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Persevera, per severa, per se vera.
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Resumen

El marco de esta memoria es la Teoria de Interpolacién y, mds concretamente, los métodos limite
de interpolacion.

La Teoria de Interpolacién es una rama del Andlisis Funcional con importantes aplicaciones en
el Andlisis Armoénico, la Teoria de Aproximacion, las Ecuaciones en Derivadas Parciales, la Teorfa
de Operadores y otras dreas de las matemdticas. Se pueden consultar, por ejemplo, los libros
de Butzer y Berens [9], Bergh y Lofstrom [5], Triebel [80, 81], Konig [63], Bennett y Sharpley [4],
Brudnyl y Kruglyak [8] o Connes [39]. Dado un par (compatible) de espacios de Banach (Ag, A1) y
usando las construcciones de la teorfa de interpolacién, uno puede producir, entre otras cosas, una
familia de espacios cuyas propiedades, en cierto modo, mezclan las de Ag y Ay. Esto es muy 1til
en muchos contextos.

Los origenes de la Teorfa de Interpolacién se remontan a la primera mitad del siglo XX con
el teorema de Riesz (1927), la prueba de Thorin (1938) para escalares complejos y el teorema de
Marcinkiewicz (1939). Estos resultados aparecieron como herramientas para resolver ciertos pro-
blemas en el Anélisis Armoénico, como por ejemplo el teorema de Hausdorff-Young. La versiéon
mads sencilla del teorema de Riesz-Thorin afirma que si T es un operador lineal y continuo de L,
enl, ydelL, enL,,6 donde1 < py < p; < oo, entonces también es acotado de L, en L, para
Po < p < p1. Por otro lado, el teorema de Marcinkiewicz es el resultado correspondiente cuando
uno sustituye los espacios de llegada por espacios L,-débil. Asi, el teorema de Marcinkiewicz
puede emplearse en algunos casos donde falla el teorema de Riesz-Thorin. Estos resultados en si
tienen diversas aplicaciones en el Anélisis Matematico (ver, por ejemplo, [86, Capitulo 12]).

En la década de los 60, autores como Lions, Peetre, Aronszajn, Gagliardo, Calderén y Krein
iniciaron lo que ahora se conoce como la teoria abstracta de interpolacién. Su principal motivacién
era el estudio de ciertos problemas sobre ecuaciones en derivadas parciales en el marco de la escala
de espacios de Sobolev H*(Q). Su enfoque era functorial, esto es, su interés se centraba en obtener
construcciones generales (functores o métodos de interpolacién) que a cada par compatible de
espacios de Banach (A, A1) le hacen corresponder un espacio de interpolaciéon A = F(Ay, A1).

Los métodos que méds interés han despertado son el método complejo y el método real. El
método complejo se presento en el trabajo [10] de Calderén; su construccion se basa en las ideas
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Resumen

de la prueba de Thorin del teorema de Riesz. Por otro lado, el método real estd conectado con el
teorema de Marcinkiewicz y se introdujo en el articulo de Lions y Peetre [67]. En la actualidad, la
presentacion usual del método real es mediante el K-funcional de Peetre. Recordemos que, dados
un par compatible de espacios de Banach A = (Ap, A7) y t > 0, el K-funcional se define como

K(t,a) =K(t, a;A) =inf{||ag|a, + t]ai]|a, : a=ao+ a1, a5 € Aj}, aeAg+A.

Paral < q < o0y 0 <0 <1, el espacio de interpolacion real Ag q = (Ag,A1)e,q se define como la
coleccién de vectores a € Ag + A; para los que la norma

felau, = ( m[t‘ewt’a)]“%)l/q

es finita.

Una de las ventajas del método real es que el K-funcional se puede obtener de manera ex-
plicita en ciertas situaciones y que estd relacionado con otras nociones importantes del Anélisis
Matematico. Por ejemplo, en el marco de la Teoria de Aproximacién, algunos médulos de suavidad
se pueden interpretar como K-funcionales sobre pares de espacios adecuados. Otra gran ventaja
de este método es su flexibilidad. Se puede extender a pares de espacios cuasi-Banach y también a
grupos Abelianos normados (ver [5]).

Aplicando el método real al par (L, Lo ), resultan espacios de Lebesgue y de Lorentz
(L1, Loo)p,q=Lp,q sil/p=1-0

(ver [5, 80, 4]). Para obtener espacios de Lorentz-Zygmund L, (logL),, tenemos que reemplazar
en la definicién del método real t° por una funcién més general f(t) (ver el trabajo de Gustavsson
[55]). El caso en que f(t) = t%g(t) es de especial interés. Aqui, g es una potencia de 1 + |logt| o, en
general, una funcién de variacién lenta; estos casos se estudian en los trabajos de Doktorskii [43],
Evans y Opic [46], Evans, Opic y Pick [47], Gogatishvili, Opic y Trebels [52] y Ahmed, Edmunds,
Evans y Karadzhov [1].

Con esta definicién, 0 puede tomar los valores 1y 0, pero, en estos casos limite, la funcién extra
g(t) es esencial para que la definicién tenga sentido y no quede el espacio sélo en {0}. No obs-
tante, si los espacios de Banach estdn relacionados mediante una inclusién continua, por ejemplo
Ag = Ay, entonces se pueden definir los espacios limite (Ag, A1)o,q;7 Y (Ao, A1)1,q;k sinla ayuda de
una funcién auxiliar, simplemente haciendo una modificacién natural en la definicién del método
real. Estos métodos limite han sido estudiados en los trabajos de Gomez y Milman [54], Cobos,
Fernandez-Cabrera, Kiithn y Ullrich [19], Cobos, Ferndndez-Cabrera y Mastylo [24], Cobos y Kiihn
[29] y Cobos, Ferndndez-Cabrera y Martinez [22], donde se aplican para trabajar con integrales sin-
gulares [54], aproximacion de integrales estocasticas [29] y caracterizar los espacios de sucesiones
de Césaro por interpolacion [24], entre otras cosas. El espacio (Ag, A1)g,q;7 €8 muy préoximo a Ag y
(Ao, A1)1,q;k es cercano a Ay; este hecho es importante en las aplicaciones.

Trabajar en el caso ordenado Ay — A; es bdsico para los argumentos de estos articulos, pero,
desde el punto de vista de la Teoria de Interpolacién, esto es s6lo una restricciéon. Por ello, es
natural estudiar la extension de estos métodos limite a pares arbitrarios, no necesariamente orde-
nados. Esta cuestion fue considerada por Cobos, Ferndndez-Cabrera y Silvestre en [25, 26], siendo



Resumen

su principal objetivo el describir los espacios que surgen al interpolar la 4-upla {Ag, A1, A1,Ap}
con los métodos asociados al cuadrado unidad. Presentaron varios K- y J-métodos de modo que,
a lo largo de las diagonales del cuadrado, los espacios de interpolacién son sumas (en el caso K) o
intersecciones (en el caso ]) de espacios limite y espacios de interpolacion real.

El objetivo de una buena parte de esta memoria es desarrollar una teoria lo mds completa
posible sobre métodos limite para pares arbitrarios. Asi, en los Capitulos y P} presentamos
una familia de K-métodos y una familia de J-métodos que estdn relacionadas por dualidad, que
extienden las definiciones de Gomez y Milman y de Cobos, Ferndndez-Cabrera, Kithn y Ullrich a
pares arbitrarios y que producen una teoria lo suficientemente rica.

La definicién precisa dada en el Capitulo(3|de los K- y los J-espacios limite es como sigue:

Definicién 1. Sea A = (A, A1) un par compatible de espacios de Banach y sea 1 < q < oo. El
espacio Aq;x = (Ao, A1)q;x estd formado por todos aquellos a € Ag + A; para los que la siguiente
norma es finita:
1 dt 1/q o dt 1/q
- - q= -1 9=
lalage = ( [ @@ $) ([T k@)
Definicion 2. Sea A = (Ao, A1) un par compatible de espacios de Banach y sea 1 < q < oo. El

espacio Aq;j = (Ao, A1) 4,y estd formado por todos aquellos a € Ag + A; para los que existe una
funcién fuertemente medible u(t) con valores en Agn A; que representa a a como sigue

0 t
a= /(; u(t)dT (convergencia en Ag + A1) (1)

y tal que
1 - 1
(/01 (1] (4 u(t))]° %) ", (fl T (tu(t))d %) e @)

Lanorma |af 5 ,en Ag;j se define como el infimo en (2) sobre todas las posibles representaciones
de a como en (1) de modo que también se tiene (2).

En ese capitulo, mostramos la relaciéon entre estos métodos y otros métodos limite, y también
con el método real clasico Ag 4. En concreto, comprobamos que estas definiciones generalizan a
pares arbitrarios las dadas por Gomez y Milman y por Cobos, Fernandez-Cabrera, Kithn y Ullrich.
Ademas, probamos que estos métodos son limite en el siguiente sentido:

Teorema 1. Sea A = (Ag, A1) un par compatible de espacios de Banach. Sean 1 <p,q,r< ooy 0< 0 < 1.
Entonces, se tiene que

Agn A1 = (Ag,A1)p;g = (Ao, A1)e,q = (Ao, A1)rk = Ag + A1

De hecho, los J-espacios limite son muy préximos a la interseccién Ag n Ay, y los K-espacios
son proximos a Ag + A1. Tanto es asi, que las estimaciones para las normas de los operadores
interpolados por estos métodos son peores que en los casos limite ordenados.
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Este mal comportamiento se va a ver reflejado en la interpolaciéon de operadores compactos.
Recordemos que, dados dos pares compatibles de espacios de Banach A = (Ag, A1) y B = (Bo,B1) y
un operador lineal T € £(A, B) tal que cualquiera de las dos restricciones T : A; — Bj es compacta,
entonces también es compacto T : Ag q — Bg,q paratodo1 < q < ooytodo0 <6 <1 (ver [40] y
[30]). En el caso ordenado, donde Ay = A; y By — By, para garantizar la compacidad del operador
interpolado por el J- o el K-método limite, también es suficiente que una de las dos restricciones
sea compacta, pero no una cualquiera: la compacidad de T : Ay — By es suficiente para garan-
tizar que el operador T : Ag q;; — Bo,q;j es compacto, mientras que para tener la compacidad de
T : Ay qx — Biq;x, necesitamos que la otra restriccion, T : A; — By, sea compacta (ver [19]).
En el Capitulo 3| mostramos que en el caso limite general no basta con que una sola restriccion,
cualquiera que sea, sea compacta, pero, si ambas restricciones son compactas, entonces el operador
interpolado por el K-y por el ]-método si es compacto.

También en el Capitulo [3{mostramos cémo uno puede describir los K-espacios limite usando el
J-funcional y algunas consecuencias de dicha descripciéon: primero, damos la siguiente definicion.

Definicién 3. Sea A = (A, A1) un par compatible de espacios de Banach y sea 1 < q < o0. Pon-
gamos p(t) = 1+ [logt| y u(t) = t71 (1 +[logt|). El espacio A{pu},q;) consiste en todos aquellos
elementos a € Ag + Aj para los que existe una representacion

o0 dt
a= /0 u(t)T (convergencia en Ag + A1), 3)

donde u(t) es una funcién fuertemente medible con valores en Agn A; y tal que

1/q 1/

1 q dt o0 g dty /4
([ terunT) ([T i@reumr T <. @
La norma en A, 3 q;j se define como el infimo de los valores () sobre todas las posibles repre-
sentaciones u de a que satisfacen (3) y ().

Seguidamente, mostramos que los espacios Ay, 1 q;j coinciden con los K-espacios limite:

Teorema 2. Sea A = (Ag, A1) un par compatible de espacios de Banach y sea 1 < q < oo. Entonces, se tiene
con equivalencia de normas (Ao, A1) g.x = (Ao, A1) (o u},q-

El teorema de equivalencia anterior no es cierto para q = oo, como probamos con un contrae-
jemplo.

Asimismo, tratamos la dualidad entre K- y J-espacios limite, y, al final del capitulo, damos
algunos ejemplos de espacios obtenidos por los métodos limite. Primero, trabajando con cualquier
espacio de medida o-finito, caracterizamos los espacios limite generados por el par (Lo, L1). Lue-
go, consideramos un par formado por dos espacios L4 con pesos y, como aplicacién, determinamos
los espacios generados por el par de espacios de Sobolev (H*?, H*). También consideramos el caso
del par de espacios de Besov (B}'q, Bplq). Por ultimo, empleamos los métodos limite para obtener
un resultado de tipo Hausdorff-Young para el espacio de Zygmund L, (logL)_;/»([0,27]). Todo el
contenido del Capitulo [3|aparece en el articulo [35].
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En el Capitulo [} consideramos la interpolacion de operadores bilineales mediante estos méto-
dos limite. El problema del comportamiento por interpolacién de los operadores bilineales es
una cuestion cldsica que ya estudiaron Lions y Peetre [67] y Calderén [10] en sus trabajos sobre
el método real y el método complejo, respectivamente. Los resultados en este campo han tenido
una gran cantidad de aplicaciones interesantes en el Andlisis, como la continuidad de ciertos ope-
radores de convolucién, la interpolacién entre un espacio de Banach y su dual, la estabilidad de
algebras de Banach bajo interpolacion y la interpolaciéon de espacios de operadores lineales y aco-
tados (ver los trabajos de Peetre [75], Mastyto [69], Cobos y Ferndndez-Cabrera [17,[18] y la biblio-
grafia que en ellos aparece). Comenzamos el capitulo mostrando el siguiente resultado:

Teorema 3. Sean A = (Ag,A1), B = (Bo,B1) y C = (Co, C1) pares compatibles de espacios de Banach y
sean 1 <p,q,r<ooconl/p+1/q=1+1/r. Supongamos que

R:(Ap+Aq) x(Bg+B1) > Co+Cq
es un operador bilineal y acotado cuyas restricciones a A x B; definen operadores acotados
R:A;xBj - G
de norma M; (j = 0,1). Entonces, las restricciones
R: (Ao, A1)p,; x (Bo,B1) g,y = (Co, C1)yyg

y
R: (Ao, A1),y x (Bo,B1) g x = (Co, C1)yx

también son acotadas, con norma M < max (Mg, My).

Asimismo, probamos que los resultados correspondientes de tipo K x ] - ] y K x K - K no son
ciertos. Como aplicacién, establecemos una férmula de interpolacion para espacios de operadores
lineales y acotados.

Seguidamente, mostramos que estos métodos no preservan la estructura de dlgebra de Banach.
Los resultados se recogen en el siguiente teorema:

Teorema 4. Los espacios (£1,01(27™)) gk (paral < q < o0) y (€1, 6(27™))q;; (para 1l < q < o0), con la
convolucion definida como multiplicacién, no son dlgebras de Banach.

Finalizamos el capitulo comparando las estimaciones para las normas de los operadores bili-
neales con las de los operadores lineales interpolados por los métodos limite. Ademads, establece-
mos un resultado relacionado con la norma del operador lineal interpolado. Este teorema comple-
menta lo mostrado en el Capitulo 3sobre este tema:

Teorema 5. Sea 1 < q < oo. Entonces,

sup { Tl a8t [Thays, <5 [Tla, B, <t} ~max(s,b),

donde el supremo se toma sobre todos los posibles pares compatibles de espacios de Banach A = (Ag, A1),
B = (Bo, B1) y todos los operadores T € L (A, B) que satisfacen las condiciones que hemos mencionado.

Ademds, si q = oo, el supremo se alcanza y la equivalencia anterior es de hecho una igualdad.
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Los resultados méas importantes del Capitulo 4 forman el articulo [36].

El Capitulo |5/ describe el contenido del articulo [37] y se refiere a férmulas de reiteracién, es
decir, estabilidad, para los métodos limite. La reiteracién es una cuestiéon central en el estudio de
cualquier método de interpolacion. Las férmulas de reiteracion permiten determinar gran ntimero
de espacios de interpolacién y tienen diversas aplicaciones en Analisis. Por ejemplo, en el caso del
método real, la reiteracién permite deducir estimaciones fuertes (esto es, L, - L) de estimaciones
débiles (ver los libros de Bergh y Lofstrom [5], Triebel [80], Bennett y Sharpley [4] y Brudnyi y
Krugljak [8]).

Una forma de establecer el teorema de reiteracion para el método real (Ao, A1)g 4 s a través de
la férmula de Holmstedt [57], que proporciona el K-funcional del par de espacios de interpolaciéon
real ((Ao, A1), q,, (Ao, A1)g,,q,) €N términos del K-funcional de (A, A1). Recordemos que, en
este caso, 0< 0 < 1.

Varios autores han seguido esta linea de investigacién. Asi se hace, por ejemplo, en los articulos
de Asekritova [2], Evans y Opic [46], Evans, Opic y Pick [47], Gogatishvili, Opic y Trebels [52] o
Ahmed, Edmunds, Evans y Karadzhov [1]. Los tltimos cuatro articulos mencionados versan sobre
la extensién del método real que se obtiene al sustituir en la definicién t° por tg(t), donde g es
una funcién logaritmica quebrada o, més en general, una funcién de variacién lenta. En estos
trabajos, se obtuvieron férmulas de tipo Holmstedt y resultados de reiteraciéon que involucran a la
funcion g.

La extension del resultado de Holmstedt a los K-espacios limite para pares ordenados se hace
en el articulo de Gomez y Milman [54]. Para el caso de los J-espacios limite para pares ordena-
dos, se puede ver una férmula de reiteracion en el articulo de Cobos, Fernandez-Cabrera, Kiihn y
Ullrich [19].

Nuestro objetivo en el Capitulo|5|es establecer férmulas de reiteracién para los K- y J-espacios
limite actuando entre pares arbitrarios. Este caso no lo cubre ninguno de los articulos citados
anteriormente. Mostramos estimaciones que estdn adaptadas al tipo de espacios con los que traba-
jamos y que permiten determinar explicitamente los espacios resultantes, pues muestran los pesos
que aparecen con el K-funcional.

Comenzamos el capitulo obteniendo férmulas de tipo Holmstedt para el K-funcional de pares
formados por un espacio interpolado limite y un espacio del par original. A partir de esas for-
mulas, obtenemos algunos resultados de reiteracion. Los espacios que obtenemos al interpolar
un método limite y un espacio del par original se pueden expresar como una intersecciéon VnW,
donde

{ V={aeAg+A1:K(s,a)/v(s) e Lq((0,1),ds/s)}, 5)

W={aeAy+A;1:K(s,a)/w(s) e Lg((1,00),ds/s)}.

Aqui, vy w son funciones de la forma s'b(s), siendo b una cierta funcién de variacién lenta e i = 0
6 1. Si los dos espacios involucrados son de interpolacién clasica, el espacio resultante al aplicarles
un método limite también tendrd la forma , pero, en este caso, las funciones v y w son de la
forma s%h(s), donde 0 < © < 1y h es una funcién logaritmica.

Por dltimo, empleamos estos resultados para determinar los espacios generados por ciertos
pares de espacios de funciones y de espacios de operadores. Algunos de estos resultados se en-
globan en el siguiente teorema:
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Teorema 6. Sea (Q, ) un espacio de medida o-finito y resonante y sean 1 < po,p1 < 00,1 < q < o0y
1/q +1/q’ = 1. Entonces,

(LPOrQ’Lpqu)q;] =Lpoq(logL)_1/q' N Lp,q(logL)_1/q Y
(Lpo.ar Lpia) gk = Lpoq(logL)1/q + Ly q(log L)y q

con equivalencia de normas.

El daltimo capitulo de la memoria se refiere a cuestiones relativas a los métodos logaritmicos de
interpolacion, es decir, a los espacios (Ao, A1)g,q,a, Cuya norma viene dada por

0o q dt 1/q
H(1||(,z\0,A1)erq’A = (/0- [t 6EA(‘[)K(‘(, (1)] T) ,

donde tomamos 1 < q < 00, A = (xp, %o ) € R%, £(t) = 1 + |log t],

EA(t) :e(o‘o’o‘“)(t) _ {ﬂrxo(t) S%O<t£1,

(*=(t) sil<t<oo,
y ahora no sé6lo 0 < 0 < 1, sino que también 6 puede tomar los valores 0 y 1. De hecho, son estos
valores extremos en los que estamos interesados, pues, como se puede ver en [45, Proposicién 2.1],
en el caso ordenado, los métodos (Ag, A1)o,q,a ¥ (Ao, A1)1,q,4 estdn relacionados con los métodos
de interpolacién limite.

Los espacios (Ag,A1)g,q,a Se estudian en los articulos de Gustavsson [55], Doktorskii [43],
Evans y Opic [46], Evans, Opic y Pick [47] y las referencias alli citadas.

Si0 < 0 < 1, entonces t~2¢(t) satisface las hipétesis de [55], y asf (Ao, A1)o,q,a €s s6lo un
caso especial del método real con un pardmetro funcional, cuya teoria estd bien establecida (ver
[55, 160, [77]). Sin embargo, si © = 0 6 1, hay varias cuestiones naturales que todavia no se habian
estudiado y que se tratan en el Capitulo [} Comenzamos dando la descripcién de (Ag, A1)o,q,a
y (Ao, A1)1,q,4 por medio del J-funcional y después usamos esa descripcién para mostrar las
propiedades de interpolacién por esos métodos de los operadores compactos y de los operadores
débilmente compactos, y también para determinar el dual de (Ao, A1)o,q,a Y (Ao, A1)1,q,A-

Mostramos que, contrariamente al caso 0 < 0 < 1, cuando 0 = 0 6 1, la J-descripcién depende
de la relacién entre A y q: en ocasiones, se debe afiadir una unidad a la potencia del logaritmo, en
otras hay que insertar ademds un logaritmo iterado, y en otras, la J-descripcién ni siquiera existe.

La interpolaciéon de operadores compactos tiene sus raices en la version reforzada del teo-
rema de Riesz-Thorin probado por Krasnosel’skii [64]. Recientemente, Edmunds y Opic [45] es-
tablecieron una variante limite del teorema de Krasnoselskil para espacios de medida finita: si
T:Lp, — Lg, escompactoy T: L, — Lq, es acotado, entonces T también es compacto actuando
entre espacios de Lorentz-Zygmund que son muy préximos a L, y Lg,. Las técnicas usadas en
[45] aprovechan el hecho de trabajar con espacios de Lebesgue.

Mas tarde, Cobos, Fernandez-Cabrera y Martinez [23] obtuvieron versiones abstractas de los
resultados de [45] que funcionan para pares compatibles de espacios de Banach. No obstante,
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asumian que el segundo par estd ordenado por inclusién, esto es, B; = By 6 By = By. La hipétesis
del orden se corresponde con la hipétesis de la medida finita de los espacios de Lebesgue en [45].
Usando las J-representaciones y una estrategia distinta a la de [23], mostramos aqui que se puede
eliminar la restriccion de que el segundo par sea ordenado. En concreto, mostramos los siguientes
resultados de compacidad:

Teorema 7. Sean A = (Ag, A1) y B = (Bo, B1) dos pares compatibles de espacios de Banach. Consideremos
un operador lineal T € L(A,B) tal que la restriccion T : Ag — Bg es compacta. Tomemos también
A= (g, %o ) €R?y 1 < q < oo tales que

Roo +1/q<0sig<oo 0 &Koo <0siq=o0.
Entonces, también es compacta la restriccion

T:(Ag,A1)0,q,6 — (Bo,B1)0,q,4-

Teorema 8. Sean A = (Ag, A1) y B = (Bo, B1) dos pares compatibles de espacios de Banach. Consideremos
un operador lineal T € L(A,B) tal que la restriccion T : A; — By es compacta. Tomemos también
A= (g, %o ) €R?y 1 < q < oo tales que

ap+1/q<0siq<oo 6 &9<0siq=oo.
Entonces, también es compacta la restriccion

T: (Ao, A1)1,q,4 — (Bo,B1)1,q,a-

Estos teoremas permiten deducir resultados sobre interpolacién de operadores compactos en-
tre espacios de Lorentz-Zygmund generalizados L, q(logL)s(Q). Aqui (Q,u) es un espacio de
medida o-finita, 1 <p <00, 1< q <00, A = (g, Xeo ) € R2 y la norma en el espacio de funciones esta
dada por

oo 1/9
_ 1/p pA * % qE
1110, qaesinc = () [E7 e ©]"F)

donde f**(t) = t™! fot f*(s)ds y f* es la reordenada no creciente de f. Se tienen las siguientes
variantes para espacios de medida o-finita (no necesariamente finita) del teorema de Edmunds y
Opic que aparece en [45]:

Corolario 1. Sean (Q, 1) y (©, V) espacios de medida o-finita. Tomemos 1 < pg < p1 < 00,1 < qp < g1 < 00,
1<q<ooy A= (g, 0teo) €R? con ctoo +1/q <0< g +1/q. Sea T un operador lineal tal que

T:Lp(Q) — Ly, (©) es compactoy T: Ly, (Q) — Lg, (O) es acotado.
Entonces,

T:Lpyq(logl),, 1 (Q) —Lg,q(logl),, 1 (O)

min(p,q) max(dqg,q)

también es compacto.
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Corolario 2. Sean (Q, 1) y (©, V) espacios de medida o-finita. Tomemos 1 < pg < p1 < 00,1 < qo < 1 < o0,
l1<q<ooyA=(xg xeo) € R?conotg+1/q <0< teo +1/q. Sea T un operador lineal tal que

T:Lp(Q) — Lg,(©) esacotadoy T: Ly, (QQ) — Lg, (©) es compacto.
Entonces,

T:lpq(logl)y, 1 (Q) —Lgyq(logl),,__1 (©)

min(pq,q) max(qq,q)

también es compacto.

Asimismo, empleamos las J-representaciones para caracterizar el comportamiento de los ope-
radores débilmente compactos bajo interpolaciéon cuando 6 = 0 6 1. En particular, mostramos el
siguiente resultado:

Corolario 3. Sea A = (Ag, A1) un par compatible de espacios de Banach. Tomemos 1 < q < oo y sea
A = (g, Xoo ) € R2,

(a) Si g +1/q <0 < xoo +1/q, entonces el espacio (Ag, A1)1,q,a €s reflexivo si y slo si la inclusion
Ag N Ay = Ag+ Aq es débil-compacta.

(b) Siog+1/q<0y oo +1/q <0, entonces el espacio (Ag, A1)1,q,a es reflexivo si y solo si la inclusion
A1 = Ag + Aq es débil-compacta.

Por tdltimo, obtenemos los espacios duales de (Ag, A1)1,q,a Y (Ao, A1)o,q,a en términos del K-
funcional. A diferencia de la teoria cldsica, mostramos, con la ayuda de las J-representaciones, que
el dual de (Ao, A1)1,q,a (respectivamente, (Ag, A1)g,q,4) depende de la relacion entre q y A.

Los resultados de este tltimo capitulo forman el articulo [38]].
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Chapter

Introduction

The main topic of this thesis is interpolation theory and, more specifically, limiting interpolation
methods.

Interpolation theory is a branch of functional analysis with important applications in harmonic
analysis, approximation theory, partial differential equations, operator theory and some other ar-
eas of mathematics. See, for instance, the monographs by Butzer and Berens [9], Bergh and Lof-
strom [5], Triebel [80, [81], Konig [63], Bennett and Sharpley [4], Brudnyl and Kruglyak [8] or
Connes [39]. Among other things, given two (compatible) Banach spaces Ay and Aj, and using
the constructions of interpolation theory, one can produce a family of spaces whose properties are
intuitively a mixture of those of Ay and A;. This is very useful in many contexts.

The origins of interpolation theory go back to the first half of the 20th century with Riesz’s the-
orem (1927), Thorin’s proof (1938) for complex scalars and Marcinkiewicz’s theorem (1939). These
results appeared as a tool for solving certain problems in harmonic analysis, like the Hausdorff-
Young theorem. The simplest version of the Riesz-Thorin theorem states that if T is a linear opera-
tor that maps continuously L, into L, and L, into L,,;, where 1 < pg < p; < o0, then it also maps
L, into L;, for pg < p < p1. On the other hand, Marcinkiewicz’s theorem is the corresponding result
when one replaces the target spaces by (the larger) weak-L,, spaces. Therefore the Marcinkiewicz
theorem can be used in cases where the Riesz-Thorin theorem fails. These results themselves have
found a variety of applications in analysis (see, for instance, [86, Chapter 12]).

In the 1960’s, authors like Lions, Peetre, Aronszajn, Gagliardo, Calderén and Krein started
what is now known as abstract interpolation theory. Their main motivation was the study of
certain problems in partial differential equations that dealt with the scale of Sobolev spaces H*(Q).
Their approach was functorial, that is, they were interested in obtaining general constructions
(interpolation methods) that produce an interpolation space A = F(Ag, A1) for each pair of spaces
(Ao, A1).

There are several procedures for generating interpolation spaces, among which are the complex
method and the real method. The complex method was presented in Calderén’s seminal paper [10]

11
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and its construction is based on the ideas in Thorin’s proof of Riesz’s theorem. The real method, on
the other hand, is connected to Marcinkiewicz’s theorem; it was introduced in Lions and Peetre’s
work [67]. Currently, the most usual way to present the real method is by means of Peetre’s K-
functional. Recall that, given a Banach couple A = (Ag, A7) and t > 0, the K-functional is defined
as

K(t,a) = K(t,a;A) = inf{[|ag| A, + t]ai|a, :a=ag+ a1, a5 € Aj}, aeAg+ Ay

For 1 < q < oo and 0 < 6 < 1, the real interpolation space Ae,q = (Ag,A1)e,q is defined as the
collection of vectors a € Ay + A; for which the following norm is finite
oo dt l/q
= -6 q-=
lala,, = (K@ @11)

An advantage of the real method is its flexibility. In fact, it can be easily extended to quasi-
Banach spaces and also to normed Abelian groups (see [5]). Furthermore, the K-functional can be
in certain situations explicitly obtained and is related to other important concepts in analysis. For
instance, in the context of approximation theory, some moduli of smoothness can be interpreted as
K-functionals on suitable couples of spaces.

Working with the couple of Lebesgue spaces (L;, L ), the real method produces Lebesgue and
Lorentz spaces
(Li,Lec)o,q =Lp,q ifl/p=1-06

(see [5,180,4]). In order to obtain Lorentz-Zygmund spaces L, q(log L), we need to replace t° by a
more general function f(t) in the definition of the real method (see the article by Gustavsson [55]).
The case where f(t) = t9g(t) is of special interest. Here g is a power of 1+|log t| or, more generally,
a slowly varying function; these cases are studied in the papers by Doktorskii [43], Evans and Opic
[46], Evans, Opic and Pick [47], Gogatishvili, Opic and Trebels [52] and Ahmed, Edmunds, Evans
and Karadzhov [1].

With this definition 0 can take the values 1 and 0, but in these limit cases the extra function
g(t) is essential to get a meaningful definition and to obtain a space that is not just {0}. However,
if the Banach spaces are related by a continuous embedding, say Ay < A, then the limiting spaces
(A0, A1)0,q;; and (Ag, A1)1,q;x can be defined without the help of an auxiliary function, just by
making a natural modification in the definition of the real interpolation method. These limiting
methods have been studied in the papers by Gomez and Milman [54], Cobos, Ferndndez-Cabrera,
Kiihn and Ullrich [19], Cobos, Ferndndez-Cabrera and Mastyto [24], Cobos and Kiihn [29] and Co-
bos, Ferndndez-Cabrera and Martinez [22], where they are applied to work with singular integrals
[54], approximation of stochastic integrals [29] and to characterise Césaro sequence spaces by in-
terpolation [24], among other things. The space (Ag, A1)o,q;; is very close to Ag and (Ag, A1)1,q;x
is near Aj; this fact is important in applications.

To be in the ordered case Ay — A; is basic for the arguments of those papers, but it is only a
restriction from the point of view of interpolation theory. For this reason, it is natural to study the
extension of these limiting methods to arbitrary, not necessarily ordered, couples of Banach spaces.
This question has been considered by Cobos, Fernandez-Cabrera and Silvestre in [25] 26], their
main target being to describe the spaces that arise when interpolating the 4-tuple {Ag, A1, A1, Ao}
by the methods associated to the unit square. Several K- and J-methods were introduced to the
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effect that along the diagonals of the square the interpolated spaces are sums (in the K-case) or
intersections (in the J-case) of limiting methods and real interpolation spaces.

Our goal in a large part of this thesis is to develop a comprehensive theory of limiting methods
for arbitrary couples. In Chapters 3| [ and [5| we present a family of K-methods and a family of
J-methods that are related by duality, that extend to arbitrary couples the definitions by Gomez
and Milman and by Cobos, Fernandez-Cabrera, Kiihn and Ullrich and that produce a sufficiently
rich theory.

The concrete definition of the limiting K- and J-spaces given in Chapter [3]is as follows.

Definition 1.1. Let A = (Ao, A1) be a Banach couple and let 1 < q < oo. We define the space
Aq;K = (Ao, A1)q;k as the collection of all those a € Ay + A; which have a finite norm

1 dt\Yd 0 dt\ 4
A q_— -1 a_-
lalage = ( f k@09 )+ [TEKREo1T)
Definition 1.2. Let A = (Ao, A1) be a Banach couple and let 1 < q < co. The space Ag;j = (Ag, A1)
is formed by all those a € Ay + Ay for which there exists a strongly measurable function u(t) with
values in Ay n A7 such that

0 t
a= fo u(t)dT (convergence in Ag + A1) (1.1)

and
1/q

1 t ) t 1/q
([ e ) ([ T1eum T) <w. (1.2)
The norm | a| Ay D Ag;y is the infimum in ([.2) over all representations that satisfy and (1.2).

We study in that chapter the relationship between these methods and other limiting methods
and also with the classical real method Ag 4. In concrete terms we prove that these definitions gen-
eralise to arbitrary couples those given by Gomez and Milman and by Cobos, Ferndndez-Cabrera,
Kiihn and Ullrich. We also show that these methods are limiting in the following sense.

Theorem 1.1. Let A = (Ag, A1) be a Banach couple. Let 1 <p,q,r < 0o and 0 < 0 < 1. Then

AgnAr = (Ag,A1)p;g = (Ao, A1)e,q = (Ao, A1)rk = Ag + A1

The limiting J-spaces are very close to the intersection AgnA; and the K-spaces are near Ag+Aj,
so much so that the estimates for the norms of the operators interpolated by these methods are
worse than in the limiting ordered case.

This bad behaviour is reflected in the interpolation properties of compact operators. Recall that
given two Banach couples A = (Ap, A1) and B = (B, B1) and a linear operator T € £(A, B) such
that any of the restrictions T : A; — Bj is compact, then T : Ag q —> By q is also compact for
any 1 < q < oo and any 0 < 0 < 1 (see [40] and [30]). This no longer holds when one works with
limiting methods. Indeed, in the ordered case where Ay = A; and By — B1, we also need one of
the restrictions, but not just any one of them, to be compact so as to guarantee the compactness of
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the interpolated operator by the limiting J- or K-method. More precisely, the compactness of the
restriction T : Ag — By is sufficient to ensure that the operator T : Agq;; —> Bo,q;j is compact,
whereas in order to have the compactness of T : A q;x — B1,q;k, We need the other restriction,
T: A1 — By, to be compact (see [19]). In Chapter we show that in the general limiting case the
fact that one restriction, whichever one, is compact is not enough, but, if both are compact, then
the interpolated operator by the K- and the J-method is compact.

Moreover, we study in Chapter (3l how one can describe limiting K-spaces by means of the
J-functional and we give some consequences of this description: First we give the following defi-
nition.

Definition 1.3. Let A = (Ag, A1) be a Banach couple and let 1 < g < co. Write p(t) = 1+ |logt| and
u(t) = t1 (1 +|logt|). The space A{pu},q; is formed by all those elements a € Ag + A; for which
there is a representation

a= /000 u(t)% (convergence in A + Aq) (1.3)
where u(t) is a strongly measurable function with values in Ag n A1 and such that
1 q dt 1/q o0 dt 1/q
(f et )+ (7 mor@umntF) T <o (1.4

The norm in A, 3 q;5 is given by taking the infimum of the values (I.4) over all possible represen-
tations u of a satisfying (1.3) and (1.4).

Then we show that the spaces Ay, 1, ;5 coincide with the limiting K-spaces

Theorem 1.2. Let A = (Ao, A1) be a Banach couple and let 1 < q < oo. Then we have with equivalent
norms (Ao,Al)q;K = (AO,A’l){p/u}/q;I.

The equivalence theorem is not true when q = oo, as we show with a counterexample.

Furthermore, we establish the duality relationship between limiting K- and J-methods, and
at the end of the chapter we give some examples of spaces obtained by these limiting methods.
First, working with any o-finite measure space, we characterise the limiting spaces generated by
the couple (Lo, L1). Then we consider a couple formed by two weighted L4-spaces and, as an
application, we determine the spaces generated by the Sobolev couple (H°, H!). We also consider
the case of the couple (B} q,Bplq) of Besov spaces. Finally, we apply the limiting methods to
obtain a Hausdorff-Young type result for the Zygmund space L(logL)_1/»([0,27]). The contents

of Chapter 3|appear in the paper [35].

In Chapter [l we consider the interpolation of bilinear operators under these limiting methods.
The problem of the behaviour of bilinear operators under interpolation is a classical question that
was already studied by Lions and Peetre [67] and Calderén [10] in their seminal papers on the
real and the complex interpolation methods, respectively. The results in this field have found
a variety of interesting applications in analysis including boundedness of convolution operators,
interpolation between a Banach space and its dual, stability of Banach algebras under interpolation
or interpolation of spaces of bounded linear operators (see the articles by Peetre [75], Mastyto [69],
Cobos and Ferndndez-Cabrera [17, [18] and the references given there). We start the chapter with
the following result.
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Theorem 1.3. Let A = (Ag, A1), B = (Bg,By) and C = (Co, C1) be Banach couples and let 1 < p, q,r < 00
with 1/p +1/q =1+ 1/r. Suppose that

R:(Ap+A1) x(Bp+B1) > Co+Cyq
is a bounded bilinear operator whose restrictions A x Bj define bounded operators
R:A; x Bj - C;
with norms M; (j = 0,1). Then the restrictions
R:(Ag, A1)y, x (Bo, B1) g,y = (Co, C1),yg

and
R: (Ao, Al)p;] x (BOIBl)q;K - (Co, Cl)r;K

are also bounded with norm M < max (My, My).

