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Symmetry characterization of the collective modes of the phase diagram of the v = 0 quantum Hall
state in graphene: Mean-field phase diagram and spontaneously broken symmetries
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We devote this work to the study of the mean-field phase diagram of the v = 0 quantum Hall state in bilayer
graphene and the computation of the corresponding neutral collective modes, extending the results of recent
works in the literature. Specifically, we provide a detailed classification of the complete orbital-valley-spin
structure of the collective modes and show that phase transitions are characterized by singlet modes in orbital
pseudospin, which are independent of the Coulomb strength and suffer strong many-body corrections from
short-range interactions at low momentum. We describe the symmetry breaking mechanism for phase transitions
in terms of the valley-spin structure of the Goldstone modes. For the remaining phase boundaries, we prove that
the associated exact SO(5) symmetry existing at zero Zeeman energy and interlayer voltage survives as a weaker
mean-field symmetry of the Hartree-Fock equations. We extend the previous results for bilayer graphene to the
monolayer scenario. Finally, we show that taking into account Landau level mixing through screening does not

modify the physical picture explained above.
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I. INTRODUCTION

Since the discovery of the integer [1,2] and fractional
quantum Hall (QH) effects [3—5], a large number of works have
been devoted to the study of two-dimensional (2D) systems
in the presence of strong perpendicular magnetic fields. Due
to its chiral character, rich valley-spin structure and relatively
large cyclotron frequency, graphene is a particulary interesting
scenario to test QH features.

In this way, the study of QH states in graphene has been
a hot topic of research in the last years [6-32]. Among all
the possible QH states, the v = 0 QH state, corresponding to
the charge neutrality point, has received special attention due
to its intriguing strongly insulating behavior in both bilayer
and monolayer graphene at zero in-plane magnetic field. In
particular, the bilayer provides a more interesting scenario
because of the richer structure of its zero-energy Landau level
(LL) and the possibility of introducing an energy bias between
the two valleys with the help of a perpendicular electric field.
In fact, Ref. [22] presented a complete characterization of
the mean-field phase diagram of the v = 0 QH state in bilayer
graphene, taking into account the most general spin symmetric
interactions (including short-range valley/sublattice asymmet-
ric interactions) and the introduction of a voltage between
the two layers. The identified phases are ferromagnetic (F),
canted antiferromagnetic (CAF), fully layer-polarized (FLP),
and partially layer-polarized (PLP) [22]. The resulting phase
diagram is analog to that of monolayer graphene [21] due to the
identical structure of the Hamiltonian governing short-range
valley/sublattice asymmetric interactions.

Complementarily, the computation of the spectrum of
the collective excitations in QH integer states has been
also the subject of study of an important number of works
[7-9,14,25,27,29,33,34]. For instance, the spectrum of inter-
LL collective excitations was obtained in Refs. [8,14,34]. On
the other hand, the spectrum of intra-LL excitations within the

“jrmnova@fis.ucm.es

2469-9950/2017/95(16)/165427(36)

165427-1

zero-energy Landau level was computed for the v = 0 QH state
[33] and the rest of integer QH states [25] allowing only for
long-range and interlayer Coulomb interactions. In Ref. [27],
the dispersion relation of the modes for the Kekulé distortion
(KD) and CAF phases of the v = 0 QH state was computed
for monolayer graphene using an effective low-energy model.
Also within the v = 0 QH state in the monolayer scenario, the
bulk and edge collective modes of the CAF and F phases were
obtained in Ref. [29].

We devote this work to the computation of the mean-field
energies and the intra-LL collective modes of the whole
phase diagram of the v = 0 QH state of bilayer graphene, as
presented in Ref. [22]. Specifically, we compute the dispersion
relation within the time-dependent Hartree-Fock approxi-
mation (TDHFA), considering the complete Hamiltonian of
short-range interactions [22] and also including explicitly the
interaction of the electrons with the filled Dirac sea [20],
devoting special attention to the characterization of the rich
orbital-valley-spin structure of the modes, induced by the
short-range valley-asymmetric interactions, and to the study
of phase transitions in terms of these modes. In this way, the
work here presented provides a natural continuation to the
recent literature on the field.

In particular, we show that only singlet modes in orbital
pseudospin are strongly modified by many-body effects arising
from short-range interactions while the remaining modes are
almost unaffected by them due to the dominant character of
long-range Coulomb interactions. Indeed, as these orbital-
singlet modes are independent of the Coulomb interaction
strength at low momentum, they also represent the lowest-
energy neutral excitations of the system, playing a crucial
role in understanding the stability of the different phases.
Regarding the valley-spin structure of the modes, we classify
them according to the conserved valley and spin quantum
numbers of the total Hamiltonian. We find that, while the
FLP-PLP transition is governed by a spin-singlet mode, the F-
CAF transition is governed by a valley-triplet one; this contrast
arises due to the different nature of the spontaneous symmetry
breaking mechanism of the CAF and PLP phases. Interestingly,
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we prove that the remaining phase boundaries, F-FLP and
CAF-PLP, present a gapless mode arising from a mean-field
symmetry inherited from the full exact SO(5) symmetry
existing at the same boundaries for zero Zeeman energy and
zero interlayer voltage [27]. Moreover, we show that the CAF
and PLP phases are able to present dynamical instabilities as
a result of their spontaneously broken symmetries.

The strong analogy between the v = 0 QH states in bilayer
and monolayer graphene allows us to straightforwardly trans-
late most of these results to the monolayer scenario, recovering
essentially the same results of Ref. [29]. We also study the
effects of Landau level mixing by considering the screening
effect of Coulomb interaction in the large-N approximation
[21,35-38], showing that the described orbital-valley-spin
structure still holds, quantitatively (but not qualitatively)
changing the dispersion relation of the modes. Finally, we
relate the results presented in this work with experimental
scenarios, including a computation of the mean-field transport
gaps and a discussion on the collective modes detection.

We remark that the collective modes calculated in the
present work are neutral and, therefore, topologically trivial
[39,40]. The charged, topologically nontrivial excitations
(skyrmions) have been studied in both monolayer [7] and
bilayer [12] graphene, and the effect of short-range interactions
[27] and screening [21] on the nonlinear sigma-model stiffness
coefficients has been addressed for monolayer graphene. Here
we provide the corrections due to short range interactions to
the stiffness coefficients in the bilayer case as well.

The paper is arranged as follows: we first introduce the
effective projected Hamiltonian considered in this work in
Sec. II. We rederive in Sec. III the phase diagram of Ref. [22]
using a Hartree-Fock (HF) mean-field scheme and compute
the corresponding mean-field energies and transport gaps.
The dispersion relation of the different collective modes,
computed within the TDHFA, is shown in Sec. IV. We translate
the same calculations to monolayer graphene in Sec. V.
Effects of LL mixing are studied in Sec. VI. A discussion
on experimental features is presented in Sec. VII. Finally, the
conclusions are drawn in Sec. VIII. Technical details about the
diagonalization of the HF equations and the TDHFA are given
in Appendices A-C.

II. EFFECTIVE HAMILTONIAN FOR THE v = 0
QUANTUM HALL STATE IN BILAYER GRAPHENE

A. Low-energy Hamiltonian

In the first place, we briefly present the effective
model used in this work for bilayer graphene, following
Refs. [6,21-23,34], where the reader is referred for more
details. The effective dynamics at low energies can be
described by a two-band model [6], in which the field operator
for electrons has eight components and reads

0 _ _1/}+(X)
= ¢_<x>]’
_1/:fKAg(X) @KA&(X)
0 _ %KBg(X) %KBE(X) _
Vs = Vi e (X) Vi ag(X) b=k M
| Yk as(X) Y e (X)
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where A and B are the most far apart sublattices, Kand K’ are
the two valleys, and £ is the spin polarization. We note that the
two sublattices are interchanged in the K’ valley so, as usually
done, we will refer to the corresponding subspace as AB in
order to avoid confusions. The eight components of the field
operator then correspond to the total space KK’ ® AB ® s, s
being the spin space.

The corresponding effective Hamiltonian of the system
is H = Hy+ Hc + Hy. After neglecting trigonal warping
effects and other small corrections [6,23,26,34,41], the single-
particle Hamiltonian Hy reads

Hy = / d*xY I (X)[Hp + ey To. — €20, 1% (%), (2)

where T;; = t5XX' @ ‘L']'-A‘B ®1%andi,j =0,x,y,zwitht;,i =
X,Y,Z, the usual Pauli matrices and 7y = 1 while o, is the
corresponding Pauli matrix in the spin space. In the following,
the Pauli matrices in valley or sublattice space are denoted
using the letter 7 and the Pauli matrices in spin space are
denoted using the letter o.

The first term between square brackets in Eq. (2), Hpg, is
a 2 x 2 matrix acting in the AB subspace and corresponds to
the kinetic energy:

wp = 2 — 176 x IOII%BL[T]HZ 3)

= 6.28 x 10"°B, [T]Hz,
m being the effective mass for which we take the experimental

value m = 0.028m,, with m, the electron mass [42], and ap
the magnetic annihilation operator

azlﬁw In = i:25—7nm )
T2 0 P T \eBl T JBim

The operators m; = —iho; + eA;,i = x,y, are the momentum
components after the Peierls substitution [43] and the magni-
tude /p is referred as the magnetic length.

The second term, ey T.,, arises from a voltage difference
between the two layers, €y, = Ea,/2, with E the perpendicular
electric field and a, =~ 0.35 nm the separation between the
layers, while the third term takes into account the Zeeman

effect,e; = ugB, B =+ B”2 + Bi. Here, we assume that the
total magnetic field is not necessarily along the z direction, i.e.,
it can present a parallel component to the graphene plane, By.
The polarizations £ = =+ correspond to the spin components
that are antiparallel (parallel) to the total magnetic field B,
respectively.

Taking into account that only the perpendicular magnetic
field affects the orbital motion and using the Landau gauge,
we can write the potential vector as A(x) = [0,B,x,0]. In
this particular gauge, the eigenstates of Hp are characterized
by the following quantum numbers: the magnetic index n,
which is an integer number and characterizes the energy
of the corresponding Landau level, €,; the momentum in
the y-direction, k, and the polarization in the valley-spin
(K K' ® s) space, «. Specifically, they are given by \IJ,(lJ X =
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\If,?!k(x) Xa» Where x, is an arbitrary four-component spinor
in valley-spin space while the orbital wave function with
components in the space AB is

ﬂL (sgn 1) djuy—2(x + klp)
VI V2L gt Eg) ]

€ = (sgnn) /|n|(jn| — Dhwp, &)

for |n| # 0,1 and

Y (x) =

iky 0
J_LT[¢|m(x+kl%)]’ @=t @

for the degenerate levels |n| = 0,1 with zero energy (note
that n = 1 are indeed the same state). Hereafter, we refer
to this manifold of states as the zero Landau level (ZLL).
In the previous equations, L, is the length of the system in
the y direction and ¢,(x) is the usual harmonic oscillator
wave function [see Eq. (A2)]. We see that the kinetic energy
is degenerate in y-momentum and valley-spin polarization;
in particular, the degeneracy in k for each magnetic level
n is Ng = §/2ml%, S being the total area of the system.
Interestingly, the wave functions in the ZLL only have
nonvanishing components in the subspace KK’ ® B ® s.

Using the previous eigenfunctions, the field operator is
decomposed as

¥(x) = Z oW (ke )

n=—00 k,a

P (x) =

where  means that n takes every integer value exceptn = —1.
With respect to the interacting part of the Hamiltonian, H¢
represents the long-range Coulomb interaction:

N

1 o ~ ~ R
He =3 / d*xd*x [T () ()] Vo(x — X[ () (x)]:
8)

Here, : denotes normal ordering of the field operators and
Vo(x) = €2/« |x| is the Coulomb potential, with 2 = ¢ /47 €y
and « the dielectric constant of the environment. Finally, for
the short-range interaction Hamiltonian, Hsr, we consider the
most general expression compatible with all the symmetries
of the problem [21]:

N r1 ~y o
Ao= Y Ses [ @xtiiomiwr:.  ©)
L

The ’ in this sum denotes that we exclude the symmetric
termi = j = 0, already accounted by the long-range Coulomb
interaction. These interactions are asymmetric in the valley and
sublattice spaces. The origin of these short-range interactions
are the Coulomb interaction between sublattice/valley spaces
and the electron-phonon interactions, which we also treat as
short-ranged [21]. For shortness, we refer in the following to
the long-range Coulomb interactions as simply Coulomb inter-
actions. Except for the kinetic energy term, this Hamiltonian
is formally similar to that of monolayer graphene, see Sec. V.

The two-band model is expected to work quite well in a
wide range of magnetic fields 1 T < B, < 30 T, specially for
the ZLL [41]. For lower magnetic fields, trigonal warping
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effects become important and for larger magnetic fields one
has to use the complete four-band model, as the overlap of the
wave function of the n = 1 level with the ignored sublattices
is not negligible. Other small corrections to the two-band
Hamiltonian here considered break the degeneracy between
the single-particle energies of the n =0 and 1 levels [25]
but they are negligible compared to the analog Lamb shift,
discussed in the next section.

B. Projection onto the zero Landau level

We now address the study of the v = 0 QH state, which
corresponds to a half-filling of the ZLL and complete filling
of all LLs with n < —2. For that purpose, we make an
estimation of the order of magnitude of the different terms in
the Hamiltonian and we compare them with the typical energy
difference between LLs, Zwg. For the Zeeman term, we find

6Z

B
=0. 014— <1 (10
ha)B

for realistic values of the ratio B/B, while for the Coulomb
interaction one has

Fc 13.58 P = e?

hog kBTl «lp’
Usual values for the perpendicular magnetic field are
Bi = 1 T and the highest available continuous magnetic field
in the laboratory is B; ~ 80 T [44], which means that the
strength of the Coulomb interaction verifies F¢c 2 hiwp when
the environment is vacuum (¢ = 1). The interlayer voltage can
in principle vary in a wide range [25,41] but we keep its value
sufficiently small here, €y < hwpg. Finally, a dimensional
analysis of the short-range terms gives an estimation for the
coupling constants g;; ~ e2d /i with d ~ 0.1 nm the typical
length scale of the lattice. Then, the energy scale associated to

an

2
the short-range interactions is ~ 2 12 , which is small compared
to the LL separation as

e2d Fc d 0.1
: ~—~— KL (12)
fza)B lB K

Kléﬁa)g

We note that the energy associated to the short-range
interactions scales linearly with the magnetic field although
for low values of the magnetic field the coupling constants
themselves can be renormalized [21,22], see also Sec. VI.

