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1. Introduction 

ABSTRACT 

We propose that tessera terrains on Venus represent continental crust that does not participate in the 

periodic recycling of the lithosphere through global subduction events. We have studied the force balance on 

the boundary of a continental area that survives a global subduction event using an analytical model. In the 

proposed model, the ratio between the crus tal and litho spheric mantle thicknesses controls the force 

balance. If the crust thickness is less than � 2/5 of the lithospheric mantle thickness, the continental area will 

be compressed, but if the crus tal thickness is higher than � 2/5 of the lithospheric mantle thickness, the 

continental area will spread out and collapse. Consequently, if the lithospheric mantle beneath a continental 

region is delaminated during a giobal subduction event, the continent will collapse generating tessera inliers 

dominated by extensional tectonics. But if a significant portion of litho spheric mantle remains, then the 

continental area will be compressed generating a plateau by crustal shortening. The observed plateau heights 

can be explained by this model, a "'2 km height plateau can be generated by a lithospheric mantle thickness 

of 40 km while a "'4 km height plateau can be generated by a 90 km thick lithospheric mantle. We have 

modelled this crustal thickening of a continental area by tectonic contraction using a thin viscous sheet 

approach with a Newtonian viscosity for the crust. The force from a hot mantle elevated during a global 

subduction event is enough to build up a plateau by compression in � 50 Ma using a viscosity for the 

continental crust of rJ-1021 Pa s and � 200 Ma for rJ-S .1021 Pa s. During this compressional stage concentric 

fold and thrust belts are generated in the plateau-continent, erasing any impact craters that were present. 

The subsequent stabilization of a new crust and lithosphere in the surrounding mantle changes the force 

balance allowing a moderate gravitational collapse of the plateau-continent accommodated by radial 

grabens. The pulsating continent model links for the first time the generation of crustal plateaus and the 

origin of the volcanic plains predicting the observed equivalent effective crater density for both terrains. 

The origin and evolution of crustal plateaus on Venus have been 

controversial topics since high-resolution radar images were obtained 

by the Magellan mission. Crustal plateaus are subcircular areas with 

diameters in the range of 1500 to 2500 km, and elevations of 0.5 to 

4 km above the surrounding plains. They are made up of intensely 
deformed terrain, known as tessera, characterized by different cross­

cutting sets of structures indicating a complex tectonic history 

( Bindschadler and Head, 1991; Hansen and Willis, 1996; Hansen 

et al., 1999, 2000). The origin and evolution of crustal plateaus have 

been a focus of attention because they are among the oldest terrains 

on Venus and therefore are keys to the understanding of the 

geodynamic evolution of the planet. 

et al., 1992; Strom et al., 1994). In order to explain this observation 

Turcotte (1993, 1995, 1996) and Turcotte et al. (1999) proposed that 

Venus loses heat by episodic global subduction events. Following this 

hypothesis, the volcanic plains were formed during the stabilization of 

a new crust after the last global subduction event about 500 Ma ago. 

Crustal plateaus are terrains that suffered a complex tectonic 

evolution before emplacement of the regional volcanic plains; there­

fore, under the geodynamic hypothesis of a planet losing heat through 

global episodic subduction events, they are terrains that survived the 

last of these events. The tectonic evolution of crustal plateaus probably 

continued after the emplacement of the surrounding volcanic plains. 

Crustal plateaus show small gravity anomalies, low gravity to 

topography ratios, and shallow apparent depths of compensation 

( ADC), all indicating a thickened crust ( Smrekar and Phillips, 1991; 

Bindschadleret al., 1992a; Kucinskas and Turcotte, 1994; Grimm, 1994; 

Simons et al., 1997). The good spatial correlation of crustal plateau 

elevation and highly deformed tessera terrains clearly indicates that 

deformation plays a major role duringcrustal thickening ( Bindschadler 

and Head, 1991 ; Bindschadler et al., 1992a, b; Hansen and Willis, 1996, 

Radar images obtained by the Magellan mission showed that 

impact craters on Venus are nearly randomly distributed ( Schaber 
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1998; Ghent and Hansen, 1999; Hansen et al., 1999, 2000; Hansen, 

2006). 

Different models for crustal plateau formation have been proposed, 

but no consensus has been reached. The two principle models 

consider crustal plateaus as either the surface expression of down­

welling or upwelling flows. The downwelling model involves a 

tectonic crustal thickening due to concentric compression caused by 

a subsolidus flow and horizontal accretion of an ancient thin 

lithosphere on a cold mantle downwelling flow (e.g., Bindschadler 

and Head, 1991; Bindschadler et al., 1992a, b; Bindschadler, 1995; 

Gilmore and Head, 2000). The upwelling (plume) model accomplishes 

crustal thickening by magmatic underplating and volcanism due to 

interaction of an ancient thin lithosphere with a large thermal mantle 

plume (Hansen and Willis, 1998; Phillips and Hansen, 1998; Ghentand 

Hansen, 1999; Hansen et al., 1999, 2000). 

The tectonic patterns of crustal plateaus are complex. Both 

extensional and compressional structures appear with a wide range 

of wavelengths. Compressional structures are typically concentric and 

oriented parallel to the plateau margins, while extensional structures 

are mainly perpendicular to the margins and radially distributed 

(Ghent and Hansen, 1999). While there is agreement that the final 

tectonic stage is characterized by radial extension which generates 

grabens, the initial tectonic stages are debated. The supporters of the 

plume model distinguish between two families of extensional 

structures, long-narrow grabens with small wavelengths, so called 

"ribbons", and wide short multiple-scarp grabens (Ghent and Hansen, 

1999). These authors consider ribbons the first structure to be formed, 

later the concentric folds, and finally the wide complex graben. This 

interpretation is based on the assumption that the wavelength of each 

of these types of structures is indicative of the thickness of the brittle 

crust, being generated with a brittle-ductile transition deepened with 

time during the cooling of the plateau. However, Gilmore et al. (1997, 

1998) and Romeo et al. (2005) concluded that the deformation phases 

are first compressional and finally extensional. In this interpretation 

the extensional structures, including the long-narrow grabens, 

postdate or are contemporary with the generation of the compres­

sional structures. 