Moreover, we show that the corresponding results of the type K x ] - J and K x K - K do
not hold. As an application we establish an interpolation formula for spaces of bounded linear
operators.

Then we check that these methods do not preserve the Banach-algebra structure. The results

are collected in the following theorem.

Theorem 1.4. The spaces (£1,€1(27™))q;x (for 1 < q < oo) and (£1,€1(27™))q;7 (for 1 < q < o) are not
Banach algebras if multiplication is defined as convolution.

We end the chapter comparing the estimates for the norms of bilinear operators with those of
linear operators interpolated under limiting methods. We also establish a result that is related to
the norm of interpolated linear operators. This theorem complements what is shown in Chapter 3]
regarding this matter.

Theorem 1.5. Let 1 < q < oo. Then
sup { Tl a8t IThays, <5 [Tla, B, <t} ~max(s, ),

where the supremum is taken over all Banach pairs A = (Ag,A1), B = (Bo,B1) and all T € L(A,B)
satisfying the stated conditions.

In addition, if q = oo, the supremum is attained and the previous equivalence is actually an equality.

The most important results in Chapter [d|form the article [36].

Chapter |5 describes the contents of the paper [37] and refers to reiteration, that is, stability,
formulae for limiting methods. Reiteration is a central question in the study of any interpolation
method. Reiteration formulae allow to determine many interpolation spaces and have found in-
teresting applications in analysis. For example, in the case of the real method, reiteration allows
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to derive strong (i.e. L, — L) estimates for operators from weak type estimates (see the books by
Bergh and Lofstrom [5]], Triebel [80], Bennett and Sharpley [4] and Brudnyi and Krugljak [8]).

One way to establish the reiteration theorem for the real method (Ao, A1)g 4 is by means of
Holmstedt’s formula [57], which gives the K-functional of the couple of real interpolation spaces
((Ao,A1)g,,q0 - (A0, A1)g, q,) I terms of the K-functional of the original couple (Ao, A1). Recall
that in this case 0 < 0 < 1.

Several authors have followed this line of research. See, for example, the papers by Asekritova
[2], Evans and Opic [46], Evans, Opic and Pick [47], Gogatishvili, Opic and Trebels [52] or Ahmed,
Edmunds, Evans and Karadzhov [1]. The last four mentioned papers deal with the extension of
the real method which is obtained by replacing in the definition t° by t®g(t), where g is a broken
logarithmic function or, more generally, a slowly varying function. In these articles the authors
obtained Holsmtedt-type formulae and reiteration results where the function g is involved.

The extension of Holmstedt’s result to limiting K-spaces for ordered couples is done in the pa-
per by Gomez and Milman [54]. For the case of limiting J-spaces for ordered couples, a reiteration
formula can be found in the article by Cobos, Ferndndez-Cabrera, Kiithn and Ullrich [19].

Our aim in Chapter[5|is to establish reiteration formulae for limiting K- and J-methods acting on
arbitrary couples. This case is not covered in any of the papers that we have mentioned. We obtain
estimates that are adapted to the kinds of spaces that we consider and that allow us to explicitly
determine the resulting spaces, since they show the weights that appear with the K-functional.

We start the chapter by deriving Holmstedt-type formulae for the K-functional of couples
formed by a limiting interpolation space and a space of the original couple. From these formulae
we derive some reiteration results. The spaces that we obtain by interpolating a limiting method
and a space that belongs to the original couple can be expressed as an intersection V n W, where

{ V={aeAg+As:K(s,a)/v(s) e Lq((0,1),ds/s)}, (1.5)

W={aeAg+A;:K(s,a)/w(s) e Lq((1,00),ds/s)}.

Here, v and w are functions of the form s'b(s), b being a certain slowly varying function and i = 0
or 1. A limiting method applied to a couple of real interpolation spaces is also of the form (L.5),
but in this case the functions v and w have the form s®h(s), where 0 < 8 < 1 and h is a logarithmic
function.

Finally we apply these results to determine the spaces generated by some couples of function
spaces and couples of spaces of operators. Some of these results are included in the following
theorem.

Theorem 1.6. Let (Q, 1) be a resonant, o-finite measure space and let 1 < pg,p1 < 00,1 < q < oo and
1/q+1/q" =1. Then

(LPO/q/ LP1,q )q;I = LPO/q (log L)_’l/ql N LP1,q (log L)—l/q’ (an
(Lpo,arLpia) gk = Lpo,alogL)1/q + Lp,,q(logL)1/q

with equivalence of norms.
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The last chapter of the thesis refers to questions related to logarithmic interpolation spaces, that
is, to the spaces (Ao, A1)e,q,4 Whose norm is given by

q dt 1/q
o

lalaganoes = ([ [E0E K )]

Here 1< q < o0, A = (xp, %o ) € RZ, £(t) = 1+ |log t],

EA(t):e(aO’“w)(t): E“O(t) 1f0<t§1,

(X< (t) ifl<t<oo,
and now not only 0 < 0 < 1 but also 0 can take the values 0 and 1. In fact it is these two extreme
values which we are interested in, since, as can be seen in [45] Proposition 2.1], in the ordered case,
the methods (Ag, A1)o,q,4 and (Ao, A1)1,q,a are related to limiting interpolation methods.

The spaces (Ao, A1)g,q,a are studied in the papers by Gustavsson [55], Doktorskii [43], Evans
and Opic [46], Evans, Opic and Pick [47] and the references given there.

If0<0<1thent ¢ (t) satisfies the assumptions used in [55], so (A, A1)eg,q,a is just a special
case of the real method with a function parameter whose theory is well-established (see [55, |60,
77]). However, if 0 = 0 or 1, there are certain natural questions that have not been studied yet and
that are dealt with in Chapter[6] We start by giving the description of (Ag, A1)o,q,a and (A, A1)1,q,4
by means of the J-functional and then we use this description to show the interpolation properties
by these methods of compact and weakly compact operators, and also to determine the dual of

(Ao, A1)o,q,4 and (Ag, A1)1,q,A-

We show that, on the contrary to the case 0 < 0 <1, when 0 = 0 or 1, the J-description depends
on the relationship between A and q: Sometimes one should add one unit to the power of the
logarithm, some other times an iterated logarithm should be inserted in addition, and some other
times the J-description does not exist at all.

The problem of how compact operators behave under interpolation has its root in the rein-
forced version of the Riesz-Thorin theorem given by Krasnosel’skii [64]. Recently Edmunds and
Opic [45] established a limiting variant of Krasnosel’skii’s theorem for finite measure spaces to the
effect thatif T: L) — Lg, compactly and T: L,,, — L4, boundedly, then T is also compact when
acting between Lorentz-Zygmund spaces which are very close to L,; and L. The techniques used
in [45] take advantage of dealing with Lebesgue spaces.

Very recently, Cobos, Fernandez-Cabrera and Martinez [23]] obtained abstract versions of the
results of [45] which work for more general Banach couples. However, they assumed that the
second couple is ordered by inclusion, that is, By < By or By = B;. This embedding hypothesis
corresponds to the finiteness of the measure spaces in [45]. Using J-representations and a different
approach to [23], we show here that the embedding restrictions can be removed. In concrete terms
we show the following compactness results.
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Theorem 1.7. Let A = (Ao, A1) and B = (Bo,B1) be two Banach couples. Consider a linear operator
T € L(A, B) such that the restriction T : Ag —> By is compact. For any A = (Xg, %) € RZ and 1 < q < oo
such that

Koo +1/q<0ifq<oo  oF o <0ifq=o00,

we have that
T: (A0, A1)0,q,6 — (Bo,B1)o,q,a

is also compact.

Theorem 1.8. Let A = (Ag, A1) and B = (By, By) be two Banach couples. Consider a linear operator
T € L(A, B) such that the restriction T : A; —> By is compact. For any A = (&g, %) € R2and 1< q < oo
such that

ap+1/q<0ifq<oo or op<0ifq=oo,

we have that
T: (Ao, A1)1,q8 — (Bo,B1)1,q,a

is also compact.

As a consequence of these theorems we derive results on interpolation properties of compact
operators acting between generalised Lorentz-Zygmund spaces L, q(logL)A(Q). Here (Q, ) is a
o-finite measure space, 1 <p <00, 1< q <00, A = (xp, Xeo) € R? and the norm in the function space
is given by

[T Tamer (o6 ()] dt)!/d 16

Il qoosone = () [E7e @ @] ) (16)

where f**(t) = t7! fot f*(s)ds and f* is the non-increasing rearrangement of f. We show the follow-
ing versions of Edmunds and Opic’s theorem in [45] for o-finite (not necessarily finite) measure

spaces.

Corollary 1.9. Let (Q, ), (©,V) be o-finite measure spaces. Take 1 < pg < p1 < 00, 1 < qo < 1 < 00,
1<q<ooand A= (g, Xeo) € R? With oo +1/q <0 < 0tg +1/q. Let T be a linear operator such that

T:Lp(Q) — L, (©) compactly and T : Ly, (Q) — Lq, (©) boundedly.

Then

T:Lpyq(ogl),, e (Q) — Lgy,q(logl),, maxCa0.a) (©)

is also compact.

Corollary 1.10. Let (Q, ), (©,v) be o-finite measure spaces. Take 1 < pg < p1 < 00, 1 < qo < g1 < 00,
1<q<ooand A= (&g, 0teo) € R? with og +1/q < 0 < &teo + 1/q. Let T be a linear operator such that

T:Lp(Q) — Lg,(©) boundedly and T : Ly, (Q) — Lq,(©) compactly.

Then

T:Lp, qUogl),, 1 (Q) —Lg,q(logl),, 1 (©)

min(pq,q) max(q1,9)

is also compact.
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We also use J-representations to characterise the behaviour of weakly compact operators under
interpolation when 6 = 0 or 1. In particular we show the following result.

Corollary 1.11. Assume that A = (Ag, A1) is a Banach couple and let 1 < q < oo and A = (g, Xo0) € R2.

(a) Suppose that oy +1/q < 0 < Xeo +1/q. Then (Ag, A1)1,q,a is reflexive if and only if the embedding
AgNAy = Ag + Ay is weakly compact.

(b) If g +1/q < 0 and oo +1/q < 0, then (Ao, A1)1,q,a is reflexive if and only if the embedding
A1 = Ag + Ay is weakly compact.

Finally we determine the dual of (Ao, A1)1,q,a and (Ao, A1)o,q,a in terms of the K-functional.
We show with the help of J-representations that in contrast to the classical theory, the dual of
(Ao, A1)1,q,a (respectively, (Ag, A1)o,q,4) depends on the relationship between q and A.

The results in this chapter form the paper [38].
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Chapter

Preliminaries

By a Banach couple A = (Ao, A1) we mean two Banach spaces Ay, A; which are continuously em-
bedded in a common Hausdorff topological vector space A, Ag, A; — A. Then it makes sense to
consider the vector spaces Agn A; and

Ao+A;={aeA:3apeAp,a; €Ay witha=ap+a;}

endowed with the natural norms

lall Agna, =max{lalla, lala,}

and
lalagea, = inf{laola, + lailla, - a=ao+ai, a5 €Aj},

respectively. Clearly AgnA; <= Ag, A1 = Ag + Ay, so, once constructed Agn A; and Ag + Ay, one
can disregard .A and consider Aj + A1 as the ambient space.

Given a Banach couple A = (A, A1), a normed space A — A is said to be an intermediate space
with respect to A if AgnA; = A = Ag + Aj. An interpolation space between Ay and A; is any
intermediate space A with respect to the couple A such that for every T € L(Ag + A1, Ag + A1)
whose restriction to A belongs to £(Ap, Ag) and whose restriction to A; belongs to £(A1, A1), the
restriction of T to A belongs to L(A, A).

As we stated before, the complex interpolation method is based on the ideas in Thorin’s proof
of Riesz’s theorem. The Riesz-Thorin theorem will be mentioned in Chapter[p|and reads as follows.

Theorem 2.1. [Riesz-Thorin theorem] Let (Q), i) and (©, v) be o-finite measure spaces. Take any values
1 <Ppo,P1,90,q1 < oo and let T be a linear operator such that

T:Lp(Q,u) — L, (©,v) with norm Mg and
T:Lp,(Q,un) — Lg,(©,v) with norm M.

21
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Take 0 < 6 <1 and
1 1-0 © 1
— = +— and — .
P Po P q do q1
Then the restriction of T to L, (Q, 1) is a bounded operator,

T: I—p(o-/ w) — I—q (©,v),

with norm M < Mé‘eM?.

On the other hand, the root of the real interpolation method (Ag, A1)e,q is the celebrated
Marcinkiewicz interpolation theorem, which states the following.

Theorem 2.2. [Marcinkiewicz’s interpolation theorem] Let (Q, ) and (©,v) be o-finite measure
spaces. Take any values 1 < po,p1,qo, q1 < oo with qo # qq and let T be a linear operator such that

T:Lp(Q 1) = Lgpe (©,v) withnorm My and  T: 1Ly, (Q, 1) = Lg,,00(0, V) with norm M.

Let 0 < 0 <1 and put

1 1-6 © 1 1-6 ©
—_ = + — _—=

, +—.
P Po P1 q qo q1

Then, if p < q, the restriction T : L, (Q, 1) = Lq(©,V) is also bounded with norm M < CM{"®M?, where
C does not depend on T.

2.1 The real interpolation method

The real method can be defined in several equivalent ways, but the most common are those given
by Peetre’s K- and J-functionals. For t > 0, Peetre’s K- and J-functionals are the norms on Ap + A and
Ao N Ay, respectively, defined by

K(t,a) =K(t,a;A) =inf{[|ag|a, + t]ai|a, :a=ag+ a1, a5 € Aj},aeAg+ Ay,
and
J(t/ (1) = ](t/ a;A) = maX{Ha||Ao't“a”A1}/ aeAgnA;g.

Notice that K(1,-) = | - [a,+a, and J(1,-) = | - | AynA,- Moreover, for each t > 0, K(t,-) is equivalent
to |- |A,+A, and J(t,) is equivalent to | - [ A,nA,-

With the help of these functionals we can define the (classical) real interpolation spaces. Let
0<0<land1 < q < oo. The real interpolation space Ag,q = (Ao, A1)e,q, viewed as a K-space,
consists of all a € Ay + A1 for which the norm

dt 1/q
%)

lala, = (76K e

is finite (When q = oo the integral should be replaced by a supremum). See [5} 4} 8, 80]. It follows
from the equivalence theorem that Ae,q coincides with the collection of all those a € Ay + A; for

2.1)
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which there is a strongly measurable function u(t) with values in Ay n A; that represents a as
follows

% dt
a= /0 u(t)T (convergence in Ag + A1) (2.2)

and such that
1/q

([ eoruni ) <o, (23)

We refer to [84] for details on the Bochner integral. Moreover,

lallag,, = inf{(fo [te](t,u(t))]q%) ! :u(t) satisfies and } (2.4)

is an equivalent norm to | - || 5 0"

As we mentioned before, the real method produces interpolation spaces. The following the-
orem shows this fact and also generalises Marcinkiewicz’s theorem to arbitrary Banach spaces.
Given two Banach couples A = (A, A1) and B = (Bg,B1), we write T € £ (A,B) if T is a linear
operator, T: Ag+A; — B+ By, for which restrictions T: Ag — Bgand T : A; — Bj are bounded.
In addition, we write M; = HT||A],,B],.

Theorem 2.3. [Interpolation Theorem] Let A = (Ao, A1) and B = (Bo, B1) be two Banach couples and
let T e L(A,B). Then, for 0 < 0 < 1and 1 < q < oo, the restriction of T to (Ao, A1)e,q is a bounded
operator,

T: (Ao, A1)e,q — (Bo,B1)e,q,

and its norm is M < M(l)‘e M?.

We end this section by giving an example. Let (Q, ) be a o-finite measure space. Given any
measurable function f which is finite almost everywhere, the non-increasing rearrangement of f is
defined by

f*(t) =inf{s>0: u({x € Q:|f(x)| >s}) < t}. (2.5)

Let 1 < p,q < co. We define the Lorentz space L, (Q) as the set of all equivalence classes of
measurable functions f for which the following functional is finite

o= ([T 5"

Note that if p = q then L, ,, (Q) coincides with the Lebesgue space L,,(Q). So, the scale of Lorentz
spaces is a refinement of the scale of Lebesgue spaces.

The couple of Lebesgue spaces (L. (Q),L;(Q)) is a Banach couple. It turns out that if we apply
the real method to this couple, we obtain a Lorentz space. Namely, if 1 < q<ocoand 0 <6 <1, we
have that

(LOO (Q)/ Ll(Q))G,q = L1/9,q (Q)

We will mention more results on the real method throughout the thesis. All of them, and
examples that deal with other spaces, appear in [80, 5, 4, 8]
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2.2 Extensions of the real method

We stated before that the real method is very flexible and can be easily extended, and we mentioned
how one could generalise the definition to other kinds of couples of spaces (for instance, quasi-
Banach spaces or even normed Abelian groups).

Another possibility is to change the norm in the definition. If one replaces the usual weighted
L4 norm by a more general lattice norm I, one obtains the so-called general real method, introduced
by Peetre in [74]. This method plays an important role, as can be seen in the book by Brudnyi
and Krugljak [8] and the articles by Cwikel and Peetre [41] and by Nilsson [71, [72]. Among other
applications, it turns out that one can describe all interpolation spaces with respect to the couple
(Leo, L1) by means of this general real method (see [8] or [72]). It will appear in Chapter [4|

A special case of the general real method consists in replacing in the definition of (Ao, A1)g,q
the function t° by a more general function f(t) (see the paper by Gustavsson [55]). The case where
f(t) = t9(t) is of special interest; the definition of these methods is as follows. The interpolation
space Ae,g,q = (Ao, A1)e,g,q consists of all a € Ag + Aq for which the norm

dt 1/q
%)

lala,,, = ([0 aK @ @) 2.6)

is finite. Here, g is a power of 1 + |log t| or, more generally, a slowly varying function.

In order to illustrate the importance of these methods we give the following example. Working
with the couple of Lebesgue spaces (L, Ly, ), the real method produces Lebesgue and Lorentz
spaces (see [5,180, 4]). The Lorentz-Zygmund space L, 4(logL), can be obtained from the couple
(Lp,, Lp,) by using this extension of the real method. In fact, we have that

(Loo, L1)1/p,pu,q = Lp,q(log L)v, where pp = (1 + [log t])°®.

Recall that if (Q, u) is a o-finite measure space, 1 <p, q < oo and b € R, the Lorentz-Zygmund function
space Ly q(log L)y (Q) consists of all (equivalence classes of) measurable functions f on Q such that
the functional

00 1/q
_ 1/ bex q ﬁ
HfHLp,q(logL)b(Q) = (fo [t P(1+[logt])°f (t)] . )

is finite. Here f* is the non-increasing rearrangement of f defined above. We refer to [3| 14} 44]
for properties of these spaces. Note that if q = p then L, ;, (logL), (Q) is the Zygmund space
L, (logLl), (Q). If in addition b = 0, then L, ;, (log L), (Q) is the Lebesgue space L, (Q).

Several authors like Gustavsson [55], Doktorskii [43], Evans and Opic [46], Evans, Opic and
Pick [47] have focused on the special case where the function g in is a broken logarithmic
function. We denote the resulting space by (Ao, A1)g,q,a, Which is normed by

oo dt\Yd
lallcag Ao = ( fo [t (t)K(t, a)]* T) . 2.7)
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Here 1< q < o0, A = (01, oo ) € R2, £(t) = 1 +]|logt],

(A (1) = ((ooe) (1) = %o (t) %f 0<t<1,

= (t) ifl<t<oo,
and now not only 0 < 8 < 1 but also 0 can take the values 0 and 1. We will work with these limiting
methods in Chapter [f]

Before presenting another extension that we shall consider, we need to establish the following
notation. If X, Y are non-negative quantities depending on certain parameters, we put X 5 Y if there
is a constant ¢ > 0 independent of the parameters involved in X and Y such that X <cY. If X $Y
and Y $ X, we write X ~ Y.

When we defined the real method, we asked for 6 to be strictly between 0 and 1. A natural
question, thus, is the following: Can we take 6 = 0 or = 1? This was already considered by Butzer
and Berens in [9], where they showed that if we take 6 = 0 or 1 and q = oo in or0=0orl
and q = 1 in (2.4), then the resulting spaces are also interpolation spaces. However, for any other
values of q, the spaces with 6 = 0,1 are meaningless, that is, they are just the trivial space {0},
which need not be even an intermediate space. Indeed, in order to simplify, suppose that Ay = A;.
Take a € Ag + A = A1. Then clearly K(t,a;Ap, A1) < t Ha||A1. Conversely, if a € A; and a = ap + a4
is any representation of a with a; € A; and 0 <t < 1, then

tlala, <tlaola, +tlaila, stlaola, +tlaila, <llaola, +tlaila, .

so, taking the infimum over all possible representations, we obtain t ||a| A, S K(t,a;Ap,A1). This
implies that
if Ag > Ajand 0 <t <1, then K(t,a;Ag, A1) ~ tafn, - (2.8)

Now, if we take 6 = 1 in (2.1), we obtain

1/4

(fol[t‘lk(t,a)]q %+floo[t‘1K(t, )] %) ,

1 dt 1/q 1 dt 1/q
-1 q _
(fo [Tk o) ) NHQHAl(fo t qT) /

which is divergent unless q = co. The proof of the general K- and J-cases can be seen in [9, Propo-
sitions 3.2.5 and 3.2.7].

and, by (2.8),

The extension that we are about to describe corresponds to taking the limiting values 6 = 0 and
0 = 1. This can be done in the logarithmic case (2.7), but in these limit cases the extra function
%(t) is essential to get a meaningful definition. For this extension, instead of replacing t® by a
more general function t®g(t), the original definition is modified in the most natural way, without
the help of auxiliary functions. The following result motivates the definitions of these limiting
methods. Suppose that the Banach spaces are related by a continuous embedding, say, for instance,
AQ > Al-

Proposition 2.4. Let A = (Ag, A1) be a Banach couple with Ag - Ay and let 0 <0 <1and 1< q < oo.



26 Extensions of the real method

i) The space Ag 4, seen as a K-space, coincides with the collection Ag 4.x of all those a € Ay for which
P q P .q;
the following norm is finite

/
dt)l ! 2.9)

lalag g = (K1

with equivalent norms.

(ii) The space Ag,q, seen as a J-space, coincides with the collection Ag q;7 of all those a € Ay for which
there is a strongly measurable function w(t) with values in Ag that represents a as follows

a= floou(t)% (convergence in Ay) (2.10)

and such that
1/4

(flw[te](t,u(t))]q%) <oo. (2.11)

Moreover,

[ee] /
”a”AG,q;] = inf{(fl [t—el(t,u(t))]q%)l ! :u(t) satisfies and } (2.12)

is an equivalent norm to | - | 4, .

Proof. We have by that

t

1 B dt 1/q oo dt 1/q
“lala, ([ 009F) ([ Trekae )

Since 0 < 0 < 1, the first integral in the second line is a constant. Moreover, K(t, -) is non-decreasing
with t, so

lala,, ~ ol +( f 1K a)]q%)l/q” Ko (f e %)Uq o [Tk %)W
SZ(floo[t‘eK(t,a)]q%)l/q.

Since we also have that

o 1
(1o ans ) <laly,
we derive that, if Ag > A;,0<0<1land 1< < oo, then
dt 1/q
T

lalag, ~ (6Kt e

Next we prove (ii). Let a € Ag, q;; and let u(t) be such that [, u(t)dt/t = a, and put

0 if0<t<l,
v(t) = :
u(t) ifl<t<oo.
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Then clearly a = [;° v(t)dt/t and

([T dt)/ <([T1roreuw) dt)/,

so alx,, <lala,,,

Conversely, let u(t) be such that [;° u(t)4! = a and is satisfied. Then [, u(s)4s belongs
to Ag because for 1/q +1/q’ = 1 we obtain

1/

[ & < [ [ (o ) e @19

Put

(e - u(t) + log2

u(t) ift>2.

jolu(s)% ifl<t<2,

Then, we have that

00 dt 1 dt 2 dt 00 dt
fl V(1) - fo OB [1 u(®) S+ f2 u® < -a
and
) q
JA [t_e](t,v(t))]q%sflz [t—ey(t,folu(s)%)] %+f12[t_6](t,u(t))]qd—
+[2°°[t—9](t,u(t))]q a
For t > 1 we have that J(t,u(s)) St |u(s)| a,- Indeed, since Ag > Ay,
J(tu(s)) < uls)la, +tluls)la, s luls)la, +tluls)la, stluls)]a,-

Moreover,

](t,/olu(s)%)sfoll(t,u(s))%.
This gives that
flz [tel(t,folu(s)%)]q %g/lz[ / J(t,u(s)) —] dT
[l [ BT

s [ls J(su(S))]q =3

where we have used (2.13) in the last inequality. This ends the proof. O
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Note that the difference between the equivalent definitions given in Proposition 2.4/ and the
original ones is that the integrals are not on (0, o0) but only on (1, o).

In 1986, Gomez and Milman ([54]) realised that one can take 0 = 1 in (2.9), obtaining spaces that
are not only intermediate, but also interpolation spaces. If Ay — Ay, the limiting K-spaces for ordered
couples Aq,q;x are thus defined as the collection of all those a € A1 for which the following norm is
finite "

lallz, o~ (K@) 1y
Later on, Cobos, Fernandez-Cabrera, Kithn and Ullrich ([19]) noticed that one can also take 6 = 0 in
the equivalent definition by means of the J-functional (2.12), obtaining also interpolation spaces. If
Ag = Ay, the limiting J-spaces for ordered couples Ag q;7 are thus defined as the collection of all those
a € A; for which there is a strongly measurable function u(t) with values in Ag that represents a
as follows

a= _/100 u(t)% (convergence in A1) (2.15)

and such that g
(flw](t,u(t))q%) < oo. (2.16)

They defined the norm on this space as
[eS) dt 1/q
HCLHAMI = inf{(/l‘ ](t,u(t))qT) :u(t) satisfies (2.15) and } (2.17)

The spaces A1 q;x and A q;; arise when interpolating the 4-tuple {Ag, A1, A1, Ag} by the meth-
ods associated to the unit square. Let us recall the definition of the K- and J-methods associated to
a convex polygon in the plane.

Motivated by certain problems in the theory of function spaces, authors like Foias and Lions
[51], Sparr [79] and Fernandez [48] among others have studied interpolation methods for finite
families (N-tuples) of Banach spaces. In 1991, Cobos and Peetre [33] introduced a K- and a J-
method for N-tuples of Banach spaces that are associated to a convex polygon IT in the plane
and a point («, ) in the interior of TT. The construction is as follows: Consider a Banach N-
tuple A = (A1, A,,...,AN), that is, N Banach spaces A1, ..., Ay that are linearly and continuously
embedded in a Hausdorff topological vector space A. We designate by A(A) the intersection
AinA;n---nAyn,and X (A) stands for A; + A +--- + An. Imagine each Banach space A; sitting
on the vertex P; of a convex polygon TT =Py, P,,..., PN in R?.

Az

As Aq

A As
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Let the coordinates of P; be (xj,yj) and put

N N
K(t,s;a) :inf{thisy" HajHA_ ra=)aj, 0 eAj}, t,s>0, aeZ(A)
j=1 ) j=1

and

J(t,s;a) =1rgas1§ {thsUi HajHAj}, t,s>0, aeA(A).

Choose any (a, ) in the interior of TT and any 1 < q < co. Then we can define the space A (4 g),q;x
asthesetofallaeX (/_\) for which the following norm is finite.

e q dtds)'/d
el = (] TR s 0] ) (2.18)

In addition, we define the space A(oc,ﬁ),q; j as the one consisting of all elements a € £ (A) which
can be represented as

o0 oo dtd ~
a= [0 .[0 u(t,s)T?s (convergence in £ (A)),

where u(t, s) is a strongly measurable funtion with values in A (A) and

() s s o] $4) " <o

We define the norm in A4 ) ;7 as follows.

oo [ oo dt d 1/q
a;\(%mlq;lzinf{(/o [0 [t—“s‘ﬁj(t,s;u(t,s))]q Tt?s) } (2.19)

where the infimum is taken over all representations u(t, s) of a as above.

If we take T = {(0,0),(1,0),(0,1),(1,1)} (that is, the unit square), we obtain the spaces studied
by Fernandez (see [48]]) for 4-tuples. If TT = {(0,0),(1,0),(0,1)}, we recover the Sparr spaces for
triples (see [79]).

Working with the methods associated to polygons, K- and J- spaces are different in general,
since the fundamental lemma ([5, Lemma 3.3.2]) does not extend to the context of N-tuples. How-
ever, we have the following continuous embedding

Ayl = Aap)aks
see [33, Theorem 1.3].
In the theory of K- and J-spaces defined by a polygon, there is a case which is harder. Namely,

when the point («, 3) is in any diagonal of TI. It turns out that if Ay — A; and we interpolate
the 4-tuple {Ag, A1, A1, Ap} using the unit square, then when («, 3) is on the diagonal 3 = 1 - «,
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K-spaces coincide with (Ag, A1)1,q;x (see [20, Theorem 3.5]). For J-spaces, we have that along the
diagonal o = 3 they coincide with (Ao, A1)o,q;; (see [19, Theorem 5.1]).

The case of a 4-tuple {Ag, A1, A1, Ag} when there is no relationship between A and A; has been
studied by Cobos, Fernandez-Cabrera and Silvestre in [25,126]. For this aim they introduced several
limiting K- and ]J-methods to the effect that along the diagonals of the square, the interpolated
spaces are sums of limiting methods and real interpolation spaces in the K-case, while they are
intersections of limiting methods and real interpolation spaces in the J-case.

The K-spaces A1 q;x and Ag q;x that they considered are defined as the collections of all those
a € Ag + A1 which have a finite norm

1 1 de\Y/a
lal s . = sup t1K(t,a) + ( / (1K (, a)]q—) (2.20)
LaX 0<t<1 1 t
and
1 dt 1/q
lall Ay = (f K(t, a)q—) + sup K(t,a), (2.21)
v 0 t 1<t<oo

respectively. On the other hand, the J-spaces A q;j and A q;; are defined as the collection of all
a € Ag + A1 which can be represented as

o0 dt
a= fo u(t)T (convergence in Ag + Aj), (2.22)

where u(t) is a strongly measurable function with values in Ag n A; such that

1 0o 1/9 B
/0 ](t,u(t))%+ (fl ](t,u(t))q%) <oo (forAg,q;), or (2.23)

([ eun) <)

The norm in AO,q;] (respectively, in Al,q;]) is given by the infimum in (2.23)) (respectively, (2.24))

over all representations (2.22)), (2.23) (respectively, (2.22)), (2.24)). We refer to [25] 26] for details on
these K- and J-spaces.

1/q 00 -
v f t-lj(t,u(t))%@o (for Ay q). (2.24)
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Chapter

Limiting real interpolation methods for
arbitrary Banach couples

In the following three chapters we shall develop a comprehensive theory of limiting methods for
arbitrary couples. We will present a family of K-methods and a family of J-methods which extend
in a natural way definitions and (2.17), given in [54] and [19] for ordered couples, to arbitrary
couples. It turns out that these K- and J-methods are related by duality and that they allow to
produce a sufficiently rich theory. In terms of the interpolation of the 4-tuple {Ag, A1, A1, Ap} by
the methods associated to the unit square (see [25| 26]), the choice we make corresponds to the
methods that arise using the centre of the square.

This chapter is organised as follows. In Sections and we introduce the limiting K-
and J-methods. We also establish there their basic properties and we study their connection with
the methods developed for the ordered case (definitions and (2.17)) and with the methods
considered in [25] and [26]. There is a price to be paid for having methods for general couples:
They satisfy worse norm estimates for interpolated operators than in the ordered case and, as a
consequence, interpolation properties of compact operators are also worse than in the ordered
case. Interpolation of compact operators is discussed in Section As we show there, given
T e £(A,B), a sufficient condition for the interpolated operator by limiting methods to be compact
is that both restrictions T : A — Bp and T: A; — B; are compact.

Section 3.4|is devoted to the description of the limiting K-spaces using the J-functional. This
can be done provided that 1 < q < co. Some consequences of that description are also shown there.
Duality between limiting K- and J-spaces is discussed in Section while Section [3.6] contains
some examples of limiting spaces obtained by these methods. Namely, we work with the couple
(Lo (Q),L1(Q)) where Q is a o-finite measure space, and also with couples of weighted L,-spaces
and of Besov spaces. We also apply the limiting methods to obtain a Hausdorff-Young type result
for the Zygmund space L,(logL)_1/>([0,27]). The results in this chapter form the paper [35].

Subsequently, for 1 < q < oo, we let {4 be the usual space of q-summable scalar sequences
and ¢y is the space of null sequences. Given any sequence (An,) of positive numbers and any

31
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sequence (W, ) of Banach spaces, we write {4 (A, W) for the space of all vector-valued sequences
w = (Wy, ) with wy, € Wy, and such that

1/q
Wley iy = (Z[Amnwmmm]q) <.
m

If for each m the space Wy, is equal to the scalar field K (K = R or C), we simply write {g(An).
The space co(Am W ) is defined similarly.

3.1 Limiting K-spaces

We start by introducing the limiting K-spaces that we will consider in the following.

Definition 3.1. Let A = (Ao, A1) be a Banach couple and let 1 < q < oo. We define the space
Aq;K = (Ao, A1) g;k as the collection of all those a € Ag + A; which have a finite norm

ol - ([ k@98) " ([Tt d) "

Since
K(t, a;Ag, A1) = tK(t ™, a; A1, Ag),

we have that
(Ao, A1) gk = (A1,A0) gk - (3.1)

Indeed, let a € Ag + Ay. By a change of variable, it follows that

1 dt\ 4 o dt\d
lalagarygx = (fo K(t/a?AO/Al)qT) +([1 [t 1K(t/a}A0/A1)]qT)

1 1/q oo 1/q
- (/(; [tK(tlra?AlfAO)]q%) +(/1 K(tl,a;Al,Ao)q%)

o ds\'/a 1 ds\Y/d
= ([ [S 1K(S/ a;Al/AO)]q?) + (A K(Sl a;AllAU)q?) = ”a”(ALAo)q;K‘

The following lemma shows that }_\q;K is an intermediate space between Ay and A1, and that it is
larger than any real interpolation space.
Lemma 3.1. Let A = (Ao, A1) be a Banach couple, let 0 <0 < 1and 1 < q,7 < oo . Then we have

Agn Ay = (Ag,A1)er = (Ao, A1) gk = Ag+Aq.

Moreover, (Ao, A1)k = Ao + A1 with equivalent norms.
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Proof. 1t is well-known that Ag n A1 = (Ag,A1)er = (Ao, A1)e, (see [5] or [80]). Take any vector
ace(Ag,A1)p,c0 . We have
1 dt 1/q
([ 9%) lala,.. =cilala,..

q
([ K(t, a)th)
0
S dt 1/4q oo _ dt 1/q
([T S) < (fTHO9T)  al,.. - ealals,

Whence, (AO/AI)G,oo > (A(),Al)q;]( .

IN

and

IA

Assume now that a € (Ag,A1)q;x. Using that K(t,a) is a non-decreasing function of t, we
derive with c3 = (/;° t~9dt/t)"/9 that

o dt 1/q oo dt 1/q
lalageas =es( [TE9F) K@@ <es( [TrKEaIT) T <elaln,,

Finally, if q = co we have

||a||A « = sup K(t,a)+ sup t~ 1K(t a) = |afag+a,
0<t<1 I<t<oo

as desired. 0

Remark 3.1. In the ordered case where Ay — Aj, if we disregard the term with the integral over
(0,1) in Definition then we recover the spaces Aj g introduced in (2.14), in the previous
chapter. Notice that A,k extends Aj q;x to arbitrary couples because if Ay = A; we have by (2.8)

that 1/ 1/q
dt\ /9 b gt
([ ko <)~ (L19S)  ala, <clala,

So, Aq.k = A1 q.xk With equivalence of norms.
q; .4 q

In the following proposition we show that A4,k is complete.

Proposition 3.2. If Ay and Ay are complete, then so is A gk for any 1 < q < oco.

Proof. The proof follows the same lines as the proof of [5, Theorem 3.4.2 (a)]. Suppose that we
have Y5y Ha]- HAq;K < co. Then, by Lemma Agk = Ag+Ayq, 50 we also have ¥y Ha]- HA0+A1 <

Since Ag + A1 is complete, 5.y aj converges in Ag + A to an element a. Moreover

, dt 1/q o dt 1/q
:(fo K(t,j;;aj)qT) +([l [t K(t,j;\’a]—)]qT)

<y (/0 K(t, a;)9 dltt)l/q + ) (/1 [t7'K(t, a;)] dtt)l/q

j>N ji>N

T —

j>N

. 9
j>N A

q;K

It follows that a € A g;x and ey aj converges to a in Ag. O
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Next we show the connection between Ay and the limiting spaces Aj qx and Ag q;x intro-
duced in [25]. Recall that their definition is given in equations (2.20) and (2.21).

Proposition 3.3. Let A = (Ao, A1) be a Banach couple and let 1 < q < oo. Then we have with equivalent
norms
Aq;K = AO,q;K + Al,q;K .

Proof. Let a = xo + x1 with xg € Ag q;x and x3 € Ay q;x . Then

(L @)™ (L 7rekemns ) o ( ek dt)
< ( /1 ~ - % )1/q %00 &g g * 1%10 Ay g < C1CIXON R g + X004, ) -

Similarly

1 dt 1/q 1 dt 1/q dt 1/q
K(t, q—) s(/Kt, q—) (fKt a_ )
([ e ass k1) ([ K
. gty
<xol ag g + X1l A, i fo =) <eallxolag g + xallA, g0 -

This yields the continuous embedding Ag q;x + A1,qx = Aqk -

Conversely, let a € Aq;K and take any representation a = xp + x; with x; € A; (j = 0,1) and
Ix0l Ay + [X1] A, <2K(1, @) =2]aas+a, - We claim that x; € Aj gk for j =0,1. Indeed,

1 dt 1/4q
||7<0Hi\0/q;K = (.[0 K(tlxo)q—) + sup K(t,x0p)

I<t<oo

1/q 1 /4
<([ ke ) e (L R ) s ola,

1 4t 1/q
q
<lalage+ ([ 95) Palla +Iolag

t
<lafag, +elalagea, <czlala,,.

where we have used Lemma 3.1]in the last inequality. For x; we obtain

R dt\/a dt\ /4
bl g < Iala, (7K@ @195 e (TR0
0 dt l/q
<Pl +lalage+ ([T E95) T Irolas < callala,

Whence, a € Ag q;x + A1,q;x and ||a||;\0q'K+/z\1 o S (c2+c3) aH;\qlK . This completes the proof. O

As a direct consequence we can show the relationship of these limiting methods with the meth-
ods associated to the unit square (see Section [2.2). According to [25, Theorem 4.1], we have that
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(Ao, Al/AerO)(l/Z,l/Z),q,'K = AO,q;K + Al,q;Kz where (-, -, )(a,),q;k Stands for the K-method associ-
ated to the unit square (see the definition in (2.18)). It follows, thus, by Proposition 3.3 that

Agik = (Ao, A1, A1, A0)(1/21/2),q:K- (3.2)

Besides the relation described in Remark the following lemma shows another interesting
connection between A ;x and the space A; q;x defined for ordered couples 2.14).

