reduce the number of reconfigurations needed by applying
replacement techniques that maximize the configuration reuse.
The first work that proposed a replacement technique for
FPGAs was [28]; [25] is another interesting approach that
proposes a replacement technique that interacts with a task
scheduler in order to reduce the reconfiguration time overhead;
[29] is an interesting article that analyzes the relationship
between several scheduling algorithms and their impact on
the number of reconfigurations required to execute a set of
hardware tasks. In addition, it proposes three new hardware
scheduling algorithms with different replacement policies.
Once more, our work is compatible with these techniques,
since we are not addressing the management of the con-
figurations stored in the device, but proposing to add an
additional intermediate level. Hence the management of the
configurations stored in the device is fully complementary to
our work related to this additional level. Compared to our own
earlier work [13] we also present two novel techniques which
are specifically developed to optimize the use of that level.

Two interesting recent articles have analyzed the impact
of loading the configurations at run-time from an external
memory. The experimental results presented in [30] conclude
that the reconfiguration speed is three orders of magnitude
worse than the peak reconfiguration speed of the platform
if a flash memory is used to store the configurations. In
[31] the authors analyze the impact of the reconfigurations
in the performance of the High-Performance Reconfigurable
Computer Cray XD1, which includes one or several FPGAs
and a conventional multiprocessor system. According to their
measurements, loading the configurations from an external
memory is three times slower than the theoretical reconfigura-
tion speed. In these two articles the reason for the additional
reconfiguration delays is the access to the off-chip memory.
Hence, including an on-chip intermediate level that works
as a configuration cache can be a straightforward solution.
However few works have analyzed this option. One of them is
[32], where the authors present a heterogeneous reconfigurable
system that includes several reconfigurable processors. They
also propose to include a configuration memory cache for each
processor, as well as a configuration prefetch approach.

The main focus of all the works mentioned in this section
is to reduce the reconfiguration time overhead. However,
many researchers have pointed out that, in embedded systems,
the energy consumption due to the configuration memory
hierarchy stands for a very important percentage (around 30%)
of the overall energy consumption [33], [34]. And this is
true for fine-grain [35] and coarse-grain [36] architectures,
as long as frequent reconfigurations are demanded. Hence,
reconfigurable systems with energy-efficient reconfigurations
are needed and the reconfiguration energy overhead must be
also taken into account [13].

IV. TARGET ARCHITECTURE

In this work we have adopted the reference hardware archi-
tectural model shown in Figure 2. This architecture is assumed
to be implemented using reconfigurable hardware and, as it



4

Fig. 2. Target architecture

will be explained in the remainder of this section, it includes
the configuration memory hierarchy that was presented in
Section II of this article.

This platform is a microprocessor-based system that con-
tains a set of cores that are connected by means of a Commu-
nication infrastructure, which could be implemented as one
or several buses or as a Network-on-a-Chip (NoC) [37].

The Microprocessor manages the general operation of the
system, and it uses a couple of memories to store the mi-
croprocessor instructions and data, respectively. The system
also contains a set of elementary reconfigurable regions called
Reconfigurable Units (RUs in the figure), which represent the
smallest piece of area that can be dynamically reconfigured at
a time. The functionality of these RUs can be programmed at
run-time through partial reconfiguration, but only one of them
can be reconfigured at a time (this is a realistic assumption for
state-of-the-art commercial reconfigurable devices, since all of
them currently only feature one configuration circuitry). All
the RUs are wrapped with a fixed Interface that provides the
basic operating system (OS) and communication functionality.
With this support, each RU can independently execute a task
(in this work, we assume that only one task is assigned to each
RU). In addition, since they are connected through the same
communication infrastructure, they can communicate with the
other processing elements with similar latencies. Finally, the
system also includes the configuration memory hierarchy that
has been described in Section II. As previously explained, this
hierarchy comprises two on-chip memories (with HS and LE
features, respectively); plus an off-chip configuration memory,
which is external to the reconfigurable hardware.

Such a system can be implemented on last-generation
FPGAs, such as XilinxTMVirtex-7 and Zynq-7000 EPP devices
[38], [39], or AlteraTMones [40], [41], although it is also
suitable for implementation on coarse-grain systems [42]. To
this end, vendors provide specific design tools to develop
custom SoCs. On the one hand, the XilinxTMEDK develop-
ment tool [43] can be used to develop a processor-based
system; for instance, using the Microblaze soft-processor [44]
or the ARM hard-processor [39]. In the latest versions of this
software, several options for the communication infrastructure

are possible: for instance the AMBA Advanced Extensible
Interface (AXI) communication infrastructure [45] can be used
to attach the computational cores, and the LMB bus [46], for
the memories. The RUs can be implemented as peripherals,
and their dynamically partial reconfiguration can be easily
managed by using the Plan Ahead tool [47]. On the other hand,
the AlteraTMQuartus-II software [41] allows the development
of systems based on the Nios R©II soft-processor core [48].

In any case, it is very important to underline that the
configuration mapping algorithms proposed in this article do
not rely on the specific reconfigurable device that is finally
used or the final implementation of the system, as long as it is
compatible with the architectural model requirements depicted
in Figure 2.

V. STATIC CONFIGURATION MAPPING ALGORITHM

This section explains the configuration mapping algorithm
proposed for static systems in greater detail. As mentioned
above, this algorithm has been optimized for the execution of
only one active task graph. It is also possible to deal with more
than one task graph when they are executed always following
the same schedule. For that case, it is enough to merge the
graphs adding some additional edges. Hence, we assume that
one task graph is going to be executed several times without
sharing any resource with others. The system may have to
deal with several task graphs, and switch from one to another
when needed, but in this case we assume that these switches
are not frequent. Hence, the objective of this algorithm is to
optimize the execution of each task graph separately neglecting
the context switch overhead.

This algorithm receives as input a task graph, and obtains
a mapping of its tasks on the proposed configuration memory
hierarchy. It aims at reducing the energy consumption of
the system generated by the dynamic reconfigurations, while
keeping the same performance as if all the tasks of the task
graph were fetched from the HS memory.

It is also important to note that all the computations of this
algorithm (as well as the dynamic one, explained in Section
VI) are carried out at design time. The only computations
proposed in this article that are carried out at run time
belong to the Configuration Replacement Technique, which
is explained in Section V.C.

In our scheme, we consider that the applications are mo-
delled using a two-level hierarchy: on the upper level, appli-
cations are described as a set of tasks graphs interacting among
them dynamically and in a non-deterministic way. The lower
level describes each task-graph as a set of tasks, where each
task is a piece of code with enough entity to be separately
assigned to a reconfigurable unit or processor. This model
only allows a limited dynamic behaviour of applications inside
each task graph. And therefore, the main part of the dynamic
behaviour, and above all the most unpredictable behaviour,
must be kept out of the task graphs. The aim of this division
is to separate the part of the application specification that must
be managed and optimized at design time, from the one that
can be managed at run time. These task graphs are the inputs
of our mapping algorithms.



5

Algorithm 1 shows the pseudo-code of this approach. As
this algorithm indicates, it is divided into three important steps,
which are explained in detail in the next subsections.