As a result of the above analysis, the only term that is not
small compared to the separation between LLs is that related
with Coulomb interactions. We begin by treating Coulomb
interactions as weak, F¢ < fiwp; for instance, by supposing a
typical value k = 5 and amagneticfield B ~ 20 T, F¢ /hwp ~
0.5, which can be regarded as sufficiently small to treat it
perturbatively. In Sec. VI, we address the usual situation Fr 2>
hiwp and explain how to deal with it.

Taking into account the previous considerations and in
order to study the lowest energy excitations, we neglect LL
mixing and restrict ourselves to the ZLL by projecting the
full Hamiltonian into that subspace, as previously done in
Refs. [21,22,25,33]. We remark [see Eq. (6) and ensuing
discussion] that the states in the ZLL belong to the KK’ ®
B ® s space, which means that they are localized, for each
valley, in one sublattice or the other and correspondingly, in
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one layer or the other. Thus, within the ZLL, the sublattice
degree of freedom becomes equivalent to the valley degree of
freedom. The resulting effective Hamiltonian for the ZLL is

A0 — / x) [ —ey . — e0.10/(x)
1 R n N ~
+3 / d*xd*x": [T () ()] Vo(x—x) [T (X (x)]:
1 R o
+ 35 [x e i wnior

+ / d*xd*X' (%) Vos (x,X ) (X)), (13)

where 7; = tiKK/ and g; = gio + giz,i = 1,2,3. As we restrict
to the ZLL, the kinetic energy term is suppressed. We
have neglected the symmetric short-range interaction, arising
from the coupling gy, due to its smallness compared to
the symmetric Coulomb interaction [21]. Using symmetry
considerations, it can be proven that g, = g, = g1 [21,37],

J
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so there are only two independent coupling constants g, ,g,.
The potential Vps(x,x’) represents the mean-field interaction
of the ZLL with the (inert) Dirac sea compound by all
the occupied states with n < —2 [20,26,45]. As shown in
Appendix A 2, this potential is diagonal within the ZLL; its
explicit expression is given by Eq. (A38). The projection onto
the ZLL leads to a field operator of the form

Z Z WY Xk (14)

n=0,1 k,a

J(x) =

III. HARTREE-FOCK EQUATIONS AND MEAN-FIELD
PHASE DIAGRAM

In order to obtain the mean-field phase diagram of the v = 0
QH state at zero temperature, we use the Hartree-Fock (HF)
approximation for the self-consistent single-particle wave
functions, which we denote as W, ; . The corresponding HF
equations for the Hamiltonian (13) read (we refer the reader
to Appendix A for all the technical details)

En,a\yn,k,vt(x) = /de/VDS(X X )\IJ” k, a(x ) - Z Vm,p / d2X/V0(X —X )lpm p, ﬂ(X)\I’m D, ﬂ(x )\Iln k, zx(x)

m,p.p

0 i), s 0T s (OIT W k0 (X) — TV s (W), (0T W, 4 0(X)

i m,p,p

- €V":zllln,k,oz(x) - EZaz\pn,k,a(X)a

where the indices n,m = 0,1 label the magnetic levels, k,p
are the momenta in the y-direction and «,f8 represent the
polarization in the valley-spin space. We have made explicit
that we are dealing with an integer QH state, so every orbital
p is filled in the same way and then, the occupation number
Vn,p,a Of €ach state solely depends on n and &, v, po = Vn.a-
In particular, for the v = 0 QH state, only half of the ZLL
is filled. Thus, for each value of the y-momentum k, only
four states of the eightfold space, formed by the 0,1 magnetic
states and the valley-spin degrees of freedom, are occupied.
As usual, the direct (Hartree) term for the Coulomb interaction
is suppressed by the positive charge background.

An important result is that the orbital part of the self-
consistent HF wave functions is equal to that of the noninter-
acting wave functions, given in Eq. (6); see Appendix A for the
proof. Hence, the only remaining task is to specify the spinors
X«- In order to minimize the dominant Coulomb interaction,
the electrons occupy in the same way the valley-spin space for
the two magnetic levels, i.e., Vo, =Vvop =Vig =Vip =1,
with x,, two orthogonal spinors [12,22] so the mean-field
ground state is of the form

W) = l_[copacl palapsCh »5IDS). (16)

with |DS) the Dirac sea formed by all occupied Landau levels
withn < —2.

The four remaining unoccupied states of the ZLL are
characterized by the spinors x. 4. In this way, the occupation
number only depends on the valley-spin polarization «,
Vp.q = Vg, taking the values @ = a,b,c,d that correspond to an

as)

(

orthonormal basis of the valley-spin space. These spinors are
computed after projecting the HF equations into the orbital part
of the wave functions, obtaining closed algebraic equations in
valley-spin space:

€naXa = Xa — FuP X —

€VTz Xa — €207 Xa

2

+ Y wi([tr(PT)]T — T PT) X (17)

where u; = g,-/nllzg and F,, = F,0 + F,, with

T 1 3
Fo=.—Fc, For=Fo==-Fy, Fi1=-Fy. 18
00 ,/2 c 01 10 =5 Foo =7 Foo (18)

so Fog > Fo; > Fy; and then Fy > F as

Fo=3Fy, Fi=2Fy. (19

The values of the factors F,,, are obtained by inserting the
Coulomb potential in Eq. (A24).

The term F, /2 in Eq. (17) is the analog of the Lamb shift
[20,45], arising from the interaction of the ZLL with the Dirac
sea after the proper regularization of the Hamiltonian (see
Appendix A2). The term —F, P arises from the exchange
Coulomb interaction, where the matrix P is the projector onto
the subspace formed by x,.5, P = x4 )(aT + x» X,,T , and hence
Pxap» = xap and Px.4 = 0. The remaining terms are those
related with the short-range interactions and the valley-spin
part of the single-particle Hamiltonian. We see that the sole
dependence on the magnetic level is through the Coulomb and
Lamb-shift terms, while the other contributions to the energy
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Uy

€7

FIG. 1. Phase diagram of the v = 0 QH state. (Left) Phase diagram in the parameter space u,u,. The point V is the intersection of all
phase boundaries. (Right) Expected phase diagram for fixed u ,u,, with u, > —u, > 0, as a function of the Zeeman and voltage energies,

€7,€y.

only depend on the spinor x,. Note that, although the interac-
tion with the Dirac sea favors the filling of the magnetic level
n = 1, it is still more energetically favorable to occupy in the
same way the levels n = 0,1 due to the exchange interaction.
Indeed, the mean-field state (16) is an exact eigenvalue of the
effective Hamiltonian (13) when short-range interactions are
neglected. As Coulomb interactions dominate over short-range
interactions, this mean-field solution is expected to provide a
very good approximation to the actual ground state [7,21],
showing the robustness of the formalism here considered.

As a result of the previous discussion, the HF energies can
be written as

Fy Fy
2 2

with €, depending only on the polarization «. The energy of
the total state (per wave vector state) is

(Fo + F1)
2

E(P) = % > udltr(Pt))’ — (P, Pry))

€nab) = — = T €ab)y  En(ed) = = T €cd) (20)

Eyr = — +2E(P),

— eytr(PT,) — e2tr(Po). 1)

The contribution from Coulomb interaction to the total
energy turns out to be degenerate and does not depend on the
specific form of the occupied spinors x, 5. The actual ground
state of the system is determined by comparing the energies
corresponding to all possible solutions to the HF equations and
selecting that with lowest energy E(P), in the same fashion
of Refs. [21,22]. Hence the corresponding mean-field phase
diagram for the v = 0 QH state is the same of those references
and is represented in Fig. 1. The different possible phases
are ferromagnetic (F), canted antiferromagnetic (CAF),
fully layer-polarized (FLP), and partially layer-polarized
(PLP). The expected phase for the v = 0 QH state of bilayer
graphene for €y =0 and zero in-plane component of the

magnetic field is the CAF phase [22,23,46], which implies
that u, > —u; > 0. The exact values of these short-range
energies remain unknown but their order of magnitude is
uzluy| ~ 0.1hwg [24,47]. In the following, we treat them as
phenomenological inputs for the theory. All phase boundaries
intersect at the critical point

V =(ez.€y) = (—2ui,u; —uy). (22)

The complete phase diagram can be explored experimentally
by manipulating the in-plane component of the magnetic field
(which modifies the value of the total magnetic field B and
hence the value of €7) or the layer voltage (which modifies the
value of €y ). This fact can be checked by looking at right Fig. 1,
where we represent the phase diagram as a function of the Zee-
man and voltage energies, (€z,€y), for fixed values of u, ,u,
such that u, > —u,; > 0. The phase diagram here presented
describes the v =0 QH state for B, 2> 1 T [22]; the com-
plementary phase diagram in the remaining limit of very low
perpendicular magnetic fields B; <« 1 Tis studied in Ref. [32].
We now briefly describe all the phases and give the expressions
for the filled and empty valley-spin spinors, the matrix P and
the corresponding valley-spin energies €, for each phase.

A. Ferromagnetic phase

In the F phase, all the electrons have the spin aligned with
the magnetic field. The complete set of solutions involves the
following four spinors in valley-spin space, with eigenvalues:

Xa = |n2) ® |Sz)7 Xb = |_nz> ® |sz)a
Xe = n) @ |=s2), xa=1-n;) ®|=s;), (23)
€ap = —2u) —u; — €z F€y, €.q4=¢€zFE€y,
1+ o,
P = s E(P):—(ZML—}—MZ)—zéz.

2

Here, |+s;) denotes the state with spin polarization & = =+,
I the 4 x 4 identity matrix and |n;) = |K),|—n;) = |K').

165427-5



J.R. M. DE NOVA AND 1. ZAPATA

The F phase is always a solution of the HF equations
although it does not always correspond to the actual ground
state.

B. Full layer-polarized phase

The FLP phase is the equivalent of the F phase but in
valley pseudospin, K K’, which means that all the electrons
are concentrated on one layer (due to the equivalency of
valley-sublattice-layer in the ZLL in bilayer graphene). The
corresponding spinors are now

Xp = Inz) & |=s2),
Xa = |=nz) ®|=s2),

Xa = |nz> ® |SZ),
|_nz) ® |Sz)’

€ap = Uz F €2 — €y,

p_lt®

2 9

In analogy to the F phase, it is always a solution to the HF

equations but not necessarily the ground-state. By comparing

the energies of the two phases, we obtain the boundary between
the F and FLP phases:

Xc 24)

€cd = —2u, —2u, Fez+ ey,

E(P)=u, — 2ey.

Gv—GZ:ul-FMZ. (25)

C. Canted antiferromagnetic phase

The previous phases would be the only possible phases
if there were not short-range interactions, i.e., u; = u, = 0.
However, when taking into account these interactions, the
system can exhibit canted antiferromagnetism or partially
layer-polarization in order to minimize the interaction energy.
In the CAF phase, we have that

Xa = n2) ®lsa),  Xp = 1—n7) ® |sp),
Xe = 1n2) @ |=584),  Xa =|—nz) ® |=ss),
€ab = —U;—2U] cos’ Os — ez cosfs Fey = —u, Fey,
€eq = —2uy sin?Og + €5 cosfs F ey = —2u; Fey,
p_ I + cos 050, + sinfs(s) - o)z,
> ,
E(P) = —u, — €z cosbs, (26)

where |s, ;) are spin states with polarization given by the
vectors 8, = [+ in s cos ¢s, + sin g sin @s, cos Os], with

tilting angle cosfs = —ez/2u,, and s; = [cos ¢, sin ¢, 0].
We choose the phases of these states in such a way that |s;) =
o,|s,) and |—sp) = —0o,|—s,) so the CAF phase continuously

matches the F phase of Eq. (23) for 65 = 0. As the azimuth ¢
is a free parameter, the CAF phase exhibits a U(1) symmetry.
When this solutions exists, it always has lower energy than the
regular F phase, so the condition for the presence of the CAF
phase is just

cosls <1 => €z <€z, =—-2u, 27

with €. the critical Zeeman field.

D. Partially layer-polarized phase

In analogy with the relation between the FLP and F
phases, the PLP is similar to the CAF phase but in valley
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space:
Xa = M) ®[sz), xp=Im) ®|—s;),
Xe =1-m) Qls;), xa=I[-1n)®|—s),
€a b = UL sin? Oy + u, cos> Oy F ez

—eycosOy =u, Feg,

€cd = —2Ul —U; —U| sin® 0y — u, cos? Oy (28)
+eycosOy Fez = —3u; —u; Fez,
I .
p— +n ‘L',
2

E(P) = u, sin® 0y + u, cos’> Oy — 2ey cos Oy
=u, — €y cosby

with |n) a state with valley-polarization given by n =
[sin By cos ¢y, sin Oy sin ¢y, cos Oy ], cosOy = ey /(u, —u).
The PLP phase also presents an U(1) symmetry. In analogy
with the F-CAF phase transition, whenever this solution exists,
it has lower energy than the FLP phase so the existence
condition for the PLP phase is

cosfy <1 = ey <€y =u, +u, 29)
with ey, the critical voltage energy. On the other hand, the
boundary between the PLP and the CAF phases is placed at

2 2

€y €z
2 =y tu. (30)
u, —u; 2u

E. Transport gap

An experimental magnitude of interest that can be obtained
within the present mean-field computation is the transport gap
Apr, defined as the energy difference between the lowest
energy empty state and the last filled state. From the above
results, and within the convention chosen here for the occupied
and empty levels, it is immediate to show that in all phases

Aur=¢€c—€p=F+A" A¥=e —¢, @31

in good agreement with Refs. [16,25], where the only
asymmetric interactions considered are interlayer Coulomb
interactions.