Lemma 3.4. Let A = (Ao, A1) be a Banach couple and let 1 < q < oo. Then we have with equivalence of
norms
(Ao, A1) gk = (AN AL, Ag+A1)1,qK -

Proof. LetK(t, a) = K(t,a;AgnA1, Ag+A1) and K(t, a) = K(t, a; Ag, A1). According to [68, Theorem
3],for1<t<ooand aeAg+Aj, we have that K(t,a) ~ tK(t™1, a) + K(t, a). Consequently,
) B dt 1/q 1 dt 1/q ) dt 1/q
-1 -1
lal it anmee = ([ REOIE) = ([rea s E) (K1)
~ lal (g Avyox- -

The next lemma shows a discrete norm which is equivalent to | - | Agx:
Lemma 3.5. Let A = (Ag, A1) be a Banach couple and let 1 < q < co. Then the space A q;x coincides with
the collection of all those a € A + Aq for which the norm

oo 1/q
lalx ( 5 [min(l,z-mw(zm,a)]q)

m=-—00

is finite. Moreover, | - |4, ~ | - [ q-
Proof. Clearly | - | 4;x is a norm. In addition, we have that

) dt 1/q e am dt 1/q
AL~ i -1 a==) = i -1 q &t
ol ~ (ff Tmint, ek @) (3 L7 pmin, ke et
Pick t € [2™71,2™). Then, if q < oo, it is easy to see that

/mel [min(l,z—m)K(zm—1’ a)]qE < fzjml [min(l,t_l)K(t, a)]q %

t
2m
< f2 71[min(1,21_m)K(2m,a)]q%,

which implies

2TTl
z-q1og2[min(l,21—’“)K(2m-1,a)]q<f2 _1[min(1,t‘1)l<(t,a)]q%

<2%10g2 [min(1,2"™)K(2™, a)]*

and, thus, the desired equivalence. On the other hand, if q = oo, what we get is

%min(l,Zl‘m)K(Zm_l,a)s sup  min(1,t")K(t,a) <2min(1,27™)K(2™, a).
te[2m—l,2m.)

This ends the proof. O



36 Limiting K-spaces

Note that a trivial consequence of this lemma is that K-spaces are increasing with q, that is, if
pP<q then A‘p;K g Aq;K-

Let B = (Bg, B1) be another Banach couple. Recall thatby T € £L(A, B) we mean that T is a linear
operator from Ag + Aj into By + By whose restrictions T : A; — Bj are bounded for j = 0, 1. It is not
hard to check that for any 1 < q < oo, the restriction T : Aq;x — Bg;k is also bounded with

”THAq;K,Bq;K < max(”THAo,Bo’ ||THA1,31) .

Indeed, let a € Aq,x and pick any decomposition a = ag + a; with a; € Aj. Since T is linear,
Ta =Tag + Taj and by hypothesis Ta; € B;. Therefore, for any t > 0,
K(t,Ta;Bo,B1) <[ Tag|g, +t[Tailp, <|Tlays,laola, +tIT]A,B,la1]Aa,

<max ([ T agBo, 1 TlA,8,) (laola, + thaifa,)-
Taking the infimum over all possible decompositions of a, we derive that
K(t, Ta;Bo, B1) <max (| T|ay B, | TIALB, ) K(t a;Ag, Ar)

which implies the result.

The estimate | T| £ a) 5y S max(|T[ ayB,/ | TlA,,B,) is actually true for any interpolation me-
thod F provided that the couples of spaces are Banach couples (see [5, Theorem 2.4.2]). However,
it may be improved for certain interpolation methods. Indeed, for the real method it is well-known
thatif Te £ (A, B) then

1-0 0
Tlag. 5o, < ITIRSs, ITIS, 5, (33)
(see, for example, [5, Theorem 3.1.2]). For limiting real methods, estimate (3.3) is no longer true.

In the ordered case where Ag = A; and By < By, it is shown in [19, Theorem 7.9] thatif 1 < q < o
then

1Tl A8
T B B S T 1 0’1 ¢ , 3.4
A e €T, (1m0 1o [ 122 o

where M does not depend on T, A or B. However, for general couples, even this weaker estimate
fails, as the following example shows.

Counterexample 3.1. Let 1 < q < co. Consider the couples ({4(e™™),{q) and (K, K), where se-
quences have indices on N. For k € N, let Ty be the linear operator defined by Ty & = e K. Clearly
T € L((Lq(e™™),Lq), (K, K)) with | T¢, (e-nyx =1 and [T]e,x = e *. According to Lemmaand
[19, Lemma 7.2 and Remark 7.3], we have that

(eq (e™), lq )q;K = ((’,q, lq (e_n))l,q;K =1{q (nl/q e ).
Moreover, (K, K)4,x = K with equivalence of norms. Hence,

1Tl eq (e, b)) ~ K-

Since there is no ¢ > 0 such that k™/9 < cke™* for all k € N, it follows that (3.4) does not hold in
general outside of the ordered case.
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3.2 Limiting J-spaces

Now we turn our attention to J-spaces.

Definition 3.2. Let A = (Ao, A1) be a Banach couple and let 1 < q < co. The space Ag;j = (Ag, A1) o
is formed by all those a € Ay + Ay for which there exists a strongly measurable function u(t) with
values in Ag n A such that

a= -[0 ” u(t)% (convergence in Ag + A1) (3.5)
and " y
1 q
(L Ereuo] )+ ([T1eums ) <o (36)

The norm | a| Ay N Ag;y is the infimum in (B.6) over all representations that satisfy (3.5) and (3.6).

These spaces were introduced in [26] under the notation A (1,0},q;]- Next we show that they are
intermediate spaces with respect to the couple A and that they are smaller than any space Ag ..

Lemma 3.6. Let A = (A, A1) be a Banach couple, let 0 < 0 < 1and 1 < q,v < oo . Then we have
AgN A1 = Agy = Agr = Ag + Ay Moreover, A1;; = Ag N Ay with equivalent norms.

Proof. Let a € Agn Aj. Take u(t) = ax(,e)(t), where x1(t) is the characteristic function on the
interval I. Then a = [;° u(t) 4t and we obtain

e dt 1/4
lala,, <( [ I0a)IF)  <clalaon,

Suppose now that a € A and let a = I u(t)% be a representation of a satisfying (3.6). Then, it
is also a representation of a in Ag ; because, using Holder’s inequality, we have

[Olt‘el(t,u(t))%s(f() [t_ll(t (t)) q dt) ([ (-0 fdt) 1/q"
R RIE S S P GTE™

Therefore, Aq;; = Ag 1. Since Ag1 = Agr = Ag + Aq (see [5] or [80]), it follows that
A() n A1 = Aq;] = Ae,r ind AO + Al.

and

Finally, let q = 1 and a € Ay;;. Take any representation a = [ u(t)4t of a in Ay;j. Then the
integral is absolutely convergent in Ag n A because, since J(t,V) is a non-decreasing function of t
and t~!J(t,v) is non-increasing, we get

LRl 2= @) S [0 S
gfo t ](t,u(t))TJrfloo](t,u(t))%.

Consequently, a e AgnAj and |[a|a,na, < [af Ay The proof is completed. O]
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It is shown in [26], Theorem 4.1] that

where (-,-, -,-)( «B),q;] 1S the J-method defined by the unit square (see the definition in equation
and in [33]). In particular if Ay > A; and Ag q;; is the space introduced in 2.17), we have
that Aq;] = AO,q;]-

For 1 < q < oo, the spaces A, can be also described using the K-functional. Recall that in the
previous chapter we mentioned the equivalence theorem for the classical real method; in that case
the integral expressions in the definitions by the K- and J- methods were very similar, the only
difference being that one replaces the K- by the J- functional and a by u(t) (see and (2.4)).

This time we will need a correction factor in order to have equivalence. In fact, according to [26,
Theorem 3.10], we have with equivalence of norms

Aq = Aja)qk (3.8)

where A 41 4.k is formed by all those a € Ag + Ay such that
lal fl K(t,a) 1% dt 1/q+ /oo K(t,a) 1 at\"* g
= = _— —_ —_— 0.
Atarak — \Jo |t(1-logt)| t 1 [1+logt| t

Note that if we now suppose that Ag = A; then, by (2.8) and the facts that the K-functional is
non-decreasing and that q > 1, it follows that

1 — dt 1/q o) K t,a q dt 1/C|
HQHA“”NHQHAl(fO (1-log®) qT) +(f1 [1+(10g)t] T)
00 _qdt 1d i K(t Cl) 9 dt Va 00 K(t (.1) q dt 1/q
~ q_ —, at , dt
K(La)(f1 (1+logt) t) +(fl [1+logt] t) s(fl [—1+logt] t) _

Since we also have that )
o[ K(t,a) 19 dt)
A =) slala,,
1 1+logt t Qi

we derive that, if Ag = A1, then

o[ K(t,a) 19 dt)
lalag, = |Totost] ©) -

recovering the equivalence formula given in [19, Theorem 4.2].

Equality (3.8) is not true if q = 1. Indeed, let {0} # Ay = Aj, being the embedding of norm less
than or equal to 1. Then K(t,a) = t{a],, if 0 <t <1 (see the argument that leads to (2.8)). By
Lemma Ay;y = Ag. However, Ay; oy 1, = {0} because for any a # 0 we obtain

1 K(t,a) dt 11 at
[ S ala, [ e
0 t(1-logt) t 1Jo 1-logt t
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In fact, the (1; J)-method cannot be described using the K-functional. Recall that for any Banach
couple (Ag, A1), one has K (t,a;Ap,Aq) =K (t, a; AB, A~l), where A~j is the Gagliardo completion of
Ajin Ag + Aq (see [4, Theorem 5.1.5]). Whence, if the (1;])-method could be described using the
K-functional, we would have for any Banach couple

Agn A1 = (Ag, A1)y = (Ag Ar)y; = Ag N AL

J

However, if we take Ay = cgand A =€ (27™), then AB =loand AgNnAj=cp %l = A}; N A~1.

The following result is based on the K-description of A;7.
Lemma 3.7. Let A = (Ao, A1) be a Banach couple and take any 1 < q < oo. Then we have that

(Ao, A1) 4 = (Aon A1, Ag + A1), @) with equivalence of norms. In particular, the J-method is symmetric,
that iS, (Ao, Al)q;] = (Al, Ao)q;].

Proof. If q = 1, we have (Ao,Al)u =AgnA; = (AgnAL, A +A1)0,1,.]. Otherwise, if q # 1, set
K(t,a) =K (t,a;Agn A1, Ag + Ap). By [19, Theorem 4.2], we obtain

o[ R(t,a) 19 dt)
||a”(AgmA1,A0+A1)0,q;} - [ 1+ logt T ’
Using [68, Theorem 3], a change of variable and (3.8), we derive that
[o[Reoyta T e K e K 1T
1 |1+logt| t 0 [s(1-logs)| s 1 |1+logt| t (AoA1)g *

Consequently, (Ag, A1) @ = (Ao A1, Ag+ A1), @l This equality gives the symmetry relationship
(Ao, A1) g5 = (A1, Ao) g - =

The following lemma shows an equivalent discrete definition for J-spaces.

Lemma 3.8. Let A = (Ag, A1) be a Banach couple and let 1 < q < oo. Then the space Aq;; can be also
defined as the collection of all those a € Ag + A4 for which there exists a sequence (Wm )mez € Ag N Aq such
that

as= Z Um (convergence in Ag + A1) (3.9)
m=-o00
and
% 1/q
( > [max(l,Z_m)](Zm,um)]q) < o0. (3.10)

Moreover, the norm |al ,; given by the infimum in (3.10) over all representations that satisfy (.9) and
(3.10) is equivalent to HaHAqJ.
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Proof. Let a € Ag + A; and take any sequence (Um )mez € Ag N A; that satisfies (3.9) and (3.10) and
such that
0 /4
( >, [max(1,27™)] (Zm/um)]q) <2|afg;-
m=—00
Putu(t) = X e 1o Tog 2 X[2m 2m+1) (t). Then clearly u(t) is a strongly measurable function with val-
uesin AgnA; and

v[mu(t)E = Z fzmﬂ Um dt i Uy (convergence in Ay + Aq)
0 t log?2 t e & 0 v

Moreover, since J(t,-) is non-decreasing and t~'J(t,-) is non-increasing,

1/q o 1/
(L&) (LT )T
0o Mo 1 q 1/4
(2L e )
m+1 1/
Z fz [male )](2’“, m)] dt) g

log2

N

m=—00

/4q
= Z [max (1,27™) ] (2 /um)]q) N ||(1||q/.1.

Conversely, let a € A4;; and let u(t) be a strongly measurable function with values in Agn A;
and such that a = [ u(t)4t and

T ) < (e ) <2,
0 1 t

2m+] ds
JRRTO

Since

max (

m+1
we have that up, = [ u(t)4t belongs to Agn A; with

2m+1

fo 0%

m+1 2m+1

= _/zm ](t,u(s))% < /;m max(l,z) ](s,u(s))% < 00, (3.11)

,t
Ap

2m+1 dS
)s Lo max ()l a, tu)la,)
Ay s

J(t,um) < /ijl max(l, E) ](s,u(s))%.

So, J(2™,uy) < fzzmml ](t,u(t))%. It is clear that a = Y7n__ . wm (convergence in Ag + A1). There-
fore, by Holder’s inequality,

oo 1/q =3 m+l q Ya
( Z [max(l,Zm)](Zm,um)]q) S( Z |:maX(1,2m) ﬂj I(t,U(t))%:I )

m=—-o00 m=—-o00

[} 1 dt 1/q
S (T max e ui) s lala,,
0 t aiJ
This ends the proof. O
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Just as with the K-method, Lemma 3.8 shows that J-spaces are also ordered in the following
way: Ap;; = Agyifp <q.

With the help of this lemma we can show that spaces A4 are complete.

Proposition 3.9. If Ay and Aq are complete, then so is A g,y for any 1 < q < oo.

Proof. For m € Z let G, be the space Ag n A normed by max(1,2"™)J(2™,-; Ag, A1). Clearly G,
is complete and therefore { (G, ) is also complete for 1 < q < co. Put W = {4(G,) and

V= {(wm) eW: Z wm = 0 (convergence in Ag + Al)} .
m=-—o0
We will show that V is closed in W. Let (v™*) c V be a Cauchy sequence, v* = (W}, )m__.. Since W
is complete, there exists a certain v = (W )m-_o, € W such that (v*) — vin W. In order to prove
thatv €V, all we need to do is to show that

2, Wm

[m|>M

o0

— 0.
M — o0

A0+A1

Let e > 0. Since (V") » vin W, there exists n € N such that |v" - v, < £/6. On the other hand, for

such an n, there exists a certain M € N such that for all M > M; we have H YmjsM Wi HAO+A1 <ef2.

Therefore, for each M > M; and the chosen n we have that

> W <l > wm-wh + > wh
[m>M Ag+A; MM Ag+A; MM Ag+A
<K(I, > wm-wh)+e/2< > K(Lwm -wiy) +¢/2.
[m|>M [m|>M

According to [5, Lemma 3.2.1 (2)], K(t, a) < min(1,t/s)](s, a) for any vector a € AgnA;. There-
fore,

' _ min(1,27™)
K(l,Wm —WTT:L) < mln(1,2 m)](2m,wm —W;L,L) = W

=min(2™,27™) |win - Wi, .

[wm -wiile,

so, by Holder’s inequality,

2, Wm

[m|>M

< Z mln(zm/ Zim) me - W;”Gm + 8/2
m=—o00

A(]+A1

o0 4 1 o AV
S( > wm—wmqm) ( > min(2m,2m)q) +ef2

m=-oco m=—oco

<3v-vTy +e/2<e.
This gives that v € V, that is, V is closed in W.

Finally, since A4;; = W/V, W is complete and V is closed in W, we derive that A 4;j is complete,
as desired. 0

It is easy to check that if T € £ (A, B), then the interpolated operator T : Aq;; —> By is also
bounded with ||THAq;]/Bq;] < max{HTHAOB0 ATl A, B, }.
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3.3 Compact operators

Interpolation of compact operators is a classical question that has attracted the attention of many
authors (see [12] and the references given there). In 1992, those efforts culminated in Cwikel [40]
and Cobos, Kithn and Schonbek [30] proving that if T € £ (A, B) and any one of the restrictions
T:A; — Bj (j =0,1) is compact, then the interpolated operator by the classical real method
T: (Ao, A1)g,q — (Bo,B1)g q is also compact.

In this section we study how compact operators behave under limiting K- and J-methods for
arbitrary couples. First we consider the K-methods defined in Section[3.1}

For limiting methods in the ordered case where Ay — A and By — By, it was proved by Cobos,
Ferndndez-Cabrera, Kithn and Ullrich [19] that the compactness of T : A; — Bj implies that
T: Aq,q;xk — Bi,q;k is also compact, whereas the compactness of T : Ag — By is not enough (see
[19, Counterexample 7.11 and Theorem 7.14].

In the general case, we have already pointed out the bad behaviour of the (q; K)-method con-
cerning estimates for the norm of the interpolated operators (see Counterexample [3.1). This sug-
gests poorer properties with respect to interpolation of compact operators. Next, we show with
an example based on [19, Counterexample 7.11] that in contrast to the ordered case, if T € £ (A, B)
and T : A; — By is compact, it might happen that T: A q;x — Bk fails to be compact.

Counterexample 3.2. Let 1 < q < oo and consider the Banach couples A = ({4 (3™™),{q) and
B = (£q(27™),¢q). Let D be the diagonal operator defined by D (&) = ((2/3)™&n). Then clearly
D:{y(3™) — {4 (27")isbounded and D : {; — {4 is compact, because it is a diagonal operator
whose associated sequence has null limit. However, according to Lemma and [19, Lemma 7.2
and Remark 7.3], we have that

(L (3™ lg) g = L (n937™) and  (Lq (27™),Lg) i = L (nV/927),

and D : {4 (nl/ a3™™) — {4 (nl/ 927™) fails to be compact. Indeed, for each n € N consider the
vector u, = (n‘l/ 93™e,, ), where ey has all of its coordinates equal to 0 except for the nt" one,
which is equal to 1. Then (u,) is a bounded sequence in {4 (3‘“n1/ 9). Since Du,, = Ve, |
|IDuy - Dum”gq(nl/qz—n) = |en + emHeq = 219 if m # n. This implies that (Du,) cannot have a

convergent subsequence in {q (n/927™).

Nevertheless, if the first couple reduces to a single Banach space, then the behaviour of the
(q; K)-method improves.

Proposition 3.10. Let A be a Banach space, let B = (Bg, B1) be a Banach couple and let 1 < q < oo. If T is
a linear operator such that T : A — Bj is bounded for j = 0,1 and one of these restrictions is compact, then
T:A — Bg;k is also compact.

Proof. Clearly, T: A — B+ By compactly and T: A — Bon B; boundedly. If 1 < q < oo, we derive
that T: A — (Bon By, B + B1); . = (Bo, B1) 4,k is compact by Lemmaand [19, Theorem 7.14].
If q = oo, the result follows from the last part of Lemma O
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This result has been recently improved by Ferndndez-Cabrera and Martinez [50, Corollary 3.10]
who showed that the compactness of T : A — By + By is sufficient to guarantee the compactness of
T . A d Bq,K.

In order to establish the compactness result in the general case, given any Banach couple
(Ao, A1), we write (A(‘)’,A‘l’) for the Banach couple formed by the closures of Ag n Ay in A;j for
j=0,1.

Theorem 3.11. Let A = (Ag, A1) and B = (By, B1) be Banach couples, let 1 < q < oo and let T € L (A, B).

IfT: A; — By is compact forj = 0,1, then T: (A§,A?) . —> (Bg, B{’)q is compact as well.

q;K ;K

Proof. According to [49, Corollary 4.4],if T : A; — Bj compactly for j = 0,1 then

T: (A, AL, AT, AG)(/21/2),q:;k — (B3, BT, BT, BE) (1/2,1/2),4;k
is also compact. The result follows from (3.2). O

Remark 3.2. We will show at the end of Sectionthat (A5, AD) Gk = (Ao, A1) 4;x Whenever ¢ < oo.

Next we turn our attention to the (q;J)-method. In the ordered case where Ag — A; and
By = By,if Te L (A,B) and T : Ag — By compactly, then T : Ag q;; — By q;j is compact (see [19,
Theorem 6.4]). However, in the general case, compactness of T : Ag — By is not enough to imply
that T: Ay;; — Bg;j is compact. An example can be given by reversing the order of the couples in
[19, Counterexample 6.2] and using Lemma

Counterexample 3.3. Let 1 < q < oo and consider the couples of sequence spaces A = (£4(27™),{q)
and B = ({q(37™™),{q). Let I be the identity operator. Then I : {4(27™) — £4(3™™) is compact
because it is the limit of the sequence of finite rank operators given by

Pm(&n) = (&1, &, ...,Em,0,0,...).
Moreover, I : {; — {q is bounded. However, by Lemmaand [19, Corollary 3.6], we have that
(64 (27™) )y = (La,€q(2™))o,q7 = Lg(n/9") and

(6q(37™),tq) a1 = (£q,€q(37™))0,q;7 = {q (n_l/q/),

where 1/q +1/q’ = 1. And it is clear that I : Eq(n‘l/q') — Eq(n‘l/q,) is not compact.

The following result shows sufficient conditions for interpolation of compact operators for the
(q;J)-method.

Proposition 3.12. Let A = (A, A1) be a Banach couple, let B be a Banach space and let 1 < q < oo. If T is
a linear operator such that T : A; — B is bounded for j = 0,1 and any of these two restrictions is compact,
then T: Ag;; — B is also compact.
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Proof. 1tis clear that T : AgnA; —> B is compact. If q = 1, the result follows using that A1;; = AgnA;.
Assume now that 1 < q < co. We have that T: Ag + A; — B is bounded because

[T(ao +a1)lg < [Taolg + [ Tailg
<max {|Tla,, [Tla,} (laola, + lail,)-

Hence, applying [19, Theorem 6.4] to the couples (Agn A1, Ag + A1), (B, B) and using Lemma
we conclude that
T: Aq;] = (AO N Al,AO + Al)O,q;] — B

is also compact. O

Ferndndez-Cabrera and Martinez also improved this result in [50, Corollary 3.9]: They showed
that the compactness of T : Agn A1 — B is sufficient to have that T: A4;; - B is compact.

We finish this section with a consequence of and [33| Theorem 6.1].

Theorem 3.13. Let A = (A, A1) and B = (By, B1) be Banach couples, let T € L (A,B) and 1< q < oo. If
T: Ay — By is compact for j = 0,1, then T : Aq;; — By is also compact.

3.4 Description of K-spaces using the J-functional

In (3.8) we have pointed out that limiting J-spaces can be described by using the K-functional
provided that 1 < g < co. In this section we study the description of limiting K-spaces using the
J-functional.

Recall that in the ordered case where Ay — A; it was shown in [19, Theorem 7.6] thatif 1 < q < oo
the limiting K-space A1 q;x can be also realised as the collection of vectors a € A; for which there is
a representation

o0 dt
a= f1 u(t)T (convergence in A7), (3.12)

where u(t) is a strongly measurable function with values in A and such that

1/q
q E) < 0. (3.13)

(/;oo[t_1(1+logt)](t,u(t))]

The norm is defined as the infimum over all possible representations u of a satisfying (3.12) and
(3.13) of the values (3.13).

Definition 3.3. Let A = (Ag, A1) be a Banach couple and let 1 < g < co. Write p(t) = 1+ |logt| and
w(t) = t™1 (1 +|logt|). The space A{pu},q; is formed by all those elements a € Ag + A1 for which
there is a representation

o0 dt
as= /0 u(t)T (convergence in A + A1) (3.14)
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where u(t) is a strongly measurable function with values in Ag n A; and such that

(o @)« (7 1w uwne &) oo @15

The norm in Ay, 1) ;7 iS g1ven by taking the infimum of the values (3.15) over all possible repre-
sentations u of a satlsfymg 3.14) and (3.15).

Note that if in this definition we suppose that Ay = A4, then we recover the equivalent defini-
tion for A1 q;x givenin [19]. In order to establish this, one only has to slightly modify the argument
in the proof of Proposition 2.4} (ii).

The following result shows the relationship between the spaces introduced in Definition
and limiting K-spaces.

Theorem 3.14. Let A = (A, A1) be a Banach couple and 1 < q < oo. Then we have with equivalence of
norms (Ao,Al)q x = (Ao, Al){p whas)-

Proof. Let a € (Ao, A1)y, 13,q; @and choose a representation a = I u(s S of a such that

(fol [p(t)] (t,u(t))]9 %)

For any 0 < t < 0o, we have that

1/q

" ([1 [}‘L(t)] (t/u(t))]q %) q <2 HaHA{p,u},q;I )

K(t,a)S/(;OOK(t,u(s))%S/mein(l,t/s)](s,u(s))%
:fot](s,u(s))%+ﬂw§](s,u(s))%. (3.16)

Hence,

Ha”Aq;K = (./0 K(t,a)9 it)l/q n (/1 [t K (4, )]q it)l/q
R I T e
(L T8 (o 78

=Il+12+13+14.

IA

We shall estimate each of these terms separately. Let h € L4 ((0,1), dt/t) with Hh”l_q, =1 and such

that
11=(f [[r6uen ] E) /q:fjh(t)[otl(s,u(s))ﬁE

Using Fubini’s theorem, Holder’s inequality, changing variables and applying Hardy’s inequality
(see [65]), we obtain

hzfolfslh(t)l(s,u(s))ﬁﬁzf J(s,u(s)) p(s) —— () ()EE
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1/
< (fo1 [p(s)] (s, u(s)]" %)m ([01 [1 —llogs f e )E] %) |
/ 1/q’
S HaH’Z\{o,u},q;l (/0DO [1 j—x [elX h(t)%]q dx) |
oo x ’ al
s HaH’Z\{o,u},q:I (—[0 I:)l_c fO h(e_S)ds:Iq dx)l q

!

o0 , \Vd
< =S\q = = A
~ ([0 h(e™) ds) ”a”A{p,u},qJ HaHA{p'“}'q;] .

As for I, by Holder’s inequality and the fact that s(1 —log s) is increasing in (0,1), we get
[ r1 1-logs dt\" 7 el dt\"e
Izg(/(; [t-[t s(l—logs) J(s:uls)) _] _) +(-[0 [t./l ;J(S' u(s) _] _)
1 dt )"
([ [ [ a- s uen £] )
1+1logs ,ds19/9 at)
+(/0 tq([1 [ J (s u(s))] )[/ (1+logs) 1 ] t) .

The last integral is finite because q’ = (1-1/q)~! is bigger than 1. Changing variables and using
Hardy’s inequality, we derive

Izs(fo [1+vf (1+%)] (e, u (X))dx] dv)l/q (/ tqf [u(s)] (s,(s))] ds‘“)

o0 1/q
-X -X q ~ ~
S(fo [(1+x)] (e, u(e™))] dX) tlalag, o STalag,,e -

As for I3, using Holder’s inequality and also applying Hardy’s inequality to the function
s‘ll(s,u(s))x(lloo) (s), we have that

I3S(f1°o[ / ](su(s))ds]q(}:)/ +(/100[ f ](SU(S))E]qE)/
, ' 1/q
(e oo ) it %)
(s )

©1+logs q _ds\Vd
<ala (LT 6] (o0 L)

_ q
<lalag, e * 1§I:<pm(1+IOgS) lallA o STalA .0
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In order to estimate the last term 14, we proceed as in the case of I;. Namely, choose a function

heLlgyr ((1,00),dt/t) with Hh||Lq, =1 and such that
ds dt

14=[1 h(t)[ s (s,u(s) S

We obtain
o s dt ds
L= [ sTGue) [TroTS
1/4
ds)
<

([T mereuen ) /q(fl“[mlogsf <>E] &

< “a”A{p,u},q;J(,/(;oo (] j.x /O‘Xh(ey)dy)q,dx)l/q,

00 o’ 1/q’
S “a”A{p,p},q;] (\/0\ h(e ) dx) = ||a||A{PrH}/Q?] ’
= (Ao, A1) g k-

Consequently, (A, A1) (o} qi]

Conversely, take any a € (Ag, A1) 4.k Then
(3.17)

fol K(t, a)q% + /100 [t_lK(t,a)]q — < o0.

1K(t, a)) is non-decreasing (respectively, non-increasing) in t, it fol-

Since K(t, a) (respectively, t~
lows from (3.17) that
K
K(t,a) — 0ast—0 and (t,a) — 0ast— oo. (3.18)

For v € Z, put
272777 ifv <0,
Nv =11 ifv=0,
2270 ifv>0.

We can find decompositions a = ag + a1,v, with aj € Aj, j = 0,1 such that
ifv<1,and

” ap,v ”Ao +MNv+1 H ai,v ”Al <2K (nv+1/ Cl)
ifv>1,

1 ~
Ny-1 laovlia, + larvla, <2K 3ty @)

where K (t,a) =K(t,a;A1,Ap).
ap~v-1=01v-1— a1y € AgNAq, veZ. Givenany N,M € N, we have

Letu, =qagp —

M
RS
v=—N

By (3.18), the last two terms go to 0 as N,M — co. Hence, a = ¥,z uy in Ag + Ag

=[a-agm +ap-n-1 HA0+A1 <fag-n-1 ||A0 + [ M||A1

A0+A1
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Let Ly = (Nv-1,Mv], v € Z. It follows that

27V 1log2 ifv<0,
dt

| & = 1log2 ifv=0,1,
' 2¥2log2 ifv>1.

Let u
v .
m 1fteLVandv<O,
Uy .
v(t) = log2 iftelyandv=0,1,
uw .
m lftELyand'V>1.

Then a = [;° v(t)% (convergence in Ag + A1). Next we show that this is a suitable representation
of a in the J-space.

If v<0OandtelL,, wehave that

Fev0) - S £ 2 ()

< v+l (H ao, ||A0 + | ap,v-1 ||AO +1y || ai,v-1 HAl +1y || ai,v ||A1) S 2vHK (Mv+1,a).

Therefore,

_p—v-1

2 dt
2K )] [, (1-logy)I<

<[2Y'K (a1, @) ] (1 427V 10g2) 927V Hog2 $ 27V 7K (y41, @) 9.

E
t

Ji 1 -togv vy

Now we distinguish three subcases. If v < -2, we derive
dt dt dt
1-logt)] (t,v(t))]9 — < K (Mvs1, qf —sf K(t,a)9—.
PR DICNONAERI ORI A AR CIVEE
If v=-2,weget
dt dt dt
1-logt)] (t,v(1))]9 — s K(n_1, q/—ngt, 9=,
i ta-tognrven) T skt [ Fe [ Kta)1g
In the remaining case v = -1, we obtain

K(t, @) ] dt
t t

S ta-togurevo § skomas [ |

Suppose now v > 1. A change of variables yields that

q -1
J [ avn] - L5 =10 )s] (s, v(1/s))*

t

= fiz_l [(1 —logs)T(s,v(l/s))]q ﬁl
N S

v
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whereT(s,w) =J(s,w;A1,Ap). If s € (n;,l,n;l_l], then 1/s € Ly, and we get

T(S,V(l/S)) ZV(SZI;;)Z < (nzvllzuv)

$227VK (ks a).

This implies that

S8 ] 4 R (it 0)] (@ ¢ logna)® [ ﬁs[—K(m‘z’a)]qfvﬁ

Ly t Nv-2 t

|

2—
<220k (laowl oz laov-1la,)

Now, if v > 2, we derive

fv[1+logt (t (t))] %S[K(T]VZICL):|CI2V—2§|:K(‘r|\/2/(]—):|q>/1‘~ E

Nv-2 Mv-2 vz t

K(t,a)]? dt
SfL”[ t ]T’

If v =2, we have

I e e e e

Finally, we focus on the two remaining cases: v =0,1. If v =0 and t € Ly, then

(t uo) _

J(v) =T

S laool A, + lao-1l A, + la1,-1l4, + [a10] 4, $K(2 a).

Hence,
Ji ta-toguy v Sk a5 [ [l S
If v=1and tely, then](t,v(t)) $K(4, a), and so

/Ll[1+logt](t (t))] %S[@]qﬁz%sﬁz[tm(t'a)]q_

With all these estimates, we have that

(' a-waoron ) ([0 3]

-1 1/q
(2 a-rosnrmne § o [ 1a-logorcon §)

&, 1+logt 9 dt 1+logt a g\
(B o] &[] %)

( Z f K(t, a)q—+/;1 [t_lK(t,a)]q %)Uq
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+ (/L K(t, a)q% + i fL [tK(t, )] %)m
0 v3-“7Lv=2
S (folK(t,a)q%)l/q + (/100 [tK(t, a)]q %)Uq.

This shows that (A, A1) K = (Ao, A1) (o)) and completes the proof. O

Remark 3.3. In the proof of Theorem the assumption q # oo has allowed us to use Hardy’s
inequality, as well as to guarantee the convergence of certain integrals. So, it is essential for the
arguments. In fact, equality A;k = Afp 11,00, does not hold in general: Assume that Ag < A4
with the closure of Ag in Ay, AJ, being different from A; (take for instance Ay = {; and Aq = ().
By Lemma we have A,k = Ag + A1 = A1. However, Agy 1 o7 € A§ # Aq. Indeed, take any
a€Afp ey and let a = [ u(t) 4 be a J-representation of a with

1+logt

max { sup (1 -logt)J (t,u(t)), sup J (t,u(t))} <2|ala,

O<t<1 I<t<oo

Then limn - o0 Ha - fll/\]N u(t)%HA1 =0and fll/\]N u(t)4* belongs to Ag because

N dt L J(t,u(t)) dt N t 1+logt dt
t —< 2 (1 -logt)— f t,u(t)) — < |al 5 )
Jin RO < [ A Qo80T [ e ST ) T s lala,,,

Remark 3.4. In a more general way, the (oo; K)-method does not admit a description as a J-space.
Indeed, given any Banach couple A = (A, A1), using Holder’s inequality, it is not hard to check
that if u(t) satisfies condition (3.15), then the integral [;° u(t)4! is convergentin Ag+A;. Besides,
ift>0andw e AygnAj then J(t,w;Ag,Aq) = ](t,w; A(‘)’,Ai’), because AgnA; = A N A and the
norms of A; and Alf’ coincide for j = 0, 1. These two facts imply that

(Ao, A1) (p,},q:7 = (AS’A?){p,u}rq;I' (3.19)

Equality (3.19) holds for any general J-method as considered in [8] because our assumptions on
J (t,u(t)) still imply the convergence of [ u(t)4t in Ag + A1 (see [8, page 362]). Since for the
couple ({1, {s) we have

(elfeoo)oo;]( =l * Co = (elfco)oo;K = (e?lego)oo;K ’
we conclude that the (oo; K)-method does not admit a description by means of the J-functional.

Corollary 3.15. Let A = (Ag, A1) be a Banach couple and let 1 < q < oo. Then Ay n Ay is dense in Aq;K.

Proof. By Theorem we can work with the norm | - | Aol
We can find a J-representation a = [, u(t)% of a satisfying (3.15). Let N € N such that

. Let a € Aq;x and take any ¢ > 0.

1/q oo 1/
(" eorwuon §) (7 moreuons §) e



Limiting real interpolation methods for arbitrary Banach couples 51

Using Holder’s inequality and the continuity of the function t™1(1 - logt)~ on [1,1/N] and of
t(1+ logt)‘1 on [1,N], we get

S u®laen, T [ CT@ue T [T ¢
1/4q , 1/q’
<(f tooruen ) (@ )

t N t
(" morwueon ) (Mot

Therefore, w = fll/\lN u(t)4 belongs to Ag N Aj. Since a —w = Ol/N u(t) L + [T u(t) 4L, we obtain

that

1/q o 1/
la=wla, .. < (fol/N [p(1)] (t,u(t))]® dt) +(fN [R(D)] (t,u(t)] %) < ©

t

This shows the density of Ag N A in Agx. O

It follows from (3.19) and Theorem that (AS’A?)q'K = (Ao, A1) 4k if 1 < g < 0o. Hence, as

a direct consequence of Theorem we derive the following.

Corollary 3.16. Let A = (Ao, A1) and B = (Bg, B1) be Banach couples, let 1 < q < oo, and let T € L (A, B).
IfT: Ay — Bj is compact for j = 0,1, then T : Aq;x — Bk is also compact.

3.5 Duality

This section is devoted to the study of the dual spaces (Ao, A1)y x and (Ao, A1),y of the limiting
K- and J-spaces. Duality is a classical question in interpolation theory that for the case of the real
method (Ag, A1)e,q has its roots in the papers by Lions [66] and Lions and Peetre [67].

Recall that a pair of normed spaces (Ag, A1) is said to be reqular if Ay n A; is dense in Ay and
A1. Given a regular Banach couple, the mappings

$j: Aj — (AgnAq)*

f — f|AgﬁA1

are linear embeddings for j = 0,1. Thus, if (A, A1) is regular then Aj, A] < (Agn A1)”* by means
of ¢pg and ¢1.

Let

Aj = {flagon, T AT and [y = Iflac}, 5=01.
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Then Aj’ is clearly isometric to Aj*. Moreover, since Ag n Ay is dense in (Ag,A1)g,q Whenever
1< ¢ < oo, the space

(Ao, A1)p,q = {f|AonA1 +fe (Ao, A1)e,q and [flaga,)y, = ||f||(A0,A1)g,q}
is meaningful.