Both hypotheses have problems in explaining all the character­

istics of plateaus. On the one hand, the weak points of the 

downwelling model are: ( 1 )  a predicted domical shape instead of 

the flat-topped plateau geometry (Kidder and Phillips, 1996); (2) too 

much time is required for the thickening by crustal flow (1-4 billion 

years) (Kidder and Phillips, 1996). On the other hand, the main 

challenges of the plume hypothesis are: ( 1 )  there is no explanation for 

the extensive contractional tectonics observed (Ghent et al., 2005; 

Hansen, 2006); (2) the predicted timing of the extensional tectonics 

contradicts cross-cutting relationships in different locations (Gilmore 

et al., 1998; Romeo et al., 2005). Although Gilmore et al. (1998) argued 

that the formation of ribbon-tessera terrain requires an excessive 

geothermal gradient, Ruiz (2007) indicated that the heat flow needed 

for generating ribbons is reasonable for a plume environment. 

Hansen (2006) rejected the hot spot and downwelling models and 

proposed a new catastrophic model where crustal plateaus were 

formed by huge lava ponds generated by massive mantle melting due 

to large bolide impacts on a thin ancient lithosphere. According to this 

model the mantle beneath the lava pond would be a depleted 

residuum compositionally buoyant in respect to the adjacent 

undepleted mantle, causing the plateau uplift by isostasy. The main 

challenges of this impact model are: ( 1 )  there is a wide discussion 

about whether large bolides are able to melt a significant portion of 

the mantle for generating such an amount of magma (Ivanov and 

Melosh, 2003); (2) except for the final extensional tectonics, this 

model considers that the initial tectonic deformations, both exten­

sional and compressional, observed in crustal plateaus are caused by 

the convective forces generated during the lava pond cooling, in this 

context, the significant amounts of shortening observed in the plateau 

margins are very difficult to explain; (3) The generation of the large 

wavelength folds requires stresses enough to deform a brittle layer 

that is several km thick, how can the underlying liquid magma in 

convection transmit such forces to the upper brittle layer?; (4) no 

numerical calculation of the isostasy forces involved in the plateau 

raising has been provided yet, in other words, what elevation can be 

supported by this method? 

Finally, the process of crustal plateau formation is time-transgres­

sive for all the proposed models. In all the cases plateaus are 

considered to be elevated and the compressive structures to be 

formed before the regional volcanic plains emplacement. The density 

of craters located in crustal plateaus is equivalent to that of the 

regional volcanic plains. The surface of crustal plateaus is not 

sufficiently large to determine their age from crater statistics even 

considering the possibility that all the plateaus have the same age. But 

they cannot be too much older than the regional volcanic plains 

considering that they have approximately the same crater density. The 

crater density of crustal plateaus indicates that they were probably 

formed around 500 ma, although, considering that their area is not 

statistically representative, they could be as much as 1000 ma old 

(Nunes et al., 2004). If crustal plateaus were formed and deformed 

diachronously since the early history of Venus they should record 

different crater densities always higher than the average planetary 

crater density, which does not occur. 

Tessera inliers dominated by extensional tectonics outcropping 

across the Venusian regional volcanic plains are generally considered 

remnants of collapsed crustal plateaus (e.g., Bindschadler et al., 1992b; 

Bindschadler, 1995; Ivanov and Head, 1996; Hansen, 2006; Hansen 

and Willis 1996, 1998; Nunes et al., 2004; Nunes and Phillips, 2007). 

Hansen and Willis (1996) distinguished between tessera inliers 

dominated by graben, and tessera inliers dominated by fractures, 

proposing that the former are remnants of collapsed crustal plateaus 

and the latter flooded ancient corona-chasmata chains. Nevertheless, 

the analytical and finite element models performed by Nunes et al. 

(2004) indicate that the range of preserved crustal plateau morphol­

ogies and tessera inliers is not possible to achieve through lower 

crustal viscous flow during collapse of a compensated plateau. The 

analytical and finite element models for the evolution of uncompen­

sated plateaus of Nunes and Phillips (2007) better address the 

morphologies of crustal plateaux and tessera terrains although these 

models do not explain all the extensional structures observed. 

In this paper we propose an alternative model for crustal plateau 

and tessera inliers origin and evolution. A model of crustal plateau 

formation has to give: ( 1 )  a reasonable mechanism for crustal 

thickening; (2) an explanation of the tectonic evolution deduced 

from structural analysis; (3) take into account the observed distribu­

tion of impact craters, and (4) should explain the current coexistence 

of different sizes and heights of crustal plateaus and tessera inliers on 

Venus. Assuming that Venus loses heat through global subduction 

events, the last of which led to the generation of the regional volcanic 

plains 500 Ma ago, and considering that tessera terrains are 

stratigraphically older than the regional plains in every location, it is 

clear that the tessera terrains that make up crustal plateaus and 

tessera inliers are remnants of an older crust that survived the 

subduction event. On Earth, the only crust that does not participate in 

the subduction process is the continental crust due to its buoyancy 

associated with its lower density. We propose that tessera terrains, 

both the lowland inliers and the crustal plateaus, represent Venusian 

continental crust, or buoyant areas of differentiated composition, that 

survived the proposed last global subduction event. In this context 

crustal plateaus would represent continents and the tessera inliers, 

collapsed continents. The change in the force balance after a global 

subduction event in the surrounding of an area of thin continental 

crust (for example a collapsed continent) with a significant litho­

sphere underneath is enough to build up by compression a crustal 

plateau in 50 Ma. However, if the subduction event delaminates a 
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Fig. 1. Model geometry and parameters of a continental area after a subduction event. 

significant portion of the lithosphere under a continent, a subsequent 

collapse will occur generating the observed tessera inliers. Thus, 

controlled by the proposed periodic subduction events, the Venusian 

continents can suffer cycles of thickening events driven by tectonic 

compression and also extensional collapse events. Therefore we 

propose the term pulsating continents to describe the cyclic behavior 

that links crustal plateaus and tessera inliers. 