A. Step 1: Task-Graph Profiling

The basic idea of this step (Lines 2-12) is to identify which
tasks generate delays due to their reconfiguration since they
are the initial candidates for the HS memory. This step also
characterizes each task with a metric that measures the impact
of its reconfiguration in the execution of the graph. We have
called that metric criticality. Let TG be a task graph, T the
set of tasks of TG, and t a task ∈ TG, the criticality of t is
computed as follows: The criticality of a task t is the difference
between the execution time of TG when all its tasks are fetched
from the external configuration memory, and the execution
time when t is fetched from HS (keeping the remaining tasks
in the external memory). Thus, the more critical a task is, the
more important is to fetch it from an on-chip memory.

In the previous definition, in order to calculate the execution
time of TG in the system, it is necessary to use a task-graph
scheduler that assigns the tasks to the RUs. Any task-graph
scheduler can be used to compute the criticality of the tasks
of TG, as long as it respects two basic rules: (1) only one
task can be assigned per RU and (2) the configurations of the
tasks must be carried out sequentially. In our experiments, we
have used two external schedulers, depending on whether the
involved task graph is executed on fine grain [25] or coarse
grain [42] reconfigurable devices (Section VIII will provide
more details about these two simulation environments).

After computing the criticality of each task (Line 2), an
iterative process identifies which tasks must be assigned to
HS in order to optimize the system performance. Thus, the
tasks are firstly assigned to HS (Line 3) in order to obtain
the ideal optimal mapping for performance (in this step the
capacity of the HS memory is not taken into account, since
this is not the final mapping but a profiling step). Next, the
external task-graph scheduler is invoked in order to obtain a
reference schedule (reference sch, Line 4), which will be used
as a reference during the remainder of the algorithm.

Then, the algorithm looks for a mapping with the same
performance as reference sch, but with the maximum number
of configurations assigned to LE. For this purpose, it firstly
assigns all the tasks of the task graph to LE (Line 5) and
invokes the external scheduler in order to obtain a current
schedule (current sch, Line 6).

Next, both schedules are compared (compare function, Line
7) to identify if any extra penalty has been generated when
the tasks are assigned to LE instead of HS. In this context, the
term penalty is the difference between the execution time of
current sch and reference sch. This term can only be greater
than or equal to zero, since reference sch is used as upper
bound regarding performance. Thus, if penalty is greater than
0, the function returns in the variable task the reconfiguration
that generates the greatest penalty; i.e., the reconfiguration that
introduces the largest delay in the execution of the task graph.

Finally, the while loop (Lines 8-12) iteratively assigns the
selected task to HS instead of LE (Line 9), schedules again

Algorithm 1 The proposed static configuration mapping algo-
rithm
1: for each task graph do

#Step 1: Task-graph profiling
2: compute criticalities ();
3: assign all tasks 2 HS;
4: schedule reconfigurations (&reference sch);
5: assign all tasks 2 LE;
6: schedule reconfigurations (&current sch);
7: compare (reference sch, current sch, &penalty, &task);
8: while (penalty > 0) do
9: assign 2 HS (&task);

10: schedule reconfigurations (&current sch);
11: compare (reference sch, current sch, &penalty, &task);
12: end while;

#Step 2: Move tasks from HS to LE
13: while size (HS tasks) > size(HS) do
14: task = select least critical task (HS tasks);
15: assign 2 LE(task);
16: end while;

#Step 3: Move tasks from LE to HS and the external memory
17: while ((size (LE tasks) > size (LE) and size (HS tasks <

size (HS))) do
18: task = select most critical task (LE tasks);
19: assign 2 HS (task);
20: end while;
21: while (size (LE tasks) > size (LE)) do
22: task = select least critical task (LE tasks);
23: assign 2 EXT (task);
24: end while;
25: end for;

the reconfigurations in order to update current sch (Line 10)
and compare both schedules (Line 11). This loop iterates as
many times as necessary until all the tasks that generate any
penalty when assigned to the LE memory are moved to HS.

This initial step assumes that there is always enough avai-
lable space in the HS and LE memories to store as many
configurations as necessary. However, this assumption is not
valid in most of the cases, since on-chip memories have a very
limited capacity in current reconfigurable devices. Thus, the
next steps of this algorithm refine this initial solution.

B. Step 2: Move Tasks from HS to LE

The objective of this step (Lines 13-16) is to move as many
tasks as necessary from HS to LE until the tasks assigned to
HS do not exceed its capacity. Thus, the while loop iteratively
selects the least critical task initially assigned to HS (Line 14)
and assigns it to LE (Line 15). The idea is to keep in HS the
tasks that generate the greatest time overheads unless they are
fetched from that memory.

C. Step 3: Move Tasks from LE to HS and the External
Memory

Finally, this step (Lines 17-24) moves the exceeding tasks
assigned to LE to HS and to the external memory. For this
purpose, the first while loop checks if the tasks assigned to LE
exceed the capacity of this memory, and if the HS memory is



6

not full (Line 17). If this condition is true, this loop selects
the most critical task from the ones assigned to LE (Line 18)
and assigns it to HS (Line 19). Again, the idea here is to move
to HS those tasks that generate the greatest time overheads.
This process is repeated as many times as necessary until all
the tasks assigned to LE fit in that memory, or no more tasks
can be assigned to HS. Note that this loop is executed only in
case there was some available space in HS after the execution
of the previous step.

Finally, if after the execution of the first while loop, the size
of the tasks assigned to LE is still greater than the capacity of
that memory, the second while loop (Lines 21-24) iteratively
selects the least critical task from LE (Line 22) and assigns
it to the external memory (Line 23). This process is repeated
while all the tasks assigned to LE do not fit in that memory
(Line 21).

As it could be observed along Subsections V.A, V.B and
V.C, the static configuration mapping algorithm takes full
advantage of the capacity of the on-chip modules in order to
achieve important energy savings. However, as the experimen-
tal results will demonstrate, this approach can only achieve
these objectives when only one task graph (or a statically
merged task graph) is active in the platform. When several
task graphs are active in a dynamic fashion, this solution may
not efficient. The reason is that this algorithm assigns the
maximum number of tasks to the on-chip memories, which
may lead to a great number of configuration replacements.
This, in turn, may lead to configuration thrashing problems
where the configurations are stored in the on-chip memories
and replaced before being used again, making the use of
such on-chip memories inefficient. Thus, in order to prevent
this situation we have developed another mapping algorithm,
which exerts less pressure on the on-chip memories. This
algorithm is explained in greater detail in Section VI.

D. Replacement Technique

Since it is likely that the number of configurations assigned
to the on-chip memories exceed the size of these memories,
we need to include a replacement technique that decides which
configuration must be replaced in order to fetch a new one.