In the classical real case, we have the following duality relationship: Whenever 1 < q < oo
and 0 <0 <1, ((AO, A1)9,q)' = (Aé, A{)G,q" In the proof of this duality result (see, for instance,
[5, Theorem 3.7.1] or [80, Theorem 1.11.2]), one actually shows relationships between the dual
of the K-space and the J-space and viceversa. Namely, in [5, Theorem 3.7.1], it is shown that
(Ao, A1) q; = (A, Af)e,q7k and (Ag, Aj)e,q7 = (Ao, A1) .- and the result is obtained using
the equivalence theorem.

In the ordered case where Ay — Ay, it was shown in [[19, Theorems 8.1 and 8.2] that if Ay is
dense in Ay and 1< g < oo, (Ag, A1)g 4.5 = (A{,A(’))Lq,;K and (Ao, A1)1 4.k = (A1, Af) where q’
is the conjugate exponent of q.

0,9’
The following theorems show the duality relationships for the limiting methods in the general

case.

Theorem 3.17. Let 1< q < o0, 1/q+1/q’ = 1and let A = (Ag, A1) be a regular Banach couple. Then, we

have with equivalent norms (Ay, Al):q,-K = (A(’), AJ ) pe

Proof. By [5, Theorem 2.7.1], we know that (Ag + A1)" = AjnAj and (AgnA;)" = Al +A]. Whence,
using Lemmata [3.6/and [3.1} we obtain
(Ao, A1) ok = (Ao + A1) = Agn Al = (A, A7), ;-
If 1 < q < oo, we derive from Lemmata 3.7} 3.4land [19, Theorem 8.2] that
(Ao, A1) gk = (Ao N A1, Ag +A1)] gk = (AgNALAG+A])
= (A4, A1)

0.9"]
9"
The remaining case q = 1 can be treated as when 1 < q < oo because the arguments in [19,

Theorem 8.2] also work for q = 1. O

Theorem 3.18. Let 1 < q < o0, 1/q +1/q’ = 1and let A = (Ao, A1) be a reqular Banach couple. Then we
have with equivalent norms (Ao,Al);;] = (A(’),A{)q,.K )

Proof. The case q = 1 follows again by Lemmata [3.6|and [3.1]and [5, Theorem 2.7.1]. Namely
(Ao, A1)y = (AonAr) = Ag+A] = (A, A{)oo;K -
For 1 < q < oo, by Lemmata[3.7/and [3.4]and [19, Theorem 8.1], we derive
(Ao, A1) g1 = (AoN AL Ao+ A1)y o7 = (AgN AL AG + A{)Lq,;K
= (A(S’A{)q’;K' =
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In order to study the dual of the J-space when q = oo, define (A, A1), ; as the collection of
all a € Ay + A; for which there exists a sequence (Wm),,cz © Ao N Aq such that a = ¥,z Um
(convergence in Ag + Aq) and

max (1,27™)J (2™, uy) —— 0. (3.20)

m—+o0
We put

lala,, = inf [supmax(1,27™)] (2™, um)|.
’ a= m | meZ

Lemma 3.19. Let A = (Ao, A1) be a Banach couple and let (/\O,Al)f:o;I be the closure of Ag N Aq in
(A0, A1) o5~ Then we have with equivalence of norms (Ao, A1),y = (Ao, A1)fo;].

Proof. Let a € (Ag,A1),,,;- Choose (um) € Ag N A with a = ¥z um and satisfying (3.20). Given
any ¢ > 0, there exists M € N such that if [m| > M, then max (1,27™) ] (2™, unm ) < ¢/2. Consider the
vector w = ¥ jijcm Wm € Ag N Aj. Since a —w can be represented in A,,;j by means of the sequence

Um  if m|>M,
Vm = .
0 otherwise,

we obtain

la-w|x_  $sup J™ um)+ sup 27 (2™, um) <.
=1 msM m<-M

This implies that a € (Ao, A1)¢, ;-
In order to show the converse embedding, we shall prove that
(Ao, A1)y = X = (Ao, Al) ey
where X is the set of all vectors a € Ay + A; such that
max(1,t)(1 +|logt])'K(t,a) — Oast—>0ort - oo,
normed by

lallyx = sup max(1,t7)(1+|logt])"K(t, a).

O<t<oo

Let a € (Ao, A1)Z,;- Then, given any ¢ > 0, there is w € Agn Aq such that [a - WHAM] < ¢/2. Find
M > 1 such that ’
(L+]logt) ™ [wla,na, < €/2if t>M.

Then we also have that
(1+[logt]) ™" [w]a,nn, <€/2if0<t<1/M.

Besides, by (3.8),

(1+]logt|)

K(t @) <Kt a-w) +K(t,w) < oo

la =W,y +min(L,t) [w]a,qa, -



54 Duality

Consequently, if 0 <t < 1/M or t > M, we derive that
max(1,t7) (1 +[logt) K(t, a) < =Wy + (1+[logth ™ [wla,nn, <

So a € X. Now we show the continuous embedding. Take a representation of a in the J-space,
a= [;7 u(s)ds/s, such that

sup max(1,s” )](s u(s)) <2||c1||A

O<s<oo

Then, by (3.16),

lally < sup max(1,t-1)(1+|1ogt|)-1[0t](s,u(s))§

O<t<oo

+ sup max(l,t_l)(1+|logt|)_1]t-ooE](s,u(s))§

O<t<oo

< sup t‘1(1+|logt|)‘lft](s,u(s))—+ sup (1+|10gt|)‘1 /O‘lj(s,u(s))%

O<t<1 1<t<oo
1
+ sup (1+|logt|)_1f J (s, u(s))—+ sup(1+|logt|) ME
1<t<oo O<t<1 S
) o 6
+ sup (1 +|logt|)™ f J(s,uls)) ds + sup t(1+|logt|)™ / J(su(s)) ds =>S;.
0<t<1 1 5 §  lct<oo t 5 SR |
We have that
Sy < sup t7 (1 +|logt|)” f J(suls)) < sup ———= I (s, uls)) S lal A
O<t<1 0<s<t S O<s<1 S >/
Similarly,
S < sup t(1+[logt) ™ [ s sup J(s,u(s)) < sup J(su(s)) 5 [ala_,
1<t<oo t<s<oo 1<s<oo
On the other hand,

S1= [ 16su(s) & < sup O Maogyay,

0<s<1

and similarly

/ J(s,u(s)) LL(S)) ds

S <lala,-

Finally,

t
S3< sup (1+]logt|)™! : % sup J (s,u(s)) < sup J(s,u(s)) sup (1+|logt|)~(1+]|logt|)

I<t<oo I<s<t I<s<oo 1<t<oo

Sllalx,
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and also

_ 1ds s, u(s
Ss < sup (1+|logt|) ! ft ~ Sup w S ||a||A°<,;]-

O<t<1 t<s<1

This shows that (A, A1)g,; = X.

Next we prove the second embedding. Let a € X. Then
t1(1+logt))'K(t,a) — 0ast -0 and (1+|logt|)'K(t,a) — Oast— oo,
Therefore,
K(t,a) =t (1+|logt])'K(t, a)t(1 +|logt]) — Oast -0 (3.21)

and
t1K(t,a) = t71(1 + [logt])(1 + [log t|) 'K (t,a) — O as t — oo. (3.22)

For v € Z, put
27277 ifv <0,

Nv = 1 lf V= O,
227 ifv>o0.
We can find decompositions a = ag + a1,v, with a5 € Aj,j = 0,1, such that

lao,v ”Ao +MNvq1 ar,y ”A1 <2K(Mv+1,@) if v>0,and

n\_/l—l H ao,v ”AO + “ ai,v ||A1 < 2T< (n:,l_l, (1) ifv< 0,
where ’]Z (t/ (l) = K(t, a; A1, AO)-

Letuy = ap~ —agv-1=0a1,v-1 — a1~ € AgNAy, veZ Givenany N,M € N, we have

M
a- > uy
v=-N

=la-aom +ao-N-1 A, a, Sla0-N-1la, + @M, -
A0+A1

By (3.21) and (3.22), the last two terms go to 0 as N,M — co. Hence, we have that a = ¥,z u, in
Ao + Aq.

Consider now the sequence of vectors given by

% ifny_1<2™<nyand v<0,
Vi =4 Uy ifnv-1<2M™<nyandv=0,1,

Uy m

2 ifnv_1<2M<nyand v > 1.

Then -
Y Vm= > >  vm= ) uy=a (convergenceinAg+Ay).

m="oo VETeo 1,1 <2meny v=—oo
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Next we show that this is a suitable representation of a in the J-space.

Ifv>1andny_1 <2™ <n+, we have that

u _ _
J2™, V) = J(zm, ZVXZ) $27J (v, un) €27 (ao vl o+ a0yl # v et vl o+ v larala,)

$27V [K(Mys1,@) + KMy, @)] $ 27V K(My11, @) ~ (1 +]logny1]) 'K(Mvs1, a). (3.23)

Suppose now v < 0. Then, ifn,_; <2™ <ny,

27 (2™, vim) <03 (v-1,vm) ~ 1352 T (-1, uy ) = 2T (5 )
<2¥ (34 laov o, + ot a0y 1l o, + vl a, + la1v-ala,)
$2Y ["Z(nil, a) +K(n3ly, a)] s 2¥K(nyly a)
~ (1+ |logny-)) ' L K(Mv—2, @). (3.24)

Finally, we also have that
2](27 ,v.1) sK(1,a)  and  J(1,vo) SK(1,a). (3.25)
Equations (3.23), and imply that
max(1,27™)J(2™,v;m) — 0as m — oo
and also that

supmax(1,27™)](2™,vm) $ supmax(1,n3")K(ny, a)(1 +|logn|)™

meZ VeZ
< sup max(1,t)K(t,a)(1+|logt])™ =|afy.
O<t<oo
This ends the proof. O

Theorem 3.20. We have ((Ao, A1)2, 1) "= (ALA)) 1. With equivalence of norms.
Proof. With the help of Lemma we can proceed similarly to [19, Theorem 8.1]. In other words,
put

ApnAj normed by J (2™, ) ifmeN,
Gm =1AonA; normed by | - || A,nA, ifm=0,
ApnAj normed by 27™] (2™,-) if —meN.

Let W = ¢ (Gm) ez and put
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M = {(wm) eW: > wy =0 (convergence in Ag + Al)}.

meZ

As usual, let
M* = {fe W*: f(wm) =0 for each (wm) e M}.

The space (Ag, A1 )go,.] = (Ag, A1), coincides with W/M with equivalent norms. Therefore,
(Ao, A)ey) = (W/M)* = M.

Let us identify M*.

Put
A} + A] normed by 27K (Zm, 5 A, A{) ifmeN,
Fm = {Ag+A{ normed by |- |as:a ifm=0,
A} + A] normed byK(2m, -;Aé,A{) if —meN.

For each m € Z, we have that G, = F_;, with equal norms. Hence W* = {; (F_y,). This means that
functionals f e W* are given by sequences (f_) € {; (F_,) with

f(wm) = Z fom (W) and Hﬂ‘w* = Z ”f—m“F_m :
mezZ

meZ

We claim that if f € M* then fn = fiy for all n, m € Z. Indeed, if there is a € Ay n A; such that
fn(a) # fm(a), then for the sequence w = (wy ) € W defined by wy = aif k= —n, wy = —aifk=-m
and wy = 0 for the rest of k € Z, we have that f (wy) = fn.(a) = fm(a) # 0, but w e M.

Conversely, let f € (Agn A1) with (..., f,f,f,...) e W*. We claim that the functional f defined
by this constant sequence belongs to M*. Indeed, take any (W, ) € M. Let us show that actually
f(Wm) = Smezf (W) = 0. Since (..., f,f,f,...) e W* = {1 (F_,,), we derive that (...,f,f,f,...)
belongs to (A(’), AJ )1;K' Using the J-representation of this space given by Theorem we can find

(gj) € Ajn A{ such that f = 3.7 g; (convergence in A} + A{) and

—0 asM,N - oo.
(ALA

o

j=—N

6)1;K

Hence, given any ¢ > 0, there is L € N such that

il<L il<L il<L

3 ZH(...,f— Zg]‘,f— Zgj,f— Zg),)N
(Aé'Al,)m( w*

€
<
2 [|[(wm)lw

Let g = ¥jjj<r 9j- Then g e Agn Ay = (Ag + A1)’. Since ¥ ez Wm = 01in Ag + Ay, we can find N € N
such that for any m > N we have
m
o(5)
k=—m

€
< —.
2




58 Examples

Therefore, for each m > N, we derive that

i f(wi)| = i f(Wk)—Q( i Wk)+9( i Wk)

k=—m k=—m k=—m k=—m
oo fmg =g F =g e W)l + g(k; wk)
A TermTon <w1>w [wm)lw + 5 = .

This yields that f e M*.

Consequently, ((AO, Al)g’o;])' consists of all f € (Agn A7)’ = A} + A for which the sequence
(min (1,27™)K (Zm, f; Ay, A{)) € 1. This establishes that ((Ao, Al)go;])/ = (Aé, A{)l_K and ends the
proof. O

3.6 Examples

Let (Q, 1) be a o-finite measure space. In order to determine the spaces generated by limiting
interpolation from the couple (Lo (Q),L;1(Q)), we recall that for 1 < p,q < oo and b € R, the
Lorentz-Zygmund space L, 4 (logL), (Q) is defined to be the collection of all (equivalence classes
of) measurable functions f on Q such that the functional

q dt)l/q

_ *® 1/ b e* bt
1710, oo = () (27 + log )P () S

is finite. The space Ly q) (logL), (Q) is defined similarly but replacing f* (defined in (2.5)) by
(1) = t71 fot f*(s)ds. According to [44, Lemma 3.4.39], L;, q (logL), (Q) = L¢p q) (logL), (Q)
provided that 1 <p<oo,1<g<ocoand beR.

Working with limiting ordered methods, it was shown in [19, Corollary 4.3] that if Q is a finite
measure space then (Lo (Q),L1(Q))o,q;j = Leo,q(logL)_1(Q) with equivalent norms. One obvi-
ously needs Q to be of finite measure in order to make sure that the couple (L..(Q),L;(Q)) is
ordered. In the limiting general case, we can recover the hypothesis of Q) being a o-finite measure
space, since no order relationship is needed.

Theorem 3.21. Let (Q, 1) be a o-finite measure space.

(i) If1<q<oothen
(Lo (Q),L1(Q)) 41 = Lo, q) (1I0g L) 1 (Q) nL(3,q) (logL)_; (Q).

(ii) If1< q < oo then

oo 1/
(Lo @) (@) g = {12161 = ) bmint, 0017 ) <.
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Proof. 1t is well-known (see [5] or [80]) that
K(t,f;Leo(Q),L1(Q)) = 7 (1/1). (3.26)

According to (3.8)), we obtain
Il [ e e )
(Leorb)ar —\ Jo [t(1 —logt) t 1 1+logt t
B f f**(t) 1/q N / tfﬂ—(t) 1/4q
\Jo -logt t 1 [1+]logt t
Now we study each of these two terms. Using that f**(t) is non-increasing, we get

Nf**(1)(f01(1—1ogt)q%)l/q

1

o () 19at\/? .. o0 o dt\Yd
U ] §) = (f T avesoeg)
f**(t) 1/q
S([0 [ —logt] t) '

1 fx—*(t) q dt 1/q oo fx—*(t) q dt 1/q
f - ~ / — | = =t o aog L)y - (3.27)
0 [1-logt] t 0 |1+/logt|] t (o)

For the second term, we observe that

(f01 [ff_*zég)t]q %)1/‘4 . (/Olf*(s)ds) (fol(l —logt)q%)l/q
(o) () [0 )"

oo [ tF(t) 19 dat) ]
fl 1+logt t ~| ”L(l,q)(logL)—l :
This yields (i). Formula (ii) follows by inserting (3.26) in the interpolation norm. Namely,

HfH(LN,Ll)q;K N(flf“(l/t)qﬁJrf [ 1f**(1/t)]q dt)l/

N(/O [tf**(t)] t+f1 " it)l/q
= (/0 [min(l,t)f**(t)]q %)1/(1

This ends the proof. O

Hence,

So,
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Let now w be a weight on Q, that is, a positive measurable function on Q. As usual, we put

La(w) = F:[fl, (w) = [wff, <oof.
q q

The following theorem deals with the Banach couple (Ly(wo),Lq(w1)) where wgy and w; are
weights on Q. If one applies the classical real method to this couple with 1 < q < oo, it is known
that (Lq(wo),Lq(w1))e,q = Lq(w), where w(x) = w} ?(x)w? (x) (see, for instance, [5, Theorem
5.4.1]). Regarding the limiting ordered cases, it is shown in [19, Theorems 4.8 and 7.4] that

-1/q’
(Lq(wo),Lq(w1))o,q;7 = Lq(wy), where wj(x) = wo(x) (1 +log Zogxi) ’ , and that
1\X

wo(x) )Uq

wl(x)

(Lq(wo), Lq(w1))1,q;k = Lq(wk), where wi (x) = wi(x) (1 +log

One obviously needs to have that wy(x) > w(x) p-almost everywhere in order to make sure that
the Banach couple (Lq(wy), Lq(w1)) is ordered. In the limiting general case, one no longer needs
this order relationship between the weights; the result turns out to be as follows.

Theorem 3.22. Let (Q, ) be a o-finite measure space, let 1 < q < oo, 1/q +1/q" = 1 and let wy, w; be
weights on Q.

(i) We have with equivalence of norms

(Lq (wO)qu (wl))q;K = Lq(wK),

where
wo(x)
w1(x)

log

)l/q

wk (x) = min(wp(x), wq(x)) (1 +

(ii) For the (q;])-method, we have with equivalence of norms,

(Lq(wo), La(@r)) 4y = La(w)),

where

wo(x)

w1 (x)

log

)—1/q'

wj(x) = max(wp(x), wi(x)) (1 +

Proof. 1t is easy to check that
Lg(wo) nLg(wr) = Lq (max (wo,w1)) and Lg(wp)+Lg(wq) =Ly (min (wo, wy)).
Whence, by Lemma3.4]
(La(@o), La(@1)) g = (Lq (max (wo, wr)), Lq (min (wo,w1))) g x -

Now (i) follows from the corresponding result for the ordered case (see [19, Theorem 7.4]). The
proof of (ii) is similar but using now Lemma 3.7|and [19, Theorem 4.8]. O
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Next we show a consequence of this result on interpolation of a certain class of Sobolev spaces.
We put S (R?) and S’ (R?) for the Schwarz space of all rapidly decreasing infinitely differentiable
functions on RY, and the space of tempered distributions on RY, respectively. The symbol F stands

for the Fourier transform and F! for the inverse Fourier transform. For s € R, we denote by
HS = H3 (Rd) thesetofall fe S’ (Rd) such that

5 \8/2
Iflye = (1 Ixla) ™ 7f

< 00.
L (R4)

In a more general way, we put
HO = {fe 5" (RY): [flpo = [@()FF| ey < oo

(see [59,[70]), where ¢ is a temperate weight function in the sense of [59, Definition 10.1.1]. Recall
that a function ¢ defined on R is said to be a temperate weight if there exist two constants C,N > 0
such that

e(E+n) <1+ CEJpg)N @(m)  VEMeRY,

As a direct consequence of Theorem and the interpolation property of the (q;K)- and
(g;J)-methods, we obtain the following.

Corollary 3.23. Let —oo < 51 < 59 < 0o. Put

sj/2 1
0300 = (14 1x20) ™" (14 3 (50 - 1) log 1+ Ix124)

where j = 0,1. Then we have with equivalence of norms

(-1 )2

(HSO, HS1 )2,K = H(pl El?ld (HSO, ]—I.S1 )2,1 = H(po.

. s/2
Proof. Put wg(x) := (1 + \\x\\%d) . Since the Fourier transform is an isometry in L,, we have that

F:H® — 1, (wg)

is also an isometry; it is actually an isometric isomorphism. Therefore, interpolating 7 and F -1
we get that

F o (HH™ ),y — (Lo (wsy), Lo (Ws1))a; and
Fi(La(wsy) Lo (Ws,)y ) — (H, H),
are continuous. Therefore,
fe(HY,H™),; <= Ffe(La(ws), L2 (Wsl))Z,I )
Applying Theoremwe obtain that (L (ws,), Ly (wy, ))2,] = L (wy), where
-1/2

“1/2
Wy so/2 1
wy () =, () (110 ) = (1 ) (14 5 (- sotog (14 IeBe))

Wg,

and thus
fe (HSOIHsl)Z,I = Ffely(wy) < |wjFf|, <oo = feH®.

The other formula follows similarly. O
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Remark 3.5. The functions ¢@g and ¢ in Corollary are temperate weights in the sense of Hor-
mander (see [59]). Let us see why.

2
In [59 Example 10.1.2] it is shown that the function (1 + &) 3a )S/ is a temperate weight for any
s € R, and with N =2 and C =1, that s,

s/2
(1+1213a) ) .
L S [Enlpa)’ for & ne R with &g 2 Inlga (3.28)
(1+ i)

Moreover, it follows from [59, Theorem 10.1.4] that if k; and k; are temperate weights and s € R
then k1ky and ki are also temperate weights. Therefore, all we need to do is to show that

w(é)

w(n)

<(1+ClE-n]ga)™

for | &l ga > |N|ga, certain C,N >0, w(£) =1+ rlog (1 + ||a\\§d) and r > 0. Using the fact that

2
1+ el
LN
1+l

and (3.28), we derive that

2 2
W r(log (1+ [&]fa) - log (1 + In[a)) 1 ortog LIRS 1 e e’
w(n) 1 +rlog(1 + Hn”%d) 1+ ||n||%§d

=1+2rlog(1+|&-M|ga) <CA+|&-N|ga),

where the last inequality is due to the fact that

lim 1+rlog(1l+x)
X—>00 1+x

=0.

Next consider a dyadic resolution of unity in RY, that is, a family (¢n)n. ¢ S (R?) such that

supp o © {x ¢ R4 : [x|za <2},

supp ¢n © {x e R4 : 2" < [x|ga <2}, €N,
o sup, pa [D¥bn(x)| < ca2 ™, neNU{0}, xe (Nu{0}),

Y% ohn(x) =1, x e R4,

For se Rand 1 <p,q < oo, the Besov space Bf), q consists of all those f € S’ (Rd) such that

- /4
[fllss, = (Z (2o |7 (cbnff)HLp(Rd))q) < .

n=0
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Spaces Bfg’}c’l, where b € R, are defined similarly but replacing the role of t* by t°(1 + |logt|)? in the
above definition. That is,

oo 1/q
- ( > (21 +m)° |7 (onFH) \\Lp(Rd))q) < oo

n=0

Spaces Bf)’,% are a special case of Besov spaces of generalised smoothness, which were considered
in [16, 28] among other papers. They are of interest in fractal analysis and the related spectral
theory (see [82,183] and the references given there).

Theorem 3.24. Let —co < s1<sgp< oo, 1<p,q<ooand1/q+1/q" =1. Then we have with equivalence of
norms

(B3, B!

— Sl,l/C[ So S1 _ SU/_l/q/
P.q’ p,q)q;K =Bpq and (Byg, B )q;] =Bpg -

P97 ~p.94

Proof. 1tis shownin [5, Theorem 6.4.3] and [80, Theorem 2.3.2 a)] that B]S[,j,q isaretractof {4 (2™ L;)
for j = 0,1. Besides, by Remark [3.1]and [19, Remark 7.3], we derive that

(8g (2™Lp), 0 (2™Lp)) i = Lg ((1 +n)1/q2“31Lp).

These two results yield the formula for the limiting K-method. The proof for the J-case has the
same structure, but using now [19, Corollary 3.6]. O

We finish this chapter with an application of limiting methods to Fourier coefficients. Let
Q = [0,2m] with the Lebesgue measure and, given f € L ([0,27]), write (cm ) for the sequence of
its Fourier coefficients, defined by

1

27t .
= — f f(x)e "™*dx, meZ.
27 Jo

cm = f(m)
We designate by (c},) the decreasing rearrangement of the sequence (|cm|) given by
ci =max{lcm|: meZ} =|cm,|, ¢ =max{|cm|:meZ\{mi}}=|cm,l|,

and so on.

Theorem 3.25. If f € Ly(logL)_q,, then 377 1 (1 + logn)~! (c*)? < oo.

Proof. Let F(f) = (f(m)) be the operator assigning to each function f the sequence of its Fourier
coefficients. As is well-known, both the restrictions F : L, ([0,271]) — ¢, and F: L; ([0,27]) — €
are bounded. Whence, interpolating by the (2; J)-method, we obtain that

F: (Lz ([0,27'[]) /Ll ([0/27-{]))2,] - (ez’ 200)2}]

is also bounded. Now we proceed to identify these spaces. Since

L2 ([0,271]) = (Les ([0,27t]), L1 (0, 27]))1 2./
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it follows from [19, Theorem 4.6] and (3.26) that

2 dt 1/2

0 1/2 27
. 172 —1/2px 2dt\7" 1/2 Y, . dt
flai,, ~ ([ [P 10g 2] )~ ([ [0 gty 2] )

~ ”fHLz(log L)y’

where we have used [44, Lemma 3.4.39] in the last equivalence. As for the sequence space, since
K(t, &0, loo) ~ Z)[i]l E]?‘ (see [80, page 126]), where [t] is the largest integer less than or equal to t,
using again [19, Theorem 4.6], we obtain

o msl [t] dt 12 4 1/2
“‘E”(ZZ,EOQ)Z,] ~ ( Z f [t_l/z(l + logt)_l/z Z 5 ]2 ) Z [ -2 (1+ logn) 1/2 Z a ]
’ n=1-7"T" j=1

n=1

oo 1/2
> (Z (1+logn)™! <a;>2) :

n=1

This yields the result. O

Other results on Fourier coefficients can be found in [3, [54].

Theorem has been extended in [14, Theorem 5.3] to functions f in L5 4(10g L) +1/min(2,q)
for 0 < q < co and y < —1/q. In that case (f(m)) belongs to the Lorentz-Zygmund sequence space
eZ,q (loge)y+1/max(2,q)~
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Chapter

Bilinear operators and limiting real
methods

In this chapter we study the behaviour of bilinear operators under limiting real methods. Let
us state the problem. Take the Banach couples A = (Ag, A1), B = (Bo,B1) and C = (Cp, C1) and
consider a bilinear and continuous operator T : (Ag+ A1) x (Bg+B1) — Co + C; whose restrictions
T:Aj x Bj — C; are bounded with norms M; for j = 0,1. The question is, if we can interpolate
this bilinear operator as we did with linear operators.

In the classical setting, if 1 < p,q,r < co and 1/r+1 = 1/p + 1/q, then for every 0 < 6 < 1 the
restriction
T: (Ao, A1)e,p x (Bo,B1)e,q — (Co,C1)o,r

is also continuous. This was proved by Lions and Peetre in [67]. By the equivalence theorem, one
can interpret these classical real interpolation spaces as K- or J-spaces. In Section we show
that the bilinear interpolation theorems ] x ] - J and ] x K - K hold, and that there are no similar
results of the type K x ] - J and K x K - K. As an application, we establish an interpolation
formula for spaces of bounded linear operators. Then, in Section we check if the limiting
methods preserve the Banach-algebra structure. Finally, in Section[4.3} we compare norm estimates
for bilinear operators with norm estimates for linear operators. We establish two results which
complement those shown in Chapter [3l The main results of this chapter have appeared in the
article [36].

4.1 Interpolation of bilinear operators

It will be useful to work with the following discrete norm in the K-space

oo 1/q
||aq;K=( 5 [min(l,z-mmzm,a)]q) ,

mn=—00

65
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which is equivalent to | - | 5 by Lemme_l As we mentioned in the previous chapter, a conse-
quence of this discrete representation of A 4k is that

Atk >Agk , 1<q<oo. (4.1)
For the J-space, we work with
0 1/q
lal g;y = inf ( >, [max(1,27™)] (Zm/um)]q) ,
m=-o0

where the infimum is taken over all possible representations a = » 7
Ag + A1) with (umm) € Ag n A satisfying that

0 Um (convergence in

0 1/
( > [max(l,z-mmzm,um)]q) "o, 4.2)

m=—00

see Lemma[3.8]

Remark 4.1. Note that if (um) ¢ Agn A; satisfies (4.2), then the series is absolutely convergent in
Ap + Aj because

(o]

i K(Lum)< > min(1,27™)J (2™, um)

- 1 o [min(1,2-™) 1%\
g( > [max(l,z—mN(me“m)]q) qx( > [M]q) o

m="oo m=eo [ Max(1,27m)
Asusual 1/q+1/q'=1.
The following two theorems are a consequence of the results of [13] and connections (3.2) and

(3.7) between limiting methods and interpolation methods associated to the unit square (see [25|
26]). However, we give here more simple direct proofs.

Theorem 4.1. Let A = (Ag,A1),B = (Bo,B1) and C = (Co, C1) be Banach couples and let 1 < p, q,T < 00
with 1/p +1/q =1+ 1/r. Suppose that

R:(Ag+A1) x(Bo+By) > Co+Cq
is a bounded bilinear operator whose restrictions to A; x Bj define bounded operators
R:A;jxBj - Cj
with norms M; (j = 0,1). Then the restriction
R (Ao, A1)y % (Bo, Bi) g5 =~ (Co, C1)yy

is also bounded with norm M < max (My, My).
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Proof. Take any a € (Ao, A1),y and b € (Bo,B1),,,
a=Y o Qm,b=Ym__ bm. ForeachkeZ, put

and consider any arbitrary J-representations

ck= ». R(am,br-m).

m=-o00
Then ¢y € Cyn Cq because

>, J(25R(am,br-m)) < 35 max(Mo|amla, [bk-mlp, Mi2™ |am|, 2™ [brm 3, )
m=-o00

m=—o00

<max(MoMp) Y J(2™ am) ] (25, bim)

m=—00

and the last sum is finite as we will show in the course of the next paragraph. Hence, the sequence
(Ck)]io:_oo c Con Cq with

J (2%, cx) < max (Mg, My) i J(2™, am) T (2™, brom) -

m=—o0

mark this holds if (cy) satisfies (4.2). We check this last fact by using Young’s inequality. We
have

Next we show that the series ). ck is absolutely convergent in Cy + C;. According to Re-

® [max(l,z-kn(z‘ack)r)UT

k=—00

) ) T\ 1/7
gmax(Mo,Ml)( » [ » max(1,2_m)](Zm,am)max(l,Z_(k_m))](Zk_m,bk_m)])

kt:o m:_oo 1P / oo 1/q
gmax(Mo,Ml)( 3 [max(l,z—m)](zm,am)]p) ( 3 [max(l,z—k)](zk,bk)]q) < oo,
m=-oco k=—o00

(4.3)

These arguments allow also to show that

> > K(1,R(am,br-m)) < co.
k=—00 M=—00
Indeed, since
K(1,R(am, bx-m)) < min(Moam| A |br-m B, 2 M12™ [am | 4,25 ™ [bi_mB,)
< max(Mg, M1) min(1,27%)J(2™, am)J (25 ™, br_m),

proceeding as in Remark 4.1} we obtain with

n 1/’
< [min(1,27%)7
L= (kZ(><> [max(l,Zk)] )
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that

S S K(LR(am, bicm)
k=—o00 T=—00

[ee)

<max(Mp,My) > min(1,27%) i J2™, am)J (25 ™, br_m)

k=—o00 m=-oco

o0

o0 T\ 1/7
< Lmax(My, My) ( > [max(1,2_k) >oJem, am)](2k_m,bk_m)] )
k=—00 m=—o00

k=—0c0 LM =—00

oo 0o ry\1/7
sLmax(Mo,l\/h)( » [ » max(1,2_m)](2m,am)max(1,2_(k_m))](2k_m,bk_m)] ) .

Using now Young’s inequality, we get that

o 0 00 1/p
ooy K(l,R((am,bk_m))SLmax(MO,M1)( > [max(l,Z_m)](Zm,am)]p)

k=—00 M=—00 m=—o0

x( D [max(l,Z_k)](Zk,bk)]q)l/q <o,

k=—0c0

A change in the order of summation in the double series yields that

[ee]

R(a,b)= > i R(am,bx-m) = i Cy -
k=—00

k=—00 M=—00

Consequently, by (4.3), we derive

[ee)

. 1/r
IR(a,b) g( 3 [max(1,27%) ] (2%, cx)] )

k=—00

(o]

1/
Smax(Mo,Ml)( > [max(l,z—m)](zm,am)]P) ’

m=—00

( $° [max(l,zk)](zk,bk)]q)l/q |

k=—0c0

Now the result follows by taking the infimum over all possible J-representations of aand b. [

Theorem 4.2. Let A = (Ag,A1),B = (Bo,B1) and C = (Co, C1) be Banach couples and let 1 < p, q,T < 00
with1/p+1/q=1+1/r. Assume that

R:(Ap+A1)x(Bg+B1) > Co+Cy
is a bounded bilinear operator whose restrictions to A; x Bj define bounded operators
R:A;jxBj - Cj
with norms M; (j = 0,1). Then the restriction
R: (Ao, A1)p,5 x (Bo, B1) g;x = (Co, C1)rx

is also bounded with norm M < max (My, My).
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Proof. Take any a € (Ag, A1), jand b € (Bg,B1) . Let (Am)m-_o be a sequence of positive num-
bers such that

> min (1,279 =1,
m=-o00

and let € > 0. For each m € Z choose a representation b = bém) + bgm) of b in By + By such that

5™

M L

<K(2™,b) + eAm.
Bq

Pick any J-representation a = Y.;n__., am of a. Then, for each k € Z, we have that

K (2% R(a,b)) < i K (2%, R(am,b))
m=-oo
< mioo [K (25, R(am, b§™)) + K (2%, R(am, b ™))
¢ 5 [Molontag 5], <2 Mol 5],

+2m pf™)|

<max (Mo, M) i J(2™, am) [Hb(()k_m)‘
Mme—oo

o

Bo

[ee]

<max (Mo, M1) Y T(2™ am) (K(2™,b) + eAdgom) -

e
Therefore, by Young’s inequality, we derive

1/r

oo

IR(a,b)],x = (kz_j [min(l,z—k)K(zk,R(a,b))]'”)

o0

< max (Mg, M) ( > [ i max (1,27™) ] (2™, am)
ke—oo Lm=—oo

T 1/]‘
xmin (1,2° ™) (K (2™, b) + e?\k_m)] )

oo

1/
Smax(Mg,Ml)( > [max(1,2_m)](2m,am)]p) ’

m=—o0

oo 1/
x( 3 [min(l,z—m)(K(zm,b)+s7\m)]q) i

m=—00

oo 1/p
< max (MO/ Ml) ( Z [max (1/ 271’71) J (Zml am)]P) (HbH q;K + €) :
m=-o00
Taking the infimum over all J-representations of a and letting € go to 0, we get that
[R(a,b)[;x < max (Mo, My) [[af,; [Pl
as desired. O

Remark 4.2. In applications, there are times when one is only given a continuous bilinear operator
R: (Ag+A1) x (BgnBy) - Co + C; whose restrictions R : Aj x (BgnBy, | - ||Bj) - Cj are bounded
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for j = 0,1, and where the couple B satisfies that By n By is dense in B; for j = 0,1. The question
is to show that R has a bounded extension to the interpolation spaces. This means, for the case of
Theorem 4.2, an extension from A,,;j x Bk into Cy k.

This problem has a positive answer provided that q < co. Namely, if b € By n By, the argument
in the proof of Theorem [4.2]gives that

IR(a,b);;x <max (Mo, M1) |[al,; o] . -

Since By n By is dense in B 4;x when ¢ < oo (see Corollary 3.15), the bounded extension is possible.

Next we show an application of this remark to interpolation of operator spaces.

Theorem 4.3. Let A = (Ag,A1),B = (Bo, B1) be Banach couples with Ag n A1 dense in A; for j = 0,1.
Assume that 1 <p,q,r < oo with q < oo and 1/p+1/q =1+ 1/r. Then,

(L(A0,Bo),L(A1,B1)),5 € L(Agk, Brk)-

Proof. Let R: L(AgnA1,Bg+B1) x (Agn A1) —» Bo + By be the bounded bilinear operator defined
by R(T,a) = Ta. Itis clear that R : £L(A;,B;j) x (Agn Ay, |- [a,) — Bj is also bounded for j = 0,1.
Whence, by Remark we obtain that R has a bounded extension

R: (L (Ao, Bo), L(A1,B1)),,5 x (Ao, A1) gx = (Bo,B1)yk -

Therefore, the wanted inclusion follows. O

If we exchange the role of J- and K-methods in Theorem then the corresponding statement
does not hold as the next example shows.

Counterexample 4.1. Let (Ag, A1) be a Banach couple such that Ag n A; is not closed in Ay + A;.
PutR: (Ag+Aq) x (K+K) - Ag + A; for the bounded bilinear operator defined by R(a,A) = Aa. It
is clear that restrictions R : A; x K — A; are bounded for j = 0,1. If the bilinear theorem K x | — |
were true, then for any 1 < p,q,r < oo with 1/p +1/q = 1+ 1/r we would have that the restriction
R: (AO,A1)p;K X (K,K)q;] - (AOrAl)r;] is bounded. This yields that (AO,Al)p;K - (AO,A1)r;].
However, take any 0 < 0 < 1and 1 < s < oo. By Lemmata and [3.6| we have the inclusions
(Ao, Al)r;] = (Ao, A1)g s = (Ao, Al)p;K' Therefore, we conclude that (A, Al)e,s = (Ao, Al)p,s for
any 0 < 0 # u <1, which is impossible (see [61, Theorem 3.1]).

Concerning Theorem there is no similar result for K-spaces. In order to show this, we

establish first an auxiliary result. For n € N, let EE be the space K™ with the {4-norm, and if (wj );1:1

is a positive n-tuple, write {g (wj) for the corresponding weighted L5 -space. We put {3 (n/9) for
the space (f (w; ) if wj = nl/dfor1<j<n.