2. Model description 

We will analyze the evolution of an area of thin low-density crust 

with a relatively thick lithosphere that survived a global subduction 

event. Our two-dimensional analytical model contains two blocks: 

one with a single layer representing the hot mantle raised to the 

surface during a global subduction event, and an adjacent three-layer 

block representing the future crustal plateau. The layers of this block 

are a thin low-density (Pc) continental crust, the lithospheric mantle 

beneath with a density controlled by a linear temperature profile, and 

the underlying hot mantle with a density Pm (Fig. 1). The temperature 

at the surface is To, the temperature of the mantle is Tt and the 

temperature at the base of the crust is T M. The initial temperature 

profile is assumed to be linear from To to Tt. The temperature at the 

base of the crust is 

TM = 

YMTo + hoTl 
ho + YM 

(1 ) 

where YM is the thickness of the lithospheric mantle and h o is the 

initial thickness of the crust. 

We assume that the topography is compensated so that 

where h is the crustal thickness, ht is the plateau elevation and 

a=2.4 ·10-5 K-t is the thermal expansion coefficient with the same 

value for the crust and the mantle. 

Integrating the pressure profile of a mantle column outside the 

plateau we obtain the force from the mantle surrounding the plateau, 
Fm, 

(3) 

where g=8.6 ms-2 is the surface gravity on Venus. The pressure 

profile, Po, beneath the plateau as a function of depth, y, is 

1 
Po � p,gy +"2 p,CI(T M-TO)gy lli:y"h 

1 1 - Pcgh +'2Pca(TM-To)gh + pn$(y-h) +'2Pma(TI-TM)g(y-h) hsy:o:;h + YM. 
(4) 

Integrating over depth we obtain the value of the force from the 

plateau, Fp, 

In equilibrium Fm=Fp, and assuming compensated topography we 

combine Eqs. (3), (5), (2) and (1) to obtain 

where A, B, C, D, E, F, G and H are constants defined by: 

A�-p,ho - -Cl (T,-To) +CI(T,-To)+ 1 --Cl(T,-To)-l 
1 2 [Pc (1 2 2 ) 1 

1 2 Pm 4 2 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

The results for equilibrium that relate the crustal thickness (h) to 

the lithospheric mantle thickness (YM) for different crustal densities 

(Pc) are plotted in Fig. 2a using Eq. (6) with an initial crustal thickness 
h o=7 km. The change of the plateau elevation (ht) with the 

lithospheric mantle thickness (YM) in equilibrium is also plotted in 

Fig. 2b using Eqs. (6) and (2) for an initial crustal thickness h o=7 km. 

The results for equilibrium shown in Fig. 2 indicate that when the 

crustal thickness represents � 2/5 of the lithospheric mantle thickness, 

then Fm = Fp- From this we can conclude that if the crustal thickness is 

less than �2/5 of the lithospheric mantle thickness then the Fm>Fp 
and the plateau will be compressed by the surrounding hot mantle, 

but if the crustal thickness is greater than � 2/5 of the lithospheric 

mantle thickness then Fm<Fp and the plateau will spread out and 

collapse, these fields of extension and compression are shown in 
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Fig. 2. Results for an equilibrium force balance (Fp=Fm). a) Dependence of the lithospheric 
mantle thickness on the crustal thickness of the continental area. The fields that will 
undergo compression or extension are shown. b) Dependence of the lithospheric mantle 
thickness on plateau-continent elevations. Results are plotted for different densities of the 
continental crust and a density for the mantle of Pm=3300 kg m-3. 

Fig. 2a.We have studied in detail the case of the tectonic thickening of 
the crust during compression of the plateau driven by a force balance 
where Fm> Fp due to an initial crustal thickness less than - 2/5 of the 
Iithospheric mantle thickness. 

Several studies of plateau deformation on the Earth have been 
carried out with particular emphasis on the Tibetan Plateau. Litho­
spheric deformation is a complex problem involving both brittle and 
ductile deformation and has been studied by a number of workers 

(Molnar and Lyon-Caen, 1988; Dewey, 1988; Gaudemer et aI., 1988; 
Zoback and Townend, 2001; Zoback et aI., 2002; jackson, 2002; Sleep, 
2007). One approach to modelling gravitational collapse is to treat the 
Iithosphere as a highly viscous material in which a lateral gradient in 
gravitational potential energy, due to the elevated topography, 
provides a driving mechanism for the lateral flow of the Iithosphere 
form high pressure (high elevations) to low pressure (lower eleva­
tions) (England and Mc)(enzie, 1982; Fleitout and Froidevaux, 1982, 
1983; England, 1987; Fleitout, 1991; Rey et aI., 2001). This is the 
approach that we use. 

Models for buoyancy driven flows vary in the treatment of 
rheologic layers into which the Iithosphere is divided as well as the 
rheology of these layers (Bird, 1991). In addition, Zhou and Sandiford 
(1992) have carried out a detailed study of buoyancy driven flows 
using a stress envelope for the Iithospheric rheology that includes 
friction constraints at shallow depths and thermally activated creep at 
greater depths. They found that the collapse rate is sensitive to the 
Moho temperature. 

Clearly, the deformation of the brittle upper Iithosphere is 
dominated by fracture and faulting, however, this deformation takes 
place on a wide range of scales, and therefore it is often appropriate to 
model it as a continuum deformation. This problem has been treated 
by Nanjo and Turcotte (2005) and by Nanjo et al. (2005) using 
concepts of damage mechanics. These authors show that it is 
appropriate to treat continuum brittle deformation using a nonlinear 
viscous rheology with a yield stress. 