IV. COLLECTIVE MODES

A. Preliminary remarks

We proceed to compute the neutral collective modes of the
previous mean-field phases using the TDHFA. The general
formalism of the TDHFA and its application to integer
QH states is explained thoroughly in Appendix B, while
Appendix C provides all the technical details on the results
presented in this section.

Due to the particular form of the v = 0 QH state, in which
the unoccupied levels have different valley-spin polarization
with respect to the occupied levels, the excitations correspond
to valley-spin waves. Within the TDHFA, the collective
modes are obtained from the eigenvalues and eigenvectors
of the matrix X (k), given by Eq. (C12). The wave vector k
corresponds to the momentum of the so-called magnetoexciton
[48], whose wave function is created by the action of the
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operator nana(
state | W), with

vdl — L —igk 1% AT
Mo ) = | P D eiakdig ot acCog— e
q

(32)

k) = n,\gn e (K) on the mean-field ground

where we have made explicit the dependence in valley
A= K,K’ and spin & = £ indices of the total valley-spin
polarization index . As well known from the general theory of
integer QH effect, the collective modes are expressed in terms
of linear combinations of magnetoexcitons. The resulting
dispersion relation is isotropic and only depends on k = |k|,
as shown in Appendix C.

In order to classify these modes, we study their symmetries
in the whole 8-dimensional space 01 ® KK’ ® s, formed by
the tensorial product of the magnetic levels of the ZLL and the
valley-spin space. For that purpose, following the notation of
Ref. [25], we define the operators

N 1 K ”

Si=3 222 Cnpae@estupies (33
n,p,x €&

A 1 K ~

Li = E DD bpne@halipie, (34)
n,p,& A

0[ =5 Z Z Cn,po E(Mi)nn’én’,P»)hf’ 35)
p ME nn!

which correspond to the components of the spin, valley and
orbital pseudospin, respectively. In the above expression, w;
are the corresponding Pauli matrices in the magnetic index,
with u, = +1 forn = 1,0.

We consider the behavior of the magnetoexcitons under
transformations generated by the previous operators. For in-
stance, for the spin operator, the commutator [S’i , MZ AEnN é,(k)]
reads

86 M, e 01 = Y (Gidgzr e MY, 300 (0)
¢

| (36)
(Gi)eorger = 3

[(0i)cedcer — Bec (01D ]

It is easy to prove that the matrices G; form a representation
withspin 1/2 ® 1/2 = 1 @ 0 of the Lie algebra of SU(2). Thus
spin singlet and triplet magnetoexcitons can be constructed ac-

cording to the value of the total spin S and its z-component S,
A;II . ss, (K). Specifically, the spin-triplet magnetoexcitons
are given by

M (K) =

n

n)nLn’)J (k)

M;xnwlo(k) [MTHn 4 (K) — nA w1, (37

\/_
nk n'A'+ (k)

while the spin-singlet magnetoexciton reads

M LU

n

R 1 s
M 00®) = —= M, 0 + ML, ] (38)

V2
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Due to the formal analogy with the operators L; and O;, we
can also build similar singlet and triplet magnetoexcitons in
valley and orbital pseudospin.

The importance of the previous considerations arises from
the fact that the effective Hamiltonian (13) commutes with the
operators S2,L.2, 5., L., with

=> §81L7= LiL;, (39)

i=x,y,z i=x,y,z

so S,L,S,,L, are expected to be good quantum numbers that
characterize the magnetoexcitons whenever |Wy) is also an
eigenstate of any of these operators. Thus the collective modes
can be labeled by a general index u, which represents a set of
conserved quantum numbers in valley-spin space. Specifically,
the F and FLP states have well-defined quantum numbers for
S,L,S;,L, which, as discussed in the paragraph following
Eq. (B22) and in Appendix C, implies that they cannot exhibit
dynamical instabilities (i.e., exploding modes with complex
frequency and positive imaginary part), at least within the
projected model considered in this work. On the other hand, the
CAF and PLP states do not satisfy this property and, as shown
in the next section, they are indeed able to display dynamical
instabilities in some regions of the parameter space.

At k = 0, apart from these valley-spin symmetries, the z
component of the orbital pseudospin, O_, is also conserved
by the Hamiltonian as it represents the angular momentum
of the magnetoexciton [8,33,34]. In fact, the total orbital
pseudospin O is another good quantum number in this limit.
As a consequence, we can provide a complete classification
of the modes at kK = 0 using their total orbital-valley-spin
symmetry, denoting their frequencies as w/,, . As shown
in Appendix C, the energy of the orbital-singlet modes
00, = 00 is completely independent of the Coulomb inter-
action strength. On the other hand, the orbital-triplet modes
(O =1) depend on short-range interactions only through
the valley-spin contributions of mean-field energies, but not
through many-body corrections. Since Coulomb interactions
are dominant, this structure implies that the triplet modes
are shifted above by relatively large Coulomb energies and
hence, the orbital-singlet modes are the lowest energy modes at
k = 0. In particular, the hierarchy wj, < o}, = 0|, < wlyis
satisfied. It is worth noting that the triplet modes with O, = +£1
are degenerate due to the analog Lamb shift.

For k > 0, however, the orbital singlet and triplet mag-
netoexcitons are mixed and the previous classification is no
longer valid. Then, in order to classify the orbital structure
of the different magnetoexcitons for fixed @, we introduce
the discrete index N = 0,1,2,3 and denote the corresponding
frequency as w)y (k) so they respectively match the collective
modes with orbital pseudospin OO, = 00,11,1 — 1,10 at
k = 0; hence, wjj(k = 0) = w}, and so on. The notation is
chosen in such a way that, for fixed u, o) (k) < oy, (k) for
N < N'.

As the collective modes correspond to valley-spin waves,
the behavior of the modes for low momentum is a)x,(k) ~
wh(0) + pyk?, with py the generalized valley-spin stiffness
[48]. However, this behavior is modified as a)g (k) >~ vgk for
the Goldstone modes of the phases with spontaneously broken
symmetries.
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At large momentum, klp 2 1, only Coulomb interactions

are relevant since C(k) decays as ~k~!, while R(k) does it
2
as ~e~ ¥ , where C(k), R(k) are the matrices that arise

due to the many-body contributions from Coulomb and
short-range interactions, respectively (check Appendix C for
their precise definition). For klp > 1, the collective modes
frequency approach asymptotically the mean-field particle-
hole excitation energy fiw >~ €, 4 — €y o'

The above considerations imply that the modes N =
1, 2, and 3 are almost unaffected by short-range interactions
since in both limits klp < 1, klg > 1 they solely depend
on them through the valley-spin part of the mean-field
contributions, which only provide a constant shift, and for
kig ~ 1 Coulomb contributions are the dominant. Indeed, it
is shown in Appendix C2 that the stiffness coefficients of
the N = 1 modes depend very weakly on u, ,u, while those
of the N =3 modes are completely independent of them.
Moreover, due to the analog Lamb shift, the N = 2 modes
can be computed explicitly as they correspond to a symmetric
combination of the orbital 0 O, = 11,1 — 1 modes as given by
Egs. (C22) and (C23), and it is seen that their dependence on k
only involves Coulomb interactions. As a result, we expect the
dispersion relation of the N = 1, 2, and 3 modes to be quite
independent of their valley-spin structure and then recover
essentially the same results of Refs. [25,33], where only (intra-
and interlayer) Coulomb interactions are taken into account.

The situation is quite different for the N =0 modes,
since at k = 0, they correspond to the orbital-singlet modes
which are independent of the Coulomb strength and the
only modes that experience many-body corrections coming
from short-range interactions. Hence their behavior at low
momentum greatly depends on the valley-spin structure of
the modes. Besides, as they present a positive stiffness (see
next section), a)g (k) increases monotonically with k. Hence
the orbital-singlet modes at k = 0 are (a) the lowest energy
excitations of the system and (b) the most sensible modes
to the valley-spin structure of interactions. We therefore
conclude that the orbital-singlet modes are the most natural
candidates to characterize the phase transitions. We note that
the orbital-singlet modes are denoted as the “even” modes in
Ref. [33].

B. Collective modes: analysis of the results

In this section, we compute the dispersion relation for the
collective modes of the different ground states obtained in
Sec. I, see Egs. (23), (24), (26), and (28). For each phase, we
discuss the symmetries of the excitations and of the ground
state, give the explicit expression for the frequencies of the
orbital-singlet modes wj, in order to study the stability of the
corresponding phase and the values of the associated stiffness,
g » and plot the dispersion relation of the different collective
modes, w) (k). We refer the reader to Appendix C?2 for the
specific details on the calculation of the collective modes.

1. Ferromagnetic phase

The ferromagnetic state has valley-pseudospin L,L, =0
and spin S, S, = 2Np, with 4N the total number of electrons
in the ZLL. All magnetoexcitons carry spin § =1, S, = —1

PHYSICAL REVIEW B 95, 165427 (2017)

so we use the valley pseudospin in order to characterize
the collective modes, a%:LL" (k). The excitations of the
ferromagnetic state consists of spin-flip excitations and full-
flip excitations. The spin-flip excitations involve transitions
between two different spin polarizations, keeping the same
valley polarization, while in full-flip excitations both valley
and spin indices are flipped at the same time. Specifically, the
spin-flip excitations are characterized by the modes with L =
1,0 and L, = 0. The energy of the orbital singlet associated to
these modes fiwfy is

hwgy = 2€7 4+ 2u; — (=) 2u, . (40)

The spin-singlet mode /iw)) = 2¢z > 0 is the Larmor mode
[29], while the spin-triplet mode characterizes the F-CAF
phase transition, iw}) = 2€7 + 4u | = 2(e; — €z.); precisely,
w(l)g = 0is the boundary [see Eq. (27)] between the two phases.
The appearance of a such a gapless mode corresponds to the
spontaneously broken U(1) symmetry of the CAF phase. In
the region where the CAF phase is present, the system is
energetically unstable as a)(l)g < 0.

Regarding full-flip excitations, they are characterized by the
triplet modes L, = +1. Indeed, their dispersion relation is the
same, solely shifted by the layer voltage, a)]l\,_l(k) = a)}v1 k) +
4ey, so we only need to compute a)}vl (k) to characterize them.
In particular, for the orbital-singlet mode,

holy = 2(u, +uy + ez — ey), 41)

which is proportional to the difference between the mean-field
energies of the FLP and F states. Hence in analogy to the case
of spin-flip excitations, wj, = 0 is the boundary between the
two phases.

The existence of such a gapless mode can be understood
from the appearance of a mean-field symmetry right at the
boundary between the FLP and the F phases. We define a
mean-field symmetry as that which is not of the complete
Hamiltonian but only of the mean-field HF solutions [see
discussion after Eq. (B32) for more details]. Specifically,
when condition (295) is satisfied, the HF equations present a
continuously degenerate mean-field ground state described by
the parameters #,¢ and characterized in valley-spin as

Xa = Inz) ®Isz),

Xp = cost|n;) ® |—s;) + e sint|—n;) ® |s,),

Xe = —e sint|n,) ® |—s.) + cost|—n.) ® |s.),

Xa = |—nz) ®|—s2), (42)

P(t,¢) = 1(I + o, cos’t + 7. sin’ ¢
+ sin2¢[ cos ¢ (TT} + 1)) + sin (T} — I1})])

with energy E[P(t,¢)] = E(Pr)cos’t + E(Pgp)sin’t,
Pr pLp being the projectors of the F, FLP phases, respectively
[see Egs. (21), (23), and (24)], and the matrices l'I’j defined

as 1'13 = %n ® o0;. Thus, right at the phase boundary, the
total mean-field energy of the state does not depend on the
parameters #,¢ and a continuous mean-field symmetry arises
from this fact. In particular, the parameter ¢ describes the
phase transition, with # = 0 corresponding to the F state while
the FLP state is obtained for r = 7. The associated total state,

denoted as |\W(¢,¢)), can be connected to the F state |F) by a
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FIG. 2. Dispersion relation of the collective modes for the different phases of the v = 0 QH state in bilayer graphene. We take the values
Fc =0.5hwpg, u, =0.1hwg, and u; = —0.05fiwp for the Coulomb and short-range energies, respectively. We remark that, when several
branches are represented in the same plot, the modes with N =1, 2, and 3 are so close to each other that is difficult to distinguish them.
(Upper left corner) Dispersion relations of the F phase with €, = 0.02/iwg and €; = 0.2/iwp, with the left plot devoted to the valley-triplet
mode w!! (k) and the right plot devoted to the modes with L, = 0, w’(k), L = 0,1 being depicted in solid (dashed) line. (Upper right corner)
Dispersion relations of the FLP phase with ey = 0.2fiwp and €; = 0.02/iwp. The left plot displays the spin-triplet mode w}! (k) and right plot
the spin-singlet mode w%(k). (Lower left corner) Dispersion relations of the CAF phase with €y = 0.02/iwp and €, = 0.02/iwp. Left plot
corresponds to the valley-triplet mode w}! (k) and right plot to the modes with L, = 0, the +(—) branches being depicted in solid (dashed)
line. (Lower right corner) Dispersion relations of the PLP phase with €, = 0.1/iwp and €; = 0.02/iwp. Left plot corresponds to the spin-triplet

mode w'! (k) and right plot the spin-singlet mode w® (k).
continuous unitary transformation of the form

W(1,4)) = “CP|F),
G(t.g) =) _te'®e] , énpp—He.,

n.p

43)

and, in terms of the projectors P, P(t,¢p) = %9 Prpe=G":®),
with G(¢,¢) as the matrix version of the operator G(t,4). Note
that the azimuth ¢ simply arises from adding a trivial rotation
in valley and/or spin space to G(z,0). The generator of Eq. (43)
can be further rewritten as

G(t.¢) = —it[cos (1T} — I1}) — sing (115 + I1))].  (44)

The operators f[f , ﬁf along with S'i ,ﬁz, form a representation
of SO(5) that is an exact symmetry of the total Hamiltonian
foru; +u, =0and ez = ey = 0[27]. Thus the exotic SO(5)
symmetry existing at the F-FLP boundary for zero Zeeman and
layer voltage terms survives as a weaker mean-field version at
the same phase boundary in the realistic scenariou, + u; # 0.
Remarkably, this gapless mode behaves as ) (k) ~ k2 for low
momentum in contrast to the linear dependence found for the
Goldstone modes of the phases with spontaneously broken
symmetries.

