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Observation of topological Uhlmann phases with
superconducting qubits
O. Viyuela1,2,3, A. Rivas1, S. Gasparinetti4, A. Wallraff 4, S. Filipp5 and M. A. Martin-Delgado1

Topological insulators and superconductors at finite temperature can be characterized by the topological Uhlmann phase.
However, a direct experimental measurement of this invariant has remained elusive in condensed matter systems. Here, we report a
measurement of the topological Uhlmann phase for a topological insulator simulated by a system of entangled qubits in the IBM
Quantum Experience platform. By making use of ancilla states, otherwise unobservable phases carrying topological information
about the system become accessible, enabling the experimental determination of a complete phase diagram including
environmental effects. We employ a state-independent measurement protocol which does not involve prior knowledge of the
system state. The proposed measurement scheme is extensible to interacting particles and topological models with a large number
of bands.
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INTRODUCTION
The search for topological phases in condensed matter1–8 has
triggered an experimental race to detect and measure topological
phenomena in a wide variety of quantum simulation experi-
ments.9–15 In quantum simulators the phase of the wave function
can be accessed directly, opening a whole new way to observe
topological properties9,11,16 beyond the realm of traditional
condensed matter scenarios. These quantum phases are very
fragile, but when controlled and mastered, they can produce very
powerful computational systems like a quantum computer.17,18

The Berry phase19 is a special instance of quantum phase, that is
purely geometrical20 and independent of dynamical contributions
during the time evolution of a quantum system. In addition, if that
phase is invariant under deformations of the path traced out by
the system during its evolution, it becomes topological. Topolo-
gical Berry phases have also acquired a great relevance in
condensed matter systems. The now very active field of
topological insulators (TIs) and superconductors (TSCs)1–3 ulti-
mately owes its topological character to Berry phases21 associated
to the special band structure of these exotic materials.
However, if the interaction of a TI or a TSC with its environment

is not negligible, the effect of the external noise in the form of,
e.g., thermal fluctuations, makes these quantum phases very
fragile,22–34 and they may not even be well defined. For the Berry
phase acquired by a pure state, this problem has been successfully
adressed for one-dimensional systems35 and extended to two-
dimensions later.36–38 The key concept behind this theoretical
characterization is the notion of “Uhlmann phase”,39–47 a natural
extension of the Berry phase for density matrices. In analogy to
the Berry phase, when the Uhlmann phase for mixed states
remains invariant under deformations, it becomes topological.
Although this phase is gauge invariant and thus, in principle,

observable, a fundamental question remains: how to measure a

topological Uhlmann phase in a physical system? To this end, we
employ an ancillary system as a part of the measurement
apparatus. By encoding the temperature (or mixedness) of the
system in the entanglement with the ancilla, we find that the
Uhlmann phase appears as a relative phase that can be retrieved
by interferometric techniques. The difficulty with this type of
measurement is that it requires a high level of control over the
environmental degrees of freedom, beyond the reach of
condensed matter experiments. On the contrary, this situation is
especially well-suited for a quantum simulation scenario.
Specifically, in this work we report: (i) the measurement of the

topological Uhlmann phase on a quantum simulator based on
superconducting qubits,48–50 in which we have direct control over
both system and ancilla, and (ii) the computation of the
topological phase diagram for qubits with an arbitrary noise
degree. A summary and a comparison with pure state topological
measures are shown in Fig. 1. In addition, we construct a state
independent protocol that detects whether a given mixed state is
topological in the Uhlmann sense. Our proposal also provides a
quantum simulation of the AIII class51,52 of TIs (those with chiral
symmetry) in the presence of disturbing external noise. Other
cases of two-dimensional TIs, TSCs and interacting systems can
also be addressed by appropriate modifications as mentioned in
the conclusions.