In order to approach this time-dependent problem we have 
introduced a Newtonian viscous rheology for the crust giving a 
viscous force opposite to the compression of the plateau during 
deformation. If during compression both the crust and the litho­
sphere are deformed and thickened, then the ratio of the thicknesses 
of the layers will remain constant and consequently Fm will always be 
bigger than Fp. With this approach, equilibrium would never be 
reached. Therefore we have considered that the crust thickens during 
the compressional event of the plateau but the thickness of the 
Iithospheric mantle (YM) remains constant. We assume that the 
excess Iithosphere is removed during the compression by a down­
welling flow of the cold Iithospheric mantle due to a gravitational 
instability (Houseman and Molnar, 1997) beneath the center of the 
plateau. Houseman et al. (2000) modelled a Iithospheric shortening 
event that produced crustal thickening and obtained a Iithospheric 
mantle thickness that remained approximately constant during the 
compressional event. The thickness of the lithospheric mantle 
remains unchanged due to a downwelling flow of the cold Iitho­
spheric mantle driven by the development of a gravitational 
instability when the Iithosphere starts to thicken. Consequently, 
following the results of Houseman et al. (2000), we have considered 
that the Iithospheric mantle thickness (YM) remains constant to a first 
approximation. 

Since we assume that the crust has a constant specified viscosity, 
the temperature of the crust does not influence its rheology. However, 
the temperature does change the density of the crust through thermal 
expansion. For this purpose we assume that the temperatures at the 
top of the crust, To, and the base of the crust, T M, remain constant so 
that the crustal temperature gradient decreases - ha 1 as the crust 
thickens. We further assume that the linear temperature profile of the 
Iithospheric mantle from Tl to T M remains unchanged during plateau 
deformation. 

We note that the characteristic time for thermal equilibration in 
this section is about 50 million years, so our assumptions should be 
reasonable. Also this choice has a relatively small influence on our 
calculation since the change of continental thickness dominates in the 
calculation of forces. 

We apply the thin viscous sheet approach and assume the 
lubrication approximation is valid neglecting inertial forces (England 
and McKenzie, 1982; Houseman and England, 1986; Sonder and 
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England, 1986; jadamec et aI. , 2007). Including the viscous term in our 
force balance equation we get 

dh 
41) dt 

= ah2 + bh + c, (15) 

where 1) is the crusta I viscosity and a, b, c are constants defined by 

1 �c ) (1 Pc Pc 1)] a =- Pc --1 +a(TM-To --a(TM-To) +--- , 2 m 4Pm Pm 2 
(16) 

(17) 

(18) 

Integration of Eq. (15) with the initial conditions (h=ho when 
t=O), and solving for the crustal thickness (h) as a function of time (t) 
gives 

1 [ � (tV4aC=7J2 (b + 2aho)) ]  h = 
2a -b + y 4ac-b2 tan 

81) 
+ arctan V4aC=7J2 . (19) 

The evolution of the crustal thickness with time has been plotted in 
Fig, 3 using Eq, (19), and the change of elevation with time has been given 
in Fig. 4 substituting the crustal thickness, h, by an expression function of 
the plateau elevation, ht, obtained from Eq. (2) into Eq. (19). We have used 
To=750 K, T1=1600 K. ho=7 km, YM=80 km, Pm=3300 kg m-3, four 
values of crustal density,pc=2750, 2800, 2850, and 2900 kg m-3 and two 
values of crustal viscosity, 1)= 1021 Pa s and 1)= 5 ,1021 Pa s, for the solutions 
represented in Figs. 3 and 4. The main thickening of the continental crust 
of the plateau by compression can be accommodated in 50 Ma with a low 
viscosity, 1)= 1021 Pa s, and will take 200 Ma using a higher viscosity 
1)=5 .1021 Pa s. The final plateau elevation at equilibrium is controlled by 
the Iithospheric mantle thickness, YM• The plateau elevations obtained for 
different values of YM are given by the equilibrium relation in Fig. 2b. 

The temperature profile of the Iithospheric mantle during 
compression remains unaltered because of the constant Iithospheric 
mantle thickness. But, for the crust, we have included the change of 
the linear temperature profile as the crust thickens, being always 
linear from T M to To. 

During the construction of a crustal plateau by tectonic crustal 
thickening the volume of continental crust remains constant. This can 
be expressed as 

(20) 
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where Wo is the initial diameter of the plateau and w( t) is the diameter 
of the plateau as function of time. The linear shortening, e, in a section 
of the plateau during the tectonic compression is given by 

wo-w(t) e= --- . Wo (21) 

An expression of the shortening, e, as a function of the initial 
crusta I thickness, ho, and the crustal thickness, h(t), can be obtained 
combining Eqs. (20) and (21), 

(h; e = 1-
V

h(f) ' (22) 

The strain rate, e, of the linear deformation can be obtained by 

. 
1-1lfu e- --­- t . (23) 

The results for the evolution of shortening, e, and strain rate, e, 
with time obtained respectively from Eqs. (22) and (23) combined 
with Eq. (19) are given in Fig. 5. 

3. Tectonic evolution of crustal plateaus 

The tectonic evolution of a crustal plateau is illustrated in Fig. 6. Our 
model shows that initially the tectonic stress in a low density crustal area 
overlaying a significant Iithosphere that survived a global subduction 
event is compressional. Compression continues until the equilibrium 
between the forces from the plateau and from the surrounding hot 
mantle is reached. The amount of shortening needed to build up a 
plateau by tectonic compression depends on the initial geometry of the 

low density crustal area (ho and YM). Starting with an initial crustal 
thickness ho;7 km and a litho spheric mantle thickness YM;80 km the 
linear shortening in the two horizontal dimensions is about 40-50% (Fig. 
5). This large amount of shortening is accommodated by concentric 
thrusting and folding in the margins of the plateau and by a high-angle 
cross-cutting thrust and fold interference in the center yielding the 
observed basin and dome tessera terrain of this area. The basin and 
dome interference patterns of the central areas of crustal plateaus were 
previously described by Hansen and Willis (1996) and Ghent and 
Hansen (1999). This shortening is accommodated by compressional 
structures with a wide range of wavelengths from 0.1 to 150 km, 
probably due to deformation of a complex layered crust. This initial 
compressional stage is represented in Fig. 6 a b c. 