Lemma4.4. LetneNand1<q<oo. Then
0 (G27) = (0,0 (27)) p and € () > ez e (2) g

and the norms of the embeddings can be bounded from above with constants independent of n.
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Proof. By Remark and [19, Lemma 7.2], we have (E{l, ah (2‘j ))1.K =7 (jZ‘j) with equivalence

of norms, where the constants of equivalence do not depend on n. Hence equation implies

that ¢ (j27) = (¢, ¢ (27 ))q;K‘

To prove the second embedding of the statement, note that by
(285 (2)) g = (6 (2) 82 4

and that K(t, £ €2 (2), £ ) = maxj<j<n min(2/, t)|;]. Hence, using again Remark we obtain

o) n
q - -mq ia(0id omdy|z.|9 i (n(G-m)q .19
”EH(f&,e&(Zj))q;K n%:l 2 1mg]2>r(1 min(2)9,2™9)|&;] ngl 121)2)7(1 min(2 D&

oo
+ Y 27™9 maxmin(2'9,2™9)[E;]9 =S; + Sy,
m=n+1 ESR

where the constants in the equivalence do not depend on n.

Next we estimate S,. Let k < n; we obtain

oo ) 2-(n+l)q ) )
memal 1<j<n 1-279 1<j<n 1<j<n
< max min(1,20799)g;|9 < S;.
1<j<n
Consequently,
n n
q A N in(2(G-m)q 19 < 19 = 19 = q
HEH(E&/Z&(ZJ))q;K n;l {gzﬁmln(z /1)|£J| = n1z=:1 fgi)é‘aﬂ 11’2)2)1’(11”&)’ ”‘iugm(nl/q) - O

Counterexample 4.2. Take any 1 < p,q,v < oo with 1/p +1/q = 1 + 1/r, consider the couples
A = (2?,6? (2‘5)), B = (22,,22, (Zj)), C = (K,K), and let R be the bilinear operator defined by
R ((E,]-), (nj)) = Z)Tl:l &mj. Itis easy to check that R: (Ag+ Aq) x (Bg + B1) - Cp + C; is bounded,
and the restrictions R : Aj x B; — Cj are also bounded, with norm 1 for j = 0,1. If the bilinear
theorem K x K — K were true, using Lemma [4.4] there would be some M < oo such that

IR: € (j27) x €, (n!/9) > K[ <M

for every n € N. Take & = (0,...,0,2™/n) and 11 = (0,...,0,n"/9). Then we have ||<i||g111(j2_j) =1,

Il en (ni/ay = 1 and R(EM) = 2" /m1*1/4 | 1t follows that 2™/n!*1/9 < M for every n € N which is
impossible.

4.2 Interpolation of Banach algebras

Interpolation of Banach algebras was first considered in 1963 by Bishop [6] to study questions
of analytic continuation. One year later Calderén published his seminal paper on the complex
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method [10]; among many other results, he showed that the Banach-algebra structure is stable
under complex interpolation. As can be seen in the articles by Zafran [85] and Kaijser [62], the
more general methods (-,-)e,q,1 (defined in Chapter |2) also interpolate Banach algebras. Later
on, Blanco, Kaijser and Ransford [7] showed another class of real interpolation methods that also
preserve this structure, but the question of whether the classical real method (-,-)g 4 interpolates
Banach algebras for q > 1 still remained open. However, in 2006, Cobos, Ferndndez-Cabrera and
Martinez [21], working with the general real method (-,-)r, showed a necessary and sufficient
condition on the lattice norm T for the general real method (-,-)r to interpolate Banach algebras.
As a consequence of the result on the method (-,-)r, they derived that the real method (-,-)g,q
respects the Banach-algebra structure only if q = 1.

First we give some definitions and results that we shall need. They all appear in [21]] and [18].
A Banach algebra A is an algebra which is also a Banach space and for which there exists a constant
ca > 0such that for all a,b € A we have

Jabla <calalalbla-

On the other hand, a couple of Banach algebras A = (A, A1) is a Banach couple consisting of two
Banach algebras A, A; such that the two multiplications agree on Agn Aj.

Now, let I be a Banach space of real-valued sequences with Z as its index space. Assume
that I' is a lattice, that is, whenever |[&1,| < || for each m € Z and (py) € T, then (&) € T and
also [(&m)|lr < [(m) |- Suppose further that I' contains all sequences with only finitely many
non-zero coordinates.

We say that I is K-non-trivial if (min (1,2™)) € I' and we say that it is J-non-trivial if

P { 2 min(1,27") [m] ¢ (&m) [ < 1} < co.

If T' is a K-non-trivial sequence space, then given any Banach couple A, we can define the
abstract K-space Ar x as the space consisting of all a € Ag + A; such that (K(2™,a)) € I endowed
with the norm [a| y = [ (K (2™, a))| .

Similarly, if I is J-non-trivial, then we can define the abstract J-space Ar j as the one consisting of
all a € Ag+A; that may be writtenas a = Y. ;n__, Um (convergence in Ag+A;), with (um) c AgnAy
and (J (2™,uy)) € I'. We set the following norm on this space

falgy =inf{ [0 ™ 0= 55 um ).
m=—oco
It is shown in [71] that if T" is K-non-trivial then ({1,¢1 (27™)) x = T and that, if it is J-non-
trivial, then " < ({1, €1 (27™)) ;.

Let F be an interpolation method and suppose that AgnA; is dense in F(Ag, A1) for any Banach
couple (Ag,A1). We say that the interpolation method F preserves the Banach-algebra structure if
given any couple of Banach algebras A there exists a constant ¢ x4 > 0 such that

lablzay < creaylalzay [blFca)
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for all a,b € Agn Aj. Since the intersection Ay n Aj is dense in F(Ag, A1), we can extend multipli-
cation by continuity to the whole space F (A, A1), making of this space a Banach algebra.

The limiting K- and J-methods we introduced in Chapter [3|correspond to the abstract K-method
with T' = {4(min(1,27™)) and to the abstract J-method with I' = {4(max(1,2™)). They do not
satisfy the hypotheses in the article by Cobos, Ferndndez-Cabrera and Martinez [21] or those in
[18]]. In these papers the authors suppose that the Calderén transform

Q(am)z( i min(1,2mk)yak|)
mez

k=—00

is bounded in I', where T" is the lattice associated to the limiting methods. By [71, Lemma 2.5], this
implies that Ar,; = Ar,x, which, as we already know, is not our case.

In order to study the interpolation of Banach algebras by limiting K- and J-methods, we will
work with the couple of Banach algebras (£1,£1(27™)), where the spaces are indexed by Z and
multiplication is defined as convolution. First we show the following lemma.

Lemma 4.5. Let (Fi) oy, be a sequence of spaces, let A >0, A # 1 and let 1 < q < oo. Then

(Cq (Fm), lq (N ™Fin)) g = L (1 +[m)Y 9 min (1,A7™) Fy)

with equivalent norms.

Proof. Note that it is sufficient to prove the result for A > 1, since if A < 1 we can take G, = A" Fy,
and obtain

(€q (Fm), £q A Fim)) g = (La (A1) T™Gm) g (Gm)) g = (Lq (Gm) L (AT ™Gm)) -

Suppose first that q < oo. Let t > 0 and choose any a = (an) € €4 (Fm) + g (A" Fy). Pick
the largest n € Z such that tA™ > 1, and consider the decomposition a = dy + d;, where we
have taken dp = (...,an-1,an,0,0,...) and a; = (...,0,0, an+1,an+2,...). Then dy € {4 (Fin) and
a; € by (A\"™Fy), and

n

(o] 1/q (%) 1/q
K(t,a)s( > lam|f + > tdATmd am||]‘__‘m) :( > min (1,tA"™)4 Ham“gm) .

m=-o00 m=n+1 m=-o00

On the other hand, given any decomposition a = dy + a;, where g = (a?n) and a; = (a}n), we have
that

1/q

o0 1/q o0 1/q o0
( S min (1, 7™ am||qm) g( 5° Ha?nu;jm) +t( $ pma Ha}ny\gm) ,
o0 m=—00

m=-o00 m=—

SO

o 1/q
K(t,a;lq (Fm),{q (A‘mFm))~( > min(l,t)\_m)qﬂamgm) ) (4.4)

m=—00



74 Interpolation of Banach algebras

This implies that

(i ENER [ X ATy > 1+ZA"“*]

m=n+1

oo 1/q
[l ceq (Pt mF ) i ( 2, min(1,A7"9) Z min (1,A™77)¢ ||an||Fn)

00 q
¢ lanl, [ > AL AT 5 x mq])
n=1

m=n+1

0 00 1/q
( S Jan]d (1) + 3 A ||an||§n<1+|n|>)

n=—o00 n=1

- HaHEq((l+|m\)l/qmin(l,)\‘m)Fm)’

as desired. If q = oo, the result follows easily. O

The following proposition shows that the K-method does not preserve the Banach-algebra
structure. We take g < oo in order to make sure that Ag n A; is dense in (A, A1) q;k

Proposition 4.6. Let 1 < q < oo. Then (&;,€1(27™)) q:k is not a Banach algebra if multiplication is defined
as convolution.

Proof. Let 1< q < oco. Then ({1,£1(27™))qx = ({1, 4(27™))rk = (21,21(2”“)%,1, where the lattices
Mand T are given by I' = lq (min(1,27™)) and T= g (min (1,27™) (1 + |m|)). In addition, we have
that I is K-non trivial and I is J-non trivial. Therefore,

lq (min(1,27™) (1+m))) = (&, 6 (27™) )qik = lq (min(1,27™)).

In order to show that the space (£;,{1(27™))q:k is not a Banach algebra we will find two vectors
(am),(bm) € lq (min (1,27™) (1 + |m|)) such that (am) * (bm) ¢ {g (min (1,27™)).

Take

(1+m])*?2 ifm<Q, 0 if m <0,
am = ] and by, = P
0 ifm>0, 2™(1+|m)* = ifm>0,

with 0 < « <1/q’. Then, since (1 - «)q > (1-1/q")q =1, we have
-1 1 1/q
|(am)|7 = (m_Zw W) <o

Moreover, it is clear that

0o p-mgpmq 1/q
) <00,

ot ~( 5, e
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s0 (am), (bm) € T. However,

oo —1 min(-1,m)
S oakbmek= Y (L+[K)¥Pom= >, (1+[k)*2™F (1 + [m-k|)*3,
k=—0c0 k=—00 k=-00

and

-1 m q 1/q
2( Z ( > 2‘“*(1+|k|>“-2<1+|m-k|>“—2) ) - 0.

m=—oco0 \k=—o0

Next, we study the case q = 1. By Lemma we have that

(o),

k=—0c0

r

(4, 6 (27™)) 1 = & (min(1,277) (1 + [ml)).
Now, this space is a Banach algebra if and only if the following supremum is finite

su min(1,27™)(jm|+1)
B min(1,27™) (1 + [nf) min(1,27 ™) (1 + [n — m])

(see [7, Proposition 2.3]). But, if n < 0 < m, the quotient is

27™M(jm|+1)
(nj+ D)2 (jm-n|+1) n--oo

Q.

This ends the proof. O

Next we show that the limiting J-method does not preserve the Banach-algebra structure either.
This time the argument will be slightly different to the one that we have used for the K-method.
For 1 < q < oo, we have that (£,61(27™))q;; = ({1, €1(27™))A;;, where A = £4(max(1,27™)). In
addition, A is J-non trivial. This implies that

L (max(1,27™)) = (&, 6(27™)) gy

Instead of finding a larger space, we shall characterise the limiting J-space. Once again, we will
take g < oo to make sure that Ag N A; is dense in A ;.

Applying to the Banach couple ({1,¢;(27™)) we get that
K(2™, a;0,0(27%)) ~ i min (1,2™7%) |ay].
k=—o0
This formula and give that
(6, 6(27™)) g = {(am> i+ (2™): ( > min(1,27%) ak|) € tg (max(1,27™) (1 + |m|>1)} @5)

k=—o00

forq>1.

Proposition 4.7. Let 1 < q < co. Then (£,€1(27™))q; is not a Banach algebra if multiplication is defined
as convolution.
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Proof. Since £q(max(1,27™)) < ({1,£1(27™))q;;, we will have the result if we find two vectors
(am),(bm) € lq (max(1,27™)) such that (am) * (bm) ¢ (£1,€1(27™))q;-

Take (am) = (by) = (min(1,2™)(1 + |m|)~%), where % <a< % (1 + %) Note that such « exists
because q > 1. Then, since «q > 1, we have that

o 1/q
”(am)Heq(maX(llz—m)) = ( Z (1 + ’m‘)(xq) < 00.
m=-—o00

On the other hand, if m > 0, then

i A Om_k = i min(1,2%)(1 +|k|)"*min(1,2™ ) (1 + |m - k|)™*
k=—00 k=—00
> i A+X) %1 +m-%k)" > (1+m) *(1+m) *(1+m) = (1+m)!2%,
k=0

and, similarly, if m <0,

) 0 |m/|
> akamoe 2y 2™ (14 k)T (1 [m- k)T = 2™ 3 (14§) (1 + [m] =) "% 2 2™ (1 + [m[)! 2.
k=—o00 k=m j=0

Thus (a * a)m > min(1,2™)(1 +|m|)}72%. Next we show that a * a does not satisfy condition (&5).
If m > 0, we have that

(o) m
S min (1,2™ %) min(1,29)(1+ k)2 > > (L+[k)I 2 (1+m)* 2
koo k=[%]

and similarly, if m <0,

> (3]
> min(1,2™ %) min(1,2%) (1 + [k 2* > Y 2™ (1 + k)X 2 2™ (1 +|m))* 2
k=—00 Kem
Therefore,

S min (1,2™ %) [(a* a)x| > min(1,2™) (1 + [m[)* >,
k=—00

and so

oo 1/q
S (1 |m|)<1-2°‘>q)

>
€q(max(1,2-™)(1+/m|)-1) (m:—oo

i min (1,2m—k) |(a*a)yl
k=—0c0

which is divergent since (1 - 2x)q > —1. This ends the proof. O
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4.3 Norm estimates

In this final section we compare norm estimates for bilinear operators with the norms of linear
operators interpolated by the limiting methods. We start with an auxiliary result.

Lemma 4.8. Let E = (K, K). Then, E1,5 = Kand | - |1, coincides with |-|.

Proof. 1f A € K, we can take the representation A = Y.0n__  vin With vy, =0 for m # 0 and vp = A. It
follows that [A[,; <[A. Conversely, given any J-representation A = ¥, Am of A, we have

(o]

[A] < Z Am]| < i max (1,27™) J (2™, ) .

m=—oo m=-—o0

Hence, [A| < [A[4;. O

Let A = (Ag, A1), B = (Bo, B1) be Banach couples and let T € £ (A, B). Put E = (K, K), and define
the bilinear operator R by R(A, a) = ATa. The operator R is bounded from (K + K) x (Ag + A1) into
Bo + By, and the restrictions R : K x A; — Bj are also bounded. It follows from Lemma 4.8 that for
any 1 < g < oo we have that

”THL(Aq;K,Bq;K) = HR : El;] X Aq;K — Bq;KH .
Whence, norm estimates for interpolated bilinear operators cannot be better than the correspond-

ing estimates for interpolated linear operators.

Recall that we showed in Counterexample|3.1|that even the weaker estimate

Tla,z,
T A gy s % IThay s, |1+ max {0, log P
wBa Tl ag 5,

shown in [19, Theorem 7.9] fails for general couples. Next we establish two results which comple-
ment those that appear in Chapter (3| and illustrate the poor norm estimates that are fulfilled for
the limiting methods. Subsequently, we work with the continuous norm | - || Agx of the limiting
K-space.

Proposition 4.9. For any s,t > 0, there exist Banach couples A = (Ao, A1), B = (Bo, B1) and an operator
TeL(A,B)suchthat [T, 5, =5 [Tla, 5, =tand

HT||;\OO;K,]—3°°;K =max(s,t).

Proof. Let By = By = K with the usual norm |-|. Take Ag = A1 = K normed with [A] 5 = s~! Al and
IA[ A, = t~1 ||, respectively, and put TA = A. It is clear that ITl A, B, =sand [T]A, g, =t Since
H}\HBM;K =2K (1,A;Bg,B1) = 2A|
and
IN A, =2K(1,A;Ag, A1) =2min(s™,t7) A,
we derive that
HTHAOO;K,BOO;K = maX(S,t),
as desired. O
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We close the chapter with the case q < co.
Theorem 4.10. Let 1 < q < co. Then
sUp {|TIA 8o [ TlAos, <5/ 1Tlay 8, <t} ~max(sb),
where the supremum is taken over all Banach pairs A = (Ag,A1), B = (Bg,By) and all T ¢ L(A,B)

satisfying the stated conditions.

Proof. According to [27, Corollary 1.7],

SUp {ITIA 8ot T Ag 3o <5/ 1TIA, B, <tf ~s9(t/5),
where
ol
max{l, Lq((0,00),dt/t)
g(t) = sgp min(l,oc-)H q = Slép Cor-
oe(0,00) max(1,) La((0,00),dt/%) xe(0,00)

Let us compute g. We start with the case 1/7 < 1. We have that

sup C(XIT:max( sup Cqr, sup Cur, supch,T).

xe(0,00) O<a<l/T 1/T<x<1 a>1

Let 0 < < 1/t. Then

. 1/q 1/q
o [min(1, ectt) | dt ~ 1 qdt ot qdt o _gqdt
(fo [ max(1,t) ] t) _(fo (2t +f1 (D)3 +f1mt t
= (2/q - log(a1)) "9 arr,

and

- o oo 1/q
([; [%] t) ([ (oct)q dt [ 1/ it+£/“t_q%) =(2/q—10g(oc))1/qo¢

SO

/q 1/q
2/q-1 2/q-1 -1
sup Cqr= sup T[ /a og(oc’r)] sup T[ [q-loga OgT:|
O<a<l/T O<a<l/T 2/q - log X O<a<l/T 2/q N log x
= su T[l— log ]1/‘1 =T
O<oc<If/T 2/q - 10g &

Now, let 1/t < < 1. Then

1/4

oo [mi qa ¢\ at
(ot ] ) = (o oL 7o) s,
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so in this case

Co - 2/q+loga+logT 1
Yl a9(2/q-loga) |
We have that

acgﬂ(“ T)=0 < loga = ~qlogT+/q2log’ +4qlog
LG 8 7 :

Since log T > 0, one of the roots is positive, and the other one is less than or equal to

—qlogt-qlogT
2q

=log(1/7).
This implies that the derivative does not change its sign on the interval 1/t < o < 1. Since

0Cd + q-1
—(1,7) = L 5 log1/t <0,
o (19(2/q - 1log1))

we derive that C . is decreasing on [1/7,1], and therefore,

2/q-logT+logT 1 i logt 1/
2/q+logt - 2/q+logt|

sup Cq,r = T[

1/T<<1

In the case o > 1, we have that

. 1/q 1/q
o [min(1, at) 9 at f qd ] f y
max(1t) | t© = - — =(2 1 9,
([0 [max(l,t) ] t ) ( 0 (at) + 1 =(2/q +logx)
SO
1 1
sup C =su M /qzsu 1+10L /q=[1+q10g1]1/q
“2113 “r “2}1) 2/q +log 0(211) 2/q +1log o 2 :
Therefore,
1/q 1/q
sup Cg,r =max T,T[l_bi] ,[1+qlog1] .
0<ax<oo 2/q+logT 2

It is easy to check that the second value in the maximum is less than or equal to T. To compare the

last term, put f(7t) = 219 -2 - qlogt = 279 -2 - log T9 for T > 1. We have that f(1) = 0 and that
1

/(1) = g1 (219 -1) > 0, so f(7) > 0, and therefore T > [1 + %] /q, that is, if 1/t < 1, we have

that g(1) = 1.

Next consider the case 1/t > 1. Then

sup Cq :max( sup Cq,r, sup Cq, sSup C“,T).

e(0,00) O<a<1 l<x<l/T a>1/t

If 0 < « < 1, using what we already have, we get that

sup Cyc=sup T

O<a<1 O<x<1 O<ax<1

2/q -log(xr) 1a I P logt 1a :T[l— qlogT]l/q
2/q -log P
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If 1 < x < 1/1, we have that

sup Cyr= sup ot
1<a<l/t 1<a<l/T

2/q - log (o) l/a
[ 2/q+log o ]

and since

0Ca

-1
S (0,7) = (ro)?7 > (~qlog & (log o~ log(1/7)) +log(1/7)) >0,

- (2/q+log )

we obtain that

2/q ]1/q:[1+ qlogT ]1/q'

sup Car = [Z/q +log(1/7) 2-qlogt

1<a<l/T

Finally, if « > 1/7, it follows that

sup Cq,r = sup
a>1/t a>1/t

2/q +log(xT) 1a _sup |1+ logT 1a _1
2/q+log«x 2/q +log o ’

a>1/t

and therefore

1/q 1/q
sup Cq,r = max T[l_qlog’r] , 1+ﬂ ,11.
O<x<oo ’ 2 2—q10gT

Clearly the second term is less than equal to 1. In order to compare the first one, we consider
h(t) =79 (1- $logt)-1for0<t<1 Thenh(l)=0and h'(t) = 197" (1-qlogT) > 0,s0 h(T) <0
whenever 0 < T < 1. This yields that

1/q 1/q
_qlogT] ,[1+ qlog*r] ,1):1‘

sup Cgy,r = max (T [1 > - qlogt

O<ox<oo

Consequently, g(t) = max(1, t), which completes the proof. O
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Chapter

Some reiteration formulae for limiting real
methods

Reiteration is a very important question when one studies any interpolation method. The classical
reiteration theorem reads as follows. Let 0 < 6y, 01,0 <1 and 1 < qg, q1,q < oo. Then

((AO' Al)eU/qO 4 (AO’ Al)equl)e,q = (AO, Al)nrq ’

where 1 = (1-0)6) + 60;. From this formula we derive that reiteration is blind to the parameters
qo and ¢ in the classical setting. Another consequence is that the classical real method is stable
under interpolation, since the resulting space is in the same scale of interpolation spaces. This will
no longer be true in the limiting case.

One way to prove this theorem for the real method (Ao, A1)g 4 (0 < 8 < 1) is by expressing the
K-functional of the couple of real interpolation spaces ((Ag, A1)g, q,,(A0,A1)g, q,) in terms of the
K-functional of (Ag, A1) (Holmstedt’s formula, [57]).

Gomez and Milman [54, Theorem 3.6] extended Holmstedt’s result to limiting real spaces for
couples that are ordered by inclusion. They deal with K-spaces that correspond to the choice 6 = 1
in the construction of the real method defined in (2.14). Later, Cobos, Fernandez-Cabrera, Kithn
and Ullrich [19, Theorem 4.6] considered the case of limiting ordered J-spaces, which fits to the
choice 8 = 0 (see the definition in (2.17)). Our aim in this chapter is to continue the research
on limiting real methods by studying their reiteration properties in the case of arbitrary Banach
couples, not necessarily ordered. The results in this chapter form the article [37].

We work with the limiting K-spaces (Ao, A1) 4;x and the limiting J-spaces (Ao, A1) ;5 studied
in the previous two chapters. We shall use the fact that elements of (Ao, A1) are characterised
by the condition min(1,1/t)K(t, a) € Lq((0, %), dt/t) and those of (Ag, A1), by

max(1,1/t)(1+|logt]) 'K(t, a) € L4((0,00), dt/t)

81
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for q > 1, see (3.8). Since 1/t appears only in part of the interval (0, c0), the results of [46,147,52| 1] do
not cover the cases that we study here. The estimates that we obtain allow to determine explicitly
the resulting spaces because they show the weights that appear with the K-functional.

We start by deriving Holmstedt type formulae for the K-functional of couples formed by a
limiting space and a space of the original couple. This is done in Section Then, in Section
we derive some reiteration results for limiting methods and finally, in Section we apply
the results to determine the spaces generated by some couples of function spaces and couples of
spaces of operators.

The following formulae for the real method were established by Holmstedt [57] (see also [5)
§3.6]): Let 0< 0 < 01 < 1,A =01 — 6,1 < qo, q1 < oo and put X = (Ag,,q,, As,,q, )- Then

/A R qo 1/90 IS 3 q1 /a1
K(t,a;X) ~ f Kis, A) |7 ds +t f K(s, ;A) |7 ds . (5.1)
0 s% s £1/A 501 s

Moreover, if 0 <0 <land 1< q< oo,

- 0 K (s, a;A) 9 ds la
K(t,a;Ag.q,A1) ~ f MEGA) | Es 5.2
(ae,ql)(o [Se]s) (5.2)
and "
' - o [K(s,a;A) % ds a
K(t,a,Ao,Ae,q)w(/;/e [5—9] ?) . (5.3)

5.1 Limiting estimates for the K-functional

In this section we extend and to limiting real spaces. Subsequently, K(t, a) stands for the
K-functional of A = (A, A1). We write K (t, a; )_() = K(t, a; Xp, X1) for the K-functional of a couple
X = (Xo, X1) different from A.

We start with the J-spaces and we distinguish the cases 0 <t <1and 1 <t < co. We shall use

thatif 0 < A <1 then y
1 q q
[l )1 "
A | s(1-logs) s A(1-1ogA)

Indeed, if 1 < q < oo, we have that

1 ds 1 ds 1 ds
-4(1-1 a2 _ f -a+1/2(1 _ “Ag1/222 < \=a+1/2(1 _ oo \) 4 f -1222
/;\ s (1 -logs) . s (1-logs) s S (1-1logA) s S
~ATIT2(1 Z1ogA)TIATY2 - 1) <ATI(1 - logA) 9.
The case q = oo is trivial.

Subsequently, the proofs are given for q < co. The case q = co can be carried out similarly.
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Lemma 5.1. Let A = (Ag, A1) be a Banach couple, let 1 < q < 00, 1/q +1/q" = 1and 0 < t < 1. Put
X = (Aq;],Al). Then, for any a € Aq;; + Aq, we have that

e_t_q’ K q d 1/q
K(baX)-| [ K@) |Tds)
0 s(1-logs)| s
Proof. First we note that

[x

Take any decomposition a = xo + a; with xg € Ay;j and a; € A;. Then, by (5.5),
—q’ 1/q
[e_t 9 K(S, a) q %
0 s(1-logs)| s
_q’ 1/q o 1/q
< [et q K(S,XO) q % N fet a K(S, (11) q %
| Jo s(1-logs)| s 0 s(1-logs)| s
et 1
<Ixola,, +| [

S xolay, +tlala, -

_-a’

1/q
(1-logs)™d ﬁ) ~(1+t79) Y9 L [max(1,t79)] Y9 = ¢, (5.5)
S

4 1/q
_ S
(1-logs) q?) CHN

Taking the infimum over all possible decompositions of a, we derive that

—q’ 1/q
o et K(s,a) 1% ds
K(t,a,X)z([O [s(l—logs)] ?)

Conversely, according to the definition of K(t, a), we may decompose a = ap(t) + a;(t) in a way
such that a;j(t) € Aj and [[ag(t)[ 5, +t[ai(t)| A, < 2K(t, a). We claim that ap(e™" ) e Agyy. Indeed,

ks aEe D as) [ [k et )] as)
_¢-a’ € s, ap(e S s, ap(e S
laofe Mg, < (/(; [ s(1-logs) ] ?) ’ (fe-tq' [ s(1-logs) ?)

K _t_ql q d 1/q
+ f (S,ao(e )) —S :Il+12+13.
1 1+logs $

Let us estimate each term. We have

et K(s,a) 1%ds o e K(s,a (eft_q/)) " ds o
’ s Q1
Il<(.[0 [s(l—logs)] ?) +(f0 [ s(1-logs) ] ?)
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and

' o q 1/q a’ L q 1/q
[ Kot s} et et Dla ) ds
0 s(1-logs) s “\Jo 1-1logs s
K (e*t_q’, a) o 1/q
S —(fo (1—10g8)‘q%)
—q’ q
< [e_t a K(S, Cl) q %
1 Jo s(1-logs)| s ’

where in the last inequality we have used that K(s, a)/s is a decreasing function.

As for I, by and (5.5)), we obtain

1 1 9 ds 14 —q —q’ 17!
J N R
e i) §) ke oA

/ /4
(1-1log s)_q%)

L s

_ 14
ag(e™ " )‘

—a’
et et

—a’ K(s, a) a4 Yad
€ s, a S
S(fo [s(l—logs)] ?) '

_¢-a’ _¢-a’ 4
< Kl .0 7q,' %) (1 +t‘q’)—1/q’ o K(e ,a) (fe
0

In order to estimate the third term, recall that e* > 1+x for x > 0. This yields that e9 TS 1449

and so
e—t-q’ < +t_qr)_1/q, . (foe

t-a’

1/q
(1-logs) ﬁ) .
S
It follows that

_q!
K(e_t d 7 Cl) _t—q'
et

K(e ™", a) e ds B e K(s,a) 1%ds v
S —F 1-1 = — =] .
et /0 (1-logs) s : /0 [s(l —logs)] s

o ) 1/q !
IrsK(e™t ™, a) (/1 (1 +logs)‘q§) ~K(e ™t a) =
s

Summing the three estimates we conclude that ag(e™ ")

g’ 1/q
S TPV A LI
0 a1~ | Jo s(1-logs)| s

belongs to Ay;j with
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On the other hand, using (5.5), we get

’ ’ *t_q/ e
_¢a ¢t _t-d < K(e ,Q) /
t“Cll(e )”Al S e—t—q'K(e ,Cl) ~ e*t"q' 0

et K(s,a) 1%ds v
S(.[0 [s(l—logs)] ?) '

Consequently,
e—t_q’ K( ) q d 1/a
RY, —t’q/ - _t*q/ s, a _S
K(L %) < Jaale™ )l x,, +tlar(e ), s( L e ) -
This completes the proof. O

In the case 1 < t < oo, the estimate requires the increasing function ¥ : (0,1] — (0,1] defined by
W(s) =s(1+[logs))/9".

Lemma 5.2. Let A = (Ag, A1) be a Banach couple, let 1 < q < 00,1/q +1/q" =1and 1 < t < co. Put
X = (Aq;,A1). Then, for any a € Ag;j + Ay, we have that

_a’ 1/q . 1. 1/q
o et K(s,a) 19ds oo [ K (min(1/¥(t™),s),a) % ds
K(t'a'X)N(/o [s(l—logs)] ?) +(/1‘ [ 1+logs ] s ’

where ¥(s) = s(1 +[logs|)'/9",

Proof. Let

i’ 1/q ) S, 1/q
B et K(s,a) 1%ds oo [ K (min(1/¥1(t™),s),a) T ds
At (fo [sa—logs)] ?) +(f1 [ L+logs ] B
= Qi(t, @) + Qa(t, a).

Given any decomposition a = xg + a; with xg € Ag;; and a; € A1, we have

Ot )
s A1

Q2(t,a) < Qa(t,xp) + Qa(t,a7) < HXOHAq;J * (f1°° [ 1+logs

= [xola,, +Lillarla, -

According to (5.4), we obtain

Lo [1/‘¥‘1(t‘1) s q% 1/q+ f°° 1/t q% 14
=\A 1+logs S yv-1(t1)| 1+logs S
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1 g ds\ YA 1 1
~ _ q =
([y—l<t-1>[s(1 logs)] s) TYI(ET) (1 log W1 (1))’
1 1

S log W (L) UUI(ED)

Whence Q»(t,a) S HXOHAqJ +t]a HAl'

As for Q1(t, a), we derive

' 1/4
et ds
Qu(t,a) £ Qu(t,x) + Qi(t ar) < [xol A, + ( [ a —1ogs>—q;) larla, s Ixola,, +thala,

Therefore, Q(t,a) = Q1(t,a) + Qa2(t, a) $ HXOHAq.] +t|ai5,. Taking the infimum over all possible
representations of a, we conclude that Q(t,a) $ K (t, a; )_().

To check the converse inequality, we choose two vectors ag(t) € Ag and aj(t) € Aj such that
a=ap(t)+ai(t) and |ag(t)[ o, +t[a1(t)| A, <2K(t, a). First we show that ap(1/¥1(t™!)) belongs
to Aq;j. We have

o 1K (s, a0 (1w (£1))) 1% as )/
|ao(1/w~'(t 1))HAqJS(fO [ & 321—logs) )] ?S)

1) TK (s, ap(1/¥ 1 (£71))) 1% ds |
LA <)

1+logs s

S
o K (s, a(1/9 1t 1)) 1" as |
+(f1/w-1(t-1)[ 1+logs ] ?)

=Il+12+13.

In order to estimate I;, we use that ag(1/¥71(t™1)) = a - a; (1/¥1(t™!)). We get

L < et K(s,a) 19ds o 1 K(s,a) 19ds Ha
' fo [s(l—logs)] s +(/et‘q'[s(l—logs)] ?)
1K (s, ar (/W1 (™))% ds
(1 |

q
s(1-1logs) _) =Qi(ta)+]i+]2

S

Moreover,

J1 < K™, a) ([1 (1-logs)™ 1 ds)l/q < —K(e_tiq /@)
- ! e-t—a’ ~ :

et ? e—t7d !

Since
—t— 4

1/q
(1 logs)qﬁ) ~ (14t 97yMa s -l
$

[r
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and K(s, a)/s is a decreasing function, we obtain

, ’ 1/q ’ 1/q
K(et™,a) et _qds et K(s,a) 1%ds

To estimate J,, note that

N

J1

ey Y LG
) = Garey W) (1 - Tog W (1)) VY’

- (1-logw 't ) - ([1/00

Y-1(¢-1)

We derive
1/4
el [ a-10g99) T it e, - et e,

g K(1/v1(t?),a)
Y1 vt

<ty e HK (/v (e, a)

%) dS 1/q
N -q -1/-1
(fl/w(tl)(nlogs) S) K (19 (t ), a)

i (/oo [K(min(l/‘l"l(t‘l),s),a)]q ds
1

1/q
S (e 1+logs _) < Qa(t ).
Consequently, I; < Q1(t, a) + Qa(t, a) = Q(t,a).

S

We proceed now to estimate I,. We have

e /w%tl) K(s,a) 19 ds 1/q+ /1/w1<t1> K(s, a1 (1)) 1" ds 14
W 1+logs S 1 1+logs S

1/\1,71( 71) q 1/q
<o ([ ] ) leamr el e

According to (5.4) and (5.6), we get

1 1 9a la
Ja = ([mu [u—lg)] —) Jar P ),

1 o
: Y1t 1) (1 - logW-1(t1)) Jar17w7 e 1))HA1

K(1/v1(t1),a)
/Y1t 1)

<) dS l/q
~ 1+1 -q—) K(1/v1(t™),
N I (T G ¥

) ( I [K(l/w-lu-l),a)]q ds

1/q
— t,a).
[y 1+logs ) <Qa(t a)

<t \\al(l/W*l(t*l))\\Al St

S

1/q
(1+logs)_q%) . (5.6)
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As for I3, we derive
() dS 1/C]
-q=° —1/,-1
I3s(/1/ly_l(t_l)(1+logs) S) a1/ () o,

- 1/
s(fl/ o (1+logs)_q%) TR ), @)

w-1(¢-1)
(o ey a o
A\ Jywen 1+logs s =R

Collecting the estimates for Iy, I, and I3, we conclude that ag(1/¥"!(t™!)) belongs to A4;; with
oo/ (1) 5 5 Qt,a).

It is clear that
K(t a;X) < Hao(l/‘lf’l(t’l))HAqJ +t al(l/‘y’l(t’l))HAl $SQ(ta) + ¥ (tHK (1Y (), a),
and, by (5.6), it follows that
K (e (1), a) ~ (fl/:_l(t_l)a +logs) %)Uq K (197 (1), a) £ Qa(t, @) £ Q(t, a).

This implies that K (t, a;X) $ Q(t, a) and finishes the proof. O

Next we establish the limiting version of (5.3) for J-spaces.
Lemma 5.3. Let A = (Ag, A1) be a Banach couple, let 1 < q < oo and 1/q +1/q" = 1. Put Y = (Ao, Aqy).

If0<t<1,then

. o [ K(s,a) | ds Ha 1] K(max(s,¥7'(t)),a) 1% ds Ha
K<t'a'Y)Nt([etq'[1+logs] ?) ot [0 [max(s,‘l"l(t))(l—logs)] s ’

where ¥(s) = s(1 +[logs|)/9",

/g
= o [ K(s,a) 45\
e+ Lo 5)

Proof. By the symmetry property of the limiting J-method shown in Lemma we obtain

If1<t < oo, then

K(t,a; V) =K(t,a;Ag, (A1, Ag) 4) = tK (tha (A1, A0) g5, A0) -

Therefore, for 0 < t < 1, using Lemma we derive

L’ q 1/q
K(t,a;¥)~t fe K(s, @;A1,Ag) | ds
T 0 s(1-1logs) s
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R mine (), 9), 041, A0) | s Y
" [1 1+logs s

o 1/q
ST PAN S
- 0 | 1-logs s

| 1+logs s
1
4 /‘X’ K(s,a) 1 ds 1/ it /1 K (max(s, ¥7'(t)),a) a ds fa
- et | 1+logs| s 0 | max(s,¥-1(t))(1-logs)| s ’
The proof in the case 1 < t < co follows the same line, this time using Lemma ]

As we show next, the arguments used in the proofs of Lemmata and may be
modified to establish the corresponding results on K-spaces. We deal first with the case when
0 < t < 1. In this case the estimate requires the increasing function @ : (0,1] — (0,1] given by
@(t) = t(1 + |logt|)!/q.

Lemma 5.4. Let A = (Ag, A1) be a Banach couple, let 1 < q < oo and 0 < t < 1. Put X = (Ag;x,A1). Then,
forany a € Aqx + A1, we have that

_ 1/q

K(t, a;X) ~ (/OlK(min((D_l(t),s),a)q %) ,

where ®(t) = t(1 + |logt|)¥/9.

Proof. Let a € Aq;x + A1 and pick any decomposition of a, a = ag + aj, such that ap € Ag;x and
a; € Aq1. Then

([ stmntor .0 )" ([ Kl 0,07 2)
1/q
N (-[OlK(min((D_l(t)/s)’al)q %)
< faolla gy + 12

It follows that

1 ) ds\1/a ol(t)  gs\ V9 1 ) ds\1/a
RN SIS AN (JAeRE BTN

atla, [0 (1) + 07 (0) (log 07 (1) "] = |, @ (1)1 + og 7 (1))

~Jaifa, @7 ()1 +[log @'Y = D(D7' (1)) [ai1] 4, = tar]a, -
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Therefore,

1 . 1 q dS 1/q
([0 K (min (®7'(t),s), a) ?) S||C10H,Z\q;}<+t||‘11HA1-

Taking the infimum over all possible decompositions of a, we obtain that

(folK(min((D_l(t),s),a)q %)1/«4 SK(t aX).