RESULTS
Topological Uhlmann phase for qubits
We briefly present the main ideas of the Uhlmann approach for a
two-band model of TIs and TSCs simulated with a qubit. Let
θðtÞj1t¼0 define a closed trajectory along a family of single qubit
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density matrices parametrized by θ,

ρθ ¼ 1� rð Þ 0θj i 0θh j þ r 1θj i 1θh j; (1)

where r stands for the mixedness parameter between the θ-
dependent eigenstates 1θj i and 0θj i, e.g., that of a transmon
qubit.53 The mixed state ρθ can be seen as a “part” of a state
vector Ψθj i in an enlarged Hilbert space H ¼ HS �HA, where S
stands for system and A for the ancilla degrees of freedom with
dimHA � dimHS. The state vector Ψθj i is a so-called purification
of ρθ ¼ TrA Ψθj i Ψθh jð Þ, where TrA performs the partial trace over
the ancilla. There is an infinite number of purifications for every
single density matrix, specifically I� UAð Þ Ψθj i for any unitary UA

acting on the ancilla purifies the same mixed state as Ψθj i. Hence,
for a family of density matrices ρθ, there are several sets of
purifications Ψθj i according to a U(n) gauge freedom. This
generalizes the standard U(1) gauge (phase) freedom of state
vectors describing quantum pure states to the general case of
density matrices.
Along a trajectory θðtÞj1t¼0 for ρθ the induced purification

evolution (system qubit S and ancilla qubit A) can be written as

ΨθðtÞ
�� �¼ ffiffiffiffiffiffiffiffiffiffi

1� r
p

USðtÞ 0j iS�UAðtÞ 0j iAþ
þ ffiffi

r
p

USðtÞ 1j iS�UAðtÞ 1j iA;
(2)

where 0j i ¼ 1
0

� �
and 1j i ¼ 0

1

� �
is the standard qubit basis, and

US(t) is a unitary matrix determined by the θ-dependence.
Moreover the arbitrary unitaries UA(t) can be selected to fulfill
the so-called Uhlmann parallel transport condition. Namely,
analogously to the standard Berry case, the Uhlmann parallel
transport requires that the distance between two infinitesimally
close purifications ΨθðtþdtÞ

�� �� ΨθðtÞ
�� ��� ��2 reaches a minimum

value (which leads to removing the relative infinitesimal “phase”
between purifications).39 Physically, this condition ensures that the
accumulated quantum phase (the so-called Uhlmann phase ΦU)

along the trajectory is purely geometrical, that is, without
dynamical contributions. This is a source of robustness, since
variations on the transport velocity will not change the resulting
phase.
Next, we consider the Hamiltonian of a two-band TI in the AIII

chiral-unitary class,51,52 H ¼Pk Ψ
y
kHkΨk , in the spinor representa-

tion Ψk ¼ âk ; b̂k
� 	t

where âk and b̂k stands for two species of
fermionic operators. The one-particle Hamiltonian is

Hk ¼ Gk
2 nk � σ;

nk ¼ 2
Gk

sin k; 0;Mþ cos kð Þ;
Gk ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2 þ 2Mcos k

p
:

(3)

where Gk represents the actual gap between the valence and
conduction bands in the TI, and nk is a unit vector called winding
vector.35 We now map the crystalline momentum k of the TI1–3 to
a tunable time-dependent paramenter θ of the quantum
simulator. When invoking the rotating wave approximation this
model also describes, e.g., the dynamics of a driven transmon
qubit.14,16 The detuning Δ ¼ 2 cos θþMð Þ between qubit and
drive is parametrized in terms of θ and a hopping amplitude M,
whereas the coupling strength between the qubit and the
incident microwave field is given by Ω ¼ 2 sin θ.
The non-trivial topology of pure quantum states (r∈ {0, 1}) of

this class of topological materials can be witnessed by the winding
number. This is defined as the angle swept out by nθ as θ varies
from 0 to 2π, namely,

ω1 :¼ 1
2π

I
∂θnxθ
nzθ

� �
dθ: (4)

Then, using Eqs. (3) and (4), the system is topological (ω1 = 1)
when the hopping amplitude is less than unity (M < 1) and trivial
(ω1 = 0) if M > 1. In fact, the topological phase diagram coincides
with the one given by the Berry phase acquired by the “ground”
state 0j iθ (or the “excited” state 1j iθ) of Hamiltonian (3) when θ
varies from 0 to 2π, (see Supplementary Note 2).
The computation of the unitary US in Eq. (2) for a transportation

in time of θ according to the Hamiltonian (3) yields

USðtÞ ¼ e�i
R t

0
h t0ð Þdt0σy ; (5)

with hðtÞ :¼ ∂tnxt
2nzt

. This implements the eigenstate transport
1θðtÞ
�� � ¼ USðtÞ 1j i and 0θðtÞ

�� � ¼ USðtÞ 0j i. In addition, we can
consider a similar form for the unitary UA in Eq. (2),