After a period of intense magmatism, new crust surrounding the 
crustal plateau is stabilized and a new Iithosphere grows by heat 
conduction. This will change the force balance reducing the force that 
compressed the plateau leading to a period of extension by 
gravitational collapse. This gravitational extension does not lead to a 
total collapse because the new rigid lithosphere thickening in the 
region surrounding the plateau will block the spreading process, 
stabilizing the crustal plateau as it is observed today. Radial grabens 
and fractures are expected to be generated in the margins of the 
plateau, during this aborted collapse process. The extension in the 
center generates a basin and dome interference pattern formed by 
grabens with different orientations. During this period, a tectonic 
inversion occurs in the majority of the initially compressional 
structures. The extensional grabens and fractures observed in crustal 
plateaus show a wide range of spacing from 0.5 to 50 km which is 
again indicative of the deformation of a multilayered complex crust. 
This extensional stage makes the plateau wider by compressing the 
crust of the surrounding plains where concentric folds and thrusts are 
formed and the plains adjacent to the plateau are raised by moderate 
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crustal thickening. This final extensional stage of our tectonic model 
for crustal plateaus evolution is represented in Fig. 6d. 

4. Pulsating continents: a cyclic behavior of crustal plateaus and 
tessera inliers 

The cyclic evolution of the Venusian geodynamics outlined by the 
model of periodic global subduction events of Turcotte (1993, 1995) 
and Turcotte et al. (1999) strongly suggests a cyclic behavior of the 
continental crust that does not participate in the subduction process. If 
we consider the possibility that tessera terrains represent differen­
tiated low-density crust, both crustal plateaus and tessera inliers could 
represent different stages of the same cycle. Our proposal of cyclic 
behavior for the continental crust is outlined in Fig. 7. The stages b, c, d 
and e of Fig. 7 are equivalent to the tectonic evolution of a crustal 
plateau described in Fig. 6. During the deformation and thickening of 
the plateau from b to c the crust becomes partially decoupled with 
respect to the lithospheric mantle. This decoupling allows the 
delamination of the Iithospheric mantle during the next global 
subduction event. Then the buoyant continental crust remains 
surrounded by hot mantle (Fig. 7f). At this moment there is no 
Iithospheric mantle beneath that would undergo plateau compres­
sion, thus the crustal plateau collapse gravitationally by extension in a 
very hot mantle environment (Fig. 7g). The tectonic structures 
expected in such a hot extensional environment are short-wavelength 
narrow grabens (ribbons). Contemporary with plateau collapse, the 

extensive volcanism generated by the hot mantle produces a partial 
flooding of the collapsed plateau-continent generating the observed 
tessera inliers mainly characterized by extensional tectonics. A new 
crust is stabilized surrounding the completely collapsed plateau­
continent and a new lithosphere grows by heat conduction (Fig. 7h), 
blocking the collapse process. This new lithosphere generated by 
cooling under the collapsed plateau is mechanically coupled to the 
continental crust because the crust is thin and therefore the upper 
lithospheric mantle is relatively cold as new lithosphere gets thicker 
(Fig. 7a). Thus, the next global resurfacing process does not delaminate 
the lithosphere under the continent, yielding the initial conditions for 
plateau growth (Fig. 7b). 

Obviously this is an idealized model that links crustal plateaus and 
tessera inliers, based on the cyclic geodynamic model of subduction 
events. The main key for the evolution of a continental area after a global 
subduction event is the ratio between the crustal and lithospheric 
mantle thicknesses that survive that subduction event. If the ratio is 
greater than the equilibrium value it will undergo gravitational collapse 
and if it is smaller the continental crust will be compressed (Fig. 2a). 

5. Discussion 

5.1. Structural geology 

Fig. 8 shows different radar images of Ovda Regio, the largest 
crustal plateau of the planet that has been the main location for 
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testing the hypothesis of crustal plateau formation and evolution. 

Fig. 8a shows a left-looking radar image of Western Ovda. Fig. 8b 

shows an image of the topography of Western Ovda. The left-looking 

radar images shown in Fig. 8c d and e correspond to the northern 

margin, the basin and dome central area and the southern margin 

respectively. Fig. 8f shows a detailed area of the northern margin, 

where time relations between structures can be observed. 

The amount of shortening accommodated by compressional 

structures in crustal plateaus has been considered very small by 

scientists that support the plume model (Ghent and Hansen, 1999) 

while the supporters of the downwelling model consider that it is the 

main deformation recorded ( Bindschadler et al., 1992a,b). Even the 

authors that initially supported the plume model have accepted that 

their model does not explain the large shortening associated with the 

presence of the small-wavelength folds (Ghent et al., 2005; Hansen, 

2006). This led Hansen (2006) to reject the plume model and propose 

the lava pond and giant impact hypotheses. 

Although it is widely accepted that the short «2 km) and medium 

(2-10 km) wavelength folds accomplish significant crustal shortening, 

we consider that the shortening associated with the long-wavelength 

(10-30 km) compressional structures has been underestimated. 

Ghent and Hansen (1999) interpret these long-wavelength structures 

to be gentle folds accommodating very small shortening. These long­

wavelength compressional structures are characterized by very wide 

ridges with a gradual variation of the radar brightness alternating 

with thin depressions (Fig. 8e). We interpret this structure as the 

alternation of anticlines separated by thrusts. These concentric thrust 

belts would correspond to the main shortening and thickening of the 

continental crust of the plateau. The high compression suffered by the 

plateau has refolded and made vertical the initially low-dip angle 

thrusts (Fig. 6c), similarly to continental collisional areas on Earth. 

Most of the medium wavelength ridges could also correspond to 

thrusts contributing to a larger shortening than previously considered. 