The stiffness for the orbital-singlet modes is given, for
dominant Coulomb interactions F¢ > u, ,u, [see Eq. (C30)

for the exact expression], by

Py = (25 Foo — 2uM)lg (45)
with u* a short-range coupling that depends on the valley-spin
symmetry of the mode. Specifically, u® = —u, — 2u, u'® =
—u,+2u; andu'' =u'" = u,.

We plot in the upper left corner of Fig. 2 the dispersion
relation of the full-flip (left panel) and spin-flip (right panel)
excitations. In the case of spin-flip excitations, the L =0,
(L = 1) branches are plotted in solid (dashed) line. As the
corresponding mean-field energies are degenerate and the
modes N = 1, 2, and 3 depend very weakly on the short-range
interactions, the curves of both branches are very close to each
other; indeed, this degeneracy becomes exact for the N = 2
modes as explained in the previous section. The characteristic
negative stiffness of the N = 1 modes can also be observed in
the plots [see Eq. (C31)]. Only the frequencies )’ (k), w}’(k)
are clearly distinguished due to the many-body corrections
arising from short-range interactions at low momentum.

When comparing the plots of spin-flip and full-flip exci-
tations, we see that the curves for the N =1, 2, and 3 are
extremely similar. Again, this can be explained by invoking
the dominant character of Coulomb interactions and the weak
dependence on short-range effects. As expected, the main
differences are observed once more for the lowest energy
modes N = 0. Variations of the in-plane magnetic field or
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the interlayer voltage only affect through a linear energy
offset in €z and €y that depends on the valley-spin structure
of each mode, as given by Egs. (40) and (41). Finally, we
remark that variations of the different parameters only change
quantitatively but not qualitatively the plots.

2. Full layer-polarized phase

As this phase is the analog of the F phase in valley space, the
results for the FLP phase are similar but interchanging L,L,
and §,S;. Specifically, the FLP state has spin §,S, = 0 and
valley-pseudospin L,L, = 2Npg. All magnetoexcitons have
valley pseudospin L = 1,L, = —1, so we use their spin to clas-
sify them, a)Z:SS*” (k). Since the interaction is spin-independent,
the triplet modes present the same dispersion relation, only
shifted by the Zeeman energy, o ,lvil(k) = a)}\?(k) F 2¢z, hence
we only need to compute w}vl (k) to characterize them.

The excitations of the FLP state correspond to valley-flip
and full-flip excitations. Valley-flip excitations are character-
ized by the modes with § = 1 and 0 and S, = 0. In particular,
the energy of the orbital-spin-singlet mode is

hwd) = 2u) — 2u, + 2ey = 2(ey — €y,). (46)

In analogy to the case of the F-CAF transition [see Eq. (40)
and related discussion], @) = 0 is the boundary between the
FLP and PLP phases; the gapless character of this mode arises
from the broken U(1) symmetry of the PLP phase.

Regarding the F-FLP boundary, we find that it is character-
ized by the mode

hwyy = 2(ey — €z —uy —uy,), 47
which is just —hwg, ' for the F state, see Eq. (41).
Reasoning as before, the appearance of this gapless mode at
the boundary between the two phases results from the residual
mean-field symmetry shown in Eq. (42).

It is worth noting the subtle difference between the F-CAF
and FLP-PLP transitions: while the former is governed by a
valley triplet mode, the latter is governed by a spin singlet
mode. This is due to the fact that, in the CAF phase, the
occupied states a,b correspond to two different spins s,,s; for
the two valley polarizations +n,, one being the other rotated
7 in the x-y spin plane. In contrast, in the PLP phase, all the
occupied states present the same valley polarization, specified
by the vector n, independently of their spin. This relation
can be observed in the P matrices: the F-CAF transition is
characterized by the appearance of an operator that goes as
~0,T,, which has valley pseudospin L = 1,L, = 0, while the
FLP-PLP transition only varies the orientation of the projector
in valley space, which has zero spin §,S; = 0. On the other
hand, the F-FLP transition is governed by triplet modes in both
spin and valley spaces. This fact can be understood from the
expression of the generator G (f,¢) of the mean-field symmetry,
Eq. (44),asithas L = 1,5 = 1.

The stiffness coefficients of the orbital-singlet modes are
also given by Eq. (45) but now u® = u, 4+ 4u, and u'' = u_,
noting that ,011\,_1 = p}vo = ,o}vl. In the upper right corner of
Fig. 2, we represent the dispersion relation of the spin triplet
(left panel) and singlet (right panel) excitations. The qualitative
trends and properties of the curves are similar to those of the
F state.
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3. Canted antiferromagnetic phase

The CAF state has only well defined value of the z valley
pseudospin, L, so we use this quantum number to characterize
the magnetoexcitons. Due to this lack of symmetry, dynamical
instabilities can appear as shown in Appendix C. The sector
L, = Oischaracterized by two branches, labeled as a)f, (k), that
correspond to generalizations of the spin-flip modes of the F
phase; they match the L = 0,1 modes for 65 = 0, respectively.
The energy for their orbital-singlet modes is

hod = |2u|y/(1 £ cos? 05)? — sin* 0. (48)

In analogy to the F state, the previous equation gives
the Larmor mode hwf{o = |4u,|cosOs = 2¢z > 0 and the
Goldstone mode 7wy, = 0. The appearance of this Goldstone
mode is expected because the CAF phase spontaneously
breaks the U(1) symmetry of the Hamiltonian (see discussion
in Appendix B about Goldstone modes in the TDHFA for
more details). The velocity of the Goldstone mode, given by
wy (k) > vgk in the limit k — 0, can be computed exactly and
is given by Eq. (C36). In particular, in the regime F¢ > u ,u.,
it is well approximated by

hvg 89 25

Iy \/2A[224 Fo+ 35 A}’ “9)

with A =€z sin?Ag and A =u, —2u,. Near the phase
transition, the velocity behaves as vg ~ VA ~ VE€ze — €7,
in agreement with the critical behavior described in Ref. [29].
Thus the F-CAF transition is characterized in the CAF side
by a vanishing group velocity instead of a closing energy gap.
There are no complex-frequency modes in the L, = 0 sector.
The remaining collective modes correspond to the sectors

with L, = £1, with frequencies a)}\,il(k). In analogy to the

F phase, they satisfy wl '(k) = wll(k) 4+ 4ey so we just
compute w}! (k). We find that

ol = —2ey +/(2u, — 2uy cos’ 6s)? — 4u sin* bs.
(50)

Interestingly, there are situations in which the quantity in
the square root is negative and then a dynamical instability
appears. It is straightforward to show that a)(l)é is purely real
whenever

2

i +u, > —% (51)

2u 1
is fulfilled. On the other hand, wé(l) = O atthe boundary between
the PLP and CAF phases, i.e, whenever Eq. (30) is satisfied.
In analogy to the F-FLP transition, this gapless mode can be
understood in terms of a mean-field symmetry arising right at
the phase boundary as the state |W(t,¢s,¢v)), characterized
by the projector

P(t,¢s,¢v) = %[1 +o.5.(t) + 7T - n()

s(1) .

+ —=(s - o)(cos y (1)t — siny(t)n - T)
n(r)

—n(®n(r)(my - T)(sy - a)}’ (52)

165427-10



SYMMETRY CHARACTERIZATION OF THE COLLECTIVE ...

PHYSICAL REVIEW B 95, 165427 (2017)

FIG. 3. Dispersion relation for complex-frequency modes, where the real (imaginary) part of the complex-frequency mode is plotted in
solid (dashed) line. (Left) Plot of w'! (k) for a CAF state with parameters Fe = 0.5hwg, u, = 0.05hwp, u; = —0.1%wg, €y = 0.02iwp, and
€7 = 0.02hwg. (Right) Plot of w''(k) for a PLP state with parameters Fec = 0.5hwg, u, = 0.1/iwg, u; = —0.05liwg, ey = 0.02kwg, and

€7 = 002ha)3

with
n; = [cos @y, singy,0], s = [cos s, sinps,0],
nJ_=2XIl||, SJ_ZQXSH,

s.(t) = cos’ £ cos O,
n(t) = n(t)(cos y (t)n; + sin y (¢)2),

n(t) = sinty/1 — cos? t cos? O, (53)

n(t)siny(t) = % sin 2¢ cos Oy,

n(t)n() = % sin 2¢ cos Oy,
has an energy E[P(t,¢s,0v)] = E(Pcap)cos’t + E(Pprp)
sin? ¢, Pcar.prp being the projector of a CAF, PLP state
characterized by the angles 05 v and ¢ y. Therefore, as in the
F-FLP case, the complete manifold of states is degenerate at
the CAF-PLP boundary, giving rise to a continuous mean-field
symmetry, with the parameter ¢ describing again the phase
transition: the value fr =0 yields the CAF phase, while
t = m/2 gives the corresponding PLP state at the other side
of the phase transition. For simplicity, we do not give the
spinors x,(t,¢s,¢y) as their expression is quite cumbersome
and unimportant for the present discussion.

A summary of the stability conditions for the CAF phase is
given by

2 2 2
€ € €
z % z 11
Uy fu, > 4+ —r— > 2 @y >0,
2u;  u;,—uy  2uy
2 2 2
€ € €
2+ —V sy tu, > %, wy <0, (54)
2u; U, —ug 2u |
2 2 2
€ € €
—Z 4V 5 Z sy tu, Ima)(l)(l);éO.

2u; U, —ug 2u |

Note that a)(l)é > 0 as long as we stay in the region where the
ground state is the CAF phase.

With respect to the stiffness coefficients, we find in
the regime F¢ > u,,u, that [see Eq. (C40) for the exact
expression]

LW (S F - B) 1 B

224 2
ol ~ l (55)

0 Jw + A2 — A2 i
with ut = —u, — 2u, cos’@s and u'' = u, + 2u, sin’0Hs.
We note that the Goldstone mode has no stiffness coefficient
due to its linear behavior and that ,011\,_1 = p}\,l. Remarkably,

the denominator of the above equation takes the value of the
Larmor frequency for the + mode and the resulting stiffness
,oaL becomes relatively large due to the small value of the
Zeeman energy.

In the lower left corner of Fig. 2, we plot the dispersion
relation of the modes with L, =1 (left panel) and L, =0
(right panel). We see that a mode with zero energy that
grows linearly with k appears in the sector with L, =0,
corresponding to the Goldstone mode of the CAF state. Apart
from this consideration, the qualitative form of the curves is
similar to the previous cases. We note that, while a variation of
the interlayer voltage only provides a trivial energy shift for the
L, = £1 modes, the role of the in-plane magnetic field is much
more critical as it determines the background mean-field state
by tuning the canting angle 05 through the Zeeman energy €.

In left Fig. 3, we consider an experimentally unrealistic
case with different values of the coupling constants, —u >
u; > 0, in order to study the trends of the appearance of a
complex-frequency mode in the CAF phase. The plot shows
the real (solid curve) and the imaginary (dashed curve) parts
of the unstable mode. The decrease (and eventual vanishing)
of the imaginary part of the frequency is a consequence of the
exponential decay of the many-body contributions from the
short-range interactions, also giving rise to the term respon-
sible for the appearance of the instability (see Appendix C
for the details). It is straightforward to show that the real part
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of the dynamical instability satisfies ﬁRe[w})I(k)] = —2¢€y, as
can be observed in the plot.

4. Partially layer-polarized phase

In contrast with the CAF state, the PLP state has well
defined quantum numbers in spin and valley pseudospin.
Indeed, the valley spin structure of the PLP phases is analog to
that of the FLP phase but replacing L, by the component of the
valley pseudospin along the direction of the vector n, L,,. The
excitations are also characterized by their spin, a),SvSZ (k), and
the triplet modes satisfy w}vil(k) = a)}\})(k) F 2¢z. However,
the Hamiltonian does not commute with the operator 12,1 and
because of this, dynamical instabilities can appear.

For the spin singlet, the orbital-singlet mode is gapless,

wly =0, (56)

as it is the Goldstone mode associated to the spontaneously
broken U(1) symmetry. Its velocity is computed in similar
terms to that of the CAF phase, Eq. (49), but now A =
€yesin? Oy and A = —u, — 4u, , presenting a similar critical
behavior near the phase transition, vg ~ VA ~ /€ye — €y.

Considering the spin-triplet modes, the orbital-singlet
frequency is

hiwyy = —2€7 +/(duy + A — A2, (57)

It can be proven that e, is real if

2
‘v (58)

U, —u|

U, +u; <

A zero-frequency mode hwé(l) = 0 appears at the boundary
between the PLP and CAF phases, arising from the mean-field
symmetry already discussed for the CAF phase [see Eq. (52)
and related]. Hence, in analogy to the F-FLP case, the CAF-
PLP transition is also governed by triplet modes. Putting all
together as for the CAF state:

2 2 2

€ € €
MJ_+MZ<—Z+ v < v
2u; U, —ug U, —uj

2 2 2

11
. Wy > 0,

€ € €

—Z 4V cu tu, < —Y—, oy <,0 (59
2u; U, —uy Uy —ug

2 2 2

€ € €

—Z Y < ' <uy +u, Imol)#0.

2u; U, —uy U, — U

In contrast to the CAF case, for the appearance of dynamical
instabilities in the PLP state it is only required a sufficiently
low value of the voltage; nevertheless, this instability occurs
in a region of parameter space where the CAF phase is the
ground state. For the stiffness coefficients of the spin-triplet
modes, Eq. (55) is still valid for sufficiently dominant Coulomb
interactions, using the value ull = u, — A.