UAðtÞ ¼ USðtÞ½ �pa¼ e�i
R t

0
pahðt0Þdt0σy ; (6)

where the parameter pa∈ [0, 1] is defined as an ancillary “weight”.
We find that the Uhlmann parallel transport condition is satisfied
for pa ¼ pr :¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� rÞp

. The detailed technical derivation is
provided in Supplementary Notes 1 and 2.
Now, from Eq. (2) it is possible to define the relative phase ΦM

between the initial Ψθð0Þ
�� �

and the final state, i.e., Ψθ tfð Þ
�� �

. For
Hamiltonian (3), density matrix (1) and purification (2), we find

ΦM :¼ arg Ψθð0ÞjΨθ tfð Þ

 �� � ¼

¼ arg cos Itf0

 �

cos paI
tf
0


 �þ pr sin Itf0

 �

sin paI
tf
0


 �� �
;

(7)

where Itft0 :¼
R tf
t0
h t0ð Þdt0. As commented before, by assuming

pa ¼ pr :¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� rÞp

, the purification precisely follows Uhlmann
parallel transport and the relative phase ΦM becomes the
Uhlmann phase ΦU associated to the trajectory. For a closed path
tf = 1, the integral I10 ¼ πω1 ¼ ΦB becomes the topological Berry
phase. In that case, the Uhlmann phase simplifies to

ΦU ¼ arg cos 1� 2prð Þπω1½ �f g: (8)

We can now deduce the topological properties of these phases
in the presence of external noise, as measured by the parameter r

Fig. 1 Topological measures for a single qubit in a mixed state ρ ¼
ð1� rÞ 1j i 1h j þ r 0j i 0h j ¼ 1

2 þRn � σð Þ in the Bloch sphere representa-
tion. The mixedness parameter r between states 1j i and 0j i is
encoded into the degree of mixedness R ¼ 2r � 1j j. We compute the
Berry ΦB and Uhlmann ΦU phases for non-trivial topological
regimes. If r ∉ {1, 0} or equivalently R< 1, then only ΦU is well
defined and highlights a non-trivial topological phase (ΦU = π),
provided that R> Rc. Here, Rc denotes the critical amount of noise
that the system can withstand while remaining topological

Observation of topological Uhlmann
O Viyuela et al.

2

npj Quantum Information (2018)  10 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



[Eq. (1)]. This is depicted in Fig. 1. Namely, if M > 1 then ω1 = 0, and
ΦU = 0 (trivial phase) for every mixedness parameter r. If M < 1
then ω1 = 1 and one obtains ΦU ¼ arg �cos 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� rÞp
 �� �

. If the
state is pure (r = 0), then Φ0

U ¼ π, recovering the same topological
phase given by the winding number and the Berry phase.
However, for r ≠ 0 there are critical values of the mixedness rc at
which the Uhlmann phase, according to Eq. (8), jumps from π to
zero (see Fig. 1). The first rc1 ¼ 1

4 2� ffiffiffi
3

p
 � � 0:067 signals the
mixedness at which the system loses the topological character of
the ground state. Moreover, there exists another rc2 = 1 − rc1 at
which the system becomes topological again due to the
topological character of the excited state (r→ 1). Notice that at
r = 1 the system becomes a pure state again (the excited state),
which is also topologically non-trivial according to the Berry
phase. Actually, provided that the weight pr<pr¼rc1ð2Þ ¼ 0:5, the
system is topological in the Uhlmann sense as long as M < 1. This
reentrance in the topological phase at rc2 was absent in previous
works.35–37

Experimental realization
Measuring the topological Uhlmann phase is a very challenging
task since its definition in terms of purifications implies precise
control over auxiliary/environmental degrees of freedom (the
ancilla). In an experiment, we therefore include an extra ancilla
qubit representing the environment. We also include a third qubit
acting as a probe system P, such that by measuring qubit P we
retrieve the accumulated phase by means of interferometric
techniques. The measurement protocol is described in Fig. 2:
Step 1. Following Eq. (2), we prepare the initial state Ψθð0Þ