Conversely, pick any representation of a, a = ag(t) + a;(t) with a;(t) € A;, j = 0,1, such that
lao(t)| o, +t lar1(t)] A, <2K(t, a; A). First we show that ag (@~'(t)) belongs to A g;x. We have that

1/4

oo ), <Kol i) E) ([ ksl )t L)

S D-1(t)

B q 1/q
+(/;oo|:K(s,aO(S(1) 1(t))):| %) =11+ I, + I5.

We estimate each of the integrals separately.

e (focpl(t) (5, ) dss) 1/q +(f0®1(t)K(s,a1( 1)) ds)

- (foqj_](t)K(mm( (t)) )q dss)/ +J1,

1/q

and

o1t ds)t

/4
i < s (@7 )], ( [ —) ~07(1) a1 (07(1)] , £K (@7 (1), ).

Since j o ((tt))/Z ds = ®71(t)/2, it follows that

K(@(b), o) K(07L(t),
(070,000 0= G- [ 0w G

TOK(s,a) o as\" (i |
<ﬁb we s ([D ) (S’a)q?) (logm)

l(t) q ds 1/q
(/0 K (min (s, @~ (t)) a) ?)

1/
folK mm s, O 1(t)) )q ﬁ) q. (5.7)

S

N

This implies that

I s (folk(min(s,m—l(t)),a)q %)Uq :
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Furthermore, we have that

2= (./(;Dll(t) K(s,a0(07'(1)))" %)Uq SK(D7Y(t),a) (All(t) %)Uq

! 1 q ds /4 1 . 1 q ds\Yd
~ (Ll(t)K(Q (t),a) ?) < (/0 K(mm(s,q) (t)),a) ?) )
and, by (5.7),

13:(flw[K(s'QO(CD_l(t)))]qE)l/zK(@—l(t),a)5([01K(min(s,<1>‘1(t)),a)q g)l/q‘

S S S

This gives that ag (©~!(t)) € Agx and

1/q
Jao (@7 )5, = ([ K(min(s, 07 (1)) L) .

On the other hand, since t ~ @~} (t)(1 + [log d)‘l(t)‘l/q ), we derive by that

t
D1 (t)

K ((D_l(t), (1) - ﬂ]{ ((I)_l (t), (1) + K ((D_l(t)/ (1)

tlar (@7 (®)] 4, 8 ©-1(t)

1/4

S (—log(I)1(t))1/qK((D1(t),a)+('[01K(min(S,(D1(t)),a)q %)
1/q e
(oo 5) RO @@ ([ R minGs 07 w)0)" )

O-1(t) s

S (/OIK(min(s,d)_l(t)),a)q %)Uq .

Therefore,

_ ~ ~ 1 ) - ds\ /4
Kt @X) < ag (@7 ()] 5 +tlar (@7 (W), 5 ([0 K (min (s, ® 1(t)),a)q§) .
This ends the proof. O
Next we show the corresponding formula for t > 1.

Lemma 5.5. Let A = (A, A1) be a Banach couple, let 1 < q < oo and 1 < t < oo. Put X = (Ag;x, A1).
Then, for any a € Aqx + A1, we have that

([ o) o 2] #)

Proof. Let a € Ag;k + Aq and take any decomposition of a, a = ag + a;,in Aqx + A;. Then

(fO1K(s,a)q %)Wq +(fletq [K(Z/a)]q %)1/q




92

Limiting estimates for the K-functional

(0w ) (T )
+([0 K (s, al)q 1/q ( K(S’al)] s)/q

Slaola,, +laila, +tlala, S laola,, +tlaila,-
q q;

Taking the infimum over all possible representations of a, we obtain that

(/OlK(s,a)q %)Uq + ([letq [@]q %)Uq < K(t,a;)_().

Conversely, for each t > 1 choose a representation a = ap(t) + a;(t) in Ay + Ay such that
lao(t)[[a, +tlai(t)] 4, <2K(t, a). We claim that ag(et’) e Ag;k. Indeed,

q q 1/9 e TK (s, 4 q 1/q
Hao(et )HAq;K S(AlK(SIQO(et ))q %) +(/; [M] E)

S S

o [K (s, a0(et)) 1" as |
+ f _— — = Il + Iz + 13.
etd S S

We have that

< (/0_ K(s, a)q ds)l/q +(/01K(s,a1(etq )q %)1/q g (folK(s,a)q %)m I

and

S

K(et",a) e’ gs ) K(et, a) ¢ [K(s,a)]" ds 1
td 4 4 s
s tae ”‘mtTN(fl N A

It also follows that

e TK(s,a)]? ds Ha e TK(s,ar(et")) 1" ds a
sz(fl [ s ]—) v [— ]—

S

et K , a4 1/4 g e g , a4 1/q
(7 [Fe ) st 5[] )

. Hao(etq)HAO . K(etq,a) . et K(s,a)]? ds Va
s 5 et St B fl s s '

Therefore, ag(et’) € Aqx and

1/q etd q 1/q
Ty N T e

S S

and that
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On the other hand, we have that

td td et’ K(S,(l) g ds 14
tar(e™)] . 5 ke, a) s f1 [T] <)

K<t,(1;>_<)5(/0 K(s, a)d ds)l/q+(fletq [@]q %)1/0[,

as desired. 0

So

The following lemma can be proved as Lemma but this time using the symmetry property
for the K-method (3.1) and Lemmata[5.4 and 5.5

Lemma 5.6. Let A = (Ao, A1) be a Banach couple and let 1 < q < oo.
If0<t<1,then

0o q 1/q 1 1/q
K(t/a:Ao/Aq;K)%(f [M] E) +t(f ] K(s,a)qﬁ) .
1 S S e-td S

If1 <t < oo, then

o0 14— q 1/4
K(t,a;AO,Aq;K)Nt(/l [K(max(l/d) Lt 1),5),a)] ﬁ) |

max(1/0-1(t1),s) $

5.2 Reiteration formulae

Next we establish reiteration results which follow from the Holmstedt type estimates of the previ-
ous section. The resulting spaces have the shape of an intersection V n W, where

{ V={aeAg+A1:K(s,a)/v(s) e Lq((0,1),ds/s)},

(5.8)
W={aeAg+A;:K(s,a)/w(s) e Lq((1,00),ds/s)}.

Here v,w are functions in the form s'b(s) where i = 0 or 1 and b is a certain slowly varying
function.

Theorem 5.7. Let A = (Ag, A1) be a Banach couple and let 1 < q < oco. Then we have with equivalent
norms

1 , q l/q
acAg+Ay: ||a||=(f0 [5(11(_(15—0;12)2] (1—logs)%)

(AO'Aq;I)qJ = q 1/q
+(f1°° [%] (1+logs)’l%) < 00

and

o q
acAg+Ar: |a] = ([1 [<1K+§§§15)>z] (1+logs) dT)

(Aq;],Al) . = ) .
q (/0 [Wﬁ)gs))] (1-1logs)~ 1ds) <o
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Proof. LetY = (Ag, Agq;p). According to Lemma 5.3, we get
1 K(t,a;\?) 9 at 1a oo K(t,a;Y) 9 at 1a
Ha“Yq;]_ [0 t(1-logt) | t ! fl l+logt | t
q
1 _ o [ K(s,a) ]? dsdt
- 1-logt)~ 2y pdsdat
(fo (1-logt) [etq'[1+logs] s t)
- q
1 1[ K(max(s,¥7'(t)), a) 1 ds at
1-1 - ==
+(f0( ogt) j(; [max(s,‘l"l(t))(l—logs) s t
o 4 o0 q 1/q
. f t f / K(s,a) |" dsdt
1 |1+logt et" [I+logs| s t

= Il + 12 + 13.
It is shown in [19] page 2339] that

1/q
o0 K(s, a) q _1ds
I3 ~ 1+1 — .
> (.[1 [1+10g(1+logs)] (1+logs) s
As for Iy, since K(t, a) is increasing, we obtain
1/q
o _ o [ K(s,a) |* dsdt
L ~ q AMsa)pasat
! (/1 (1+logt) fetq'[1+logs] s t)
e [ K(s,a) 19 ds dt e
e 4 s,a) |* ds dt
([1 (1+logt) [et"" [1+10gs] s t)
1/q
o _ o [ K(s,a) 17 ds dt
1 q ’ asat
+(/1 (1+logt) /etq'[1+logs:| s t)
S (foo(1+lo 07K @) [(1+ 179y —(1+t‘1’)1-q]§)1/q 1
S 1 g , t 3.

Put f(t) = (1 + t79")1-9 — (1 + t9")1-9. Then we have that f(1) = 0, f is increasing on [1, o) and
lim_, f(t) = 1. Hence f(t) <1 for any 1 < t < co. Besides,

oo d ,
/etq’(l +10gs)_q?s ~(1+t9)a L ¢d

fort > 1. Whence

1/q
oo t 1% o0 _gds dt
< q_- -
Ilw(/; [1+logt] K(e ,a)fetq,(1+logs) S t) +15
oo 49 e q 1/4q
<\ ; Lo Kls.a) [7dsdt) g o,
1 |1+logt et |1+logs| s t
Consider now I,. We have that

1 ~ w-l(t) K(llj—l(t)’a) q ds dt 1/q
12~(f0 (1-logt) qfo [‘Pl(t)(l—logs)] ?T)
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! —q [t K(s,a) 19 dsadt l/q_
+(./0 (1-logt) q[yl(t)[s(l—logs)] ?T) =hit )z

It is clear that

- ! 1/q

Put s = ¥71(t). It follows that

at [ 1 Jas
t q'(1-logs)| s

Therefore,

1 K(s,a) a _ 1 ds )4
11~([0 [s(l-log%))] (1-togs) q[l‘q'u—logs)]?)
B 1 K(s,a) 9 1-logs ds 14
‘(/o [s(l—log%))] (1—logs>q?) '

. _ _ L _ .
Besides, —log¥(s) = ~logs - 27 log(1 - logs). Hence, since

1-logs— 3, log(1-1logs)
lim d =1,
s-0 1-logs

we have that
1-logW¥(s) ~1-logs. (5.9)

1 K(s,a) 11 ds
e (e 0 een )

Concerning J,, using (5.9), we derive

r 1 /4
[ K(s,a) 17 p¥e _gdtds

= _ 1-logt) 9——

J2 ~/0 | s(1-1logs) | [0 (1-logt) t s )

I Ksa ] e ds) 0
; .[0 | s(1-1logs) | (1-log¥(s)) 1?)

r 1 /q
[ K(s,a) 11 _gq+1ds
~ ———— (1-1 w1 .
fo [ s(1-1logs) | (1-logs) s

This yields that
/4

So, Ip ~ J1 + J2 ~ J2. Collecting the estimates, the formula on (Ao, Aq;])q.] follows.

The case of (/_\q;],Al)q.]
property ((Ao, A1) gy, A1)q; = (A1, (AerO)q;])q;]- Namely,

LK (s, a;A1,A0) g ds
“a”(Aq?I’Al)q;JN(fO [ s(1-logs)? ] (1_10g5)?

can be derived from the previous formula by using the symmetry

1/q
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" ([}o [15(12;(;1/11/1;02)](1 (1+ logs)_l%)
(] a0

(] 0o )
([ sy ] 0w )

(7 [2e] o)™

This completes the proof. O

1/4

Remark 5.1. Theorem[5.7]is not true when q = 1. Indeed, it follows from Lemma [3.6| that
(Ao, App)iy = AonAr = (Agy,Ar)

and the norm of Ay N A; cannot be expressed by means of the K-functional (see Section 3.2).

With similar arguments but using now Lemmata and 5.6 we derive the following limit-
ing reiteration formulae for K-spaces.

Theorem 5.8. Let A = (Ag, A1) be a Banach couple and let 1 < q < oo. Then we have with equivalent
norms

1
acAg+Ar: |a|= ([01 K(s,a)9(1 —logs)%) fd

(5 [t ] 42) " < oo

(Aq;K’Al)q;K =

and
1 K(s, q 1/q
aeAg+A;: ||a||=(f0 [%] <

(AOqu;K)q;K - . (/100 [K(s,a)]q (1 +logs)%)1/q o

Proof. Put Xqx := (Aq;K’Al)q;K' Then, by Lemmataand we have that
1 . dt\Va o [K(t, ;%) ]9 dt)"?
ol o= (ke e S) (7| KR T
; 0 t 1 t t
1 ,1 ds dt\ 4
- K (min (©71(t),s), a)° ——)
(fo fo (mm( ()s) a) Tt

00 etd q 1/q
+(/; t [/olK(S'a)q%Jr/l [K(ss,a)] %]%)
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(f / Yk )qﬁﬁ) (f fl(t) (0 (1), )quit)l/q
(/ tqf )q%g)uq (f tqf [K(s,a)] %%)”q

=L +L+13+ 14

It follows that

b= (f ﬂp(s) TK( S)l/q - (/01 log @(s)[K (s, )" %)Uq'

Furthermore,

1/4

L - (fol (~log @71 (1)) K (@7!(t),a)* %)

Putu = ®1(t). Then

at_af, 1
t  u q(1-logu) |’

1 1 du "
= a1 —— = | ==
I (fo [logu| K (u, a) [1 q(l—logu)] u) .

([ - q/ )qgg)l/qN(/OlK(s’a)q ds)l/q‘

and therefore

On the other hand,

This implies that
1 [log s| ds "
Llo+ L~ [ K(s,)%|1+[log®(s)] +[logs| - ——5" | <2) .
1+ L +13 ( ; (s,a) [ + |log ©(s)| + [log s| q(1+|logs|)] s)
Next we find an equivalent expression for the term in brackets. Since

[log s|

1+ log®(s)|+ [logs| - —————
llog @(s)1 + log sl = T3 log sy

<1+[log@(s)|+|logs]

and also
logs|

1+|log®(s)|+]|logs| - ———2——
[log @(s)] + [log s| - qC1+ logs]) >

>1- = + llog @(s)|+ [logs| ~ 1+ [log ®(s)| +|logs|,

it follows that
1 ds 1/4
Il+12+13~(/0 K(s,a)q[1+|log(D(s)|+|logs|]?) :

On the other hand, @(s) > s and s, ®(s) € (0,1). This gives that [log @ (s)| < [logs|, and thus

1 1/q 1 1/q
L+h+I3~ (fo K(s,a)? (1 +max(|log ®(s)],[logs|)) %) = ([0 K(s,a)?(1+[logs|) %) .
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Finally, a change in the order of integration yields that
q o0 oo q 00 /
o ([ [reattds, pR[REOTT e adids)
1 S 1 t s e S (log s)/d t s
q /4
. /e[M] %+—/ [K(S a)] (lo S)—lﬁ)
1 S s e s
q
~ / (1+]logsl|)” [K(S a)] ) ,
s

thereby giving the first formula.

Regarding the second formula, since
(Ao, (Ao, Al)q;K)q;K = ((AleO)q;K ,Ao)q;K
(see (B.1))), we can apply the first formula and get

1 ds\"d | K(s,a;A1,Ap)
) N . q_ 4 4 7
lallagagn,, = ([ (0 +logsh K (5,041,407 &) ( I L(““Ogs,)l/q

q 1/q
’)
s
= (fol (1+]10gs])[sK(s’1,a)]q ds) (/ (1+logs|)” K( -1 a)q %)Uq

1/4q
:([01 (1+|logs|)_1K(s,a)qdS ) (/ (1+|logs|)[K(s a)] S ) ,

as desired. 0

Remark 5.2. The formulae in Theorems[5.7/and [5.8| can be simplified if we are in the ordered case.
For example, assume that Ay = A; and consider the space (AO, Aq;K)qK' Since

1 K(s, a) 9 g5\ 1 s 9 g5\
] S <t [ ogom) 5)
0o a) 19 1/q
snanA]s(fl [M] <1+logs>%) ,

o [K , q d 1/q
||c1|(/1\0,}—\(“)(];}(N([1 [@] (1+logs)?s) . (5.10)

o0 K(s, a) 1 ds 1
”a”(AWK’Al)q;KN(/l- [s(1+logs)1/q] ?) ’ (6.11)

This recovers [19, Theorem 7.5].

we obtain
Similarly,

For J-spaces with Ay < Ay, it turns out that

1/q

oo K(s, q d
”“”(Aq;;,Al)q;l“(fl [%] (1+1085)?S) (5.12)
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and

1/q
> K(s, a) 4 1 ds
“aH(AOIAq;I)q;I (/1 [(1+log(l +logs))] (1+logs) s ) (5:13)
The last formula gives back [19, Theorem 4.6 (c)].

Using Holmstedt’s formulae (5.I) to (5.3), we can describe the hmltlng spaces generated by
couples of real interpolation spaces. Agam the space comes in the shape (5.8) but now v, w are in
the form s%h(s) where 0 < 0 < 1 and h is a certain logarithmic function.

Theorem 5.9. Let A = (Ag, A1) be a Banach couple and let 0 < 0y # 61 < Tand 1 < q < oo. Put
X = ((Ao, A1)90/q , (AOIAl)el,q ) Then we have with equivalence of norms

_ [e3) -0p =01 q 1/q
Xq;J = {a €eAp+Ag:]a] = (fo [max((ls+ ll,s |))1]/<q(,8,a)] %) < oo}
ogs

and

_ 1
Xgik = { acAg+Ar:|a]= ([0°° [min(s‘eo,s‘el)K(s, a)(1+ |logs|)1/q]CI %) fa < o0 }

Proof. By the symmetry property for the J-method shown in Lemma we may assume without
loss of generality that 8 < 61. If q = 1, it follows from Lemma 3.6| that

_ - 1 0o
X153 = Agy1 NAgy 1 = {a €eAp+Ag:]al = fo s’elK(s,a)% + fl s’eOK(s,a)% < oo}.

Assume now that 1 < q < oco. Using (5.1) and changing the order of integration, we obtain with
A=01-6)

AT 570K (s,a) 1" ds dt “%1K(s,a) " ds dt 4
HaHXqT (./ _/ [ —logt)] ?T) (./ _/1/7\[ 1-logt ] ?T)
([ [tw‘[ s~O0K (s, a)] ds dt) ([ [ [ts‘elK(s a)] %g)l/q
1+logt s t t/A] 1+logt s t
1[S‘GOK s,a) | dtds s7%1K(s,a)]" dtds 1
(/ f t(1-logt) ] t s) (/ f [ 1-logt ] T?)
(f fl[s 01K (s, a)] dtds) (f f [ ~00K (s, a)] gg)”q
1-logt t s 1+logt t s
s7%K(s,a)]" dtds s791K(s, a) dtds a6
(f [ [ 1+logt ] T?) (/ f [ 1+logt ] ) j:1

Now we estimate each of these six terms. By (5.4) we obtain

q 1/4 1 -0, q 1/q
(0 e T [ T
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Clearly
[ s9%K(s,a) 1% ds Ha o q ds\d
I ~ f — - 7 I N(f _elK 7 _) 7
2 ( 0 [(1—logs)1/q'] S ’ 1 (571K (s, )] s
1 ds\Yd o[ s79K(s,a) 17 ds 1
Iy ~ f —Gog , q_) d Is~ f — 7 | = .
4 ( 0 [s (s a)] S anc s 1 (1 +logs)1/q’ S
In order to estimate I, note that, by (5.4),

STt J%at g dt ¢
=l - —<
/; [1 +logt] t -/5*7‘ [u(1 -logu)] t " [1 +logs] '

oo _90 q 1/q
Io < f s K(sa) [Tds) T
1 1+logs S

Having in mind that 6y < 61, we also get that I3 < Is and 14 < I,. Consequently,

o [max(s™9,s791)K(s,a)]? ds Ha
lafx, , ~T2+1I5~ f - — )
a 0 (1+ [logs|)Y/d s

Whence,

Now we prove the second formula. Once again, by the symmetry property for the K-method
(3.1), we may assume without loss of generality that 8y < 0. If q = oo, it follows from Lemma
that

Xoosk = Agye0 + A0 = {a €eAg+A;r:|al = sup min(s™%,s71)K(s,a) < oo}.
O<s<oo

Assume now that 1 < q < oco. Using (5.1) and changing the order of integration, we obtain with
A=61-6)

”a”XqK ([ f eOK( q dt ds)l/q (f f elK(S,a)]q %%)1/0[
(f / ts™%1K (s, a ]q dt ds) ([ f [ —eoK(s a)] %%)1/‘1
(_/ f [ eoK(S a)] dtds) (/ / 761K( ]q %%)1“
~ ([01 [S‘eoK(s, a)] |10gs|%)1/q N ([01 [S_eOK(S,a)]q %)l/q

(el ) ([ ol )
" (f1 [s™"K(s, )] dss)l/q + ([100 [s7®K(s, a)]* (logS)%)l/q
~ (‘/01 [S‘GOK(S, Cl)] 1+ HOgs‘)%)l/q N (/1-00 [S_elK(S’ a)]q (1 +10gs)%)l/q ,

as desired. O
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With analogous arguments, but using now (5.2) and (5.3), we show the following characterisa-
tions:

Theorem 5.10. Let A = (Ag, A1) be a Banach couple and let 0 < 0 < 1 and 1 < q < oo. Then we have with
equivalence of norms

[ ok, q 1/q
aceAg+Ay: ||a||=(f0 I:(lt—log%:l %)

Ag, (Ag, A = .14
(Ao (Ao Ao ) o [K(L,a) ]9 ar )9 619
H(7 [ Fge] €) <
and
. (1] _K(ta) 19 a\Vd
(Borns. Ay -] SAOTA lal = (/o' [wiiegn ] %) 515
o Aaar M) - ([ 1) [T
1 (1+logt)1/a’ t

Proof. First we prove (5.14). Let a € Ag + A1 and put X = (Ao, Ag,q). Then, by (5.3), we have that
la f f s79K(s,a) ] ds dt [ [00 s79K (s, a) qEE 1/q_1 o1
Xa wol(1-logt)| s t t/e [ 1+logt st) F
For I; we derive that
1/q 1/q
11~(f0 [s°K(s,a)]® f (1-logt) thds) +(f1 [s°K(s, )] f (1-logt) thds)
1 Yq q
~ (]{; (1-1logs)td [s’eK(s,a)]q ﬁ) + (fl [s “OK (s, a)]q ds) .

S

Regarding I, we get changing variables and by that

1/q q 1/q
K(s,a) qduds ©[K(s,a)|" ¢ _qds
I, = 1-1 < [ e/ a1 +1 q2
2 (/1 [ 30 ] fo [u(1-logu)] ™ — ) ( : [ X s29(1+logs) ™1~
B [00 K(S, (l) q E 1/q
\J1 |1+logs| s '
Moreover, since t ™! (1 + log t) is non-increasing on (1, ),

- . 1/q
o [K(s,a)]? rs° dtds
we ([7[REOT" [ gyt
2 ’ Se ] 1 (+Og) S

1/0
ol 19 g0 1/q
> f Ks.a) f 9 1471(1 4+ log t)” qﬁ%
AN I s9/2 $
1 1/q
©[K(s,a) " o _q s® q+1dtds
2 /21/6 o | s (1+logs) /39/2t e

2
S
s 8
=~
—~~
» | »n
|~
[o)
N

1/q o q 1/q
s‘e(1+logs)‘qse(q+l)é _ / K(s,a) 1" ds ‘
s 1 |1+logs]| s
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Therefore,

1 B B ds 1/q o0 B B d 1/q
lalx 5 (/0 (1-logs)'™9(s E)K(s,a)]q ?) +(f1 K(s,a)9max(s™®, (1 +logs) 1)‘*?) .

Since g(s) =s™9(1+logs), s > 1, is equivalent to a non-increasing function, it follows that for s > 1,
s79 5 (1+logs)~t. Thus

. 1/q o0 q 14
lallg; (]o [t (1-logt) K(, a)] t * fl l+logt] t .

Next, we derive (5.15) from (5.14). Put Y = (Ag q,A1). Since
((AOI Al)e,q rAl)q;] = (Al/ (Alle)l—e,q >q;I ’
we have that

LT e- “1/q’ q dt\"/d o [K(t,a;A1,Ap) |* dt 1a
||a||\—(q;l~(f0 _te '(1-logt) UqK(t/a}/\l,Ao)] ) +(ﬁ [—( 1 0)] _)

t 1+logt t

_ 1/q
_ 1r 0-1 _ _1/q/ 1 q ﬁ)l/q oo [ tK (t 1/ Cl) q ﬁ
= (_/(; t (1-logt) tK(t™, a)] " + /1 Tiloot logt .

- 1/q o
_ (/01 _—t(ffti(‘)l;t)]q %) +(f1 [+70(1 +logt) 9'K(t, )] %)Uq.

This ends the proof. O

Remark 5.3. Formulae (5.14) and (5.15) do not hold when q = 1. Indeed, let A; denote the Gagliardo
completion of Aj in Ag + Ay (see [4, Section 5.1]). If equation (5.14) were also true for ¢ = 1 then
we would have (Ag, (Ao, A1)o,1)1;) = (Ay, (Ag, Ap)e,1)1;y because K (t, a; Ag, A1) = K(t, a; Ay, Ay).
However, take Ag = ¢p and A; = {,(27™), where sequences are indexed by N. Then, on the one
hand, (Ag, (Ao, A1)e,1)1;7 = Ag = co because Ay = Aj, and on the other hand, by [80, Theorem
1.18.2] and Lemma 3.6
(Ao, (Ag,Ao1)17 = (Lo, (Lo, Lo (27™))0,1) 15 = (oo, 01(27°™)) 15
= 0oo N (279™) = £ % co.

The same couple shows that (5.15) is not true either when q = 1.

We now prove the corresponding formulae for the K-method.

Theorem 5.11. Let A = (Ag, A1) be a Banach couple and let 0 < 0 < 1 and 1 < q < co. Then we have with
equivalence of norms

1/q
aeAg+Ar: |af = (/) K(t,a)adt
(Ao (Ao, A1) q) -{ ( 0 € )

* (floo [tfe(l +logt)/9K(t, a)]q %)1/(1 oo

and

(Ao, A1)g 4 ,Al)q;K =

c0 a 1/4
acAg+Ar: ||aH:(f1 [@]q%) |
+(f01 [tfe(l _10gt)1/qK(t, a)]q %)1/61 <
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Proof. This time we prove the second formula and then derive the first one. Let a € Ag + A; and
putY=(Ag,q,A1). By 0.2),

£1/(1-9) 1/(1-0) 1/q
t t t
lallv,. ~ (f f eK(s,a)]q dsd ) (/ t q/ [s7°K(s, @)]" %d?)
1,1 1/q 1 oo 1/q
N(/ / Es—qu(s,a)qﬁ) +([ s‘qu(s,a)q/ t—qﬁﬁ)
0 Jsi-0 t S 0 1 t s
0 o0 1/q
+(/ s_qu(s,a)q/ t_qﬁ)
1 s1-0 t

bl 1-0) .-0q qu)/ ( -(1-0)q .-0q qu)l/q
([0 (1-logs'™?)s™IK(s, a) S + _[1 s IK(s, a) S

. (/[;1 [5*9(1 ~logs)VIK(s, a)]q %)l/q . (floo [@]q %)1/(].

On the other hand, we have that
(Ao, (Ao,/\1)e,q)q;K = ((Al,Ao)pe,q z/\o)q;K-

Put >_( = (A(), Ae,q ) Then

ads\"/9 [ ro[K(s,a;A1,A)]" ds )"
ol ~ [0~ 10g ) 9K (5,05, A0)] &) ( I [M] ?)

= ([01 [59‘1(1—1088)1/qu(s‘1,a)]q %)1/q +(/1°°[SK(SSJ]CI %)1/q
= (/0‘1]((5,(1)(1%)1/0' +(—/1°°[ (1+1085)1/qK(s a)]q ds)l/q’

as desired. 0

Remark 5.4. With similar arguments to those used in Remark we can show that, if Ag - A1,
0<O0<land0<0g<06;<1,then

o o[ t%K(t,a) 1% at)”
||aH(A90,q,A91,q)q;] ~ ﬁ (1 +10gt)1/q, T 7

thereby recovering [19, Theorem 3.7], and that

q dt\Y/d
Il Ry g ey o ~ ([ [F KL @)1 +log )] )

obtaining [19] Remark 7.3]. Moreover, we can derive that

- 1/q
o t9K(t,a) |7 dt
HaH(Ae,q,Al)q;] ~ (ﬁ [(1 +10gt)1/q/:| T (516)



104 Examples

and
lallag Ao g1y ~ 19120, (5.17)

which gives us [19, Theorem 4.6 a) and b)], respectively. We can also simplify in this case the
formulae in Theorem to obtain

(5.18)

q dt\d
%)

lall g Ag gyox ~ ( [Tt a 1080 k(s 0)]

and
lallagg Anygs ~ lalAs - 5.19)

5.3 Examples

First, we apply some of the reiteration formulae to the Banach couple of Lebesgue spaces (L, L1).
Just as in Theorem i), we will obtain intersections of Lorentz-Zygmund spaces.

Theorem 5.12. Let (Q, ) be a o-finite measure space, let 1 < pg,p1 < 00,1 < q<ooand1/q+1/q" =1.
Then we have with equivalence of norms

(LPO/q’Lpqu)q;] = LPOrQ(IOgL)fl/q’ n LPlxq (log L)*l/q"
Proof. Put 8; =1/p;,j =0,1. Then

1
(LeosL1)g, q = Lpya and  K(t,f) = tfo £ (s)ds = £ (t°1) (5.20)

(see [5, Theorem 5.2.1]). It follows from Theorem [5.9] that

o [ 1/po ¢1/p1 q 1/a
gy~ ([ B g | 2
@ 0 | (1+]logt])1/a t

[ * % 1/ * % 1/
([ @ ’, J T !
o | (1+]logt])l/a" | t 0 (1+]logt)/a" ] t
0o *o% q 1/4 o0 *% q 1/q
~ max f tl/pO f—(t) E , f tl/pl A E
0 (1+]|logt))l/a" ] t 0 (1+|logt))/a" ] t

~ Il 4 (tog 1)1 g ALy (log L) /s 7

as desired. 0

Spaces (Lpg,q,Lp1,q) q;k can be described as well with the help of Theorem However, we
will proceed using duality.
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Theorem 5.13. Let (Q, 1) be a resonant, o-finite measure space, and let 1 < pg,p1 < co and 1 < q < oo.
Then we have with equivalence of norms

(Lpo,arLpiq )q;K =Lpo,q(ogL)1/q + Lp;,q(logL)1/q-

Proof. By [44, Theorem 3.4.41 and Lemma 3.4.43],

(ijf,q/(log L)_l/q) =Lp;q (log L)l/q.

Using duality between limiting K- and J-spaces (that is, Theorem3.18) and Theorem we derive

(Lpo,a-Lpra) gk = [(Lpérq’ILp{,q’)q,;]] = [Lpé,q’(log L)-1/q N Lpsq(log L)fl/q]
=Ly, q(log L)l/q +Lp,,q(log L)i/q-
This ends the proof. O

Next we consider couples where one of the spaces is L, or L;.

Theorem 5.14. Let (Q, 1) be a o-finite measure space, let 1 <p < oo, 1< q<ooand1/q+1/q’" =1. Then
we have with equivalence of norms

(LM,Lp,q)q;] =Lp,q(logL)_1/q' N Leo,q(logl) 1

and
(Lp,qzl—l)q;] = Lp,q(log I—)—l/q’ n L(Lq)(log L)_l.

Proof. Recall that throughout the proof of Theorem i) we showed that

HfH [1 f**(t) qg 1/q
Leoq(logh)-1 0 [1-logt| t

(equation (3.27)). Hence,

fl /1 () 1 dt 1/q+ [1 t/ee () 1" dt Y
” Lp,q(logL)fl/quoo,q(logL)_l 0 1_10gt T 0 (].Tgt)l/q, T
o Urer(r) 19 ar)
+(f1 [<1+1ogt>1/q'] T) '
Since g(t) = t'/P(1 -logt)'/9 is equivalent to an increasing function, we have
/1 tl/pf*x-(t) qg 1/q . fl f**(t) qg 1/q
o [(1-logt)t/a"| t “\Jo |1-logt]| t '

So, the norm ||, ogL)_, Jq/MLenq (log L) 1 is equivalent to

e (e) 19 ae) Ve o tUpe(t) 17 at Ha
5] 5) U e €)
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On the other hand, we have that Ly q = (Leo, L1)1p,q: 50 (Leos Lp.a) gy = (Loos (Loos L)) -
7 s 7 q;
Therefore, using (5.20) and (5.14) we obtain

1/q oo *x q 1/a
N -1/p l/q * 5% q dt) w E
HfH(Lw,Lp,q)q;I (/0 [ (1-logt) "% f (1/t)] " fl l+logt] t

- 1/q
:(fol[f_lgt] %) +(/1 [t togy e ] dt)l/q'

This ends the proof of the first equality.

The proof of the second formula follows similar lines. Indeed, using (5.20) and (5.15), we obtain

that
(/) 1 a) Pl 1/q" ees q dt\/a
oy = (f i) ©) (L[ a sy eeam] 4
1 g s ]9 dE)Y9 oo [t (t) 19 at) "
= ([0 [tl/p(l—logt) Ya's (t)] T) +([1 [—1+logt] T) ,

so clearly

*% 1/q 1/
o | tf (t) g dt 1/P 1/q’ px» qdt\/4
1ty q g, S (fo [—1+|logt|] T) +(f0 [£1P (1 + [logt]) /9" £ (1) )

= HfH Lp,q (log L)fl/q /ﬁL(llq)(IOg L)—l *

Since the function h(t) = t'/P~1(1 + [log t|)"/9 is equivalent to a decreasing function, we also have

that
/ . *% q 1/q
L/ 1/q" o th) _ 1/p-1 1/q H77(Y) |7 dt
([1 [£/7(1+ log ) /"¢ (1) [Tl iogy Frlost|

(71 0a s togey ] &)

t
On the other hand, we derive that

(fo [1t:;§;)t|] t ) f (1-logt) 1 [Atf*(s)ds]q %)1/q

([ roas) ([ a-togrya &)™
( f(s)ds)( [ (1+10g1) th)l/q

IA

DO

IN

1/q
G s (s)ds)t(1+|logt|) ]q%)

oo tf**(t) dt 1/q
1 1+logt]| t )
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Therefore,

o[t (t) 19 ar)"* .. qadt\Ve
([ ©) (T Torasmosirreco) )
1] e () 19 de) Ve o[t (t) 19 at)"*

S(fo [1+|1ogt|] T) +(f1 [1+|logt|] T)

1 , dt\a q dt\V/d
1/p -1/q’ gx* q bt 1/p 1/q" gx*
+(f0 [£/7 (1 + log ) /9" ¢ (1) t) +(f1 [£/7(1 + flog t) /£ (1) )
- 1/4q 1/q
o[ tf**(t) 17 dt /b 1/q gxn g gn ]9 At
(LT ERO] ) s og e @] ) < gy,
This ends the proof. O

Now we turn our attention to spaces of operators. Let # be a Hilbert space and let £ () be the
Banach space of all bounded linear operators in H. The singular numbers of T € L (#) are defined

by
sn(T) =inf {|T = R| 3y : Re £(H) withrank R<n}, neN.

Clearly, the sequence of singular numbers (s» (T)) is non-increasing.

Given 1 < p < oo, let L, (H) denote the Schatten p-class, that is, the collection of all those

T € £ (H) which have a finite norm HT||£ ) = (X3 sn(T)P) P See [53]. Similarly, we can define
the spaces L, g (H) for1<p,q < ooas those consisting of the operators T € £ () that have a finite
norm

oo q
q _
Mlepon = (5[] ')

n=1

We will also consider the spaces L, g () for 1 <p < 00,1 < q < 00 and 7y € R defined as the
collection of operators T € £ (#) for which the following norm is finite

o0 1/q
q _
1Tl 00 = ( > [nl/P(l + logn)ysn(T)] n 1) :

n=1

If vy = 0, we write for simplicity Ly,,q (H) = Lp,q,0 (H). We refer to [11,34, 31]] for properties of these
spaces. Other families that we will study are the spaces L4,q () for 1 < g < oo, defined as the set
of all T € £ (H) that have a finite norm

0o 1 om q 1/q
HT“LM,q(H) = (Z [— > Sm(T)] ) ,
n=1LM m=1
see [53,139], and also the so-called Macaev ideal L 4,00 () which consists of all T € £ (H) such that

1Tl 00 = sug{(l +logn)™ Y sm(T)} < 00.

m=1
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Theorem 5.15. For 1 < q < oo and 1 <p < oo, we have with equivalence of norms
(L1 (H), Lpq (H)) gy = Latg (H)
and
(Lpq (1), L))oy = Lparryar (H).-
Proof. It is well-known that
(L1 (1), £(H))g g = Lpsq (H), where 1/p =10, 521)
and clearly £1 (%) = £ (H). Therefore, by (5.17), we get that
(L1 (H), Lp,q (H)) g,y = (L1(H),L(H))o,q;5 -
and, according to [19, Corollary 4.4], (L1 (H), £ (H))o,q;; = LMm,q (H).

Regarding the second formula, since

[t]

Kt T, L1 (H),L(H)) =D sn(T)fort>1,

n=1

we derive that .
K(m, ;L1 (H),L(H)) =) sn(T), meN, (5.22)
n=1

(see [80]). By (5.21) and (5.16), it follows that
’ 1 ’ 1
| foo M q dt /a ) i /m+1 t-1/p'1/aK (¢, T) ] dt fa
(Lrpa(H)L(H)) 1 [ (1+logt)/a' | t 2w (1+logt)l/a’

0 mfl/plfl/q K(m T) q m+1 1/q
-3 [T a
(1+logm)Y/a m

m=1

0 m 1/
= Zm_q/p/_1(1+logm)‘q/q/[z sn(T)]q) q.

m=1 n=1
On the one hand, we have by the monotonicity of (s, (T)) that

[e.e]

1/q
HT”(L‘,p,q(H),L(H))q;] Z (niZ_:l qu/p *l+q(1 +10gm)7q/q Sm(T)q)

o0 1/
= Z —Sm(T) ! ma/p-1 !
2| @+ logm)Te” |
On the other hand, pick p > -1/q’ such that p + 1/p < 1/q. Then

n=1 n=1 n=1 ne
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We claim that > nP4" < mPa+1 Indeed, if p >0, then
m , m , n+1 m n+1 , m+1 , 41
> nPd :anq[ dtgz:f tpthzf tPadt gmPIT
n=1 n=1 n n=1“m 1

since pq’ > -1. If p < 0 then

This gives that

S p-a/p’ -1+ ! —q/q’ <= | sn(T) K
$ > moalp PA+dq/q (1+logm) q/q S
m=1

q
1Tl ey 0,200, "

n=1

=Y sp(T)In P mq(l/q’+p—1/p’)—1(1+10gm)—q/q’.

n=1 m=n
Since q(1/q"+p-1/p") -1 <0, the second sum can be estimated by nq(l/q'+p‘1/p')(1 + 1ogn)‘q/q'.
We derive, thus, that

o0 o0 q
q 4y -PdPa+q-q/p’~1(1 _ -q/q’ _ _ s q/p-1
1Tl (Lp,q(H),L(H)) gy S TLZ:1 sn(T)In"PIn (1-logn) nZ:1 |:<1 N logn)l/q' n ’

which gives the second formula. O

Next we find the corresponding K-spaces.