In the lower right corner of Fig. 2, we plot the dispersion
relation of the spin triplet (left panel) and singlet (right panel)
excitations. The trends are similar to the previous cases. In
particular, in analogy with the CAF case, variations in the
in-plane magnetic field only vary the trivial energy shift for the
S, = 1 modes while the influence of the interlayer voltage
is much more important since it controls the value of 9y .
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FIG. 4. Plot of the velocity of the Goldstone modes as a function
of the parameter 6. for the CAF phase (solid blue line) and for the
PLP phase (dashed black line), with the rest of parameters keeping
the same values as in Fig. 2.

In right Fig. 3, we study a case with sufficiently low
value of the voltage so that the PLP state is dynamically
unstable and hence, the triplet modes have complex frequency.
The qualitative behavior resembles that of the unstable mode
appearing for a CAF state, satisfying a similar relation for the
real part, hRe[a)(l)l(k)] = —2¢y.

Finally, in Fig. 4, we represent the velocity of the Goldstone
modes for both the CAF and PLP phases as a function of the
critical parameter §., defined as §, = (€z..vc — €z.v)/€zc.ve
for the CAF and PLP phases, respectively. For low in-plane
magnetic field or interlayer voltage, the velocities saturate the
limit 85,y — m/2. The agreement of the approximation (49)
for dominant Coulomb interactions with the exact result of
Eq. (C36) is excellent (not shown). The corresponding plot for
the energy gaps of the F and FLP phases is trivial as they are
proportional to —§,., see Egs. (40) and (46).

V. MONOLAYER GRAPHENE

All of the previous work can be straightforwardly adapted to
the v = 0 QH state of monolayer graphene. We briefly revisit
the content of Secs. II-1V, adjusting the results to the present
case.

A. Effective Hamiltonian

We start by writing the effective Hamiltonian of monolayer
graphene (see Ref. [21] for a more complete review). The
corresponding field operator is given by

P oo = [P+
i 1/:fKAg (%) @KA@ (%)
oy — | YKkBE®) | _ | Yk pe(X) _
V= e | = (s | ST O
| Y& ae(X) Vg ge(X)
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where now Aand B are the two sublattices of the
same graphene layer. Once more, the two sublattices are
interchanged in the K’ valley so we denote the corresponding
subspace as A B. The Hamiltonian is decomposed in the same
fashion as in the bilayer case, H= I:IO + ﬁc + ﬁsr, but the
single-particle Hamiltonian Hy now reads

Hy = / d*x (X[ Hp — €20, 17(%) (61)

(note that there is no layer voltage term). After an appropriated
phase transformation, the matrix Hp can be written as

Hy = hos|
= w n ,
B B ag 0

2
wp = @ ~5.51 x 10'3\/B[T] Hz (62)

B

with vy 2~ 10°m/s the Fermi velocity. The corresponding
eigenfunctions and eigenvalues are similar to those of the
bilayer, \112! k,a(X) = \Ilfl)’ X)) Xa, With

W= L [(sgn m) G- (x + kl%,)]
" VIs V2 i (x + k)
€, = (sgnn) \/mmz)g (63)
for n # 0 and
. ok 0
‘I'n,k(x) = \/_Liy|:¢n(x + kl%):| (64)

for the ZLL, that now corresponds to just the magnetic level
n=0.

Due to the different scaling of the cyclotron frequency with
the magnetic field, the Zeeman energy now satisfies

2 _ 001621 o (65)
hog VB.[T] '

while an order of magnitude analysis of the Coulomb interac-
tion gives the dimensionless strength
Fc &2 &2 2.2

= < = S~ —. (66)
hwp klphwp KVF K

Note that it does not depend on the value of the magnetic
field, in contrast to the case of bilayer graphene. The order of
magnitude of short-range interactions is similar to the bilayer
case and their typical energy also goes as ~F¢cd /hwplp < 1.
Once more, for k = 1, Coulomb interactions are not weak.
However, by taking x ~ 5, we can get F¢ ~ 0.4hwg, which
can be regarded as a small value.

Under this assumption, we neglect LL mixing and project
the Hamiltonian onto the ZLL. The states for the ZLL of
monolayer graphene are also restricted to the KK’ ® B ®
s subspace, which means that they are localized, for each
valley, in one sublattice or the other and hence the sublattice
degree of freedom becomes equivalent to the valley degree of
freedom. Reasoning in the same fashion as in the bilayer case,
the resulting effective Hamiltonian is formally equal to that of

PHYSICAL REVIEW B 95, 165427 (2017)
Eq. (13) but with €y = 0:
A9 = _— / d?*xe; P (X)o. (%) + % / d>xd*x'
TP 1Vox — XY )P (x)]:
+ Z %gi / S AICEATICI B

+ f d?>xd*x' 1 (x) Vs (x, X)) ¥ (X)). (67)

The Dirac sea that creates the mean-field potential Vpg(x,x")
is composed now by all the occupied states with n < —1.

B. Hartree-Fock equations and mean-field phase diagram

The HF equations have the same form of Eq. (15). As the

v =0 QH state corresponds to half-filling of the ZLL, the

electrons occupy in the same way two orthogonal spinors x, ;

in valley-spin space and leave empty the remaining orthogonal

spinors x. 4. Then, after projecting the HF equations into the

orbital part of the wave functions, we get the algebraic equation
Foo

> Xe— Foo P X«

+ Y ui(r(PT)IT — T PTi)Xe — €20 Xa, (68)

€0, Xa =

where now u; = g; /2711123. The term Fpy/2 arises from the
interaction with the inert Dirac sea; however, in monolayer
graphene, it is just a trivial energy shift as there is only one
magnetic level in the ZLL.

The previous equation presents the same valley-spin struc-
ture of Eq. (17). As a consequence, the spinorial solutions x,
to the HF equations are identical to those of bilayer graphene
and their mean-field energies are

Foo Foo

€0,(a,b) = Y + €a.b)s  €0,(c.d) = >

Moreover, the total energy of the ground state (per wave vector
state) is

+ €c,a)- (69)

Foo
Eyr = _7+E(P) (70)

with E(P) given by Eq. (21). Therefore we conclude that
the mean-field phase diagram for the v =0 QH state in
monolayer graphene is that of the bilayer for ey = 0 [21,22].
In that case, the PLP phase of the bilayer changes to a
fully interlayer coherent phase (ILC) since 6y = m/2 and
the vector n, pointing the polarization in the valley space,
is fully contained in the x — y plane, n = [cos ¢y, sin ¢y ,0].
For monolayer graphene, the equivalent of the ILC phase is
the Kekulé distortion (KD) phase: since the valley degree of
freedom is equivalent to the sublattice in the zero Landau level
of monolayer graphene, this state corresponds to a coherent
mixture of the two sublattices. For the same reason, the FLP
phase is now a charge-density wave (CDW) phase. There are
experimental evidences that the phase for the v = 0 QH state
of monolayer graphene for zero in-plane component of the
magnetic field is also the CAF state [47],sou, > —u > 0 as
in the bilayer case. However, as an analog of the layer voltage
is lacking, in principle only the transition between CAF and F
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FIG. 5. Dispersion relation of the collective modes for the different phases of the v = 0 QH state in monolayer graphene. In all the plots, the
strength of the Coulomb interaction is set to F¢ = 0.5/iwp. (Upper left) Dispersion relation of the F phase for u, = 0.05iwg, u; = —0.02hwp,
and €; = 0.045/wp. (Upper right) Dispersion relation of the CDW phase for u, = —0.05/wg, u; = —0.02Awg, and €; = 0.01/iwp. (Lower
left) Dispersion relation of the CAF phase for u, = 0.05/iwp, u; = —0.02hwp, and €; = 0.017wp. (Lower right) Dispersion relation of the

KD phase for u, = 0.01hwg, u; = —0.02/iwg, and €; = 0.01/iwp.

phases can be explored by changing the in-plane component
of the magnetic field.

For the mean-field transport gap, we find that it satisfies a
similar relation to Eq. (31),

Ayr = Foo + A", (71)

C. Collective modes

The TDHFA developed for computing the collective modes
within the ZLL of the v = 0 QH state of bilayer graphene
can be straightforwardly translated to the monolayer. Indeed,
the valley-spin structure of the excitations is the same as in
the bilayer case, while the orbital structure is trivial as it
corresponds to a one-dimensional subspace spanned by the
magnetic level n = 0. Hence excitations are characterized just

by their symmetry in valley-spin space, w* (k), with u labeling
the same set of conserved quantum numbers described in
Sec. IV B. Due to the simple structure in orbital space, the
collective modes for monolayer graphene can be computed
analytically and their explicit expression is given at the end
of Appendix C. In particular, at k = 0, *(0) = o}, being
wpy the frequency of the corresponding orbital-singlet mode
in the bilayer case. As a consequence, phase transitions are
characterized in the same way.

We now plot the dispersion relation for every phase. The
results are shown in Fig. 5. Note that for the study of the
CDW and KD phases we have to use unrealistic values for
the coupling constants. The qualitative trends of the several
dispersion relations are similar to those of the N = 0 orbital
modes in bilayer graphene; in fact, at k = 0, they have the
same formal expression as explained above. When they exist,
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the dispersion relation of the dynamical instabilities of the
CAF and KD phases is qualitatively similar to that of the
bilayer case (not shown).

We note that the neutral excitations of the F and CDW
phases were computed in Ref. [9] using a bosonization
approach and a different type of short-range interactions,
nevertheless finding similar analytical expressions for the
frequency of the modes. In addition, Ref. [29] obtained the
dispersion relation for the F and CAF phases using the same
valley-asymmetric interactions here considered but replacing
the long-range Coulomb interaction by an effective short-range
one in order to simulate the valley-spin stiffness of the waves.

VI. EFFECTS OF LANDAU-LEVEL MIXING

In this section, we consider the usual case where Fc 2 fiwp
and LL mixing cannot be neglected. One possible way to take
it into account is through a static screening of the Coulomb
interaction in the large-N approximation [21,35-38]. Other
approaches consider dynamical screening within the same
approximation [15—17] or allow for LL mixing in the TDHFA
formalism [26]. As we are mainly interested in the low-energy
modes describing the phase transitions, static screening is
expected to provide a good approximation in this limit; on the
other hand, screening by LL mixing is not expected to describe
correctly the dispersion relation near k = 0 [26], which is
precisely the most interesting region for our purposes.

In the large-N approximation, the effective Coulomb
interaction potential is obtained using a RPA-type screening

(k) = Vo) otk = 20 - 72
® =T "mwaovw “®="Tag 7P

where Vj(K) is the Fourier transform of the bare Coulomb
interaction and T1°(k,®) is the noninteracting polarization for
the v = 0 QH state,

Sy, 2
0 7 Oay 0 2
R (k, ) = Z 272[21 D"kaknza/(w)’Af(u)nz(k) ’
B

(73)

Ng,ny
27397

with n; and n; taking values for all integers except —1, as in
Eq. (7). In the same fashion, ngakmal (w) is the noninteracting
two-particle propagator [see Eq. (B54) and related discussion
for more details], with the noninteracting values for the
energies and occupation numbers. Here, Afn),(k) is the bilayer

graphene magnetic form factor:

Afn),(k) = %[a”_’n,A|n|,2,M,z(k)sgn nsgnn’

+ ar-:—,n’AInI,In\’(k)], (74)
at, =1 £ G0+ 8u)v/1E Guo + 8u).

A,v(K) being the usual magnetic form factor, given by
Eq. (AS). The polarization IM°(k, ) is the Fourier transform
of the noninteracting density-density correlation function and
is obtained following an analog calculation to that described
in Appendix B 2 but using the bare vertex and allowing for LL
mixing.
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Ko

FIG. 6. Plot of the function f(x) defined in Eq. (75), where
we have imposed a finite cutoff in the series N¢ = 150 for the
computation.

After neglecting small corrections due to the Zeeman effect
and the layer voltage, the free static polarization reads

. _ N f(kip)
H (k’()) - znl% th ’
00 2042, )|
S = r;)n;z V(g — 1) + /ny(ng — 1) ™

with N = 4 the number of the valley-spin components of the
field, which is expected to be a sufficiently large value to
provide a good approximation [21,36,38]. The function f(x)
is dimensionless as | A}, (k)|* only depends on the momentum
through the quantity k/g. The effective screened Coulomb
interaction can be then rewritten as

PO (15

- Fc [f(klg)~’
1+Nﬁ i,

(76)

where we have made explicit the rotational invariance of
all the magnitudes. For F¢ < hiwp, the screened interaction
reduces to the bare Coulomb interaction used in the previous
calculations.

The dimensionless function f(x) is plotted in Fig. 6, in
perfect agreement with the results of Refs. [15,17]. For small

x, it behaves as f(x) ~ ax?,

o0

1
_22;12\/1 ~ i+ 1-2)

and then V (k) >~ Vy(k) for low momentum. On the other hand,
f(x)~ 1 for x 2 1 so for relevant momentum kip ~ 1 the
screened potential satisfies

~0.8771, (77)

A7 hR% 1

V(k) ~ 5

(78)
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FIG. 7. Dispersion relation of the collective modes for the different phases of the v = 0 QH state in bilayer graphene but now computed
using the screened potential (76) with Fc = 4hiwp, while the rest of the parameters keep the same values of Fig. 2.

The dimensionless strength of the screened Coulomb interac-
tion is then of order N~! = 0.25 « 1 and thus we can now
safely neglect LL mixing and restrict once more ourselves to
the ZLL.

The other effect that results from allowing LL mixing is
the renormalization of the coupling constants [21,22], that
amounts to replace the bare coupling constants by their
renormalized values, g,,g,. However, this process is only
strong for low values of the magnetic field [22] so we do not
study its effect in detail here, treating again the renormalized
coupling constants as inputs for the computations.

Taking into account the previous observations, we consider
the following effective Hamiltonian for the ZLL:

AY = / A’ xy (x)(—ey T, —ezaz)lﬁ(x)Jr% / d’*xd*x'
LT TV (x — )Y ()P E)]:

1 N N
+ Z Efdzxgi A RAICSLACN o (79)

instead of that of Eq. (13). We see that the result of considering
LL mixing is reduced to replacing the Coulomb interaction and
the coupling constants by their effective values V and g;. Note
that, since the excitations within the ZLL change valley or spin,
the direct contribution of the Coulomb interaction vanishes
and then there is no double-counting in this approximation
(see Appendix B for more details about the diagrammatic
formalism of the TDHFA).