For this purpose, we have also developed a replacement
technique that is used both in the configuration static and
dynamic mapping algorithms (the latter is explained in the
next section). This replacement technique is based on the well-
known LRU (Least Recently Used) policy, but it includes a
small modification: a task T of a given task graph TG must
not replace other tasks belonging to TG, unless all the possible
victims belong to TG. Thus, the replacement technique firstly
applies LRU, and if the selected victim belongs to TG, this
process is repeated and the next victim is selected until it
finds a victim from other task graph or no more victims are
available. Note that, if all the possible victims belong to TG,
then one of them is selected simply by using LRU. As the
experimental results will demonstrate, when dealing with task
graphs this policy frequently performs better than LRU. The
reason is that the latter is very sensitive to thrashing problems,
which lead to additional reconfiguration delays and a higher

Algorithm 2 The proposed dynamic configuration mapping
algorithm
1: for each task graph do

#Step 1: Divide the tasks into HS and LE
2: assign all tasks 2 HS;
3: schedule reconfigurations (&reference sch);
4: assign all tasks 2 LE;
5: schedule reconfigurations (&current sch);
6: compare (reference sch, current sch, &penalty, &task);
7: while (penalty > 0 and (size (HS tasks) + size (task) < size

(HS))) do
8: assign 2 HS (task);
9: schedule reconfigurations (&current sch);

10: compare (reference sch, current sch, &penalty, &task);
11: end while;

#Step 2: Refine the previous solution and divide the tasks
into HS, LE and the external memory
12: reference sch = current sch;
13: assign LE tasks 2 EXT;
14: schedule reconfigurations (&current sch);
15: compare (reference sch, current sch, &penalty, &task);
16: while (penalty > 0 and (size (LE tasks) + size (task) < size

(LE))) do
17: assign 2 LE (task);
18: schedule reconfigurations (&current sch);
19: compare (reference sch, current sch, &penalty, &task);
20: end while;
21: end for;

energy consumption, especially for small memories. Indeed, if
a task from the current task graph is replaced, it is very likely
that the system will request to load again that task very soon,
since periodic tasks are very frequent in embedded systems.
Hence it is a good idea to assign more priority to the tasks
from the current task graph.

Finally, note that the computational complexity of this tech-
nique is linear. Thus, the run-time overhead introduced by the
decisions made by this policy is negligible with respect to the
reconfiguration memory access times, which are in the order of
milliseconds (for fine-grain task graphs) or microseconds (for
coarse-grain task graphs), as it will be explained in Sections
VII and VIII.

VI. DYNAMIC CONFIGURATION MAPPING ALGORITHM

The second configuration mapping algorithm that we
present in this article has been designed for dynamic scenarios.
In other words, scenarios where several task graphs can be
active simultaneously, and in which the actual sequence of
task graphs that will be executed at run-time is unknown at
design-time.

Algorithm 2 shows the pseudo-code of this algorithm. The
basic idea is to assign the minimum possible number of
tasks to the on-chip memories, while achieving the same
performance as if all the tasks were assigned to HS. Hence,
this algorithm also attempts to improve the performance (as
our static algorithm does), but once no further performance
improvements can be achieved, our dynamic algorithm stops
assigning more tasks to the on-chip memories in order to re-
duce the pressure exerted on these memories. This is desirable



7

Fig. 3. Execution of the task-graph sequence: MPEG-1 - JPEG - MPEG-1 - JPEG - MPEG-1... in a system with 3 RUs and High-Speed and Low-Energy
memories with a capacity of 3 tasks each, for the proposed static configuration mapping algorithm (a) and the configuration dynamic mapping one (b)

for dynamic systems since if many tasks are assigned to the
on-chip modules, the system may fall into a thrashing problem
with constant task replacements that may lead to an important
performance degradation, and energy penalization.

This algorithm is divided into two steps: The first one (Lines
2-11) assigns as many tasks as necessary to HS (but not a
single one more) in order to meet the temporal constraints
(penalty > 0), and ensuring that the tasks assigned to HS
do not exceed the capacity of that memory (size(HS tasks)
+ size(task) < size (HS)). Thus, at the end of this process,
a number of tasks are mapped to HS (without exceeding its
capacity), while the remaining ones are mapped to LE.

Next, the second step (Lines 12-21) applies again the same
algorithm on the output of the first step, but this time dividing
the tasks previously assigned to LE between LE and the
external memory. For this purpose, it starts considering the
output schedule in the first step as the new reference schedule
(reference sch) (Line 12). Then, it generates a new schedule
assuming that all the configurations that, in the reference
schedule, were fetched from LE memory are now fetched
from the external memory (Lines 13-14). Next, it compares
both schedules (Line 15), in order to identify if any additional
delay has been generated in the new one. If this is true, the
while loop (Lines 16-20) assigns as many tasks as necessary
to LE from the external memory, while the penalty generated
in current sch is greater than zero and these tasks fit in the

LE memory.

VII. STATIC VS. DYNAMIC CONFIGURATION MAPPING
ALGORITHMS: A PRACTICAL EXAMPLE

As previously explained in Section V, our static algorithm
has been designed to take the most advantage of the presented
memory hierarchy. Thus, the amount of tasks assigned to
HS and LE is maximized, thereby minimizing the energy
consumption generated by the reconfigurations, while still
keeping the desired performance.

However, this algorithm only achieves good results in static
scenarios; i.e., when only one task is going to be executed in
the system. In contrast, in dynamic scenarios (i.e., if several
task graphs are active at the same time), the static algorithm
can suffer the configuration thrashing problem, since many
tasks compete for the usage of the on-chip memories. We
have overcome this situation with our dynamic configuration
mapping algorithm (Section VI). In this section we illustrate
this situation by means of a practical example.

The proposed example is depicted in Figure 3. In this case
we are executing the task-graph sequence MPEG-1 - JPEG
- MPEG-1 - JPEG - MPEG-1... in a system with 3 RUs
and a configuration memory hierarchy in which both HS and
LE have a capacity of 3 configurations. In this example we
assume that both memories are initially empty. In addition,
the memory access time is 12, 4 and 6 milliseconds and



8

the energy consumption is 4, 1 and 0.7 energy units for a
task being fetched from the external, HS and LE memories,
respectively. We have obtained these realistic figures from
experimental measurements using CACTI 4.0 [49], a well-
known simulator tool for cache memories that has introduced
in its latest versions different technology models that can be
used to simulate either HS or LE SRAMs.

The upper part of the figure shows the involved task
graphs, along with the execution times (in milliseconds) and
criticalities of their nodes (depicted in the figure as Tex n and
Cr m, respectively). The table shows the mappings obtained
for these task graphs using the static and dynamic algorithms.
Thus, for instance, for MPEG-1, the static algorithm assigns
the configurations of Tasks 1 and 2 to HS since they are the
most critical ones (with a criticality of 8 and 6, respectively),
whereas the remaining ones are assigned to LE. On the
contrary, again for MPEG-1, the dynamic algorithm assigns
the configuration of Task 3 to LE, and those of Tasks 4 and 5
to the external memory. The reason is that fetching only one of
these three tasks to LE suffices to reduce the latency incurred
in the reconfiguration of these three tasks. In this way, this
approach exerts less pressure on the LE memory.

Next, Figures 3.a and 3.b show the execution of the se-
quence MPEG-1 - JPEG - MPEG-1 - JPEG - MPEG-1... using
both configuration mapping algorithms, respectively.

For the execution using the configuration static algorithm
(Figure 3.a), and for the first execution of MPEG-1, all its
tasks are firstly fetched from the external memory since both
HS and LE are initially empty. Consequently, 5 configura-
tion misses occur during this execution. Since our memory
hierarchy behaves as a typical cache, a configuration miss
also involves writing that configuration in the corresponding
memory. Therefore Tasks 1 and 2 are written to HS, and
Tasks 3, 4 and 5, to LE. Note that the writes in the on-
chip memories are carried out at the same time that the
corresponding tasks are sent to the reconfiguration controller.
In other words, each configuration is loaded once, and it is
sent to the on-chip memory and the reconfiguration controller
simultaneously. Hence, storing the configuration in the on-chip
memory does not introduce any additional delay.