For instance, a large amount of compression associated with the 

northern border of Ovda Regio has been noted by several authors 

(King et al., 1998; Tuckwell and Ghail, 2002; Romeo et al., 2005), 

suggesting a collisional origin that was postulated by Tuckwell and 

Ghail (2002). Fig. 8c displays a left radar image of this highly 

compressed margin. The collisional origin of this highly deformed 

plateau margin yields an important question to answer: What collides 

against the crustal plateau? It is difficult to explain how the rigid 

lithosphere of the relatively young regional volcanic plains surround­

ing the plateau can collide concentrically against the plateau. This 

problem is solved by our model for crustal plateau formation because 

this concentric collision is driven by the hot mantle material raised in 

the last global subduction event. A collision against a soft fluid-like 

material allows the observed concentric shortening in different 

directions. 
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The timing of the structures and volcanism in crustal plateaus can 

be deduced from the detailed structural study performed by Hansen 

(2006) in a small area of Ovda Regio. The folds and thrusts of different 

wavelengths appear flooded by the intratessera volcanic plains. This 

indicates that the observed volcanism is post-compressional because 

the folds and thrusts never deform the intratessera volcanic plains. 

Nevertheless the extensional tectonics characterized by small-wave­

length long-narrow simple graben (ribbons) and long-wavelength 

wide complex graben are sometimes flooded by the intratessera 

volcanic plains and in other cases deform the already emplaced plains 

(Fig. Sf). Consequently, extensional tectonics is contemporary with 

volcanism and postdates compression. Both kinds of normal fault 

association, ribbons and complex wide graben, show the same cross­

cutting relationship with the post-compressional intratessera volcanic 

plains, sometimes predating and sometimes postdating them. These 

cross-cutting relationships were noted by Romeo et al. (2005); and 

can also be deduced from the maps of the detailed structural analysis 

performed by Hansen (2006) in Ovda Regio. 

The compressional or extensional character of the first deforma­

tion recorded in crustal plateaus has been subject of extensive 

discussions, because it is the main difference between the plume 

and downwelling models. The difficulties for reaching a consensus 

could be due to the possibility that extensional relict fabrics ( ribbons) 

from the previous tessera inlier stage could be preserved in some 

crustal plateaus. 

Both tectonic stages, the compression and the subsequent 

extension, are characterized by a wide range of wavelengths indicative 

of different thicknesses of the deformed layer for each wavelength 

value. The cross-cutting relationships between different structure sets 

do not provide a time trend in the formation of structures with 

different wavelengths, on the contrary structures with different 

wavelengths seem to form simultaneously indicating a complex 

layered crust. The models that associate each wavelength with a 

thickness of the brittle layer (Hansen et al., 1999, 2000; Ghent and 

Hansen, 1999; Hansen, 2006) have to assume that the rheology of the 

crust is homogeneous during deformation which is unrealistic. Most 

of the geological processes of rock formation and modification on 

Earth generally give layered compositions and rocks with multiple 

anisotropies. The probable volcanic origin of surface rocks on Venus 

provides a layered structure due to the accumulation of lava floods. 

Therefore on Venus, like on Earth, the deformation of a complex and 

probably layered crust is expected to yield structures at different 

scales with multiple wavelengths. 

The radial extensional structures cannot be found in the regional 

plains surrounding crustal plateaus, they are restricted to the plateau 

tessera terrain. Nevertheless, some compressional ridges that could 

correspond to folds or thrusts or both, appear in the area surrounding 

the plateau indicating moderate compression (Fig. Sc). These external 

folds are concentric and parallel to plateau margins and are typically 

formed in the closest area of the regional volcanic plains that are 

slightly elevated with respect to the external plains. 

All the exposed structural observations in crustal plateaus can be 

explained by our proposed model of tectonic evolution: (1) first an 

initial compressional stage that thickens the crust raising the plateau 

by airy isostasy generating thrusts and folds, and (2) followed by an 

extensional stage with grabens and intratessera volcanism generated 

inside the plateau and moderate compression in the surrounding 

volcanic plains. 

5.2. Origin of crustal plateau geometries 

Both the plume and downwelling models relate the different 

plateau elevations observed to different degrees of gravitational 

collapse with similar initial elevations. We propose that the height of 

each individual crustal plateau, ranging from 0.5 to 4 km, is not due to 

different amounts of gravitational collapse, but indicate different 

initial conditions before plateau formation. In our model the main 

factor that controls the final plateau elevation is the thickness of the 

lithospheric mantle. From the equilibrium relation of Fig. 2b the 

plateau elevation at the end of the compressional stage is determined 

by the lithospheric mantle thickness. Also, the different elevations 
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that was emplaced between anticlines, 

found in the same crustal plateau can be achieved by different 

thicknesses of the lithospheric mantle that survived the global 

subduction event in different areas of the same plateau-continent 

region, 

The width of the plateau, from our model, is determined by the 

initial size of the low-density continental area that will suffer 

compression, Consequently the observed variety of crustal widths 

and shapes is due to different initial sizes and shapes of the low 

density areas, The simple analytical model presented here gives an 

explanation for the compressive forces associated with plateau 

formation, Nevertheless, more detailed finite element models are 

needed to evaluate the suitability of pulsating continents for 

generating the observed rimmed plateau topography and the arcuate 

geometries of most of the tessera inliers, The observed rimmed 

morphologies of some crustal plateaus could be obtain when the 

downwelling flow associated to the gravitational instability of the 

lithospheric mantle during compression delaminates a significant 

portion of the lithosphere leading a thinner lithospheric mantle in the 

center of the plateau than in the margins, 

53. The viscosity of the crust and duration of compression 

The values of crus tal viscosity needed to achieve plateau 

compression in a reasonable time (50-150 Ma) are in the range 



7]== 1021 Pa s to 7]==5 . 1021 Pa s. These low viscosity values are close to 

the range of effective viscosity of 5 . 1021_2 . 1022 Pa s estimated by 

England and Molnar (1997) for the Tibetan plateau. More recently, 

Flesch et al. (2001) have considered the dynamics of the India-Asia 

collision zone and concluded that a vertically averaged viscosity in the 

range of 0.5 . 1022_5 . 1022 Pa s is appropriate for Tibet. The collisional 

area of the Tibetan plateau built up by compressional tectonics has 

been used as an analog to the biggest Venusian crustal plateau, Ovda 

Regio, by Romeo et al. (2005). Houseman et al. (2000) calculate the 

effective viscosity for the continental orogeny of the Transverse 

Ranges ofCalifomia, where a lithospheric downwelling flow driven by 

gravitational instability was suggested, to be at most about 1020 Pa s. 