Theorem 5.16. For 1 < q < oo and 1 < p < oo, we have with equivalence of norms
(Lp,q (), L(H)) gk = Loo,q (H)

and
(Ll (H) "Cp/q (H))q,K = szq}—l/q (H) :

Proof. By (5.21) and (5.19), we derive that (L, (H), £ (H))q;K = (L1 (M), L(H))1,qx- According
to [31, Corollary 4.3], (L1 (H), L (H))1,q;x = Loo,q (H).

Regarding the second formula, for T € £ () and q < oo, we have by (5.18) and (5.22) that

q T A/p’ 1 q ds
HTH(EI(,H)rEP,q(H))q;K "‘ﬁ [S /p (1+10gs) /qK(S,T))] ?

~ i moP (14 log m) ( i sn(T))Cl .

m=1 n=1
By the monotonicity of (sn(T)), we get that

— 1-1/p")q-1 = 1/q 19 -1
||TH?£1(H),LP’q(H))q;K 211;1111( /P4-1(1 £ logm) s, (T)9 :Tg::l [sm(T)(1+logm) /q] ma/r-1,
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Furthermore, for q > 1 and any p such that -1/q’ < p <1/q - 1/p, we derive, just as before, that

(o] m
< Z m-a/p 11 +10gm)mpq+q/q Z n P9, (T)4
m=1 n=1

- Z sn (T)9n P4 Z mq(l/q’—l/p’+p)—1(1+logm)

n=1 m=n

q
HTH (Ll (H),Ep,q (H))q;K

$ Y (1) VP (1 +logn),
n=1

and the same estimate can be obtained trivially for q = 1. This ends the proof. O

Theorem 5.17. For 1< q < oo, we have with equivalence of norms

(L1 (H) ) Loo,q (1)) gx = Loo,q,1/q (H)

and
(Loo,q (1), L(H)) gk = Loo,q,-1/q (H)-

Proof. Using (5.10) and [31} Corollary 4.3], we obtain

1/q
- K(tT;L1(H),L£(H)]" at
HT||(z:1(H),z:oo,q<H>>q;K“([1 (1+logt)[ t R

By (5.22) and the monotonicity of (s, (T)), we derive that

oo m q\1/q
1Tl 21 (34), 200 (30)) g ™ ( > (1+logm)m 9! [2 Sn(T)] )
m

n=1

- 1/q
) ( (1 +logm)m‘1sm(T)q) ol Ll VR
m=1

To check the converse inequality, take p > 0 such that pq - 1 < 0. Applying Holder’s inequality, we

get
S sne (850"

n=1 n=1 ne

Consequently,

m q\1/q
< -q-1+pq+q/q’ _S“(T)
IT] (L1(H)Looq(H)) gk ~ 1(1 " log mm 712::1 [ ne

o 1/
[Sn(T)]q >, mpq_2(1+logm)) !

1L mP m=n
1/q
sn(T) K pq-1 _
S n_l[ s ] n (1+1logn) = HT||£oo,q,1/q(H) .

This establishes the first formula.
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The second one can be proved similarly. Indeed, by (5.11) we have that

. oo K(t,T;£1 (H)/ﬁ(%)) K dt e
1Tl g 20),200) 1 ™ _[1 t(1+logt)l/d t

o [ m q /4
~ ( > [Z sn(T)] m 1791 +logm)_1) :

m=1Ln=1

Clearly,

1/q
”TH(Eoo,q(H)/L(H))q»K 2 ( Z Sm(T)qmqm*1*Q(1 +10gm)1)
! m=1

oo q /g
- ( > [sm(T)(1+logm)’1/q] ml) .

m=1

On the other hand, take p > 0 such that pq — 1 < 0. Then, just as before,

m m 1/
SIRCPRE] b EUI

n=1 n=1

So:
1/q

m q
mPa+da/a’ D [@] m‘l‘q(1+logm)‘1)
n

Nk

1Tl £ g (20),2 S
( .q (H)r (H))q;K 1 n=1

%0 1/q
n s, (T)9 > mpq_2(1+logm)_1)

m=n

—_

1/q
[sn(T)(l + logn)_l/q]q n_l) ,

N

Mg ilMe #

1

3
I

and therefore
(Loosq (), £ (H)) g = Looq17q (H).

Next we consider the spaces Lx4,q (7). We have this time £1 (H) < Lp,q (H) = Ly (H) for
any 1< d,r < co.
Theorem 5.18. For 1 < q < oo, we have with equivalence of norms

oo om q 1/q
(L1(#), L (H))q;] = {T eL(H):|T| = ( Z [nll Z Sn(T)] (1 +logm)_qmq‘1) < oo}

m=1 n=1

and

00 om q 1/q
(L <H>,£<H>>q;]—{Te£<H>:T—(z [nllzsnm] ml-q) <oo}.

=1 n=1

3



112 Examples

Proof. Once again we use the fact that Laq,q (H) = (L1 (H), L (H)) 4,5 ([19, Corollary 4.4]). By (5.13)
and (5.22), we derive

1/q

~[K(t,T; L1 (H), L(H) | L dt
1Tl 000, ma000) (/1 T+ log(1 + log ) (1+logt)™'—

(2 T RAT L), L(H)] L dt
_(n;ofzm [ 1+log(1+logt) ] (1+logt) 1?)

1/4

In addition, if t € [2™,2™+1],

om [t] 2m+1
Yosn(T)< Y sn(T) < Y sn(T)
n=1 n=1 n=1
and
am+l am 2m4m am
Yosn(M) = sn(M+ > sa(T)<2 ) sn(T)
n=1 n=1 n=2m4+1 n=1
since Spm, i < Sk, SO
[t] 2m+1
> sa(T)~ 3 sn(T) (5.23)
n=1 n=1

whenever t € [2™,2™*1]. Therefore, applying (5.22) we get

m=0| n=1

0o 2m+1 q 1/q
ITh e 00,8 000000) ( > [Z sn(T)] (1+log(m+1))~ (1+m)1)
1/q

00 1 2m q
: ( > % Sem] a +1ogm>-qmq-1)

m=1 n=1

The proof of the second formula is similar. Indeed, (5.12) and (5.23) give that

oo [ [t] q dt 1/a
1-2
HTH(EM,q(H),C(H))q;] ~ '[1 |:Z Sn(T)] (1+1logt) qT)

n=1
00 m+1 q 1/q 0o m q l/q
~ Z (1 +m)1—2q [22 Sn(T)] ) - ( Z m1—2q [22 Sn(T):| )
m=0 n=1 m=1 n=1

oo 12 q\1/4a
= Z_:lml—q [H an(T):I ) . ]

n=1
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Chapter

Description of logarithmic interpolation
spaces by means of the J-functional and
applications

In this chapter we turn our attention to logarithmic interpolation spaces (Ao, A1)g,q, already de-
fined in Chapter 2}

The theory of the case 0 < 0 < 1 is covered by different papers (see, for instance, [55} 160 146} 147]).
We study here some open questions for the cases where 0 = 0 and 0 = 1. First of all we give the
description of the spaces (Ao, A1)o,q,4 and (Ag, A1)1,q,a by means of the J-functional. We will show
that it depends on the relationship between A and q. Recall that this is not so in the case 0 < 6 < 1.

Then we turn our attention to the behaviour of compact operators. Recently Edmunds and
Opic [45] showed that if T : L,;, — Lq, compactly and T : L,;, — L4, boundedly, then T is also
compact when acting between Lorentz-Zygmund spaces which are very close to L, and Ly,. They
supposed that the measure spaces involved were finite.

An abstract version of the results in [45] for Banach couples was obtained by Cobos, Ferndndez-
Cabrera and Martinez in [23]. They required an embedding assumption on the last couple; this
hypothesis corresponds to the finiteness of the measure spaces used in [45]. In this chapter we
show that the results in [23] still hold without the embedding restriction and we obtain a version
of the results in [45] for o-finite measure spaces.

Furthermore, we use the J-representations to characterise weak compactness of interpolated
operators when 0 = 0 or 1. In particular, we show that if &g +1/q <0 < & +1/q, then (Ag, A1)1,q,4
is reflexive if and only if the embedding Ag n A; — Ay + A; is weakly compact. However, if
oo +1/q < 0 and o + 1/q < O then the necessary and sufficient condition for the reflexivity of
(Ao, A1)1,q,a is that the embedding A — Ag + A1 is weakly compact.

113
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We also determine the dual of (Ao, A1)1,q,a and (Ag, A1)o,q,a in terms of the K-functional. In
contrast to the classical theory, the duals of these spaces depend on the relationship between q and
A.

The plan of the chapter is as follows. In Section |6.1| we review the logarithmic K-interpolation
spaces and we establish some basic properties. In Section [6.2 we study the equivalent description
in terms of the J-functional when 0 = 1,0. We also investigate the density of the intersection in the
K-spaces. Compactness results are given in Section Finally, Section |6.4{is devoted to weakly
compact operators and duality. The main results of this chapter form the article [38]].

6.1 Logarithmic interpolation methods

We start by recalling the definition of logarithmic interpolation methods. Put {(t) = 1 + |log t| and
for A = (&g, Xoo ) € R? write

(o(t) if0<t<l,
(X< (t) ifl<t<oo.

A (t) = ((xoxee) (t) = {

For0<0<1,1<q<ooand A e R? the logarithmic interpolation space (A, A1)p,q,a is formed by
all those a € Ay + A; which have a finite norm

oo dt\ 4
HCIH(,L\O,/z\l)e,q,A = (,[0 [t eKA(t)K(t, a)]q T)

(as usual, the integral should be replaced by the supremum when q = o). See [46, 47] for some
of the properties of these spaces. When A = (0,0) and 0 < 6 < 1, (Ag,A1)e,q,a coincides with the
classical real interpolation space (Ao, A1)g,q realised as a K-space (see [9, 5,180, 4, 8]). Moreover, if
A #(0,0) and 0 < 0 < 1 then the resulting space is a special case of the real method with a function
parameter (see [55] 60]). The properties of these two cases are well-known, for this reason we are
only interested here in the values 6 =0 and 0 = 1.

Remark 6.1. Since K(t, a; Ag, A1) = tK(t‘l, a;A1,Ap), a€Ag+ Ay, achange of variable yields that

(A0, A1)0,q,(otg,0te0) = (A1, A0)1,q,( oteo,o0) (6.1)

with equality of norms. So it is enough to study the case 6 = 1.

Remark 6.2. 1t is shown in [47, Theorem 2.2] that (Ao, A1)1,q,a = {0} if g < 0o and «g +1/q > 0 or
q = o0 and &g > 0. Therefore, in what follows we assume

xo+1/q<0 ?fq<oo, 62)
xp <0 if q = oo.
In the assumption (6.2) it turns out that
A() n Al — (Ao, Al)l,q,A > A() + A].

Besides (A, A1)1,q,4 is complete in this assumption provided that Ag and A; are complete.
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Next we show a special case where the norm of (Ag, A1)1,q,a is equivalent to the part of the
integral over (0,1).

Lemma 6.1. Let A = (Ag, Aq) be a Banach couple. Let A = (0, ®oo) € R? and 1 < q < oo satisfying (6.2).
Assume in addition that

{ocoo+1/q<0 if q < oo, 63)

Koo <0 if q = oo.
Then

1 dt\'/a
- q
Ha||(A0,A1)1,q,A ~ (_/0 [t 1K(t/ a)ecxo (t)] T) .

Proof. Clearly
/4

L q dt
( /0 [tK(t, @)oo (1)] T) <lalaoangn

To check the converse inequality, assume first that q < co. Using that t"'K(t, a) is non-increasing
and that aeoq +1 <0 and apq + 1 < 0 we obtain

(/100 [t1K(t, @)= (t)]" %)Uqﬁ @ (flwz“wq(t)%)l/(E K(11, a) ([Olgcxoq(t)%)l/q

< (fol [tIK(t, @) (t)]* E)Uq.

t

The proof when q = o is analogous. O

Now we derive some consequences of this result.

Lemma 6.2. Let A = (Ag, A1) be a Banach couple. Let A = (g, %) € R? and 1 < q < oo satisfying (6.2)
and (6.3). Then we have with equivalent norms

(Ao, A1)1,q,4 = (Ao +A1,A1)1,q,4-

Proof. Combining Lemma [6.1]with the fact that
K(min(l,t), a;AO,Al) = K(‘t, (1,‘A0+A1,A1) (64)
(see [68, Theorem 2]), we get

q dt)l/q

1
Ha”(AO/Al)l,q,A ~ (.[0 [tflK(min(l,t),a; AO,Al)(’,‘XO(t)] =

! -1 o q dt 14
:( [ IR @A+ AL A ()] T) “al rgs s Aryes - 0

Corollary 6.3. Let A = (Ag, A1) be a Banach couple. Let A = (0, o) € R2 and 1 < q < oo satisfying
and (6.3). Take any oe > —=1/q. Then we have with equivalent norms

(Ao, A1)1,q.4 = (Ao + A1, A1)1,q,(xg,0)-
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Proof. Since A1 = Ag + A1, it follows that K(t,a; A9+ A1, A7) ~ ”cLHAUJrAl if t > 1 by reversing the
order of the couple in (2.8). Hence, by Lemmata[6.1|and [6.2) we derive

q dt 1/q
)

1
Il (Age A A oy ( fo [t71K(t, a; Ag + Ap, Ap)E%0(1)]

q dt)l/q

+(f1°° [t7K(t, a; Ag + A1, AL (1)] ~

S o dt 1/q
“lalagang, * lalagen, ([ 90 F)

~lalaganign Tlalagea; ~ lalaga, g - -

For later use, we establish now a result on the behaviour of the K-functional for elements in the
space (Ao, A1)1,q,a-

Lemma 6.4. Let A = (Ag, A1) be a Banach couple. Let A = (g, %o ) € R? and 1 < q < oo satisfying (6.2).
If any of the following two conditions holds

q<ooand Xeo +1/q>0 or q=o0and xe >0, (6.5)

or
q<ooand xe +1/q=0, (6.6)

then for any a € (Ao, A1)1,q,4 we have that

min(1,t1)K(t,a) > 0ast — 0oras t - oo.

Proof. Suppose q < co. The proof of the remaining case can be carried out in the same way.

Let a € (Ag,A1)1,q,a.- Then fol [t71%0 (1)K (%, a)]q% < oo. Since /01 [t71e>o(1)]9 % = oo and
K(t, a) is non-decreasing, it follows that K(t,a) - 0ast — 0.

On the other hand [, [t™10%= (t)K(t, a)]9 % < 00 and, by the assumption on &, we also have
that [, (%= (t)% = oo0. Since t1K(t, a) is non-increasing, we conclude that also t~'K(t,a) - 0 as
t — oo. ]

6.2 Representation in terms of the J-functional

Let £0(t) = £(¢(t)) = 1 +log(1 + |logt|) and if B = (B0, Boo) € R? put

Bo i
0B (t) = eeko(t) Tf O<t<1,
0B=(t) if1<t<oo.

Write also -B = (-0, ~B o). Asusual, if 1 < q < oo, weputl/q+1/q'=1.
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Definition 6.1. Let 1 < q < oo and A = (X, e ), B = (B0, Poo ) € R? such that

{if1<q$oo then1< oo +1/q, OF &eo=1-1/qand oo >1-1/q, ©7)

ifq=1 then 0 < ®oo, OF &o =0and o > 0.

Given any Banach couple A = (A, A1), the space (Ao, Al){, g5 is formed by all those vectors
a € Ag+ Aj for which there is a strongly measurable function u(t) with values in Agn A; such that

0 t
a= fo u(t)dT (convergence in Ag + A1) (6.8)

and 1q
( [T e o) dt) < oo 6.9)

The norm in (Ao, Al)1 q,4,8 1S given by taking the infimum in over all representations of the

type (6.8

If B = (0,0), we write simply (AOrAl){,qA'

Remark 6.3. Conditions and yield that the integral [ u(t)4! is absolutely convergent in
Ao +A1. Indeed, since [u(t)[ 5,4, <min(1,1/t)] (t,u(t)), using Holder’s inequality we obtain

o0 /
I A TN
rde\Va’
%)

. ( ]0 [tmin(1, )¢ (1)e (1) ,
and the last integral is finite by (6.7). This also shows that (Ay, Al){ aap < Aot Al

Moreover, for any a € Ag n A; we have

h gy ppB e’ )Y
( fo [min(1, )¢ (1) ¢ B (1) ] ) lal gt . < Ialana, 6.10)

Indeed, let \(t) be a non-negative function such that
f 00 B(t) 9 gp)d .,
o |teAMeBRr)| t)

P(t) min(1,t™1)

Jo~ W(s)min(1,s71)4s

Put

u(t) =
Clearly, [;* u(t)% = a. Furthermore, using that J(t, a) <max(1,t) [af s ~a,, We obtain

(/oooll)(s)min(l,s_ )d )||C1”(A0 AD] s S (fooo‘l’(s)min(lls—l)ﬁ)
([T T a2
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oo q 1/q
(£ [emism) ©) Tebaoa=lelaon,

Taking the supremum over all possible functions 1 we derive (6.10).

Note that (6.10) shows that if is not satisfied the space (AO,A1){, q,4,8 is meaningless be-
cause [af 5 A,y =0forany a € Agn Ay On the other hand, if holds, then (6.10) yields
’ 1,q,AB

that Ao NA| < (Ao, Al){,q,A,B'
Remark 6.4. Let A = (Ao, A1) be any Banach couple and let A;’ be the closure of Ag N A7 in Aj,
j=0,1. Clearly Agn A = AJ nAT and J(t, a; Ag, A1) = J(t, a; A5, AY) if a € AgnAy. Having Remark
[6.3]in mind, it follows that

(Ao, Al){,qA,IB = (A(?/A?){,q,A,B‘ (6.11)

More general J-spaces are investigated in [8], but equality (6.11) also holds for them because
the assumptions on J (t,u(t)) still yield that [, u(t) % is absolutely convergent in Ag + Ay (see [8,
page 362]).

Next we study whether the interpolation method (Ag, A1)1,q,4 can be described using the J-
functional. We start with a negative result.

Proposition 6.5. Let A = (0, Xoo) € RZ and 1 < q < oo satisfying and (6.3). Then the (1, q, A; K)-
method does not admit a description as a J-method.

Proof. By Remark a necessary condition for the (1, q, A; K)-method to be described as a J-
method is that for any Banach couple A = (A, A1) we have that (A, A)1,q4 = (A, AD)1,q,4-
However, if we choose Ag = {; and A1 = {w, then AJ = {1, A} = cpand Ag + A1 = . According to

Lemmal(6.2] we get

(€1, €00 )1,q,8 = (foo, €oo)1,q,8 = foo # €0 = (co + €1,€0)1,q,4 = (£1,¢0)1,q,4 = (U7, € )1,q,4- O

In the following results, given any A = (g, &oo ) € R?, we write A + 1= (0p + 1, oo + 1). We also
put _ _
K(t,a) =K(t,a;A1,Ag) and J(t,a)=](t,a;A1,Ap).

Theorem 6.6. Let A = (Ag, A1) be a Banach couple. Let A = (0ty, Xoo) € R? and 1 < q < oo satisfying (6.2)
and (6.5). Then we have with equivalence of norms

(Ao, A1)1,q,4 = (Ao, Ax ){,q,AH'

Proof. Our assumptions on A and q are

q<oo,0+1/q<0and xeo +1/q >0,
or (6.12)

q=00,0<0and o >0.
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Hence A + 1 and q satisfy (6.7), and the J-space is meaningful. We deal first with the case where
q < oco.

For v € Z, we put
27277 ifv<o,
Ny =11 ifv=0,
22770 ifv>0.

Given any a € (Ag,A1)1,q,o, We can decompose a = ag + aj,, with aj, € A;,j=0,1and

-1 T (-1
1yi1 laoyla, + larv i, <2K(n3ty,a).

Letuy =agy —apv-1=0aiv-1—-aiv € AgnAj. Then

M
a- Y uy
v=N

<llaoN-1] 4, +larmla, < 2nn-2K (o, @) + 2K (i, @)
A0+A1

K(MMm-1,0) Moo
NMM-1 N—->—-o00

by Lemmal6.4, Hence a = Y5 uy in Ag+ Ay.

~K(nN_2,a)+ 0

Write Ly = (v-1,Mv], v € Z, and consider the function

u

m iftELyand'V<0,
u(t) = 1(‘;;2 iftel,andv=0,1, (6.13)
ngﬁ iftelyandv>1.
Zlog
We have that
oo dt &
./0 u(t)T: > ouy=a.
Put
oo og ifv<O and 4o oy ifv-2<0
o ifv>0 o ifv-2>0.
It is not hard to check that
[ ax logt])*a & . o(v2)(xasn) [ 1+ logt® dt. (6.14)
Ly t LV—Z t

Indeed, it is clear that |logny| = 2V 1log2 ~ 2 ~ |logn,_y|. Thusift € L, and B € R then
(1+|logt])P9 ~ (1+|logny|)P9 ~2IVIB9, This gives (6.14).

Moreover, a change of variables gives
-1

4 o+l q . _
S [ | = [ [ o) T (s uts )

t 3
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Ifse [n;l,n;l_l), then s~ € L, and so

T(su(s™) s 2T (it w) <2 M nsty (laosla, + laos-1la, )+ eyl a, + el a, ]

2Rk, @) + K (n3tya)) s 27K (n3hy, a). (6.15)

Consequently, using (6.14) and the fact that t 'K(t, a) is non-increasing, we obtain

S [ ] 2 2R it 1 g et

2 [RO2 0T g, p [ 1+ rogep
Nv-2 Lv t

K (My_z,a) ] g dt
| 202 @) 1+[logt))*a <t
[ | [ aviogees

Nv-2

< [fan |1gt|>] &

This shows that (Ao, A1)1,q,4 = (AO,A1){ QA"

In order to establish the converse embedding, take any a € (Ay, Al){ QA+ and choose a repre-
sentation of a, a = [0°° u(t)%, such that

% 1pA+1 q dt\"d
(e e ) c2ial
For any t > 0, we have by (3.16) that

%K(t,a)S%fot](s,u(s))%+[too%](s,u(s))%.

Whence

-1 53] 1/q
a|(A0,A1)1,q/AS([O [%[ (S u( )) :| d::)
1 w [21(su(s)) ds]" at)
av [“‘1"8” o ?] T)
o0 Koot q 1/q
([ e g )

0 o0 q 1/q
+ /1 |:(1+10gt)°‘°° . —J(S’g(s))ﬁ] %)

S

=Il+12+13+14.

Term I; can be estimated by the variant of Hardy’s inequality given in [3, Theorem 6.4/ (6.7)]. In

fact,
1/q

1 o dt
s ([ a-togo (bu)) §) 5 lalaa
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As for I, we write

q 1/q -~ q 1/q
I < (fol[(l_logt)"“’ tl—](s’?(s))%] %) +(f01[(1_1ogt)°‘° . —](S’g(s))%] %)
=J1+]>.

Take any 0 < ¢ < —(p + 1/q) and let h(s) = s71J (s,u(s)) (1 - log s)*0*1*¢. By Holder’s inequality,
we have

ftlwﬁ - ftlh(s)(l—logs)(cxmhs)% < (/ h(s ) ds)l/q

S S S S

(/ (1-logs)” (cxo+1+e>q'd5)/

s
, 1 ds\/d
< _ 1/q —oco—l—s( q_) )
S (1-logt) /t h(s) S
Using Fubini’s theorem, we derive
! ds dt /9 dt ds\ 4
< - -1l-eq > > - q _ -l-eq
s ([ a-logy e [T ) < ([Thio)r [T togrytea )
1 g ds)Yd J(s,u(s)) ds )¢
q _ eq 2 S\ ) )1 _ oo+l | B
S(j(; h(s)"(1 - logs) S) 5(]& [ s (1-logs)™ ] s) <Ha”(A0A1)1 Al

To proceed with ], note that (6.12) yields that fol(l - logt) 04 % < oo. Hence, using Holder’s
inequality we obtain

](S u(s ) ds (ocoo+l)q’ds v’
B[RS ([T aviogs) ) lalapan. . & lalaant .,

As for I3, we have

) Koo 1/4q
e f7 [ Nuen & 4

o Koo 1/q
(B ey ] 8 e

Now

_ xp+1 1/q
oo [ rsn &< ([T [OHE uen] &)

A "
X _— —
0 | (1-logs)xot! s > 1A AD] g

To estimate J4, take any 0 < € < 1. Using Holder’s inequality, we derive for the interior integral that

t t 1
[ 1o &[] ) .
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Whence, by Fubini’s theorem, we get

o0 4 o /q
Ja s (fl [](31;(5))] /S t(s—l)q 1+10gt)amq%%)

+ Koo 1/q
(LB o] L) staliany

Finally, to estimate 14, take any 0 < € < oo +1/q, 50 € — teo — 1 < =1/q’, and write

g(s) = s (s,u(s)) (1+ logs)““""_a.

Holder’s inequality implies that

/LOOM% . ('/t“’g(s)q%)l/q (ﬁ (1+logs)(1- ocoo+a)q’dss) Y’
S (1+logt)t/al-oere ([t o(s)9 % )1/q |

Consequently, changing the order of integration, we obtain

s [Tae ) ([ [T o)

s t t s
1/q
J(s,u(s)) lraw | ds
s(fl [ (1+logs) ) <lalgagany, .-

This completes the proof for q < co. The case q = co can be treated analogously; the only difference
is that, when estimating J;, one should just take the value ¢ = 0. In fact, we get the following with

h(s) =s71J(s,u(s))(1 -logs)*o*L.

[IEREIE ¢ qup nis) [ 1-10g5) L < sup (s)(1-Tog )

S t<s<1 t<s<1

=sup s ](s,u(s))(l—logs).

t<s<1
This gives that

Ji=sup(1- logt)"‘“/ J(s,uls)) u(s) S & < sup s J(s,u(s))(1-1logs) sup (1 -logt)™

O<t<1 O<s<1 O<t<s

S HQH(AO,L\l)l e

For the remaining parameters the J-representation is different.

Theorem 6.7. Let A = (Ag, A1) be a Banach couple. Let A = (0ty, Xoo) € R? and 1 < q < oo satisfying (6.2)
and (6.6), and let B = (0,1). Then we have with equivalent norms

(Ao, A1)1,qa = (AOrAl){,q,AJrl,IB%‘
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Proof. Note that the assumption on A and q reads

q<oo, xp+1/q<0and ae =-1/q. (6.16)
In order to check that (Ag, A1)1,q;:a < (AO’Al){,q;A+1,IB' we put for v e Z
27277 ifv <0,
Ty = 1 ifv= O,

v—1
22 if v>0.

As in the previous theorem, given any a € (Ag, A1)1,q,4, We decompose a = ag +a1,, with a; € A;
and

-1 w1
o aov A, + larvla, <2K(T31, a).

Then uy = ag — apv-1 = a1,v-1 — a1,y belongs to Agn Ay and a = .3 _ uy in Ag + Aj because
Lemma [6.4]still holds in the assumption (6.16). Besides

T(Tw_/l—lluv) S E(T:,l_z, (1). (6.17)

Let My = (Ty-1,7v] and Ay = [M “L(s)ee 1(s) ~1if v > 0. This time we put

u .
—Z‘V‘lwiogz ifte My and v <0,
u .
v(t) = 10;2 if t € My,
Uy .
— v ifteMyandv>0.
M e anaye

It follows that ;" v(t)4t =¥ uy =a.
If v > 2, we have that

dt 22" dt dt
€‘1t—~f ~2V2 o f ) —.
[V ()t 22t M,y _p ()t

Therefore, using that the functions t™1J(t,u) and t~'K(t, a) are non-increasing and (6.17), we de-
rive that

q
[ e o] - [eno] Stz f et

~ ~ dt
(1 q 174t o -1 qf “1, 9t
)t [ O OT skt [ Tm]

_ K(ty_2,a) a _ dt K(t,a) _ d 4t
|G| [ ot [, [P0 §

We also have that if v = 1,2 then
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f [(t v(t))el 1/q(t)m(t)] dt /M [K(t a)e“O(t)]q

t t

and the same argument as in the proof of Theorem [6.6|shows that

J (£ (8) jagrn g | Gt K(£,0) o )]
o [P o] s [ [ o] S

whenever v < 0. Consequently, HaH(AO,Al){ s S ”aH(AOrAl)l,q,A'

Take now any a € (A, A1){ QA+LB andleta = [ u(t)% be a J-representation with

/oo [t_ll (t u(t)) €A+1(t)e€B(t)]q g 1/q <2 ”a”

0 ' t B (Ao, Al)l A+LB

Then we can estimate the K-norm just as in the proof of Theorem 6.6 obtaining that
||a||(/\o,/1\1)1,q,A Sh+Ji+Ja+]s+Ja+ 14

The terms I; and J; involve integrals with variables on (0, 1). Since xg+1/q < 0, the same argument
as in Theorem w yields that I1+];1 < [ af (Ao Ay . Also J3 can be estimated as before. Regarding
4 1,q,A+1,B

J4, the same argument in the previous theorem yields that

Ooo 1/q 0o Koo+1 q 1/q
s ([ w2 (7 [AHELEE | &)

<llalon,

] .
Al )l,qA+1,]BS

As for Jp, using that «p +1/q < 0 and q < oo, we derive

~ 1 w [ (s,u(s))ds 9 at 1a % J(s,u(s)) ds
JZ‘(fo [“‘logt) A ?] T) TS

oo , q 1/q , "
S(/1 [wel/q (S)M(S)] %) (fl (1+1ogs)™'(1+1log(1+logs))™ ds) d

S ”a”(AU Al)l A+ l]B

Finally, we proceed with

oo o 1/
14:(/1 [e_l/q(t)ﬁ I(S'E(S))%]q%) .

Takeany O <e<1/q=1-1/q’. We have

0 Va o ’
'K ](SIE(S))%S (ﬂ [](S u(s))el/q ( )eel E(S):I dS) (ﬂ El(S)eeq/Jrgq/(S)%)l/q

< (foo [I(S,U(S))el/q’(s)eels(s)] E) Ha eee—l/q (t)
t S S

Therefore, changing the order of integration, we derive
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- S )
I45(f1 IMW‘”'(S)Ml‘s(s)]qf1 e—l(t)eesq-l(t)%%) !

1/q
] (s,u(s)) y1/q’ 9 ds
s( |/ [ L2 s | ) slalgaga,,- 0

In order to clarify the situation, we include a diagram with the different areas of R? in which A
might be, and which J-representation corresponds to each of them.

g<oo: gq=o00:
I
I
I AI,q,A-I—l
A I
AI,q,AH
! Xeo=0 ] Xoo =0
I
. |
_asnon
- D T |
I Qoo =~
No J-repr.
I
No J-repr. |
I
I
X = *% X = 0 X = 0

Using these J-representations, we can now study the density of the intersection in the K-spaces.

Corollary 6.8. Let A = (A, A1) be a Banach couple. Suppose that A = (xp, %) € R and 1 < q < o0
satisfy that og +1/q < 0 < &teo +1/q. Then Agn Ay is dense in (Ag, A1)1,q,A-

Proof. Assume first that 0 < xo +1/q. Then and (6.5) hold. By Theorem 6.6} given any vector
a € (Ag,A1)1,q,4, there is a representation a = [~ u(t)% such that

( fo T (Lu(t) e ()] %)Uq < oo, (6.18)

Take any ¢ > 0. Since q < oo, we can find M > 1 such that

o0 1/q
(fow [T (tu(t) e (1)]° §+fM [t (L) €= (1)) ﬁ) <e.

t t

The integral flI/VIM u(t) % is absolutely convergent in Ag n A; as follows by using that

[w(®) [ Agna, < max(1,t)] (tu(t)),
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Holder’s inequality and (6.18). Let w = fll/\AM u(t)% € Agn Aj. We derive that

1/M -1 1 q dt
o= wliaainas <18 Whoagapg,,, () [T u) 0] §
o 1/q
[ [tll(t,u(t))(’,“""”(t)]q%) <e.

Suppose now that x +1/q = 0. Then (6.2) and are satisfied. The proof is similar but using
this time Theorem O

For the remaining case when q < oo, as a direct consequence of Corollaries [6.3] and we
obtain the following.

Corollary 6.9. Let A = (Ao, A1) be a Banach couple. Suppose that A = (0, o) € RZand 1 < q < o0
satisfy that o +1/q < 0 and oo +1/q < 0. Then Ay is dense in (Ao, A1)1,q,4-

Remark 6.5. In the assumptions of Corollary the intersection Ag N A; might not be dense in
(Ag,A1)1,q,4- Indeed, take Ag = €1, A1 = Lo, and let « > -1/q. By Corollary|[6.3]

(ell eoo)l,q,A = (eoo; eoo)l,q,(ogo,oc) =l
So AgnAj = {1 isnot dense in (Ag, A1)1,q,4 = leo. However, if AgnA; is dense in A then Corollaries
[6.3]and [6.8]yield that Ag N Ay is also dense in (Ag, A1)1,q,4-
Next, we consider the case q = co.

Proposition 6.10. Let A = (Ao, A1) be a Banach couple and let A = (&g, oo ) € R2 with o < 0 < Xeo. The
closure of Ag N A1 in (Ag, A1)1,00,4 1S the space (AO,A1)§’I(X>,A formed by all those a € (Ag, A1)1,00,4 SUch
that

t7IK(t, a) ¢t (t) > 0ast — 0 or t » oo.

Proof. If a belongs to the closure of Agn Ajin (A, A1)1,00,4, given any € > 0, there is w e Agn Ay
such that |[a - w[ (s, a,), .., < €/2. Since ag < 0, we can find M > 1 such that
L0 (t) ||WHAomAl <egf2 if0<t<1l/M

and
710 () [ W ayon, S€/2 > M.

Besides,
K(t,a) <K(t,a-w) +K(t,w) <t (1) [a=wlaga,, ., + min(Lt) [waaa, -
Consequently, if 0 <t < 1/M or t > M, we derive that
1K (L a)eh(t) < % T min(1, 0 () [Wl a on, < €

So a belongs to (Ag, Al)i’/mA.



Logarithmic interpolation spaces 127

Conversely, take any a € (Ag,A1){,, 4 and any ¢ > 0. Since and hold, we are in the
assumptions of Theorem Let u(t) be the function defined in (6.13) which is constant on each
interval Ly = (ny-1,Mv], v € Z, and satisfies that a = [, u(t)%. Using that a € (Ao, A1)7, o, We
can find N € N such that

sup t 1A (t)K(t,a) <e forany|v|>N.
tely_p

Putw = fn“j‘\lil u(t) %. Then w € Agn A; and, by the construction of u(t), we have that

-1 A+1
- ~la- = t t,u(t))( t
la=Wlapams ~ 18 =Wlagan] _, . SO J(tu(t) & (1)

S sup sup tTIK(t a)lt(t) <e.
V>N tely

This shows that (A, Al)?,oo, » is contained in the closure of Agn A1 in (Ag, A1)1,00,4 and completes
the proof. O

For the remaining case where q = co and oo, < 0, we obtain the following.

Corollary 6.11. Let A = (Ag, A1) be a Banach couple and let A = (g, Xoo) € R? with og < 0 and oo < 0.
Then the closure of A1 in (Ao, A1)1,00,a iS the space Z formed by all those a € (Ag, A1)1,00,a Such that

tK(t, a)l*(t) - 0as t - 0.

Moreover, if AgnA is dense in A1, then the closure (Ag, A4 ){’, oo,p Of AQNAY in (Ao, A1)1,00,4 also coincides
with Z.

Proof. Pick any « > 0. Then we have that (Ag, A1)1,c04 = (A0 + A1, A1)1,00,(xg,00) DY Corollary
Take now By = Ag + Ay, By = A and B = (o, ). Applying Proposition to the couple (B, B1)
and to B, we obtain that the closure of By n By = A; in (B, B1)1,008 = (A0, A1)1,00,4 is the space Z
formed by all those a € (A, A1)1,00,4 such that

t71K(t, a; Ag + A1, A)E(t) > 0ast - 0 or t - oo.
By (6.4), we get that this condition is equivalent to

t7IK(t, a;Ag, A1)E%(t) > 0ast -0 and
t71K(1, a; Ag, A1)L%(t) > 0 as t — oo. (6.19)

Since (6.19) holds for any a € Ag + A1, we derive the result. O]



128 Compact operators

6.3 Compact operators

In this section, we turn our attention to the behaviour of compact operators. We establish first
some notation. Let A = (A, A1), B = (Bg, B1) be Banach couples. Recall that by T € £L(A,B) we
mean that T is a linear operator from A + A; into By + B; whose restriction to each A; defines a
bounded operator from A; into B; of norm M; fori=0,1. If Ag = A; = A or By = By = B, then we
write simply T € £(A,B) and T € L(A, B), respectively.

As we mentioned in the Introduction, the origins of interpolation theory are the theorems of
Riesz-Thorin and Marcinkiewicz. The Riesz-Thorin theorem is stated in Chapter [2] (Theorem 2.T).
In 1960, Krasnosel’skii [64] (see also [4] and [76]]) showed that this result could be extended to
involve compactness.