Similarly, during the first execution of JPEG, Task 6 is
written to HS and Tasks 7, 8 and 9, to LE. Note that in the
latter case, these tasks replace Tasks 3, 4 and 5 (from MPEG-
1), respectively, since the maximum occupancy of LE is 3.

Next, for the second execution of MPEG-1, Tasks 1 and 2
are fetched directly from HS, since they still remain in that
memory as a consequence of the previous execution of MPEG-
1. Hence their reconfiguration time is drastically reduced from
12 to 4 milliseconds. However, Tasks 3, 4 and 5 have to
be fetched again from the external memory since they were
replaced in LE during the previous execution of JPEG. Hence
their configuration time is again 12 milliseconds and they
consume 4 energy units per memory access. In addition, these
configurations have to be copied again to the LE memory,
which generates an additional energy consumption of 3*0.7 =
2.1 energy units.

In this first case, we can observe that if the system uses

the static algorithm, the execution time of the second instance
of MPEG-1 is 46 milliseconds. In addition, the energy con-
sumption generated by the reconfigurations during the second
execution of MPEG-1 is 16.1 energy units, which correspond
to 2 and 3 tasks being fetched from HS and the external
memory, respectively; and 3 tasks being written to LE.

For subsequent executions of the task graphs JPEG and
MPEG-1 (explained, but not graphically displayed in the figure
for simplicity), the execution times are 83 and 46 milliseconds
respectively, since Tasks 1, 2 and 6 are fetched from HS and
Tasks 7, 8, 9 and 3, 4, 5 are continuously replaced in LE
during the execution of the corresponding task graph (and
hence, fetched from the external memory and also stored in
LE). On the other hand, the energy consumption is 15.1 and
16.1 energy units for JPEG and MPEG-1, respectively.

Finally, Figure 3.b shows the same execution as in Figure
3.a, but this time using the dynamic configuration mapping
algorithm. In this case, only Tasks 4 and 5 (from MPEG-
1) are assigned to LE. This prevents these tasks from being
replaced during the execution of JPEG, which allows to fetch
them from LE every time MPEG-1 is executed. Consequently,
the total execution time of the second instance of MPEG-1 is
reduced by 3 milliseconds (from 46 to 43 milliseconds, which
means a reduction of almost 7%). In addition, fewer memory
transactions are carried out on the configuration memories,
therefore the energy consumption for the second instance of
MPEG-1 is reduced from 16.1 to 10.7 energy units (which
means a reduction of 33.6%).

In this case, for subsequent executions of JPEG and MPEG-
1, the execution times are 83 and 43 milliseconds, respectively,
since Tasks 4 and 5 are always fetched from LE. In addition,
the energy consumption is 13 and 10.7 energy units for these
two task graphs, respectively. This shows that not only the
energy consumption is reduced for MPEG-1, but also for
JPEG; in this case, from 15.1 to 13 energy units (which means
a reduction of 14%).

In this example we have illustrated that in dynamic sce-
narios, the dynamic configuration algorithm achieves better
results than the static one, both in terms of energy consumption
and performance. However, it is also important to point out that
the static algorithm is still more suitable for static scenarios,
since if only one task graph is active, or the configurations of
all the active task graphs fit in the HS and LE memories, the
static algorithm achieves better energy-consumption reductions
(this can easily be seen, for instance, by tuning the size of HS
and LE to 10 configurations each in the example of Figure 3).
We will clearly demonstrate these points with the experimental
results presented in the next section.

VIII. EXPERIMENTAL RESULTS

This section evaluates the two mapping techniques proposed
in this article. For this purpose, we have carried out two
different representative experiments: for static and dynamic
environments, respectively. For each one of them, we have
compared the performance and the energy consumption of
both approaches, for the execution of a set of realistic bench-
marks, extracted from state-of-the-art applications designed for



9

TABLE I
FEATURES OF THE MEMORY MODULES FOR FINE-GRAIN

RECONFIGURABLE SYSTEMS

Memory modules Memory access time
for each configuration

Normalized energy
consumption

On-chip HS 4 ms 1

On-chip LE 6 ms 0,7

External memory 12 ms 4

TABLE II
FEATURES OF THE MEMORY MODULES FOR COARSE-GRAIN

RECONFIGURABLE SYSTEMS

Memory modules Memory access time
for each configuration

Normalized energy
consumption

On-chip HS 6 µs 1

On-chip LE 9 µs 0,7

External memory 18 µs 4

coarse-grain and fine-grain reconfigurable platforms.
Thus, Subsection VIII.A firstly describes the experimen-

tal setup that has been used to obtain the results. Next,
Subsections VIII.B and VIII.C show how the two proposed
approaches behave in static and dynamic environments.

A. Experimental setup

First of all, Tables I and II show the features of our
memory modules, both for fine-grain and coarse-grain devices,
respectively. In both tables, Column 2 shows the memory
access time per configuration for each kind of memory (either
HS, LE or the external one), whereas Column 3 shows their
energy overhead, which in this case has been normalized to a
memory access to a configuration stored in HS.

The data shown in tables I and II are based on the data
obtained with CACTI 4.0 [49]. We did not want to use the
results of this simulator as absolute values, since the actual
features of a memory vary considerably depending on the
technology used. Instead of that, we have used them to obtain
the relationship in the time and energy consumed per memory
access for different representative memories. For that reason,
we have used normalized values for the energy consumption.
For our experiments, we have selected an external memory of
1 MB, and memories HS and LE with a capacity of 64 kB,
since, according to our measurements, these sizes were the
ones that offered the best trade-off between memory capacity,
and energy consumption and memory access time for each
configuration. In this case, the HS module is 50% faster, but
consumes 30% more energy per access than the LE one. In
addition, HS is 3 times faster and 4 times more energy efficient
than the external memory.

Also note that we are assuming that the normalized energy
consumption of the three memories is exactly the same in both
tables; i.e., both for fine-grain and coarse-grain devices.

In order to carry out the experiments presented in the
following subsections, we have integrated our configuration
mapping algorithms into a couple of external simulation en-
vironments. These two platforms are the same schedulers that

were used in our configuration static and dynamic mapping
algorithms (Sections V and VI). Thus, for the experiments
regarding the fine-grain task graphs, we have used our previous
scheduler for reconfigurable systems [25]. On the other hand,
for the experiments regarding the coarse-grain task graphs, we
have used the Configurable and Reconfigurable Instruction Set
Processor scheduler (CRISP) [42].

On the one hand, [25] is a task scheduler for reconfigurable
systems that deals with task graphs. The input of this scheduler
is a sequence of events that triggers the execution of a set of
task-graphs and a description of these tasks, including their
execution time, their reconfiguration latency, and the RUs.
The simulator assigns the tasks to the RUs and schedules their
execution applying some optimization techniques to reduce the
reconfiguration time overhead, such as configuration prefetch
(which attempts to load the configurations in advance), and
configuration reuse, which identifies when a task can be
reused from a previous execution. It also applies an intelligent
mapping algorithm in order to promote the task reuse.