�� ��
0j iP (red block of Fig. 2) using single qubit rotations Rγy about the
y-axis for an angle γ ¼ 2 arcos

ffiffiffiffiffiffiffiffiffiffi
1� r

p
and a two-qubit controlled

not gate. For superconducting qubits, the latter can be performed,
e.g., by implementing a controlled phase gate for frequency-
tunable transmons54 or by a cross-resonance gate.55

Step 2. We apply the bi-local unitary US(t)⊗ UA(t) on S⊗ A
conditional to the state of the probe P. This is accomplished by
single qubit rotations about an angle β1 or β2, determined by h(t)
and pa (blue block of Fig. 2), and two-qubit gates. This
decomposition is based on the fact that any controlled unitary
gate can be always decomposed as a product of unitary single-

qubit gates and two-qubit CNOT gates.18 Figure 2 shows the final
result after the decomposition of the Uhlmann transport,
conditional to the probe qubit P, is performed. As a result, the
three qubits {S, A, P} are in the superposition

Φj iSAP¼
1ffiffiffi
2

p Ψθð0Þ
�� �� 0j iPþ Ψθ tfð Þ

�� �� 1j iP

 �

: (9)

Step 3. After the holonomic evolution has been completed, we
read out ΦM from the state of the probe qubit. Tracing out the
system and ancilla in Eq. (9), the reduced state for the probe qubit
is

ρP ¼
1
2

� þ Re Ψθð0Þ Ψθ tfð Þ
��
 �
 �

σx þ Im Ψθð0Þ Ψθ tfð Þ
��
 �
 �

σy

 �

: (10)

Thus, by measuring the expectation values σxh i and σy

 �

(green
block of Fig. 2), we can retrieve ΦM in the form

ΦM ¼ arg σxh i þ i σy

 �� � ¼

¼ arg Ψθð0Þ

 ��US tfð Þ � UA tfð Þ Ψθð0Þ

�� �� �
:

(11)

In Fig. 3 we present the results of phase measurements
performed on the IBM Quantum Experience platform,56 using
three transmon qubits coupled through co-planar waveguide
resonators (see Methods). In Fig. 3a, we show the measurement of
the Uhlmann phase ΦU for different values of the mixedness
parameter r, where we set M = 0.2 and pa = pr, i.e., fulfilling the
parallel transport condition. The critical jump from ΦU = π
(topological) to ΦU = 0 (trivial) is clearly observed following the
previous protocol.
Additionally, we can check whether the Uhlmann parallel

transport condition is satisfied at every time interval during the
experiment. By partitioning the closed trajectory in small time
steps δt, the relative phase between the state at time nδt and at
(n + 1)δt must be close to zero if the condition is fulfilled. This is
the case in the experiment as shown in Fig. 3b. During the state
preparation (Step 1), we need to include two additional single
qubit rotations R

αnδt1
y and R

αnδt2
y acting on the system and ancilla

qubits respectively, where αnδt1 ¼ 2Inδt0 and αnδt2 ¼ prαnδt1 . These
two unitaries make the entangled state between system and
ancilla evolve until the state Ψnδtj i is reached. In Step 2, the state
evolves to Ψðnþ1Þδt

�� �
conditional to the state of the probe P. The

Fig. 2 Circuit diagram to measure the topological Uhlmann phase, e.g., with superconducting circuits as explained in the text. The circuit
represents the decomposition of the bi-local unitary evolution US(t)⊗ UA(t), defined in Eq. (5), into elementary single and two-qubit CNOT
gates.18 The gate Rγy represents a single qubit rotation about the y-axis for an angle γ ¼ 2 arccos

ffiffiffiffiffiffiffiffiffiffi
1� r

p
, and the angles β1 and β2 appear in

Eq. (7)
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measurement scheme (Step 3) to retrieve the relative phase in Fig.
3b remains the same. Technical details are described in the
Supplementary Note 3. We have included a simulation—green
solid line in Fig. 3—based on experimental imperfections, mainly
finite coherence time (~50 μs) and spurious terms accounting for
certain type of electromagnetic crosstalk between qubits. A more
detailed description of the error model is given in Methods.