The very high viscosity values (1024_1026 Pa s) used by Nunes et al. 

(2004) and Nunes and Phillips (2007), in their modelling of crustal 

plateaus collapse are not appropriate here, as they used the dry 

diabase rheology of Mackwell et al. (1998) for the plateau crust. Since 

we propose that tessera terrain represent low density differentiated 

crust, the diabase rheology is not a good approach for our model. 

Although we do not know the real composition of tessera, two facts 

indicate that we should use viscosities significantly lower that those of 

the models of Nunes et al. (2004) and Nunes and Phillips (2007): ( 1 )  

The differentiated continental-like composition that we propose for 

tessera terrains will be softer than the diabase, and (2) the strong 

relation of continental crust origin and water content on Earth 

suggests that Venusian continents should not be fully dehydrated. 

5.4. Crater distribution 

The distribution of impact craters on the Venusian surface, 

including tessera terrains and volcanic plains, is indistinguishable 

from a random distribution ( Strom et al., 1994). Although the area 

covered by all the crustal plateaus is not sufficient to statistically 

determine their age assuming a contemporary formation, the crater 

density observed in crustal plateaus is approximately equal to the 

crater density of the lowlands, indicating an apparently equivalent 

retention crater age for both provinces. The random fluctuations of the 

crater density can explain the small variations of crater densities 

between crustal plateaus. If a diachronous formation is considered the 

more craterized crustal plateaus could be as much as 1000 Ma old 

(Nunes et al., 2004) but not older. These observations strongly suggest 

that the formation of the volcanic plains of the lowlands and the 

crustal plateaus are linked. 

Nevertheless, none of the models for plateau formation proposed 

so far (downwelling, plume, and impact hypotheses) link the genesis 

of the regional volcanic plains with the origin of crustal plateaus. On 

the contrary these models propose that crustal plateaus were 

diachronously formed over a thin lithosphere on ancient Venus, 

which is not rejected but is not strongly supported by crater 

observations. If that were the case, why do not the crustal plateaus 

show a significantly more craterized surface than the planet average? 

An explanation could be that post-formation tectonic processes have 

erased old craters, but even in this case, no genetic relationship is 

given between the main tectonic events in crustal plateaus and the 

formation of the volcanic plains. 

Our model gives an explanation for the crater distribution 

observed both in volcanic plains and tessera terrains. The high 

shortening suffered by crustal plateaux immediately after a global 

subduction event tectonically erases all the previous craters present in 

the plateau-continent. Compression is expected to be terminated 

approximately at the same time that a new surface for the lowlands is 

produced by volcanism. From this moment, impact craters accumulate 

in both terrains, some of them being partially modified by extensional 

tectonics in the plateaus and by local volcanic activity in the lowlands. 

The analysis of tectonically modified craters on tessera terrains 

performed by Gilmore et al. (1996, 1997) shows that the observed 

craters are never affected by compression but are sometimes affected 

by extension, suggesting a very rapid compressional event followed by 

a longer period of extensional tectonics. These observations are in very 

good agreement with our model. We predict a very rapid compression 

caused by a catastrophic change in the force balance on the margins of 

an area of low-density crust (collapsed continent) after a subduction 

event. The duration of this short compressional event is only 

controlled by the resistance of the continental crust to deformation 

(",50 Ma for 7]== 1021 Pa s). This tectonic event is characterized by very 

large amounts of shortening that completely destroy the previous 

crater record, consequently no crater affected by compression 

remains. However, the subsequent extensional event is driven by a 

force balance change produced gradually on the margin of the plateau 

due to the growing of a new lithosphere in the lowlands; thus 

extensional tectonics occurred during a longer period than the initial 

short compressional event. This explains that some craters appear 

affected by grabens. 

5.5. Continental crust on Venus? 

Our model requires tessera terrain to be made up by low density 

compositions in order to explain why they survived the last 

subduction event. But the low density is not required by our model 

to achieve the compressional process that builds up crustal plateaus. 

Figs. 2-4 indicate that our model works with crust densities of the 

order of Pc==2900 kg m-3. 

The composition of the Venusian volcanic plains was analyzed by 

seven spacecraft that were successfully landed by the Soviet Union 

between 1972 and 1986: Venera 8,9,10,13,14 and Vega 1 and 2 (e.g., 

Vinogradov et al., 1973; Surkov et al., 1984). Although the uncertainties 

of the original rock compositions are important considering the 

significant degree of weathering and secondary transformations, the 

analyses indicate a basaltic affinity for the volcanic plains. However, 

the analyses obtained by Venera 8 and 13 yielded high potassium 

contents suggesting more differentiated alkaline compositions. 

Nikolayeva (1990) compared the geochemical data from Venera 8 

and 13 with terrestrial analogues concluding that the high potassium 

content demonstrates the presence of continental crust on Venus. 

However the Venera 8 and 13 landers analyzed materials from the 

volcanic plains and there is no geochemical data available from tessera 

terrains. 

Two volcanic morphologies have been proposed as evidence of 

differentiated materials, the steep-sided "pancake" domes and the 

large, steep-sided, ridged, radar-bright "festoon" flows (Pavri et al., 

1992; Fink et al., 1993; Moore et al., 1992). Nevertheless these volcanic 

features can also be obtained for basaltic or intermediate composi­

tions (Gregg and Fink, 1995). One of the scarce festoons is located in 

Ovda Regio (Ovda fluctus) suggesting the possibility of the generation 

of tertiary crust by partial melting (Head and Hess, 1996) at least in 

this crustal plateau. 

The unimodal hypsometry of Venus shown by the Magellan 

topography data suggests a homogeneous crustal composition. 