On the other hand, CRISP [42], is an academic simula-
tor that can be used to simulate customized coarse-grained
recongurable instruction set processors. It was designed to
explore the impact of the instruction memory hierarchy on the
coarse-grain processors. In this case the coarse grain processor
is an array of functional units and a configuration is a sequence
of instructions, typically a loop, compiled for that array. Before
executing these instructions they must be loaded on some
specific on-chip memories. This tool allowed us to define a
custom instruction memory hierarchy defining the latencies
and the size of the instruction memories. Then, we were able
to compile and execute C code in order to obtain several
performance metrics.

As it has been explained in the Related Work Section,
these two approaches, as well as the other cited techniques
proposed in the literature, are compatible with the work
that we present in this article since they deal with different
optimization opportunities. Refs. [25] and [42] optimize the
way configurations are loaded on the reconfigurable device,
whereas the algorithms presented in this article optimize the
way configurations are stored on the on-chip configuration
memories.

These two works assume that all the RUs of the system
have the same size. Many other schedulers for reconfigurable
systems [19], [50], [51] work under this assumption since it
simplifies the run-time management of the configurations. For
that reason, the time needed to write or read a configuration on
our memories is constant. However, the techniques presented
in this article could easily be applied to systems with RUs
with different size. In that case, we would only need to add an
additional parameter indicating the size of each configuration,
and to compare this size with the available space in order to
know if a configuration can be loaded in a given memory.

In this work we have used [25] and [42] for practical
reasons; however, any other task-graph schedulers could have
been used at this point as long as they are compatible with
the target architectural model described in Section II.



10

TABLE III
TIME OVERHEAD GENERATED BY THE PROPOSED STATIC AND DYNAMIC CONFIGURATION MAPPING ALGORITHMS, FOR STATIC ENVIRONMENTS

Granularity Task graphs Number
of tasks

Ideal execution
time

External
time penalty

LE time
penalty

HS time
penalty

Generated time
penalty (static &

dynamic)
Fi

ne
G

ra
in MPEG-1 5 37 ms +68% +27% +16% +16%

JPEG 4 79 ms +15% +8% +5% +5%
Hough 6 94 ms +13% +6% +4% +4%

Parallel JPEG 8 54 ms +118% +26% +7% +28%

C
oa

rs
e

G
ra

in

DSP dot prod 3 32 us +71% +28% +19% +19%
DSP vec sumq 2 32 us +56% +28% +19% +19%
DSP q15 tofl 3 5645 us +0.32% +0.23% +0.11% +0.11%
DSP neg 32 3 109 us +18% +8% +8% +8%
DSP min val 3 114 us +18% +8% +8% +8%
DSP dotp sqr 3 32 us +70% +28% +28% +28%
DSP blkmove 3 109 us +18% +8% +8% +8%

Average +37.55% +15.91% +11.09% +13%

B. Static vs. Dynamic Mapping Algorithms in Static Environ-
ments

In a first set of experiments, we have evaluated the energy
and time reconfiguration overheads generated by the two
proposed approaches in static environments; i.e., when only
one active task graph is executed in the system. Thus, for
this experiment we evaluate both algorithms for the repeated
execution of the same task graph.

On the one hand, the evaluated applications for fine-grain
devices have been: a sequential and a parallel version of the
JPEG decoder, an MPEG-1 encoder, and a patter recognition
application that applies the Hough transform over a matrix
of pixels in order to identify geometrical figures. On the
other hand, the coarse-grain applications are a set of DSP
benchmarks developed by Texas Instruments [52].

Table III shows the obtained results regarding performance.
Rows 2-5 refer to the applications for fine-grain devices,
whereas Rows 6-12 refer to the coarse-grain ones. Finally,
Row 13 shows the average results.

In this table, Column 3 shows the number of tasks of each
task graph and Column 4 shows the initial execution time
of the applications assuming that the reconfigurations do not
generate any time penalty. Next, Columns 5-7 show the time
penalty generated during the execution of the applications
when all the reconfigurations are fetched from the external,
HS and LE memories, respectively (i.e., assuming unlimited
capacity for these memories). All these percentages represent
the increment in the execution time generated with respect
to the ideal one (Column 4). As it can be observed in these
results, the average time penalty generated is reduced as the
configurations are fetched from the LE (+15.91%) and HS
(+11,09%) memories. Note that these results may not be
possible to achieve due to the limited capacity of the on-chip
memories in the real world. Hence we can see the results when
all the tasks are fetched from HS as an upper-bound for our
approaches in terms of performance.

Finally, Column 8 shows the time penalty generated when
the configurations are fetched as indicated by our two confi-

guration mapping approaches, and assuming that HS and LE
have a capacity of 3 configurations. In static environments,
these results are the same for both algorithms since both of
them aim at reducing the generated time penalty as much
as possible, and the difference between them is the way the
configurations are distributed among the on-chip memories.
As these results show, the average penalty generated by
both approaches (13%) is very close to the upper-bound one
(11.09%) in spite that the capacity of the HS and LE memories
is limited to only 3 configurations. In fact, both mapping
algorithms achieve the optimal results for all the evaluated
benchmarks, except for the Parallel JPEG task graph. The
reason is that this task graph includes 8 different tasks and
only 3 of them fit in the HS and 3 in the LE memories; hence
2 tasks must be stored in the external memory (this does not
apply to the other task graphs, since all their tasks are stored
either in HS or LE). Finally, in comparison with fetching all
the tasks from the external memory, in the table we observe
an average reduction from +37.55% to just +13% in the time
penalty generated, which means a reduction of 65% in the
time penalty that is originally generated when fetching the
configurations from the external memory.

All these numbers have been obtained assuming the re-
configuration latency only depends on the time needed to
read the configurations. This is a valid assumption as long
as the reconfiguration circuitry can write the data at the
same speed that it receives it. In the examples analyzed in
the literature ([30] and [31]) the bottleneck was always the
configuration memory, and the reconfiguration circuitry was
never working at full capacity. Hence we can safely assume
that the configurations are written “on the fly” and the process
finishes just a few clock cycles after reading the last word.
Also, note that Table III does not provide any information
regarding task communications latencies. The reason is that
this issue is orthogonal to the problem addressed in this
article. Indeed, fetching the task configurations from different
memories does not generate any additional restriction on the
way the tasks communicate among them.