State-independent protocol
The application of US(t) and UA(t) with pa = pr to the purification
ΨθðtÞ
�� �

implements the Uhlmann parallel transport and hence ΦM

=ΦU. However, this would imply some knowledge about the
mixedness parameter r beforehand, which is not always possible.
Hence, we present a modification of the previous protocol to
measure the topological Uhlmann phase without prior knowledge
of the state ρ and its mixedness parameter r.
Firstly, we fix θ(t) = 2πt and consider open holonomies 1

2<tf <1
covering more than one half of the complete path. No previous
knowledge of the state is assumed to perform the evolution.
Hence, the ancillary weight pa can be different than pr in Eq. (2),
but still satisfying 0≤ pa≤ 1. From Eq. (7), the overlap
Ψθ¼0jΨθ¼2πtf


 �
is always real and thus the phase ΦM is either 0

or π, depending on both the weight pr associated to the state ρθ
[Eq. (1)] and the ancillary weight pa.
We aim to find an r-independent value for pa, such that the

observed phase ΦM takes on the same value as the Uhlmann
phase for a Hamiltonian with the form of (3). By studying ΦM as a
function of the applied pa, we conclude that if we tune the
ancillary weight

pa ¼ pT :¼ �1

Itf0
arctan

2

tan Itf0

 �

 !
; (12)

the value of the observed phase ΦM(pa = pT) coincides with the
topological Uhlmann phase ΦU. Algebraic details are provided in
Methods.
Note that there is an intuitive reason why we can get

topological information out of a phase associated to a open path
longer than one half of a non-trivial topological loop. Indeed, h(t)
is symmetric around t ¼ 1

2. Then, once we have covered one half
of the path, we know about the topology of the whole system
thanks to this symmetry. Therefore, even an open path for 1

2<tf <1
can be considered as global.
In terms of the experimental protocol, we only need to modify

Step 2 by fixing pa = pT for the unitary UA(t). In Fig. 3c, we present

the results for the state-independent protocol recovering the
topological Uhlmann phase without prior knowledge of the state,
for M = 0.6 and tf = 0.6. These are qualitatively the same as in Fig.
3a, but the state-independent protocol is more sensitive to errors
mainly around the transition point. The mismatch between
experiment and simulations is most likely caused by small
calibration-dependent systematic errors in the cross-resonance
gates.

DISCUSSION
We have successfully measured the topological Uhlmann phase,
originally proposed in the context of TIs and superconductors,
making use of ancilla-based protocols. The experiment is realized
within a minimal quantum simulator consisting of three super-
conducting qubits. We have exploited the quantum simulator to
realize a controlled coupling of the system to an environment
represented by the ancilla degrees of freedom. Moreover, we have
proposed and tested a state-independent protocol that allows us
to classify states of topological systems according to the Uhlmann
measure. To our knowledge, this is the first time that a noise/
temperature-induced topological transition in a quantum phase is
observed. Recently, these transitions have been addressed in
connection to new thermodynamical properties of these sys-
tems.57 The fact that these effects can be experimentally observed
opens the possibility for the search of warm topological matter in
the lab. Due to the intrinsic geometric character of the Uhlmann
phase, our results may find application in generalizations of
holonomic quantum protocols for general, possibly mixed, states.
In addition, an increase of experimental resources such as the

number of qubits, the speed and fidelity of the quantum gates,
etc. will allow us to study additional topological phenomena with
superconducting qubits. In particular, by including interactions in
the model Hamiltonian we can test different features: quantum
simulations of thermal topological transitions in 2D TIs and TSCs,
the interplay between noise and interactions within a topological
phase, etc. These effects can be achieved since a system with
more interacting qubits can be mapped onto models for
interacting fermions with spin.15 Further details can be found in
the Supplementary Note 5. Although such a proposal would be
experimentally more demanding, it represents a clear outlook that
would need precise controllability of more qubits and the ability
to perform more gates with high fidelity.