This kind of effective renormalized Hamiltonian has al-
ready been used for studying the v = 0 state or fractional QH
effectin the ZLL [21,24,49]. As the valley-spin structure of the
Hamiltonian is preserved, the solutions to the corresponding
HF equations are the same as before and thus the phase diagram
is that of Fig. 1 but replacing u; by ii;. The same is true for

the HF energies, obtained from the screened values Fom [see
Eq. (A46)], finding numerically that they satisfy the same
relation Fyy > Fjo > F}; and then Fy > Fj, so the equation
for the transport gap is given by the adapted version of Eq. (31).

Regarding the collective modes, using the same reasoning,
we find that all the orbital-valley-spin classification of Sec. IV
still holds, including the orbital pseudospin structure at k = 0.
Hence only the quantitative values of the dispersion relation
change but not the qualitative features and the resulting phys-
ical conclusions. In particular, the structure of the Goldstone
modes and of the dynamical instabilities is preserved.

We now plot the numerical results for the computation of
the dispersion relation using the screened Coulomb potential
of Eq. (76) for a Coulomb interaction strength Fr = 4hwp and
keeping the same values for the rest of parameters (including
il; = u;) in order to observe the effects of screening. In Fig. 7,
we plot the dispersion relation of the modes for every phase,
and in Fig. 8, we represent the real and imaginary parts of the
frequency of a dynamically unstable mode. We observe that the
qualitative structure of the curves is similar to the unscreened
case. All the calculations developed in this section can be
straightforwardly adapted to monolayer graphene, obtaining
similar conclusions.

VII. EXPERIMENTAL REMARKS

We make here some experimental remarks about the
magnitudes computed in this work. First, we analyze the
behavior of the transport gap, a quantity that can be measured,
for instance, through local compressibility measurements [50],
electronic transport measurements [51] or using the bias as
a spectroscopic tool [52-54]. As revealed by Eq. (31), the
transport gap has a contribution from Coulomb interactions,
independent of the phase, and another contribution which
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FIG. 8. Dispersion relation of the complex-frequency mode
w'!(k) for a PLP state, computed using the screened potential (76)
with F¢ = 4hwp and the rest of the parameters with the same values
of right Fig. 3. The real (imaginary) part of the complex-frequency
mode is plotted in solid (dashed) line.

actually depends on the valley-spin structure of the state.
Using Egs. (76) and (A24), it is straightforward to show
that the screened value of the Coulomb contribution satisfies
Fi = thg(ﬁFTCB), with g(x) a dimensionless function that
asymptotically behaves as [check Eq. (A48) and related
discussion for more details]

()~5\/7 |
gx_4 2x, x L1,

Inx
g(x) ~ — 4+ 0.668, x> 1. (80)
Na

Hence, for low F¢/hwp, we recover the result for bare
Coulomb interactions F; ~ F; < /B, while for strongly
screened Coulomb interactions, due to the mild behavior of the
logarithm, we are close to a linear behavior F; ~ B, already
predicted in Ref. [17]. On the other hand, the short-range
energies also scale linearly with the perpendicular magnetic
field, u ,u, ~ B, at least for moderate fields B, = 2 T [22].
Hence the gap is expected to grow linearly with B, as
confirmed by experiments [50,52]; only for very high fields and
large values of the dielectric constant x the unscreened regime
Ayr ~ +/B] can be reached (note that even in this regime the
Coulomb contribution is still dominant over those of short-
range interactions). In fact, this behavior has been reported for
transport gaps of other integer and fractional QH states [51,54].

Interestingly, more information about the short-range en-
ergies can be obtained by comparing the transport gap of
two different phases. Suppose that the transport gap for a F
state with ey = 0 and a relatively high Zeeman energy €z r is
measured and the process is repeated, keeping constant B , for
a FLP state with voltage energy ey prp and negligible Zeeman
term €z =~ (. Then, as the Coulomb contribution is expected

PHYSICAL REVIEW B 95, 165427 (2017)
to be the same, by subtracting both gaps one finds

Aprr — Apppp = A — AN,
=4(u; +uy)+2€ezr—evrp), B1)

For sufficiently high in-plane magnetic field for the F phase,
€z.r becomes independent of B, and hence one can obtain the
value of u; 4+ u, from a linear fit of Ayp r — AnppLp Versus
B, . We note that, in order to determine the transport gap, this
magnetoexciton gap has to be compared with the skyrmionic
gap. According to Ref. [33], skyrmions are expected to be
energetically favorable only for very large magnetic fields
B, 2 30T.

Regarding the detection of the collective modes, it is well
known that their frequencies are the poles of the response
functions to external fields Hey(X,7) (see Appendix B for a
detailed explanation). We now present a study of the required
valley-spin structure of the operator Hey in order to detect the
various modes. For instance, a magnetic field in the i direction
couples to the spin density, proportional to the operator S;,
while a layer voltage difference couples to the charge-density
difference between the layers, proportional to the L. operator.
A recent promising work has shown that the layer polarization
can be measured in detail in capacitive measurements, arising
as apowerful tool to characterize quantum Hall states in bilayer
graphene samples [55]. Unfortunately, the operators L x,y» COI-
responding to the effective ladder operators between the layers
in the ZLL, are not so easily translated to real physical observ-
ables. Compound operators of the form S; L. can be interpreted
as a spin-density difference between the layers although it is
not clear how they could be measured. Note that in the pro-
jected model considered in this work, the modes do not couple
to density perturbations (proportional to a scalar in valley-spin
space) since the excitations are valley-spin waves that change
necessarily one of these two quantum numbers [29].

In this way, for the F phase, the modes with L = 0 couple
to just the S operator, with Si = S'x +i S’y, while the L =
1,L. = 0,41 modes couple to the compound operator S_ I:Z,i,
respectively. Thus, in principle, only the L = 0 modes can be
detected using their coupling to a magnetic field in the x,y
direction. For the FLP phase, the discussion is exactly the
same but changing the role of spin and layer operators, which
makes much harder their detection as they all couple to the L _
operator.

On the other hand, for the phases with spontaneously broken
symmetries, the situation is much easier due to the lower
number of conserved quantities. For instance, for the CAF
phase, in the sector L, = 0, the modes + couple to the S'i
operators while the modes —, including the Goldstone mode,
couple to 8.: as pointed out in Ref. [29], the coupling of the
CAF phase with the S. operator could be used in principle
to unambiguously distinguish this phase from the others. The
modes with L = 1,L. = +1 couple to the S.L. operators.
For the PLP phase, the modes with S = 0 couple to just the
L. operator while the modes with § = 1,5, = 0,41 couple
to the operators LS. .+, respectively. Then, in a similar way
to the CAF phase, the coupling of the modes to a layer
voltage provides a unique feature of the PLP phase that can
be used to clearly characterize it. An alternative way to study
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€z

FIG. 9. Phase diagram of the v = 0 QH state in parameter space u ; ,u, (left) and €z,€y (right), including the boundaries of the dynamically

stable regions, represented as dashed lines.

the collective-mode spectra through measurements of thermal
transport has been proposed in a very recent work [56].

Regarding the detection of the dynamical instabilities, from
Egs. (54), (59) it is seen that the conditions for the appearance
of unstable modes for both CAF and PLP phases are

2

£Z _ 4, +u. (CAF),
2MJ_

u? > u’ + €5 (PLP). (82)
Both conditions of instability are depicted in Fig. 9. In-
terestingly, the saturation of the two previous inequalities
correspond to the boundary between the PLP and CAF phases
for ey =0 (ez = 0). The first condition is unlikely to be
achieved for the expected values of the coupling constants. The
second condition is at least compatible with those values, but
corresponds to a region where the PLP is not the actual ground
state, as can be seen in the right plot. Naturally, the system is
not dynamically unstable when starting from an equilibrium
state. However, these potentially unstable dynamics could be
explored in out of equilibrium situations.

For monolayer graphene, it is well known that the transport
gap is governed by skyrmions [7], scaling as ~+/B, for
both bare and screened interactions [21], in agreement with
the experimental results [57]. The same scaling occurs for
the mean-field transport gap since the screened Coulomb
contribution also behaves in monolayer graphene as Fyy =
ha)Bh(%), with & some dimensionless function. However,
as now F¢/hwpg is independent of B, the gap always scales
as ~hwp ~ /B, for any value of B,. With respect to the
detection of the collective modes, as the valley-spin structure is
formally equal to the bilayer scenario, the above discussion still
holds although, unfortunately, there is not a direct equivalent
of the layer voltage term. Alternative candidates for the job
are distortions in the lattice [58,59] but they seem to be much
less controllable from an experimental point of view.

VIII. CONCLUSIONS

In this work, we have studied the v = 0 QH state within
a mean-field Hartree-Fock approach projected onto the zero-
energy Landau level. We have reproduced the mean-field phase
diagram of the v = 0 QH state of Ref. [21] by solving the self-
consistent Hartree-Fock equations and computed the different
mean-field energies and transport gaps.

After that, using the time-dependent Hartree-Fock ap-
proximation, we have computed the corresponding collective
modes, that in the limit of zero momentum can be obtained
analytically. In particular, we have provided a complete
classification of the rich orbital-valley-spin structure of the
modes and their symmetries. As a result, we have identified the
singlet modes in orbital pseudospin at zero momentum as those
characterizing the phase transitions since they are the lowest
energy modes and the only ones coupled to the many-body
contributions of short-range interactions at low momentum.

With respect to the valley-spin structure of the modes, at
the boundary between the ferromagnetic and the fully layer-
polarized phases, there is a gapless mode, resulting from a
mean-field symmetry that can be regarded as a weak extension
of the complete SO(5) symmetry described in Ref. [27]; the
same phenomenon appears at the boundary between the canted
antiferromagnetic and the partially layer-polarized phases.
On the other hand, Goldstone modes appear at the bound-
aries between the ferromagnetic and canted antiferromagnetic
phases and the fully and partially layer-polarized phases due
to the spontaneous symmetry breakings. It is remarkable
that, while the former Goldstone mode corresponds to a
triplet mode in valley pseudospin, the latter is a spin-singlet
mode. This contrast arises due to the different nature of
both symmetry breaking mechanisms. A complementary study
of the phase transitions could be provided in terms of the
edge modes, extending the work presented in Refs. [29,30]
for the ferromagnetic-canted antiferromagnetic transition in
monolayer graphene.

165427-18



SYMMETRY CHARACTERIZATION OF THE COLLECTIVE ...

Another interesting feature of the phases with sponta-
neously broken symmetries is that they are able to present
dynamical instabilities within this projected model. The study
of such unstable dynamics in out of equilibrium scenarios
is of particular interest as both the in-plane magnetic field
and the interlayer voltage are easily manipulable in the
laboratory. For instance, one can try to explore the occurrence
of dynamical instabilities for a state initially prepared in the
phases with spontaneously broken symmetries by applying a
sudden quench in the external fields [60].

The performed calculations for bilayer graphene can be
straightforwardly adapted to monolayer graphene, due to the
formal analogy of the Hamiltonian. We have found that most
of the conclusions of the previous paragraphs still hold in
the monolayer scenario. We have also analyzed the effects
of LL mixing and we have accounted them by screening
the long-range Coulomb interaction and by renormalizing
the coupling constants of the short-range interactions. The
resulting effective Hamiltonian is formally similar to that
previously considered and hence, the phase diagram and the
collective modes present the same structure discussed above.

Finally, we have made some experimental remarks about
the transport gap and the detection of the instabilities.
We have found that, within the current detection schemes,
one can only aim at characterizing a restricted number of
modes. Specifically, among all the modes describing the
phase transitions, only those related to the F-CAF and FLP-
PLP transitions couple to physical observables in the side
of the spontaneously broken symmetry phase. Hence the
detection of the collective modes motivates the study and
design of new possible experimental methods able to provide
effective observables that couple to valley-pseudospin waves
and measure its dispersion relation. In this sense, the recent
work of Ref. [55] provides a promising line of research as it
shows measurements of the layer polarization of the states.
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APPENDIX A: SOLUTIONS OF THE HARTREE-FOCK
EQUATIONS

We compute in this Appendix the solutions to the Hartree-
Fock equations for the v = 0 QH state. We start by reviewing
the case of the 2D electron gas (2DEG), as many of the
developed techniques are also used for the actual computation
for graphene, presented later.

1. Basic results of the 2DEG

As a first step, we define the magnetic form factors

kyl k2N
A (K)= /dx ¢n<x— y23>¢n,<x+ «VZB)ethx’

(AD)
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where the functions ¢,(x) are the usual harmonic oscillator
wave functions

(A2)

Pu(x) = (xln) S (x ) E

n(x) = (x|n) = ——=H, e &,
V2"l lp

In order to compute the explicit expression of the magnetic

form factors, we rewrite Eq. (A1) as

2
kyky 1%

A (k) = 777

/ dx ¢, (x)y (x + kylé)e_ik*x

tKy 2 . .
ik*k‘zl 5 (nle—lkxxel %kylg |I’l/),

(A3)

=e
and we recall that P,, the momentum operator in the x
direction, is the generator of translations in the x direction.
Rewriting the previous expression in terms of the usual
harmonic oscillator destruction operator a in the x direction

yields

(=ikx—ky)

Ap(K) = (nle V2
x - Pxlp
a= % (Ad)

Then, after some straightforward manipulations, we obtain

Ann’(k) = V :l/l_/:l:(_lkx%] .

T (klg)? *klp)?
x Ly™ [—( ) e i, nza,

i (ciketky) (kig)?
lga’ —=*Ilga, s, —HB)"
e V2 nle 4,

2
xm n
Lm ¥) = ex n+mefx
n ) n! dx"
~ (=) (n+m)!

=) - . —x/, m>0,
= S = Plm +

Ly(x)=()"x"———L, 7 (x), m<0, (AS)
n!

with L7 (x) a generalized Laguerre polynomial. From the

above relations it follows that A, (k) = A, (—K). It is worth

studying the dependence on k of the magnetic form factors.