11

TABLE IV
ENERGY CONSUMPTION DUE TO THE CONFIGURATION MEMORY ACCESSES WHEN USING THE PROPOSED STATIC AND DYNAMIC CONFIGURATION

MAPPING ALGORITHMS, FOR STATIC ENVIRONMENTS (VALUES NORMALIZED TO EXT)

Configuration static algorithm Configuration dynamic algorithm

Task graphs Number
of tasks EXT HS LE 1st execution Subsequent

executions EXT HS LE 1st execution Subsequent
executions

MPEG-1 5 0 2 3 1.21 0.20 2 1 2 1.15 0.65

JPEG 4 0 1 3 1.19 0.19 3 1 0 1.06 0.81

Hough 6 0 3 3 1.21 0.21 5 1 0 1.04 0.88

Parallel JPEG 8 2 3 3 1.16 0.41 2 3 3 1.16 0.41

DSP dot prod 3 0 1 2 1.23 0.23 0 1 2 1.23 0.23

DSP vec sumq 2 0 1 1 1.21 0.21 1 1 0 1.13 0.63

DSP q15 tofl 3 0 1 2 1.20 0.20 1 1 1 1.14 0.48

DSP neg 32 3 0 1 2 1.20 0.20 1 1 1 1.14 0.48

DSP min val 3 0 1 2 1.20 0.20 1 1 1 1.14 0.48

DSP dotp sqr 3 0 1 2 1.23 0.23 0 1 2 1.23 0.23

DSP blkmove 3 0 2 0 1.25 0.25 0 2 0 1.25 0.25

Average 0.18 1.55 2.09 1.21 0.23 1.36 1.36 1.15 1.09 0.48

Next, Table IV evaluates the energy consumption generated
by accesses to the configuration memories, for the same
benchmarks as in Table III. In this case it is also assumed
that the capacities of HS and LE are 3 configurations. In this
table, Columns 3-7 show the results obtained when using the
static mapper, whereas Columns 8-12 refer to the dynamic
one. For each one of these two cases, Columns 3-5 and 8-10
show the number of tasks that each mapping approach assigns
to the external memory (EXT), HS and LE, respectively.

Finally, Columns 6-7 and 11-12 detail the energy that
is consumed during the first and subsequent executions of
the involved task graph in the system, respectively. In this
case, contrarily to Tables I and II, these results have been
normalized to the energy consumption when all the tasks are
fetched from the external memory.

For both approaches, the energy consumption generated
during the first execution is always greater than loading all
the tasks from the external memory (i.e. it is greater than
one). The reason is that we assume that the configurations
assigned to the on-chip memories are not initially preloaded
there. Therefore, they are firstly fetched from the external
memories and stored in the on-chip modules simultaneously
to the run-time reconfiguration, introducing an additional
energy consumption (+21% and +9% on average for the static
and dynamic algorithms, respectively). This initial penalty is
greater for the static approach since it assigns more tasks to
the on-chip modules.

However, for subsequent iterations of the task graphs, this
initial energy penalty is quickly compensated with further
energy savings. Thus, the static and dynamic algorithms save
an average of 77% and 52% energy consumption generated
by the reconfigurations respectively, with respect to fetching
the tasks from the external memory. The results are better for
the static approach since it maximizes the amount of tasks
assigned to the HS and LE modules.

C. Static vs. Dynamic Mapping Algorithms in Dynamic Envi-
ronments

In a second set of experiments we have evaluated again both
mapping approaches, but this time for dynamic environments;
i.e., assuming that several active task graphs are executed on
the system. The objective of these experiments is to evaluate
how both approaches behave in situations in which there is
certain competition among the configurations that have been
assigned to the same on-chip memories.

In all these experiments, we have evaluated the execution
time and the energy consumption achieved by both approaches
dividing the task graphs for fine-grain and coarse-grain devices
in two separate groups. For each one of them, we have
executed a sequence of 100 task graphs randomly selected
from the corresponding group.

Figure 4 shows these results when varying the capacity
of the HS and LE memories simultaneously, from 3 to 10
configurations. Figures 4.a and 4.b show the results regarding
the fine-grain task graphs, whereas Figures 4.c and 4.d refer
to the coarse-grain ones.

Figure 4.a shows the average task-graph execution time of
the evaluated sequence of task graphs for fine-grain devices.
The figure compares both the static and dynamic approaches,
when using the LRU and modified LRU replacement policies
(which were discussed in Section V.C). It also shows the
results achieved when all the tasks are fetched from HS
(labeled in the figure as All tasks from HS), and assuming
that this memory has unlimited capacity (therefore for this
experiment no configuration replacements are carried out due
to lack of HS memory capacity). Hence this result is used as
lower-bound for execution time.

In this experiment it can be observed that for all the
evaluated approaches, as the capacity of the on-chip memories
grows, the closer is the generated execution time to the lower-
bound solution. In addition, it can also be observed that
the dynamic approach always generates less average task-
graph execution time than the static one (see the comparisons



12

Fig. 4. Performance evaluation of the proposed static and dynamic configuration mapping algorithms, for fine-grain (a and b) and coarse-grain devices (c
and d), and for dynamic environments, varying simultaneously the capacity of the HS and LE memories

between Static + LRU vs. Dynamic + LRU and Static +
modified LRU vs. Dynamic + modified LRU).

In fact, the dynamic approach achieves an average reduction
of 40% the time overhead generated when using the static
approach (we define the time overhead of a given approach as
the difference between its execution time and the execution
time of the lower-bound reference value that assumes that
all the tasks are fetched from HS memories). This reduction
can be very significant in some cases: for instance, when
the capacity of the on-chip memories is 7 configurations, the
Dynamic + LRU approach reduces 100% of the time overhead
generated by the Static + LRU one for the same on-chip
memories capacity.

The comparison between the two evaluated replacement
techniques (LRU vs. modified LRU) also shows that the latter
achieves greater execution time reductions, when combined
with both the static and dynamic approaches. In this case,
the average time overhead reduction is 10.4% and 7.1%
when combining it with the static and dynamic approaches,
respectively.

Next, Figure 4.b shows the average task-graph energy
consumption achieved for the evaluated approaches, and for
the fine-grain task-graph experiment. In this case, the results
have been normalized to the energy consumption of fetching
a configuration from HS. The four evaluated approaches are
also compared with the energy consumption achieved when

fetching all the tasks from the external memory and from
the LE one (in both cases, it is also assumed that these two
memories have unlimited capacity). Hence these two results
are used for comparison as upper-bound and lower-bound
solutions regarding energy consumption, respectively.

In this case we can observe that, for small capacities of
the on-chip memories (3 and 4 tasks), the dynamic approach
achieves greater energy savings than the static one. In fact,
for these two cases, the energy consumption generated by the
dynamic configurations is reduced by almost 7%, both when
using the LRU and the modified LRU replacement policies.

However, the figure also reveals that as the capacity of the
on-chip memories grows, the static mapping leads to greater
energy savings than the dynamic one. In fact, the Static +
modified LRU achieves up to 78% reduction in the average
energy consumption with respect to fetching all the tasks
from the external memory. The reason of this behavior is
simple: as the capacities of HS and LE increase, there is less
competition among the configurations for the usage of the on-
chip memories. This is an advantage for the static mapper since
it maximizes the usage of these memories. In contrast, since
the dynamic approach minimizes the amount of configurations
stored on the on-chip memories, some configurations will
always be fetched from the external memory independently of
the capacity of HS and LE. Hence this leads to an additional
penalization in terms of energy consumption for bigger on-



13

chip memories (but not in terms of execution time, as Figure
4.a showed).

Finally, Figures 4.c and 4.d repeat the same experiments as
previously shown in Figures 4.a and 4.b, but this time for the
coarse-grain task graphs. In both cases the trend shown is the
same as in the fine-grain experiment, both when comparing the
static and the dynamic approaches, and the LRU and modified
LRU replacement techniques.