Fig. 3 Experimental results for the Uhlmann phase ΦU as a function of the mixedness parameter r, defined in Eq. (1), or the time step in the
holonomy. The red dots with error bars represent the experimental measurements, the dashed blue line is the theoretical value (rc≈ 0.067)
and the green solid line accounts for a simulation based on an error model (see Methods). In a, we take M= 0.2 and measure ΦU as a function
of the mixedness r using pa= pr, i.e., fulfilling the parallel transport condition. We can clearly see the critical jump from ΦU= π (topological) to
ΦU= 0 (trivial). In b, we plot, for M= 0.2, r = 0.02 and tf= 1, the relative phase Φ between adjacent states for small time steps δt= 0.1, checking
the Uhlmann parallel condition, which implies Φ = 0. In c, we measure ΦU using the state-independent protocol for M= 0.6 and tf= 0.6, not
assuming prior knowledge of the mixedness r. The topological transition is clearly appreciable despite the presence of experimental
imperfections. The experimental accuracy in r is about 0.01
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METHODS
Superconducting qubit realization of a controllable uhlmann
phase
The experiments on the topological Uhlmann phase have been realized on
the IBM Quantum Experience (ibmqx2),56 a quantum computing platform
with online user-access based on five fixed-frequency transmon-type
qubits coupled via co-planar waveguide resonators. We have used three
qubits, qubit Q0 as the probe qubit, Q1 as the system qubit and Q2 as the
ancilla qubit. This choice is motivated by the connectivity required for the
measurement protocol and the superior T1 and T2 times of this set of
qubits when compared to the set {Q2, Q3, Q4} at the time of the
experiment. We have used the open-source python SDK QISKit (https://
www.qiskit.org) to program the quantum computer and retrieve the data.
The explicit quantum algorithm to measure the expectation values of σx
and σy is provided in Supplementary Note 4 using the OPENQASM
intermediate representation (https://github.com/QISKit/openqasm). The
phase is then extracted from the measured data by evaluating
ΦM ¼ arg σxh i � i σy


 �
 �
.

For all experiments we have measured 8192 repetitions providing a
single value for the phase. For the measurement of the topological
Uhlmann phase (Fig. 3a) we vary the initial mixedness of the system state r
by setting the rotation angle γ ¼ 2 arccos

ffiffiffiffiffiffiffiffiffiffi
1� r

p
 �
. The transport of the

state according to Uhlmann’s parallel transport condition is set by the
value β1 = If(0, 1) = π for M < 1 and β2 ¼ paIf ð0; 1Þ ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� rÞp

, as
defined in Eq. (7). The energy relaxation times of the qubits are

TQ01 ; TQ11 ; TQ21

� � ¼ 45 μs; 31 μs; 46 μsf g and the decoherence times

TQ02 ; TQ12 ; TQ22

� � ¼ 40 μs; 27 μs; 80 μsf g as stated in the calibration data.
For the state-independent protocol [Fig. 3c, main text] we set M = 0.6

and the final time tf = 0.6. The system is rotated about β1 ¼ I0:60 ¼ 2:18537
and β2 ¼ pT I0:60 ¼ 0:954407. In this measurement energy relaxation and
decoherence times are TQ01 ; TQ11 ; TQ21

� � ¼ 41 μs; 52 μs; 62 μsf g and
TQ02 ; TQ12 ; TQ22

� � ¼ 31 μs; 37 μs; 87 μsf g. Note, that here the error bars are
larger as compared to the state-dependent measurement described above,
because the expectation values σxh i and σy


 �
are closer to zero leading to

larger statistical errors in the phase. Also, we notice a systematic offset of
σy ¼ 0:098± 0:014 from the expected value σy


 �
th¼ 0. Here, σy is the

average over all r values and repetitions. This offset is subtracted from the
phase data ΦM ¼ arg σxh i � i σy


 �� σy

 �� �

and the result is plotted in Fig.
3c. We consider accumulated phase shifts during two-qubit operations as
the main reason for this mismatch. We have also noticed that this value
changes for different calibrations of the IBM Quantum Experience and
when taking different sets of qubits.
Finally, for the measurement of the parallel transport condition we

modify the algorithm to prepare the intermediate state ΨθðnδtÞ
�� �

by
applying US/A(nδt) to system and ancilla qubit. For the measurement of the
Uhlmann phase, the same circuit as above is used to obtain a state
evolution ΨθðnδtÞ

�� �! Ψθððnþ1ÞδtÞ
�� �

. The complete protocol to measure the
parallel transport condition is shown in the Supplementary Fig. 1. In the
experiment, we choose M = 0.2 and r = 0.02 to stay within the topological
sector. The mixedness angle evaluates to γ ¼ 2 arccos

ffiffiffiffiffiffiffiffiffi
0:95

p
 � ¼ 0:2838.
The angles for the intermediate state preparation are determined by

α1ðnÞ ¼ Inδt0 and α2ðnÞ ¼ prInδt0 = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� rÞp

Inδt0 ¼ 0:28Inδt0 , the evolution

from nδt to (n + 1)δt is determined by the angles β1ðnÞ ¼ Iðnþ1Þδt
nδt and

β2ðnÞ ¼ prI
ðnþ1Þδt
nδt ¼ 0:28Iðnþ1Þδt

nδt . The recorded data shown in Fig. 3b, main
text, shows that the measured phase difference ΦMðnδtÞh i ¼ �0:07± 0:2 is
zero within the statistics. However, the residuals do not follow a normal
distribution which hints at systematic gate errors instead of stochastic
errors.