Theorem 6.12. [Krasnosel’skii’s theorem] Let (Q, ) and (©,v) be o-finite measure spaces. Suppose
1<po,p1,q1 <0 and 1< qo < oo, and let T be a linear operator such that

T:Lp(Q,u) — Lg,(©,v) is compact and
T:Lp,(Q,u) — Lg,(©,v) is bounded.

Take 0 < 0 <1 and
1 1-0 0 1 1-0 0
— = +— and — = +—.
p Po P1 q Jo q1

Then
T:Lp(Q,u) — Lq(O,V) compactly.

Very recently, Edmunds and Opic [45] proved the following version of Krasnosel’skii’s theo-
rem, this time with Lorentz-Zygmund spaces which are very close to L, (Q, ) and L, (0, V).

Theorem 6.13. [Edmunds and Opic [45]] Let (Q, ) and (©,v) be finite measure spaces and take
1<pg<pr<oo,1<qyp<q<oo,1<q<ooandoa+1/q>0. Putyy=o+1/min(pg,q) and
Y1 = «+1/max(qo, q). If T is a linear operator such that

T:Lp(Q,u) — Lg,(O,v) iscompact and
T:Lp,(Q,u) — Lg,(©,v) isbounded,

then T: Ly, q(logL)y,(Q,u) — Lg,q(ogL)y,(©,v) compactly.

Note that the measure spaces are finite. Moreover, the techniques that these authors used for
the proof take advantage of dealing with Lebesgue spaces.

Later on, Cobos, Fernandez-Cabrera and Martinez [23]] showed an abstract version of Kras-
nosel’skii’s theorem for the logarithmic methods that we are discussing in this chapter. First of all,
they showed that if T € L(A, B) then

M0)|oco|+|ocoo|

HT”(AO/Al)l,qA/(BO/Bl)LqA < eMyt (W

(6.20)
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(see also [45] for more sharp estimates).

As for compact operators, they showed in [23| Remark 2.4] that the compactness of T : Ag — By
is not enough to imply that T : (Ag, A1)1,q,4 — (Bo, B1)1,q,4 is compact. In addition, they proved
the following.

Theorem 6.14. [Cobos, Fernandez-Cabrera and Martinez [23]] Let A = (Ag, A1) and B = (Bg, By)
be Banach couples with By — By. Suppose that T € L(A,B) is a linear operator such that T : A; — By is
compact. Let 1 < q < oo and A = (g, Xoo) € R?, where &oo € R and either 1 < q < oo and g < ~1/q, or
q=o0and oy <0. Then T: (AF, AT )1,qa — (BF,BY)1,q,4 is also compact.

In this section, with the help of the J-representation of (A, A1)1,q,4 and a different approach to
the one used in [23], we show that one can get rid of the inclusion assumption in the couple B and
also that one can replace the spaces A; and By by the original spaces A; and Bj. This will allow
us to establish a version for o-finite (not necessarily finite) measure spaces of Edmunds and Opic’s
Krasnosel’skii-type compactness theorem [45]].

For this aim, we shall work with the discrete representations of logarithmic K- and J-spaces
and some properties of the associated vector-valued sequence spaces. This approach has its origin
in the papers by Cobos and Peetre [32] and Cobos, Kithn and Schonbek [30].

It is easy to check that | - [ (a,,A,), ,, iS equivalent to

oo

1/q
uaul,q,A:( » [zme‘*<zm>l<<zm,a)]“) .

m=—o00

On the other hand, (Ao,Al){ QL AB coincides with the collection of all those a € Ay + A1 for which
there is a sequence (m)m__o € Agn Aj such that

a= > um (convergencein Ag+Ajp) (6.21)
e

and y
) q
( D [2—meA(2m)eeB(zm)](2m,um)]q) < 00, (6.22)
m=—o0
The infimum in (6.22)) over all possible representations of the type (6.21), (6.22) gives the norm
| - H{ qAp (denoted by | - M g fB = (0,0)) which is equivalent to | - H(AO Ayl .- Note that
,q,A, 4, M),q,0.B

(6.22) implies that .7 __ ., um is absolutely convergent in Ag + A;1. One can show these facts with
arguments that are very similar to those in the proofs of Lemmata [3.5| and [3.8] and Remark
respectively.

We start with an auxiliary result. Subsequently, if A is a Banach space, we write Ua for its
closed unit ball.

Lemma 6.15. Let A = (Ag, A1) be a Banach couple and let B be a Banach space. Take A = (o, o0 ) € R?
and 1 < q < oo satisfying (6.2).
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(a) If T e L(B,A) with T : B —> Ay compactly, then T : B — (Ao, A1)1,q,a is compact.
(b) If Te L(A,B) with T: Ay —> B compactly, then T : (Ao, A1)1,q,4 — B is compact.

Proof. Note that there is a constant ¢ > 0 such that for any a € Agn A; we have

MhﬁmM%'
lala,

Indeed, let K be the scalar field and let T € £ ((K, K), (Ao, A1)) be the operator defined by TA = Aa.
Clearly |T[gk A, = [ala, and (K, K)1,q,4 = K with equivalence of norms, so (6.20) yields (6.23).

wLmstM4 623)

Now take any bounded sequence (bn)ney ¢ B. Since T : B — Aj is compact, there is a
subsequence (by) such that (Tby,) is a Cauchy sequence in A;. Using (6.23), we derive
HTbn’ - Tom- HAO

‘0(0“"‘0(00‘
& Ton - Toom | A, )
< c1 [T = Toml o, (1+]l0g [ Tons = Topur| o, [) ",

lo

[ Tbr = Tomrlly g < €[ Tbn = Tomi| o, (1 +

Hence (Tbn/) is a Cauchy sequence in (Ag, A1)1,q,4, which proves (a).

Next we prove (b). We claim that there is a constant ¢ > 0 such that for any a € Uz, o We have

K(t,a) < ct(1+]logt|)l®llx=l 50, (6.24)

Indeed, applying the Hahn-Banach theorem to A + A; normed by K(t,-), we can find a functional
f with norm 1 such that f(a) = K(t,a). It follows that |f[, x < 1and [f|,, x < t. Then (6.24)

follows from (6.20).

We proceed to show the compactness of the interpolated operator. Take any ¢ > 0 and choose t
sufficiently small so that

2ct(1 +[logt|)l o=l || o <e/2. (6.25)
Since T : A; — B is compact, there is a finite set {by,..., by} c B such that
k €
T (2c(1 + |logt|)|°‘°|+|°‘°°|UAl) < {b]- + EUB}.
j=1
Given any a € u(AO/Al)l,q,A’ we can decompose a = ap + a; with a; € A; and
laol o, +tlaif A, <2K(t, a).

By (6.24) and (6.25), we have that

laola, € 57— and  [aifr, <2¢(1 +|log t])lllol,
2T a8

Therefore, for any a € Ua,, A)1qn there is b; with 1 <j < k such that

[Ta =ty < [Ta1=bs], + ITaols < 5 + [Tl aym 57— =
2T A, 8

2

€.

This shows that T(U(a A,), ,,) is precompact and completes the proof. O
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The next auxiliary result refers to interpolation of vector-valued sequence spaces.

Recall that, given a sequence (Am ) mez of positive numbers and a sequence (Wi ) mez of Banach
spaces, we write {q(Am Wi, ) for the collection of all sequences x = (x;n) such that x,;, € Wiy, for
any m € Z and

o0

1/q
”X”fq(?\me) = ( Z P\m ||Xm|Wm]q) < 0.

m=-o0
We put

(14t = { 7m0,
(1+m)%= ifm>0,

and define (1 +log(1 +|m/|))* similarly.

Lemma 6.16. Let (W,,,) be a sequence of Banach spaces, let A = (0tp, ®oo) € R? and 1< q < oo,

(a) If A and q satisfy (6-2), then (Loo(Wim), loo (27" Wim))1,q,8 = £q (27™ (1 +[m|)AWin).
(b) If A and q satisfy and (6.5), then
bg (27 (1 + M) T Win ) > (W), 627 Win))1q,4-

(c) If A and q satisfy (6.16), then
lg (27 (1+ m)**1 (1 +log(1 +[m))*Win ) = (6(Wim), 6127 Win))1,q,,

where B = (0,1).

Proof. (a) Letx = (xm) € (foo(Wm),leo(27™Win))1,q,4- Given any decomposition x =y + z with
Y=(Ym) €loc(Wn) and z = (z;n) € oo (2™ W,y ), we have

I, < [, + 2kl < 1Ylewa + 25 12l @ mwiy . KEZ.

So [xx[w, < K(2%,x) and

oo 1/q
_ q
HXHQq(Z_m(ﬁ'ml)AW‘“) : ( Z [2 G |m|)AK(2m’X)] ) " ”X”((’,w(Wm),@w(Z—me))Lq,A'

m=—00

(b) Let x = (xm) € {q (27™(1 +m|)*" "Wy, ). Let ux = (uX )mez where uk =0 for m # k and
uk = x if m = k. Since x = Y re oo Uk and J(2%, W 6 (W), 4(27™ W) = kaHWk, using

Theorem [6.6lwe derive that

¥l e (W s 2 Wy ™ ¥l ey W) i)

oo 1/
s( 3 [2-k(1+|k|)A+1J(2‘<,uk)]q) !

k=—0c0

= [Xlleq@-maspmpawim) -
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(c) This case can be treated as (b) but using now Theorem O

Next we establish the compactness theorem for the (1, q, A; K)-method.

Theorem 6.17. Let A = (Ag, A1) and B = (By, B1) be Banach couples and let T € L(A,B) such that the
restriction T : Ay —> By is compact. For any A = (o, &) € R? and 1 < q < oo satisfying (6.2), we have
that

T: (Ao, A1)1,q4 — (Bo,B1)1,q,a

is compact.

Proof. Step 1. We first assume that A and q satisfy also or (6.6). Let B = (0,0) if holds and
B=(0,1)if is satisfied.

For m € Z, let G, = Ag n A1 normed by J(2™,-;Ag, A1) and let Fy = By + By with the norm
K(2™,-;Bg, B1). Consider the operators m(um) = Y5n__ oo Um and jb=(...,b,b,b,...) and write

Am =27 (1 + [m))* (1 +log(1 + |m|))® and pm = 27™(1 + |m|)™.

By Theorems [6.6/and 6.7
T g (AmGm) — (Ao, Al)l,q,A

is a metric surjection if we consider the discrete J-norm on (Ag, A1)1,q,4. Moreover,
Tt €1(Gm) —> AO and 7 €1(2’me) — A1

are bounded with norm < 1. On the other hand, if we consider the discrete K-norm on (Bg, B1)1,q,4,
then

j: (BOrBl)l,q,A - eq (UmFm)
is a metric injection. Moreover, the restrictions
j:Bp —Le(Fm) and j:B; — (27 MF )

are bounded with norm < 1.

LetT = jTrt. The properties of 7t and j yield that T : (Ag, A1)1,q,4 — (Bo,B1)1,q,4 is compact if
and only if T: {q(AmGm) — €q(KmFm) is compact. We shall check the compactness of T with the
help of the following projections. For n € N, write

Pn(um) = ( . ‘IOIOIu*Tl/u—TL+1/' ~'/un—1/un10101' . )/
Q:L(um) = ( ..,0,0,un+1,un+2,...),
Qi(um)=(..,u_npun-1,00,...).

The identity operator I on £;(Gm) + £1(27 ™Gy ) can be written as the sum I = P, + QF, + Q;, and
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the following properties hold:

Pn, Q;, and Q;, have norm 1 when acting on £;(G, ) and on {1 (27 ™G ). (6.26)

The restrictions Q7 : {1(Gm) — (1(27™Gm) and Q. : 4 (27™Gm) — 4 (Gm)
are bounded with norm 2~ ™+, (6.27)

Pn:li(Gm) + 0 (27™Gm) — 6(Gm) n€1(2" ™ Gy ) boundedly. (6.28)

On the couple (foo(Fm), foo(27™Fm)) we can define similar projections, denoted by Ry, S5, S;,,
which satisfy analogous properties.

We have

T=T(P+Q+Q;)=TP, +TQ, + (R + S, +S;,)TQL
TP+ TQ;, +R.TQ! + S5 TQ;, + S, TQ.

Next we show that, acting from {4 (A Gy ) into £ (um Fim ), the operators TP, RTL'T'Q;“1 and S;T'Q;
are compact and that the other two operators have norms converging to 0 as n — co.

Using (6.28), we have the factorisation

L t(Fm)

P, El(Gm)
eq(Ame);_’ el(Gm)"'el(Z_me) /

+

6H(27™Gm) leo(27™Fm),
which allows us to apply Lemma (a) and Lemma /(a) to obtain that
TP, : lg(AmGm) — Lq(1umFm) is compact.

For R, TQ}, we use the diagram

G(Gm) — L g (Fin)
Rn

loo(Fm) Nleo(27MFyp) ——— lq (UmFm),
Q2™ Gm) 2 leo(27 ™ F ) 7 R
and again Lemmata and yield that Rn TQ;, : ¢q(AmGm) — €q(kmFm) compactly.

As for S;, TQ7,, we first use the factorisation

t1(Gm) &\ T

6(27™Gm) oo (27" Frn),

el (Z_me) Qn
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and Lemmata and to get that TQ;, : {q(Am Gm) — €oo (2 ™Fyy, ) is compact. Since we also
have the diagram

loo (Fm)

.
0q(Am G )— %5+ 0, (2™ F ) 7

g

n

b (27™Fm),

using again the lemmata we conclude that S, TQ7; : ¢q(AmGm) — £q(kmFm ) compactly.

Now we estimate the norms of the operators TQ;,, S;TQ}, acting between {4 (A G ) and
lq(UmFm). By (6.20) and Lemma in order to check that the norms go to 0 as n — oo, it suffices
to show that the norms

ITQn Iy 2-m G @miy = ITQu]y and [S3TQR g ) e @y = IS8T QR

goto 0 asn — oco. As for TQ;,, we proceed by contradiction. If HTQ;l + 0, since the sequence

Iy
(HTQ;Hl) is non-increasing, we would have lim, . HTQ;1 =1 > 0. Take (un ) c Uy, (2-mg,,) such

that

Iy

ALHDIO HTQnunH(ew(z-mFm) -
By (6:26), (Q1tn ) is bounded in £1(2 ™Gy, ). Since the restriction T: ¢;(27 ™G ) — €oo(27™Fm)
is compact, there is a vector v € £ (2 ™F,) and a subsequence (Q;, un/) of (Q;un) such that
limp /oo TQ L Uns = v in € (27 ™Fy ). Therefore, IVl 2-mF,,) = T > 0. However, gives that
limn /oo Q1 Uns =0in €1 (Gm). So limp /oo TQ;L,un/ = 0in {o (Fm ). By compatibility, v = 0, which
contradicts that v # 0.

T.

Finally, for S}, TQ?, given any ¢ > 0, the compactness of T: {1 (2 ™G, ) —> £o (2 ™Fy,) yields
that there are vectors uy, ..., u, having only a finite number of non-zero coordinates such that

T

A TN E
T (uh(z—me)) C U {T'LLJ + iuem(Z*mFm)} .

j=1

Then Tuj € loo (Fin) Nl (2 ™Frm). By (6:27), there is N € N such that if n > N then

STl gonryy <5 fori=Le.m

Now take any u € Uy (o-mg,,) and any n > N. Since v = Qj,ubelongs to Uy, (5-mg,,), thereis 1 <j <

such that H'Arv - Ty sz(zfmFm) < ¢/2. Therefore,

HS;TQ;uHew(z-mFm) < HS;T\) -S5 = €.

- - €
Ty; Hew(z—mFm) +[|siTy; Hzm(z-mFm) <5t

N| o

This completes the proof when A and q satisfy or (6.6).

Step 2. Suppose now that A and q satisfy (6.3). Let D = (o, o), where « > -1/q. Then q and D
satisfy (6.5). By Corollary[6.3] we have that

(Ao, A1)1,q8 = (Ao +A1,A1)1,qp and  (Bo,B1)1,q,a = (Bo+B1,B1)1,q,p-
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Since T e L ((Ag+ A1,A1),(Bo+B1,B1)) and T: Ay — By compactly, it follows from Step 1 that

T: (Ao, A1)1,q4 — (Bo,B1)1,q,4

is also compact. O

The compactness theorem for the (0, q, A; K)-method follows from Remark and Theorem
6.17

Corollary 6.18. Let A = (A, A1) and B = (Bg, By) be Banach couples and let T € L(A,B) such that the
restriction T : Ag — By is compact. For any A = (o, X0 ) € R? and 1 < q < oo such that

Koo +1/q<0ifqg<oo 0o e <0ifq=o00,

we have that
T: (A0, A1)0,q,6 — (Bo,B1)o,q,a

is also compact.

Next we apply the compactness theorem to extend to arbitrary o-finite spaces a result proved
by Edmunds and Opic [45] for finite measure spaces. The corollaries deal with generalised Lorentz-
Zygmund spaces, which are defined in the Introduction, equation (L.6).

Using the well-known formula
K(t/ f; Ll (Q)I Loo (Q)) = tf*" (t)l
it turns out that
Lp,q(logL)a(Q) = (L1(Q), Leo(€2))1-1/p,q,a- (6.29)
In what follows, if Te R, we put A + T= (g + T, %o + T).

Corollary 6.19. Let (Q, 1), (©,v) be o-finite measure spaces. Take 1 < pg < p1 < 00, 1< qo < q1 < o0,
1<q<ooand A= (&g, 0teo) € R? With oteo +1/q <0< &g+ 1/q. Let T be a linear operator such that

T:L,,(Q) — Lg,(©) compactly and T : L, (Q) — Lq,(©) boundedly.

Then
T:lpyqogl),, 1 (Q) —Lggq(logl),, 1 (©)
min(pg,q) max(dqq.q)
is also compact.
Proof. By Corollary
T: (LPO(-O-)/ Ly (Q))O,qA - (qu (@))/qu(@))(},q,A compactly. (6.30)

We shall work with these interpolation spaces using two theorems in [46]. First of all, according to
[46, Theorem 5.9], for any Banach couple A = (Ag, A1), if 0 <09 <01 <1,0<10,T1,q < 00, Aj € R2
and A = (®, oo ) € R? is such that o, +1/q <0< ag +1/q,

A a A A AL
(AGO/T'O/AO’Aeerl/Al)O,q,A = (Aeo,ro,AO/Al)O,qA = Aeo;q,AJrAO,rO,AO/ (6.31)
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where A; is an intermediate space of class 1. The spaces Ago,. q,A+Ag1o,A, are defined in [46]]. Suppose
that 1 < 1p <11 < 00 and that U is a o-finite measure space. Then L, (U) = (L;(U), Lo (U))g, r, With
0i =1-1/r;i and 6) < 01. On the other hand, if 11 = oo, then L., (U) is an intermediate space of class
1 with respect to the couple (L;(U), L (LL)). We derive, thus, that

(I—T‘O(u)/ I—T1 (u))o,q,A = (Ll(u), I—oo (u))f—l/To;q,A,To,(0,0) 1f 1 < To <7 < oo.
Next we apply [46, Theorem 4.7] to obtain that

L
(Ll, oo)l 1/70,9,A+ > (Llr Loo)l_l/ro;q,A,rol(O,O) > (Lll LOO)lfl/ro,q,AJr

1
mln(q T ) max(q/ro)

if1<rg<r] <o0.
Using now ( , we derive that
Lroq(log L)y, 1 (U) = (Lry (W), L, (W)og.a > Lrya(log L), 1 (U) (6.32)
if1<rg<r] <00

Applying the first embedding in to i = p; and U = O, we obtain

Lpoa(logl)y, 1 (Q) = (Lpo(Q), Ly, (Q))o g
Similarly, the second embedding in with r; = q; and U = © yields that

(Lay(©), Lay (@ > Laga(105L)._s__(©)

These embeddings and (6.30) imply the wanted result. O

We can obtain similar results for the p{s and qs ordered in a different way. Indeed, note that
if 1 <71 <7y < 0o we have that Ly, (U) = (Lo (U), L1(U))g, .. with 0; = 1/r1, so 8y < ;. Moreover,
L1(U) is an intermediate space of class 1 with respect to the couple (L (U),L;(U)). Whence we
can still use (6.31), obtaining that

(LTO (u)/ LTl (u))O,q,A = (Loo (u), Ll(u))f’/ro}q,A,To,(O,O) lf 1 <1r < To < 00.

Next we apply [46, Theorem 4.7] to obtain that

L
(LoolLl)l/T[] q, A+ > (Loo/ Ll)l/TO;q/A;T[),(O,O) > (LDO/Ll)l/To,q,A‘F

1
mm(q T0) max(q,7q)

if 1 <1 <7y < o0.
By (6.29) and a change of variable, we obtain the counterpart of (6.32) for 1 <1y <11 < o0,
Lro,q(logL)z, 1 (U) = (Lo (W), Lry(U)o,q.n = Lro.q(logL)g, 1 (U) (6.33)

1f1§T1<T‘0<oo,

where A = (X0, Xp).
Thus, in order to obtain the corresponding results for the p;'s and qs ordered in a different way,

all we have to do is choose the suitable embeddings in (6.32) or (6.33), depending on the order of
the parameters, and apply (6.30).

In particular, if in Corollary we change compactness to the second restriction, the result
reads as follows.



Logarithmic interpolation spaces 137

Corollary 6.20. Let (Q, 1), (©,v) be o-finite measure spaces. Take 1 < pg < p1 <00, 1< qp < q1 < oo,
1<q<ooand A= (o, o) € R? with g +1/q < 0 < &eo + 1/q. Let T be a linear operator such that

T:Lp(Q) — Lg,(®) boundedly and T: Ly, (Q) — Lg,(©) compactly.
Then
T:Lp, qUogl),, 1 (Q) —Lg,q(logl),, 1 (O)

min(py,q) max(dy,q)

is also compact.

6.4 Weakly compact operators and duality

Let T be any bounded linear operator between vector-valued {4 spaces with 1 < q < co. As it was
pointed out in [56]], T is weakly compact provided that all its components (regarded T as a matrix)
are weakly compact. This property is called the X4-condition and makes a difference between
compact and weakly compact operators. As we show next, this property is the key to establish
the interpolation properties of weakly compact operators under logarithmic methods. Again the
results depend on the relationship between q and A.

Theorem 6.21. Let 1 < q < oo and A = (o, o) € R? satisfying and also or (6.6). Let
A = (Ao, A1) and B = (By, B1) be Banach couples and assume that T € L(A,B). Then a necessary and
sufficient condition for T : (Ao, A1)1,q4 —> (Bo,B1)1,q,a to be weakly compact is that the restriction
T:Agn Ay — B + By is weakly compact.

Proof. The factorisation

T
Ao N Al > (AO/Al)l,qA — (BOIBl)l,qA > B() + B]

shows that the condition is necessary.

In order to show that the condition is sufficient, we shall work with the representation of
(Ao, A1)1,q,4 as a J-space and with the discrete norms. We follow the same notation as in the
proof of Theorem|[6.17]

For k,v € Z, let Dy : Gx — {q(AmGm) and L, : {q(umFm) — F: be the operators defined
by Dyx = (8% x) and L, (ym) = yr. Here 8% is the Kronecker delta. Consider the linear operator
T=jTm: lg(AmGm) — Lq(1mFm). Since L, iDx=Tand T: AgnA; — By+B; is weakly compact,
the X 4-condition yields that

T: eq(}\me) - eq (umFm)

is weakly compact. Now using that 7t is a metric surjection and j is a metric injection, we conclude
that
T: (Ao, A1)1,q,o — (Bo,B1)1,q,4 is weakly compact.
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Theorem 6.22. Let 1 < q < oo and A = (xp, %) € R? satisfying and (6.3). Let A = (Ag, A1)
and B = (Bo, By1) be Banach couples and T € L(A,B). Then a necessary and sufficient condition for the
interpolated operator T : (Ag, A1)1,q,a — (Bo,B1)1,q,a to be weakly compact is that T: Ay — Bg + By is
weakly compact.

Proof. By Corollary [6.3] we have that

(Ao, A1)1,q,8 = (Ao + A1, A1)1,qp and (B, B1)1,q,4 = (Bo + B1,B1)1,q,0,

where D = (x, @) and « > -1/q. Since q and D satisfy and (6.5), the wanted result follows
from Theorem O

Remark 6.6. The techniques used in Theorems and still work for any injective and sur-
jective operator ideal satisfying the Z4-condition. In particular, they apply also to Banach-Saks
operators, Rosenthal operators and Asplund (or dual Radon-Nikodym) operators (see [59) (78} 42]).
We refer to the paper of Ferndndez-Cabrera and Martinez [50] for interpolation properties of closed
operator ideals under other limiting interpolation methods.

As a direct consequence of Theorems and we obtain the following characterisation for
reflexive logarithmic spaces.

Corollary 6.23. Assume that A = (Ag, A1) is a Banach couple and let 1 < q < oo and A = (g, oo ) € R2.

(a) Suppose that oy +1/q < 0 < Xeo +1/q. Then (Ag, A1)1,q,a is reflexive if and only if the embedding
AoNn A1 = Ag + Ay is weakly compact.

(b) If g +1/q < 0 and xoo +1/q < 0, then (Ao, A1)1,q,a is reflexive if and only if the embedding
A1 = Ag + Ay is weakly compact.

Remark 6.7. Using (6.I), one can easily write down the corresponding results to Theorems
and Corollary for the (0, g, A; K)-method.

The rest of this section is devoted to the study of duality for logarithmic spaces. In what follows,
we assume that A = (A, A1) is a reqular Banach couple, that is, Ag n A; is dense in Ajforj=0,1
Recall that in this case the dual A of A; can be identified with a subspace Aj' of (AgnA1)*, and
(A{,A{) is a Banach couple. Moreover, by Corollary 6.8/ and Remark 6.5, Ag n A1 is also dense in
(Ao, A1)1,q,4 provided that g < co.

As before, given A = (&, o) € R?, we write A = (oo, o) for the reverse pair.

For0<0<1,1<q<ooandA = (xg, e ) € R?, it follows from [41, Theorem 3.1] or [77, Theorem
2.4] that

(Ao, A1)0,q,8 = (Ao, A1)e,qr-i-

If 0 = 1 or 0, the dual space depends on the relationship between q and A. Next we determine
(Ao, A1)],q 4 in terms of the K-functional.
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Theorem 6.24. Let A = (Ao, A1) be a regular Banach couple. Suppose that A = (o, teo) € R* and
1< q < oo satisfy that xg+1/q <0 < X +1/q. Then

(Ao, A1)1,q,8 = (A0, AL)1qr A1

with equivalent norms.

Proof. Given any scalar sequence & = (&m )mez, let

o0 q /q
CD(E,):( > e @ lenl] ) .
If a € Ag + Ay, we have that
o0 q q
o(k@™ e = ¥ e EmKEnol') - lalq.

Moreover,

0o 00 AL/q’
q)’(n):sup{|zmq§°(2;mam|}=( > [t (2m)|n_m|]q) :

where the supremum is taken over all non-zero sequences having only a finite number of coordi-
nates different from zero. Whence, we obtain that (Ao, A1)J QA = = (Ag A{ )I La',-A by [41, Theorem

3.1]. This equality can be also derived by using similar arguments to [19, Theorem 8.2]. Now,
applying Theorem [6.6] we conclude that

(AOI Al){,q,A = (A(,)/ Ai)l,q’,—&—l‘ O
Remark 6.8. In [15] the dual of Besov spaces with logarithmic smoothness is determined by using

Theorem

To determine the dual of (Ag,A1)1,qa With e = —1/q, we need to introduce K-spaces with
weights which include powers of iterated logarithms.

Let1 < g < ocoand a > -1/q. We denote by (Ao, A1)1,q,(-1/q,«),(-1,0) the collection of all those
a € Ap + Aj having a finite norm

o0 q
- — - q
Ha”Lq,(—l/q,oc),(—l,O) = ( E [2 my(-1/q,e) (2™) 2¢(=1.0) (2™)K (2™, a)] ) _

m=-—o0
The J-description of these spaces is as follows.
Theorem 6.25. Let A = (Ag, A1) be a Banach couple. Let 1 < q < oo and o« > -1/q. Then
(Ao, A1)1,q,(-1/q,00),(-1,0) = (Ao, Al){,q/(l/q,,(xﬂ)

with equivalent norms.
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Proof. We follow the same lines as in the proofs of Theorems [6.6] and [6.7] Take any vector
ae(AgAr)] 0.(1/q",ar1) and let a = Jo7 u(t)4t be such that

1/4

(f [ em orauo]" T [Tl @neuan) F) T <2lalaga,

Using that

Lq,(1/q’ <x+1)

K(t,a)Sfot](s,u(s))%+tﬁms_1](s,u(s)) %,

we obtain that

“aH(AOrAl)1,q,(—1/q,oc),(—1,0) S (fo

+

”q(t)wl(t) [ ] dt)/q
R e €| S
[ ey [ s ] )“q
1[ Ve 1(t)f J SU(S))dS] )Uq
oo [ pox q 1/q

B AC
[ pox t q 1/q
B ACCH

S
oo [ q 1/q
+ ﬂ 6“(’&)[ Md?:l %) =Il+12+13+14+15+16.

%hr—\

- 18

=

~ |5

+
o

We are going to show that [ forj=1,...,6 which will show the embedding

”a”(AO Al)lq (1/q',x+1)

(A0 A g (17qn 1) = (Ao AD1a,(-1/a,00,-10)

We start by estimating the interior integral in I;. Let f(s) = s~ 1J(s,u(s))¢/9'(s). Using
Holder’s inequality we obtain

[ S s (fotf(s)q%)l/q (fotsq’e-l(s)%)l/q, ~te—1/q’(t)(f0tf(s)q%)l/q

Inserting this estimate in I;, changing the order of integration and using that q > 1, we derive that

1/q 1/q’ q 1/q
be( [ e [t ([01[‘Z q(s”s(s'”(s))] Ik eq(tmq(t)ﬁ@)

’ 1
N CAIEICITE R R
~ 0 S S (Ao, Al)lq(l/q (X+1)
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As for I, we take 1/q < e <1 and g(s) = s7'J (s,u(s)) £/9'(s)e¢¢1/9(s) and proceed similarly.
We have

[N & (g ds) e ) o ([1ae0%) "

So

(fole (t)ee Eq(t)f ads it)l/q

1/q
(/01[ D u(s))] e 1(s)f HOUS Eq(t)g%)

1/q
( [ O, <)>] ) <lallop py

For I3, we obtain

= [Tl 1e-1<t)ee-q<t>ﬁ)1/q L[ s ds

c%

Lq,(1/q’ oc+1)

1 S S

(]1'°°|:(’,oc+:(5) (s,u(s )):| ) (/ (e’ )dS) S lalla,, AL tjaraeny”

where in the last inequality we have used that « > -1/q.

N

As for 14, we have

b= e S () tqe"‘”t)dt)lq [

1

1/q /
1 g’ (s) ds U ds) M
g(fo [ - ](s,u(s))] ?) (fo s9'¢ 1(3)?) Slallagan], o

Term I5 (respectively, Is) coincides with J4 (respectively, I4) in the proof of Theorem [6.6| with
o = Xoo. Since ot > —1/q, the computations given there show that

I5 + I6 S HaH(AO Al)l q,(1/q" oc+1)

Conversely, take any a with
1/q

L[ Ya (et (t) gt 0, gt
oliunmnacremcn () [0 Ok o] S [0k 0] & <

Then
min(1,t)K(t,a) >0ast > 0orast— oo (6.34)



142 Weakly compact operators and duality

because

-1/ -1 q o0
[01[(5 qa(t)ee (t)] ﬁzoozfl E“q(t)%.

t t

(see the proof of Lemma|6.4).

For v € Z, we write

22—\/—1

2" if v <0,
Hv =41 ifv= 0,
227 ifv >0,

and we decompose a = agy + aj with a; € Aj and
-1 Tl
my-1laovla, +larvla, <2K(ky2y, @),

where K is the K-functional for the couple (A1, Ag) and T is defined similarly.

Letuy =apy —apv-1=0a1v-1—a1v € AgnAjq. Then
Tt uy) s K3ty )

and, by (6.34), we have thata = 2.5 uy.

Put Dy = (ty-1, v ]- Then
log2 ifv=1,
2V2log2 ifv> 1.

For v <0 put
dt
5 :f e (1)< L1
V= [ Coetos

We define the function

Uy .
—————— ifteDyand v<0,
IO
U .
w(t) = log2 ifteDy,
u .
I lvogZ ifteDyandv>1.

It is clear that a = [;° w(t)4 in Ag + Aj.
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If v > 2, we can proceed as in the proof of Theorem [6.6|with o = &, to derive that

oa+1 q o q
[V[w](t,w(t))] %SfDH[e (t)K(t,a)] %.

t t

A similar estimate is valid for v = 2,1 replacing in the last term £%(t) by ¢-/9 ()¢~ (t). If v <0,
we have

wa'(y) Tar)” U@y T at)
([V[ ) T) VN e (I

< J(hv-1,uvy) (L (’,‘1(t)£€‘q(t) dt)l/q

Hv-1 t

_ 1/q
) 5 va-ara Lt ) (/ e—l(t)ee—q(t)ﬁ)
Hv-1 Dy t

S E(H;l_z, a) ([ . g—l(t)w—q(t) dt)l/q

D, t

- —K(*:V‘_ZZ a) (vaz e‘l(t)wq(t)%)l/q

-1y 1 q 1/q
s(ﬁ)”[wk(t@] %) .

Consequently, |a| (Ao AD)! . This finishes the proof. O

<
a(/q’ i) HCL”(AO'Al)Lq,(fl/q,cX),(—l,O)

Now we are ready to determine the dual of the K-space with x = -1/q.

Theorem 6.26. Let A = (Ag, A1) be a reqular Banach couple. Suppose that 1 < q < oo and oy +1/q < 0.
Then

(A0, A1, g (o 1/a) = (A0 AD1,q7,(-1/a’ ~o0-1),(~10)

with equivalent norms.

Proof. By [41, Theorem 3.1], we get that

/ _ ! "
(AO'Al)l,q,(oco,—l/q) - (AO’Al)l,q’,(l/q,—cxo)'

Now the result follows applying Theorem [6.25] O

The duality formula when q = co reads as follows.

Theorem 6.27. Let A = (Ag, A1) be a reqular Banach couple and let A = (0, oo ) € R? with op < 0 < Xeo-
Then

l4
(A0, A1) won) = (ApAD 11 41

with equivalent norms.
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Proof. Given any scalar sequence & = (&m )mez, let
Y(E) = [(Em)lcy2-meremy) -
We derive by Proposition[6.10]that if a € Ag + A; then
Y((K2™ a))) = C1||(AO,A1)$/W’A :

Moreover,

‘Zﬁ:—mn—mam’ _ - my-A /Am
sl $ pret el

m=—o0
where the supremum is taken over all non-zero sequences having only a finite number of coordi-
nates different from zero. Whence, we obtain by [41, Theorem 3.1] that

Y'(n) = sup{

!/
((AO/ Al)?,oo,A) = (A(S/ A{){/L,A‘

The result follows now from Theorem [6.6 O

Finally we consider the case when the K-space does not admit a description in terms of the
J-functional.

Theorem 6.28. Let A = (Ao, A1) be a regular Banach couple. Suppose that A = (o, teo) € R* and
1< q < oo satisfy that xg +1/q < 0 and xe +1/q < 0. Then we have with equivalence of norms

(Ao, A1)1,q,8 = A1 N (AYAD1q7,(-1-1/q7 ~1-a)-

Proof. Take any « > —-1/q. Using Corollary [6.3{and Theorem we get

(Ao, A1)1,q,8 = (Ao + A1 A1 g (aor0) = (A0 VAL AD LG (<1-0-1-ag)-

In particular, (Ao, A1)] 4 4 © Aj. Moreover, since K(t,f;AgnA{,A]) ~ t ||fHA1, for t < 1, using that
-1/q < «, we obtain

! 1/q, ’
1[p-1-x q 1 , 1/q
( Lk nainagap)| ﬁ) (w8 iy

t
/ 1/q9’
< [oo w ) dt I£]
~“\ t t Al
' 1/q’
%) —1—0(0 q
s(fl [wk(t,f;AémA{,A{)] %) .

Whence

/ 1/q’
oo [ g-1-%0 (1) T at
L O P (/1 [fK(t, f;Aq mA{,A{)] + : (6.35)
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On the other hand,
K(t, f;AGN AL AL ~ [f 4+ K(t FAG A) for t > 1. (6.36)
Indeed, for f € A, given any decomposition f = fy + f; with fo € Ajand f; € A{, we get
K(6 52§ AL AD < [foll agons + t11las < Ifoll g+ [foll s+t 1l
= 1= 2l g + ol ag + t11lag  [F1ag + (Ifollag +t1f1ln)-
Conversely, if f = go + g1 with gg € Ajn A{ and g; € A{, we have that

Hf”Al’ +K(t,f;Ag,Af) < HQOHAl’ + H91“A1’ + ”90“A6 +tH91HA1’ S ||90||A6nA1' +t”91“/\1"

Inserting (6.36)) in (6.35), we obtain that

7 1/q/
] oo [¢-1-20 ()] at ]
flrgraraneconw = | L =2 S 1l
7 1/q’
oo [g-1-0 (¢ T at
+(f1 [f()]((t,f;Aé,A{)] T) :

Now, clearly
Hf”(AOIOA{/A{)I,C[’,(—1—&,—1—060) S HfHAll + ”f”(A(;/A{)l,q’,(—1—1/q’,—1—o¢0) :

On the other hand, since (Ag N A{, A{)1,q7,(-1-a,-1-o,) € A1, We also have that

q

! 1/q’ 1

1 g1-1/a’ () dt Uy, dtyYd

———2K(t,f; A}, Aq — <||If ,(f 91t —) .
([O[ —K( 01>] o IR TPV AR O

This implies that also HfHA{ +|f| (ADAD 14 11/ S Il (AIPALAD 41 1 1sg) and completes the

' =1-p)
proof. O
With similar arguments but using now Theorem [6.27]we derive the following.

Theorem 6.29. Let A = (Ag, A1) be a reqular Banach couple. Suppose that A = (o, aeo) € R satisfies
that oy < 0 and xe < 0. Then we have with equivalence of norms

4
(A0 A o) = AL N (AGAD11(-1-1,-1-)-

Remark 6.9. Using Remark the duality results for (Ag, A1)o,q,a follow from those established
for (Ao, Al)l,q,&'
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