IX. CONCLUDING REMARKS

This article has proposed a novel configuration memory
hierarchy that takes advantage of high-speed (HS) and low-
energy (LE) features that are present separately in recent
configuration SRAM memories for reconfigurable devices. It
comprises two on-chip memories: one optimized for HS and
other optimized for LE (which have a limited capacity), plus
an off-chip memory that stores the remaining configurations.
In order to take advantage of this flexibility, we have also
proposed two configuration mapping algorithms that decide in
which memory to store the configurations of the applications,
represented as task graphs. These algorithms adapt very well
to different task-graph execution contexts. The presented ex-
perimental results have shown that, in combination with our
configuration mapping algorithms, the proposed configuration
memory hierarchy leads to significant energy savings, while
providing a performance which is very close to the optimal
one.

REFERENCES

[1] R. Tessier and W. Burleson, “Reconfigurable computing for digital signal
processing: A survey,” Journal of VLSI Signal Processing, vol. 28, no.
1/2, pp. 7–27, May 2001.

[2] W. Chelton and M. Benaissa, “Fast elliptic curve cryptography on
FPGA,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 16, no. 2, pp. 198–205, Feb. 2008.

[3] R. Marin, G. Leon, R. Wirz, J. Sales, J. Claver, P. Sanz, and J. Fernandez,
“Remote programming of network robots within the UJI industrial
robotics telelaboratory: FPGA vision and SNRP network protocol,”
IEEE Transactions on Industrial Electronics, vol. 56, no. 12, pp. 4806–
4816, Dec. 2009.

[4] T. Becker, W. Luk, and P. Y. K. Cheung, “Energy-aware optimisation
for run-time reconfiguration,” in Proceedings of the IEEE Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2010, pp. 55–62.

[5] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 2, pp. 203–215, Feb. 2007.

[6] Xilinx, “Virtex-5 FPGA configuration user guide, ug191(v3.10),” 2011.
[7] S. Liu, R. N. Pittman, A. Form, and J.-L. Gaudiot, “On energy efficiency

of reconfigurable systems with run-time partial reconfiguration,” in
Proceedings of the IEEE International Conference on Application-
specific Systems Architectures and Processors (ASAP), July 2010, pp.
265–272.

[8] S. Keckler, W. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs
and the future of parallel computing,” IEEE Micro, vol. 31, no. 5, pp.
7–17, sept.-oct. 2011.

[9] M. Technology, “http://www.micron.com/products/dram/rldram-
memory?&source=sibis&dd-fam=dram&dd-tech=rldram%20memory,”
2013.

[10] ——, “http://www.micron.com/products/dram/mobile-
lpdram?&source=sibis&dd-fam=dram&dd-tech=mobile%20lpdram,”
2013.

[11] B. Blodget, P. James-roxby, E. Keller, S. Mcmillan, and P. Sundararajan,
“A self-reconfiguring platform,” in Proceedings of the International
Conference on Field Programmable Logic and Applications (FPL),
2003, pp. 565–574.

[12] R. Fromm, S. Perissakis, N. Cardwell, C. Kozyrakis, B. McGaughy,
D. Patterson, T. Anderson, and K. Yelick, “The energy efficiency of
IRAM architectures,” SIGARCH Computer Architecture News, vol. 25,
pp. 327–337, 1997.

[13] E. Ramo, J. Resano, D. Mozos, and F. Catthoor, “Memory hierarchy
for high-performance and energy-aware reconfigurable systems,” Sept.
2007.

[14] E. P. Ramo, J. Resano, D. Mozos, and F. Catthoor, “Reducing the
reconfiguration overhead: a survey of techniques,” in in Proceedings of
the International Conference of Engineering of Reconfigurable Systems
and Algorithms (ERSA), 2007, pp. 191–194.

[15] M. Huang, V. Narayana, M. Bakhouya, J. Gaber, and T. El-Ghazawi,
“Efficient mapping of task graphs onto reconfigurable hardware using
architectural variants,” IEEE Transactions on Computers, vol. 61, no. 9,
pp. 1354–1360, sept. 2012.

[16] D. I. Lehn, K. Puttegowda, J. H. Park, P. Athanas, and M. Jones, “Evalu-
ation of rapid context switching on a CSRC device,” in in Proceedings of
the International Conference of Engineering of Reconfigurable Systems
and Algorithms (ERSA), 2002, pp. 209–215.

[17] R. Hartenstein, “A decade of reconfigurable computing: a visionary
retrospective,” in Proceedings of the conference on Design, automation
and test in Europe (DATE), 2001, pp. 642–649.

[18] Z. Li and S. Hauck, “Configuration prefetching techniques for partial
reconfigurable coprocessor with relocation and defragmentation,” in
Proceedings of the ACM/SIGDA international symposium on Field-
programmable gate arrays (FPGA), 2002, pp. 187–195.

[19] J. Noguera and R. M. Badia, “Multitasking on reconfigurable ar-
chitectures: microarchitecture support and dynamic scheduling,” ACM
Transactions on Embedded Computing Systems, vol. 3, no. 2, pp. 385–
406, May 2004.

[20] Y. Qu, J. pekka Soininen, and J. Nurmi, “A parallel configuration
model for reducing the run-time reconfiguration overhead,” in IEEE
Proceedings of the Design, Automation, and Test in Europe Conference
(DATE), 2006, pp. 965–970.

[21] K. N. Vikram and V. Vasudevan, “Mapping data-parallel tasks onto par-
tially reconfigurable hybrid processor architectures,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 9, pp.
1010–1023, Sept. 2006.

[22] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “Exploiting application data-
parallelism on dynamically reconfigurable architectures: placement and
architectural considerations,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 17, no. 2, pp. 234–247, Feb. 2009.

[23] J. Sim, W.-F. Wong, G. Walla, T. Ziermann, and J. Teich, “Interproce-
dural placement-aware configuration prefetching for FPGA-based sys-
tems,” in IEEE Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), may 2010, pp. 179–182.

[24] W. Fu and K. Compton, “Scheduling intervals for reconfigurable com-
puting,” in Proceedings of the IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2008, pp. 87–96.

[25] J. Clemente, J. Resano, C. Gonzalez, and D. Mozos, “A hardware
implementation of a run-time scheduler for reconfigurable systems,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 19, no. 7, pp. 1263–1276, July 2011.

[26] Z. Li and S. Hauck, “Configuration compression for virtex FPGAs,” in
Proceedings of the Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2001, pp. 147–159.

[27] A. Dandalis and V. K. Prasanna, “Configuration compression for FPGA-
based embedded systems,” in Proceedings of the ACM/SIGDA interna-
tional symposium on Field programmable gate arrays (FPGA), New
York, NY, USA, 2001, pp. 173–182.

[28] Z. Li, K. Compton, and S. Hauck, “Configuration caching management
techniques for reconfigurable computing,” in Proceedings of the annual
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2000, pp. 22–36.

[29] R. Kalra and R. Lysecky, “Configuration locking and schedulability
estimation for reduced reconfiguration overheads of reconfigurable
systems,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 18, no. 4, pp. 671–674, Apr. 2010.

[30] K. Papadimitriou, A. Anyfantis, and A. Dollas, “An effective framework
to evaluate dynamic partial reconfiguration in FPGA systems,” IEEE
Transactions on Instrumentation and Measurement, vol. 59, no. 6, pp.
1642–1651, Jun. 2010.