State-independent derivation
The derivation of the value for pT [Eq. (12)] is as follows. From Eq. (7) we
find the value pa ¼ pca (where the superindex c stands for critical) at which
ΦM goes abruptly from π to 0 as a function of pr and If,

pca ¼
�1

Itf0
arctan

1

pr tan Itf0

 �

 !
: (13)

If we set 1
2<tf <1, then pca is a monotonically decreasing function of pr,

∂pca
∂pr

¼ tan Itf0

 �

Itf0 1þ p2r tan
2 Itf0

 �� �<0: (14)

If M > 1, then �π=2<Itf0 <π=2, which from Eq. (7) implies that ΦM = 0 for
any value of pr and pa. Hence, for the trivial case M > 1, there is no critical
value pca and ΦM = 0 always. This maps ΦM to the Uhlmann phase ΦU at
least for this case. On the contrary, if M < 1, then π=2<Itf0 <π which implies

tan Itf0

 �

<0. Since 0 < pr < 1, then �arctan 1
pr tan I

tf
0ð Þ

� �
<π=2. Thus, there is

always a solution of Eq. (13) with 0<pca<1 for any pr. As discussed in the

main text, the state ρθ in Eq. (1) is topological in the Uhlmann sense ΦU = π,

only if M < 1 and pr < 0.5.
Now, we define pT :¼ pca pr ¼ 0:5ð Þ using Eq. (13). Note that the true pr of

the system is unknown as we have assumed no knowledge of the state.
Nevertheless, if pr > 0.5, then its associated critical value [from Eq. (13)] is
pca<pT . This means that by applying UA with pa = pT and measuring the
associated phase ΦM we can extract the following conclusions:

● If we measure ΦM(pT) = 0, the system is within a trivial phase (ΦU = 0).
Because this implies pca<pT and hence pr > 0.5 (ΦU = 0), as we have
proven that pca always decreases with pr.

● If we measure ΦM(pT) = π, the system is in a topological phase (ΦU = π).
Because in that case pca>pT and then pr < 0.5 (ΦU = π).

Hence, we have just proven that ΦM(pT) =ΦU.

Error simulation
The detrimental effect of experimental errors is modeled by means of a
Liouvillian term Lerror , so that the Liouvillian L0, accounting for the
idealized dynamics, is in fact substituted by L0 þ Lerror . Specifically, if a
gate is performed during a time τ via a Hamiltonian H0, i.e., Ugate ¼ e�iH0τ ,
we substitute

e�iH0τρeiH0τ � eL0τρ ! e L0þLerrorð Þτρ: (15)

This error Liouvillian includes typical sources of imperfections: a) a
residual IX term during the cross-resonance ZX90 gate in the implementa-
tion of the CNOTs, HZX =mIX + μZX;58–60 b) spontaneous emission and
dephasing terms L�ðρÞ ¼ γ� σ�ρσþ � 1

2 σþσ�; ρf g
 �
and

LzðρÞ ¼ γz σzρσz � ρð Þ, respectively.
We have accommodated the values of γ− and γz to the characteristic

longitudinal and transverse relaxation times of T1 = 51 μs and T2 = 51 μs
reported by the IBM Quantum Experience calibration team the day of the
measurements. The residual IX strength has been taken to be about m ~
0.4 MHz. In addition, we consider τ2π ~ 200 ns and τZX90 ~ 600 ns as
characteristic times for a 2π-rotation on a single qubit and the ZX90
gates, respectively. Waiting times of 5 ns after a single qubit gate and 40 ns
after a ZX90 gate are also included.
In Fig. 3, we plot the result of the simulation including these

experimental imperfections together with the experimental measurements
of the topological Uhlmann phase ΦU. Despite the errors, the topological
transition is clearly noticed.

Data availability
All relevant data are available from the authors on reasonable request.
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