However, the presence of two types of crust, represented by tessera 

terrains and volcanic plains, cannot be ruled out considering that: ( 1 )  

The percentage of area occupied b y  tessera terrain (our proposal of 

continental crust) is small (8-9%), (2) the density difference between 

the tessera crust and the crust of the volcanic plains could be small, 

and more important (3) tessera terrains, including crustal plateaus 

and tessera inliers, show a wide range of elevations (�0-5 km) 

indicative of different Airy compensated crustal thicknesses. All these 

reasons can explain the lack of a maximum in the hypsometry caused 

by the Venusian continental crust. McGill et al. (1982) pointed out that 

Earth's hypsogram might be unimodal in the absence of oceans 

because they impose an erosional base level that homogenizes the 

thickness of the continental crust. 

The high D/H ratio of the water found in the Venusian atmosphere 

is evidence for abundant water in the past. This ratio, indicative of the 



enrichment in deuterium due to the preferential loss of hydrogen from 

the atmosphere, is 150 times the D/H values of terrestrial water that is 

presumably equivalent to the primitive water on Venus (Donahue 

et al., 1997). The generation of protocontinents on ancient Venus with 

abundant water seems reasonable based on the role that water plays 

in the differentiation processes that yield continental crust on the 

Earth. The difficulty of recycling low density materials into the mantle 

due to their buoyancy might have preserved old continental crust on 

Venus until today. If Venus lacks continental crust a question remains: 

How did ancient Venus with abundant water avoid the formation of 

continents by crustal differentiation processes? 

5.6. Ishtar Terra 

The model of pulsating continents that explains the observed 

characteristics of crustal plateaus and tessera inliers also has 

implications for the origin of Ishtar Terra. Ishtar, a � 10,000 km of 

diameter highland close to the north pole of Venus, contains very 

different terrains, with a wide range of elevations, with different kinds 

of topographic compensation (Kucinskas et al., 1996) and distinct 

tectonic fabrics (Hansen and Phillips, 1995). In the western part of 

Ishtar is Lakshmi Planum, a plateau area with elevations of 3-4 km 

above the mean planetary radius (MPR) covered by smooth volcanic 

materials. It is surrounded by linear mountain belts (elevated from 5 

to 10 km above MPR) featuring parallel ridges and troughs interpreted 

as contractional structures originated by crustal shortening. The 

eastern part of Ishtar is formed by Fortuna Tessera, a complex ridged 

terrain with different cross-cutting tectonic fabrics elevated 2 km 

above MPR Other tessera terrains appear adjacent to the mountain 

belts, called Atropos Tessera to the north and Itzpapalotl Tessera to the 

west. 

The admittance studies of Kucinskas et al. ( 1996) for Ishtar Terra 

constrains the kind of compensation of the different provinces. The 

elevation of the mountain belts is Airy compensated. The large crustal 

thickness (>60 km) obtained for the mountain belts of Ishtar together 

with a probable basalt-eclogite phase change strongly suggest a 

continental kind of crust for these terrains, provided they are older 

than �25-50 Ma Uull and Arkani-Hamed, 1995). Fortuna Tessera is 

also Airy compensated via thickened crust like other Venusian crustal 

plateaus. Nevertheless the elevation of Lakshmi Planum seems to be 

thermally supported with the thermal lithosphere thinned to 

� 100 km (Kucinskas et al., 1996). 

Following our model of pulsating continents, both the mountain 

belts and the adjacent tessera terrains (Fortuna Tessera) would 

represent continental crust that survived the last global subduction 

event. The variety of crustal thicknesses can be explained by different 

initial thickness of the lithospheric mantle that remains after the 

global subduction event (Fig. 2). An alternative or complementary 

hypothesis is that a higher contractional strain was absorbed by the 

mountain belts with respect to the tessera provinces due to a 

rheological contrast. Though the pulsating continent hypothesis 

gives an explanation for the compressional stresses that generated 

the mountain belts and the tessera provinces of Ishtar, it does not 

account for the thinning of the thermal lithosphere of Lakshmi 

Planum, for which a recent (�100 Ma) delamination process of a 

thickened basaltic crust which may have transformed into eclogite 

was suggested by Kucinskas et al. (1996). 

6. Conclusions 

The catastrophic resurfacing of Venus ( Schaber et al., 1992; Strom 

et al., 1994), together with the apparent thick thermal lithosphere 

with a mantle currently heating up (Kucinskas et al., 1996) seems to 

indicate a time-dependent thermal evolution with periodic subduc­

tion events (Turcotte 1993, 1995, 1996). Assuming that Venus loses 

heat through these periodic nearly-global subduction events and 

proposing that tessera terrains represent continental crust we propose 

a model that accounts for the characteristics of both crustal plateaus 

and tessera inliers, giving an explanation for: ( 1 )  The observed variety 

of elevations of tessera terrains, (2) their tectonic features and cross­

cutting relationships, and (3) the observed crater distribution. 

When a continental terrain survives a subduction event, it is 

surrounded by hot mantle material. We have analyzed the force 

balance on the boundary between the continental area and the 

adjacent hot mantle. Our results indicate that different ratios of the 

thickness of the continental crust to the thickness of the underlying 

lithospheric mantle can yield either compression or extension of the 

continental area. If the crustal thickness is less than � 2/5 of the 

lithospheric mantle thickness then the continental area will be 

compressed, but if the crustal thickness is greater than � 2/5 of the 

lithospheric mantle thickness it will spread out and collapse. 

Consequently, depending on the amount of lithospheric mantle that 

remains under a continental area after a subduction event, it could 

suffer compression and generate a plateau or it could gravitationally 

collapse generating tessera inliers. The periodic character of the 

subduction events could lead to a "pulsating behavior" of the 

continents of Venus generating alternatively crustal plateaus and 

tessera inliers. The proposal of tessera terrains as representing 

Venusian continental crust could be tested by spacecraft analysis of 

tessera terrains, which has been suggested as a main objective for 

future landing missions ( Basilevsky et al., 2007). If tessera is made up 

of continental crust, analyzing their composition would also constrain 

the history of vola tiles, in particular water, on Venus, which is critical 

to understanding terrestrial planet evolution. 
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