If we switch to the following polar coordinates, (k,,k,) =

k(sin @y, cos @), we find that
A (K) = & "TORAL (ke = 0.k, = k) oc e/ (A6)

As in practice we restrict to the ZLL, we give the explicit
expression of the magnetic form factors involved in the
calculations:

(kip)?

Ago(k) =e™ 4,
—iky _kv _ wp?
Ajp(k) = T’e ‘o,
AT (A7)
Ap (k) = Tt hy y o~
\/5 9
kg _w?
AnLK) = [1 - %}e—(“ﬁ.

Interestingly, in the context of the Wigner function, the
magnetic form factors are the Moyal functions of the harmonic
oscillator [61].
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For simplicity, we first review the usual case of integer QH
states in the 2DEG, where the field operator only has two
components corresponding to the spin polarizations § = =+.
The extension to the graphene scenario is discussed in the next
subsection. The noninteracting eigenfunctions of the 2DEG are

Do 1 (X) = Grp(X)xe.
eiky
Puk(X) = (X|n,k) =

JL,

¢u(x +ki3), n=012...,

(A8)
|

RN iy,
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where ¢, ;(x) are the orbital wave functions of the magnetic
levels and x¢ is the spin wave function with polarization &.
The noninteracting eigenvalues of these wave functions are

enof = (n + %)ﬁa)g —&ey (A9)

with wp and €7z the corresponding cyclotron and Zeeman
energy.

We now suppose that the electrons interact through an
arbitrary scalar potential V (as it is, for instance, the Coulomb
interaction Vj). Its spatial matrix elements are given in terms
of the magnetic form factors:

VP:PkPij = (anl”jpj|V|nkPk”um> = /dede,q):;,m(X)‘/J)m,m(x)v(x - X,)‘f’:/*l’_/(x/)‘pnmsﬁm (X/)

1 o o a2
= = Ym0 B TR (@ A (~ DA, @)
q

(A10)

The HF equations associated to the previous interacting potential are (see Appendix B 1 a for a derivation of the HF equations)

2
€n,s P ke,s(X) = ;—m%,k,s(x) + Z Vm,s'<[/ d*X'V(x — X’)¢jn,p,g/(xl)¢m,p.s'(X/)}%,k,s(x)

m,p.§’

—/ﬁkvu—%wmw@mhfwmmaw>—Q@wm@>

(Al1)

with v,, ¢ the occupation number of each LL and the components of the vector 7 = (7, 7,) given after Eq. (4). We analyze now
the spatial structure of the previous equation. For that purpose, we define two associated mean-field potentials, denoted as V-,
that take into account the Hartree (direct) and Fock (exchange) contributions from the potential V, respectively. First, we address
the non-self-consistent (NSC) problem, where the mean-field potentials are created by the bare (noninteracting) wave functions

qbrol’ «.¢- In that case, the above HF equations are

7.[2
emmmm=%WM®+Z%gUfﬂﬁmw—Wmﬂ@@kmwwfmmmw

m,E’

where VI are the contributions from each magnetic level to
the mean-field Hartree and Fock potentials:

VHxx) = / A*X"V(x — XK n(x",x")8(x — X)),

VEx,X) = V(x — x)K,(x,X). (A13)
The function K,(x,X') = K,,(x,X) is the spatial part of the
Green’s function, with

Ko (6X) =D~ ¢y (0087 ,(X), (Al14)
p

We can compute explicitly K, (x,x’) by transforming the
discrete sum over p into an integral and by making the
transformation x, = X + plz, with the center of mass and
relative coordinates defined as R = (x+x/)/2 and Ax =
x — X'. The result is

>. (A15)

(A12)

(

In particular,

Kyxx) = o, (B2 5
X,X)=—— — e "B,
" oy "\ 203

(A16)

with Ar = |AX|. Since K, (X,X) = 25”[; , 271%)~! being the
homogeneous density corresponding to a completely filled

magnetic level, the Hartree contribution is uniform:
V(0)
2l

VHExX) = S(x —x)),

(A17)

V(0) being the Fourier transform of the potential evaluated at
k = 0. In the usual case of the Coulomb interaction, the Hartree
potential is canceled by the positive charge background. For
a short-range interaction, proportional to §(x — x’), the spatial
part of the Hartree potential is equal to the Fock potential.

With respect to the Fock potential, for general purposes, we
consider the following matrix elements:

(nk|VE |n'k'y = / dzxdzx’d):yk(x)V(x —x)

mm

X Kmm’(xvxl)qbn’,k’(x/)' (A18)
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The case of the Fock potential in Eq. (A13) is obtained form =
m’. To compute the previous integral, we switch to the center
of mass and relative coordinates defined before Eq. (A16)
and integrate along the center of mass coordinates X,Y,
obtaining

Sk 1
(nk|anm,|n’k’) = LA /deAn/n( > 2 )

2} Il

y X
X Apm | =235 — 5 |V(X). (A19)
I I
Now, we assume the typical situation where the potential
V(x) is rotationally invariant (as the Coulomb potential, for
example). The polar dependence described in Eq. (A6) gives
the result
(nk|VF /|n,k,> = Skk/an—n’,m—m’anm’

mm

(A20)

with  Fp,,,w the on-shell value of the previous integral.
Specifically, for the Fock potential, m = m’, we get

(nk|VEIR'K'Y = Spp 8w Fum

I r? 2\ -4
F,, = —2/ drrV(r)Ln(—2>Lm (—2>e 2y
Iz Jo 21y 215
(A21)

Note that F,,, = F,,. Amazingly, the Hartree and Fock
potentials of Eq. (A13) are diagonal in the magnetic base
of the eigenfunctions of Eq. (A8), which implies that the
self-consistent orbital wave functions are indeed the same as
the noninteracting ones. Moreover, from Eq. (A12), it is easy
to check that this result also holds for the spin part. Thus
the complete self-consistent wave functions are equal to the
noninteracting ones.

It is useful to reproduce the previous results in Fourier
space by writing the matrix elements of the Hartree and Fock
potentials in terms of the matrix elements of the potential V in
Eq. (A10). For instance, for the Hartree potential, we trivially
find
40)

_akk’snn’ .

A22
2wl 123 ( )

(nk| Vi in'k'y =) v =
p

On the other hand, for the generalized Fock potential of
Eq. (A19), we obtain
(nk| V5 'Ky = v
p

_ Skk'
Qn)?

/ dqu(q)A:;m (q)Am’n’(q)'
(A23)

Again, if we consider that the potential is rotationally invariant,
its Fourier transform is also rotationally invariant and hence
we recover the result of Eq. (A20). In particular, for m = m’,
we find

/ﬁ%mmmme. (A24)

nm = Qn )2
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Equations (A21) and (A24) are related to each other through
the identity

T
_(2]-[)2 e (gcky—qyk)ly Anknj (q)An,nm (q)

1
= 5 A A, (). (A25)
B

21

which can be proven by inserting the definition of the magnetic
form factors, Eq. (Al).

2. Diagonalization of the Hartree-Fock equations in graphene

After the previous training, we obtain the HF solutions for
the v = 0 QH in bilayer graphene (the monolayer case is just
a trivial extension of this calculation). We start by computing
the eigenfunctions of the single-particle Hamiltonian (2). Its
matrix elements, (nko|Hyln'k'a’), with (x|nka) = \IJ,?’,(YQ(X)
the wave functions of Eqgs. (5) and (6), are given by

(I’LkCY|H0|I”l/k/Ot/> = 6n8nn'8kk/60w(' - 6V8n,7n’8kk’(fz)aa’

- EZSnn/‘Skk/((Tz)t)u)z’’ |I’l| 7é 07 17
(nka|Holn'k'o'y = —€y 881 (T)aw
- GZSnn/‘Skk/(Gz)aa” n=0,1, (A26)

with (7;)ge = X(I T; Xo'- We see that the previous Hamiltonian
is diagonal within the ZLL while it mixes the LLs £n due
to the layer voltage. The reason is that, outside the ZLL, the
wave functions are not localized on one specific layer and
thus they are able to experiment the effect of the voltage.
However, as long as €y < fiwg, it is a good approximation to
consider that Hy is diagonal in every LL so their corresponding

eigenfunctions are still given by \112’ ».«(X). The associated

eigenvalues Hy|nka) = ha)g.amka) are then

hal ~ €, — €€,

n,o

In| # 0,1,

01 (A27)
n|=0,1,

ha)g’a = —Gzé — GV)\,,
where X,& label the valley and spin polarizations, A = %1
corresponding to K and K’ valleys. The noninteracting spinors
are given by all possible orthogonal combinations of valley-
spin polarizations, x = |+n,) ® |+s.); see Eq. (23) for the
notation of the wave-functions in valley-spin space. For the
v = 0 QH state, all the states with n < —2 are filled and empty
for n > 2 while the ZLL is half-filled. As the noninteracting
energy only depends on the polarization in valley-spin space,
the two magnetic levels are filled in the same way in valley-spin
space. Thus, following the notation of the main text, we label
the occupied noninteracting spinors as X,?, , and the empty ones
as x3 4 Inparticular, for ey < €z, the ZLL is filled in the same
F configuration of Eq. (23) and for €y > € it is filled in the
FLP configuration of Eq. (24). Hence, in the noninteracting
problem, these are the only two possible phases for the v = 0
QH state.
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We now address the effect of the interactions, given by Egs. (8) and (9). The resulting HF equations for the v = 0 QH state are

© ’
€naVnto® = HoWia®) = > Y vy / A*X Vo(x — X)Wy p(OW) (X)W o (X)

m=-00 p.f

oo
D 8 Y Y VsV, s 0T W (T W k0 (X) — T W p s (O], (T W, p0(X)). (A28)
ij

m=-=00 p.p

where the Hartree term of the Coulomb potential is canceled by the positive charge background. As in the 2DEG case, we first
consider the NSC problem in order to understand the structure of the equations.

a. Non-self-consistent problem

The spatial part of the noninteracting Green’s function is given by a 2 x 2 matrix in the AB subspace

KPxx)=> v xwll (x).
V4

Operating in the same fashion as in the 2DEG case, we obtain

KP(x,x) =

1 K|”|72,\n\72(x7x/)
2

0 0

K,(IZ)(x,x/) — [0 K, (x X,)j|’ n=0,1.

In particular, for x = x/, KP(x,x') = (4rl%)~'diag[1,1] for
In| # 0,1 and KP(x,x') = (2713)"' Pz for n =0,1, Ps =
diag[0, 1] being the projector onto the subspace B.

The matrix K?(x,x') is key to understand the orbital
structure of the HF equations. With that finality, we write
the NSC version of the HF equations (A28) as

ena W a(X) = / X Hyscnr (6 X W a(X)  (A3D)

and separate the different contributions to the non-self-
consistent mean-field Hamiltonian Hnschg:

sgnn Kyy—2, (X,
sgn 1 Ky jnj—2(X,X)

(A29)

(A30)

x')
/ £ 0719
K, 1n) (X, X) ] Inl #

(

where Hj is just the noninteracting Hamiltonian. The term
Hnscps represents the NSC mean-field potential created by
the Dirac sea, formed by all the noninteracting states with
n< -2,
oo
Hyscps(xX) = = ) [(V0)8,(6x) + @ (x — X)),

m=2

(Vo)2(x,x) = Vo(x — X)KP (x,x),
_ ! 8ij
u= i -
Z 8ij 4nl§
12¥)

Since all valley-spin polarizations are occupied in the Dirac
sea, the Hartree term of the short-range interactions vanishes
and the corresponding Fock term is just an scalar. The last
term of Eq. (A32) corresponds to the NSC mean-field potential

(A33)

Hyscur = Ho + Hnscps + HnscziLs (A32) created by the filled states of the ZLL:
|
Hyscan(xx) = — Y (V)P (x.x)P® + [Z w;([tr(P°t)]r; — 1, PO;) Py — v PO Pg}a(x —-x)  (A34)
m=0,1 i

with PO = x? Xz? s )(l? Xz? f the analog of the matrix P [defined after Eq. (17)] for the noninteracting spinors, P; = diag[1,0] the
projector onto the subspace A and v; = (gix + giy)/7l ZB. The matrix elements of the Fock contribution of the Coulomb potential

are

<”k|(V0);(1?|n/k/> = /dede,\PSTk(X)(VO)g)(X’X,)\p;?/,k/(X/) = [Cnman.n’ + Dnm‘sn,—n’]akk’a |I’l| # 0’1’

1 + 8m,0 + 5m,1

(nk|(Vo)PIn'k'y = 5

an 8nn’8kk’ s

with C,,,,, D,,,, some coefficients that can be expressed in terms
of the values of the generalized matrix elements of Eq. (A20);
their particular expression is not interesting for the current

n=0,1,

(A35)

(

purposes. As we see, the Fock term of the Coulomb potential
mixes n with —n outside the ZLL and it is diagonal within the
ZLL, in the same fashion of the noninteracting Hamiltonian.
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It is easy to show that this behavior also persists in the matrix
elements of the short-range terms; therefore we conclude that
the NSC Hamiltonian Hyscyr only couples the LLs +n and
leaves invariant the ZLL. Moreover, even when the mean-field
potentials are self-consistently renormalized, this structure
is preserved. Hence the orbital part of the self-consistent
wave functions W, x , is constructed from the noninteracting
orbital wave functions W9, . In the following, we neglect the
coupling between +n LLs as we are assuming that interactions
are weak enough to neglect LL mixing. A nice discussion about
the coupling of the £n LLs for strong Coulomb interactions
is presented in Ref. [26].

b. Self-consistent problem

We now switch to the actual self-consistent problem. We
rewrite Eq. (A28) as previously done for the NSC problem

oW pa(X) = / X Bk, X)W ga(X)  (A36)

and separate the different contributions along the same lines
of Eq. (A32):

Hyr = Hy + Hps + Hziy. (A37)

As we are neglecting LL. mixing, we can regard the Dirac sea
as frozen and hence the self-consistent HF mean-field potential
created by the Dirac sea, Hpg, is the same as the NSC one of
Eq. (A33), Hps = Hnscps- With respect to the self-consistent
mean-field potential created by the filled states of the ZLL,
Eq. (A34), we only have to replace the NSC projector P? by
the self-consistent one, P, as the filling of the ZLL is of the
same form [see discussion after Eq. (15)]. Hence we focus on
the ZLL in order to determine the self-consistent valley-spin
wave functions of the ZLL.