[31] E. El-Araby, I. Gonzalez, and T. El-Ghazawi, “Exploiting partial runtime
reconfiguration for high-performance reconfigurable computing,” ACM
Transactions on Reconfigurable Technology Systems, vol. 1, no. 4, pp.
21:1–21:23, Jan. 2009.



14

[32] S. Chevobbe and S. Guyetant, “Reducing reconfiguration overheads in
heterogeneous multicore RSoCs with predictive configuration manage-
ment,” International Journal of Reconfigurable Computing, vol. 2009,
pp. 8:4–8:4, Jan. 2009.

[33] L. Benini, D. Bruni, M. Chinosi, C. Silvano, V. Zaccaria, and R. Zafalon,
“A power modeling and estimation framework for VLIW-based embed-
ded systems,” in ST Journal of System Research, 2001, pp. 26–28.

[34] M. Jayapala, F. Barat, T. Vander Aa, F. Catthoor, H. Corporaal, and
G. Deconinck, “Clustered loop buffer organization for low energy VLIW
embedded processors,” IEEE Transactions on Computers, vol. 54, no. 6,
pp. 672–683, Jun. 2005.

[35] L. Shang and N. K. Jha, “Hardware-software co-synthesis of low power
real-time distributed embedded systems with dynamically reconfigurable
FPGAs,” in Proceedings of the Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), 2002, pp. 345–352.

[36] F. Barat, M. Jayapala, T. Vander, A. Geert, D. R. Lauwereins, and
H. Corporaal, “Low power coarse-grained reconfigurable instruction set
processor,” in Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL), 2003.

[37] L. Benini and G. De Micheli, “Networks on chip: a new paradigm for
systems on chip design,” in Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition (DATE), 2002, pp. 418–419.

[38] Xilinx, “7 series FPGAs overview, DS180 (v1.11),” 2012.
[39] ——, “ZC702 evaluation board for the Zynq-7000 XC7Z020 extensible

processing platform, user guide, UG850 (v1.0),” 2012.
[40] Altera, “http://www.altera.com/products/devices/stratix-fpgas/stratix-

v/stxv-index.jsp,” 2011.
[41] ——, “https://www.altera.com/download/software/quartus-ii-we,” 2011.
[42] F. Barat, M. Jayapala, T. Vander, A. Geert, D. R. Lauwereins, and

H. Corporaal, “Low power coarse-grained reconfigurable instruction set
processor,” in Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL), 2003.

[43] Xilinx, “EDK concepts, tools, and techniques, UG683 (v14.1),” 2012.
[44] ——, “MicroBlaze processor reference guide, UG081 (v13.4),” 2012.
[45] ——, “AXI reference guide, UG761 (v13.1),” 2011.
[46] ——, “Local memory bus (LMB) v1.0 (v1.00a),” 2005.
[47] ——, “PlanAhead user guide, UG632 (v11.4),” 2009.
[48] Altera, “http://www.altera.com/products/ip/processors/nios2/ni2-

index.html,” 2011.
[49] H. Labs, “http://www.hpl.hp.com/research/cacti/,” 2012.
[50] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins,

“Interconnection networks enable fine-grain dynamic multi-tasking on
FPGAs,” in Proceedings of the International Conference on Field-
Programmable Logic and Applications (FPL), 2002, pp. 795–805.

[51] Z. Pan and B. Wells, “Hardware supported task scheduling on dynam-
ically reconfigurable SoC architectures,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 16, no. 11, pp. 1465–1474,
Nov. 2008.

[52] T. Instruments, “http://focus.ti.com/general/docs/dsnsuprt.tsp,” 2010.

Juan Antonio Clemente (Member, IEEE) received
his computer science degree from Universidad Com-
plutense de Madrid (UCM), Madrid, Spain, in 2007;
and his Ph.D. in 2011. He is Assistant Professor
and Researcher with the GHADIR research Group,
UCM. He also collaborates with the Embedded Sys-
tems Laboratory in the École Polytechinque Fédérale
de Lausanne (EPFL), Switzerland; and the TIMA
Laboratory, Grenoble, France, since 2009 and 2012,
respectively.

His research interests are: FPGA design, embed-
ded systems optimization and the development of techniques to optimize the
management of task reconfigurations for reconfigurable devices. Also, his
research has recently been focused on the study of Single Event Upset (SEU)
tolerance of digital circuits implemented on FPGAs.

Elena Pérez Ramo received her Master Degree in
Computer Engineer in 1999, and her European Ph.D.
degree in 2009 at the Universidad Complutense of
Madrid, Spain. Currently, she is Senior Business
Intelligence Consultant at Telefónica España, in the
Marketing and Business Research Department, and
she is a member of the GHADIR research group,
from Universidad Complutense of Madrid.

Her research has been focused on hard-
ware/software co-design, task scheduling techniques,
dynamically reconfigurable hardware and FPGA de-

sign. She has designed hardware accelerators for different fields, including
digital signal processing and multimedia applications.

Javier Resano received his Bachelor Degree in
Physics in 1997, his Master Degree in Computer
Science in 1999, and the Ph.D. degree in 2005
at the Universidad Complutense of Madrid, Spain.
Currently he is Associate Professor at the Computer
Eng. Department of the Universidad of Zaragoza,
and he is a member of the GHADIR research
group, from Universidad Complutense, and the GAZ
research group, from Universidad de Zaragoza. He
is also member of the Engineering Research Institute
of Aragon (I3A). His research has been focused

on hardware/software co-design, task scheduling techniques, dynamically
reconfigurable hardware and FPGA design.

He has designed hardware accelerators for different fields, including remote
sensing and artificial intelligence, and his designs have received several
international awards including the first prize in the Design Competition of the
IEEE International Conference on Field Programmable Technology in 2009
and in 2010 and the second prize in 2012.

Daniel Mozos (Member, IEEE) received the B.S.
degree in physics and the Ph.D. degree in com-
puter science from the Universidad Complutense de
Madrid, Spain in 1986 and 1992, respectively.

Currently, he is Full Professor with the Computer
Architecture and Automation Department, Univer-
sidad Complutense de Madrid, where he leads the
GHADIR Research Group on dynamically reconfi-
gurable hardware. His research interests include de-
sign automation, hardware-software codesign, recon-
figurable computing, the use of FPGAs for aerospace

applications, and hyperspectral image processing. He has published more than
100 papers in international journals and conferences. He has been vice-dean
for students during seven years and today he is the Dean of the Computer
Science Faculty at the Universidad Complutense de Madrid.

Francky Catthoor (Member, IEEE) received
his Ph.D. in Electronical Engineering from the
Katholieke University of Leuven, Belgium in 1987.
Between 1987 and 2000, he has headed several re-
search domains in the area of high-level and system
synthesis techniques and architectural methodolo-
gies, including related application and deep sub-
micron technology aspects, all at IMEC Leuven,
Belgium. Currently he is an IMEC fellow. He is also
part-time full professor at the EE department of the
K.U.Leuven.

He has been associate editor for several IEEE and ACM journals, as
IEEE Transactions on VLSI Signal Procsesing, IEEE Transactions on Multi-
media, and ACM TODAES. He was the program chair of several conferences
including ISSS’97 and SIPS’01. He has been elected IEEE fellow in 2005.