For that purpose, since Hyp leaves invariant the ZLL, we
only need to take the components of Hyg in the sublattice B,
obtaining the projected HF Hamiltonian H}(I%) for the ZLL,
HI({(;) = PzHypPz = Héo) + H](DOS) + Hé(l)j]_. Héo) corresponds
to just the layer-voltage and Zeeman terms, H(EO) = —€yT, —
€70, as the kinetic energy is zero. The interaction of the ZLL
with the inert Dirac sea can be taken into account by a scalar
nonlocal potential Vpg(x,x'),

Vos(x,X) = H5)(x,X') = P Hps(x,X) Pj
o0
1 F / - ’
== 2| ;0nxx) +adx —x) |,
m=2

(A38)

while the self-consistent interaction inside the ZLL givesrise to

Hy (X)) == Y (Voh&X)P + Y u;([tr(PT)]

m=0,1 i

—1;P1;)8(x — X). (A39)

Note that, after projecting, the interaction with the Dirac sea
corresponds to a one-body operator.
Then, the resulting HF equation for the ZLL

oW pa(X) = / P HOX X)Wy paX)  (A40)
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is completely equivalent to the HF equation (15) derived from
the effective Hamiltonian (13) and gives

1 = / /
enaVnia(®)==5 f d*X (Vo) (XX )W, o (X))
m=2

- Z /dzx’(Vo),Z(x,X’)P‘lfn,k,a(X')

m=0,1

+ D ui(r (PTG — T PT) W, 4o (X)

1

- GVTz“I,n,k,at(X) - GZO-Z\Iln,k,a(X)v (A41)

where we have reabsorbed in the Hamiltonian the infinite
energy shift provided by the sum of the term #8(x — X) in the
expression of Vpg(x,x'). Since the mean-field HF potentials are
invariant under unitary transformations that leave invariant the
subspace formed by the filled states [see Eq. (B6) and related
discussion], the self-consistent problem is still diagonal in the
orbital part as the two magnetic levelsn = 0, 1 are filled exactly
in the same way. Thus the self-consistent wave functions have
the form W, ; o(X) = ‘Ps,k(X)Xw

In order to arrive at an equation for the spinor x,, we
multiply by \IJ,?jZ(x) and integrate in Eq. (A41), obtaining

1 00
€naXa = _E Z anon - (FnO + Fnl)PXot

m=2

+ ) wi ([Pt — 7 PTi) X

—€yT; Xa — €20 Xa (A42)

with F,, the eigenvalues of the Fock potential associated to
the Coulomb interaction, Eq. (A21). The contribution from the
mean-field interaction with the Dirac sea, which is the origin
of the analog of the Lamb shift, corresponds to the first term
at the right-hand side (r.h.s.) of the above equation. Following
the regularization procedure of Ref. [20], we rearrange the
associated series as

o0 o0
> Fan=Y_ Fun— Fao— Fu. (A43)
m=2 m=0
The completeness relation
o0
D A =1 (A44)
m=0

can be proven from the definition of the magnetic form
factors Eq. (A1) and the completeness relation of the harmonic
oscillator wave functions. Then, using Eqs. (A24) and (A44),
we find that

oo

1
> Fun = Py / d*qVo(q) = Vo(x = 0),

m=0

(A45)

which represents a constant (infinite) energy shift that can be
absorbed in the Hamiltonian, as that arising from the short-
range interactions [see discussion below Eq. (A38)]. After this
regularization, and by defining F,, = F,,o + F, as in the main
text, we finally get Eq. (17).
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The formalism developed in this section is also valid for
screened Coulomb interactions if we just replace Vi (k) by V (k)
of Eq. (76). The expression for the screened Fock energies F,,,
then takes the form

Fom = I/dzlA()IV()—h e
nm — (2JT)2 q mn q q WB&nm ha)B

(A46)

with g,,,(x) the dimensionless functions obtained from the
integral

(A47)

© JAm(0.5)]
gnm(x)Z/O dZT.

X Z

In particular, the dimensionless function g(x) associated to
the screened Coulomb contribution to the transport gap, Fy =
Fio + F1 [see Eq. (80)], reads

Fad

2
2

o0 1 —
— = dz—"——+
g(x) = gio(x) + g (x) /0 ¢ 14 NLE

X

Lo, (Ad8)

For small x, one recovers the unscreened result for g(x) while
for large x, g(x) diverges logarithmically since f(z) ~ az> for
small z.

APPENDIX B: TIME-DEPENDENT HARTREE-FOCK
APPROXIMATION

We review in this Appendix the basic theory of the TDHFA.
First, we consider a variational approach for the wave function
[62] and then we connect the results with a diagrammatic
calculation of the correlation functions [48,63], which gives
identical results for the computation of the collective modes.
Alternative approaches can also be seen in Refs. [64,65].

1. Variational formalism
a. Stationary situation

We start by reviewing the stationary HF equations in the
usual case of a system of N fermions governed by a second-
quantization Hamiltonian of the form [66]

H Z(HAP)”(C[ cr+ = Z Vlk ]mcl C]Cka, (Bl)
lk JJ.m

where the eigenfunctions of the single-particle Hamiltonian
H, are known. The indices [,k,j,m label the states of
an orthonormal basis of the single-particle Hilbert space.
The stationary HF equations are obtained by looking for a
Slater determinant that minimizes the expectation value of the
Hamiltonian

N
W) =[] él10). (B2)
r=1

A=1,...,N being N orthogonal states. Now, we con-
sider small particle-hole perturbations around the single-
particle states in the so-called Thouless parametrization
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[62]:

N
=1 (éi +y wmi) 10)
A

A=l

N
I (@1 +3° wméj\ékéi) 10)

=1 A

>

= e D gy), (B3)
where the sum in A runs over all the unoccupied states. Along
this section, we will use lower Greek indices A and o for
labeling occupied levels and upper Greek indices A and X
for empty levels, while Latin indices /, k, j, and m will label
arbitrary (filled or empty) states.

The condition for |Wy) to be an extreme of the energy,
(Wo| H | W), reads

(Wolelea A W) =0, (B4)
which implies that H!If = 0, with
=) HiFela,
Lk
(B5)

HYT = (Hop)ie + Y (Viear = Viaw)-
A

Thus, if |Wy) is an extreme, the mean-field Hartree-Fock
Hamiltonian AMF created by |W,) cannot connect occupied
and empty states. Moreover, as H'F is invariant under unitary
transformations that leave invariant the subspace spanned by
the occupied and empty states, we can choose an orthonormal
basis of the Hilbert space that diagonalizes H"F so

HF
Hy" = ey,

& = (Hyphi + Y_(Vieor — Vaw),  (B6)
A

which corresponds to the usual HF equations for the self-
consistent wave functions written in terms of matrix elements.
The Hartree-Fock Hamiltonian is then

=Y il =Y dlé+ Y enlhin.
k A A
The total energy of the state |\Wy) is
1
= ;(Hsp)}\)\ + 3 ;(Vaa,k)\ — Vorna)-

(B3)

B7)

Enr = (Wo| H|W)

In order to check if |Wy) is a true minimum of the expectation
value of H, we consider fluctuations around | W) [as given by
Eq. (B3)] and keeping only terms up to second order in the
coefficients w,;, we get the quadratic form

(VI(H — Exp)|¥) = 5

*
E Wy, Xaa,osWso
ANT,0

* *
+ Wy, Xoa, 5o Wy,

*
F W XanosWos + wWarXan oWy,

WT XW,

3 (B9)

165427-24



SYMMETRY CHARACTERIZATION OF THE COLLECTIVE ...

with W being a column vector containing the coefficients

%
WAL, Wp s
WAL
W=|: . :|
Wy

The elements of the matrix X are

(B10)

Xinoz = (Wolé]en(H — Exp)elés | Wo)

= (ea — €)8ioax + Varos — Voraz,
Xia o = (Uolé]éachés(H — Eup)| o)

= (‘I’0|515A5l52ﬁ|‘1’0> = Vai,s6 — Vi 00>

Yat A af 4
XAA,GZ = X;E,AA = X;quo' = (\IJO|HCAC)LCECU|‘IJ0>,

Xarso = Xipox- (B11)
Then, if the matrix X is positive definite, |\V() corresponds to a
true local minimum of the expectation value of the Hamiltonian
and hence it is an energetically stable solution. We will refer
to the elements X; A »x, XAz, xo as normal and to the elements
XA 50, Xarox as anomalous since they are not given by
a matrix elements between two particle-hole excitations but
rather between the ground state and an excited state with two
pairs of particle-holes.

For notational convenience, we rewrite the matrix X in
terms of arbitrary states k[, jm as
(B12)

Xt jm = (k — v)(€ — €)8k01m + Vik,jm — Vikim»

where vy, v; represent the number occupation of the state k,/.
We keep in mind that the only valid matrix elements of X in
Eq. (B12) are those with the pair index kl corresponding to
one level filled and one level empty, so vy —v; = 1 if k is
filled (empty) and [ is empty (filled); this also applies for the
pair jm. In the same fashion, we rewrite the components of
the vector W as Wy, = wy for vy — vy = 1 and Wy = wyj; for
Vi — V] = —1.

Using this notation, we can rewrite the quadratic form of
Eq. (B9) in a more compact way:

n / /
WIXW =" Wi Xt jmWim.
kl jm

(B13)

where ' denotes now that we only sum over the proper values
of the pair indices kI, jm.

b. Time-dependent situation
The Schrodinger equation for the time evolution of the wave
function can also be derived from a variational principle. In
particular, a solution of the Schrodinger equation, |\W(#)), must
be an extreme of the functional
N d
L(t) = (V(H)|H — ihENl(t)). (B14)
The equations for the TDHFA arise when imposing a time-
dependent solution of the same form of Eq. (B3),

(1) = f(t)e Tl eXa e \ggy  (B1S)
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In that case, we find

1
L(t) ~ EW* OXWO|f@)
o df
—ihf (t)z(l + ; |wM(t)|2)

d
— IFOP Y wi,@in =, (B16)
AA

where we have only kept terms up to second order in wy ;. The
resulting equation of motion for w; is

|fI? Z(X,\A,azwza + Xon. zo Ws,)
X, 0

dw ),
dt

Combining this equation of motion with that of f(¢), it is
straightforward to show that

%[W(HZWMPH =0,
Al

LAf af*
[ = f =0 (B18)

d
= ihf*d—];wm + | ik (B17)

Thus f *% is quadratic in the coefficients wy; and since we
must consistently keep only the lowest order terms for the
equation of motion for wy;, Eq. (B17) reduces to the linear
f-independent equation

dw
me,ozwza + Xonsowy, =ik d;\k'

X0

(B19)

If we now perform a linear expansion in modes for w,;,

—iw,t EES iwyt
war(t) = E Yalln,axe " Y, U, €0,

n

(B20)

¥, being the amplitude of each mode, we finally arrive at the
equations for the TDHFA:

E XonosUnso + Xon 30 Un 50 = fiwyity ax,
3,0

(B21)
- Z XarosUnso + Xars0Vnxo = RWpUp s
X, 0
In matrix form, the previous equation simply reads as
N A Up| Uy
=] e

with N, A denoting the normal, anomalous sectors of the ma-
trix X. As N is an Hermitian matrix, whenever the anomalous
elements are nonzero, Eq. (B22) is a non-Hermitian eigenvalue
equation and thus, it can present complex eigenvalues. We
also remark that the u and v components are mixed only
for nonvanishing anomalous elements. It is worth noting the
strong formal analogy of the above equations with the bosonic
Bogoliubov-de Gennes equations [67,68].

For convenience, we rewrite the above equations using the
compact notation developed in Eqs. (B12) and (B13). In this
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way, Eq. (B19) can be put as
- dW
XW=ih—,
dt

with the elements of the matrix 7' given by Tkl, im = —
V)8 81m . The expansion in modes of Eq. (B20) reads

W) = Z YaZne " + y 7, e,
n

Zn - I:un,A)\]a Zn = I:U:l*k’A)\]a
Un, Ax Mn,AA
and the equations of the TDHFA, Eq. (B21), are simply
XZ, = hw,Z,.

X=TX (B23)

(B24)

(B25)

Exploiting the analogies with the bosonic BdG equations,
we find some interesting properties of the TDHFA equations.
For instance, if Z, is a mode with frequency w,, then the
conjugate Z, is as well a mode with eigenvalue —w}:

XZ, = —ho'Z,. (B26)

The TDHFA equations also have an associated Klein-Gordon
type scalar product given by

(Z,\2,) =Z!TZ,,. (B27)

In particular, if Z,,,Z,, are two eigenmodes of Eq. (B24), then
(0n — W) (Zy)|Zy) =0, (B28)

from which follows that two modes with different eigenvalues
are orthogonal according to this scalar product. Another
important property is that the previous scalar product is not
positive definite so the norm of a given solution Z,,, defined
as (Z,|Z,), can be positive, negative or zero. In particular, the
norm of the conjugate Z, has the opposite sign to that of Z,,.
It is immediately deduced from Eq. (B28) that any mode with
complex frequency has zero norm. Also, as TX'T = X, the
complex-frequency modes appear in pairs (w,, ).

Interestingly, we can further relate the energetic stability
of the HF solution |W,) (discussed at the end of Sec. B 1 a)
with the frequencies of the collective modes computed in the
TDHFA through

ZiXZ, = hw,(Z,|Z,). (B29)

If the state |\Wy) truly minimizes the expectation value of
the Hamiltonian, the matrix X is positive definite and then
there are no dynamical instabilities since that would imply the
presence of a mode with zero norm, (Z,|Z,) = 0. Therefore
the presence of dynamical instabilities is only possible if the
state is energetically unstable.

Also, if | W) is energetically stable, the modes with positive
(negative) frequency have positive (negative) normalization.
Thus the presence of a mode with positive (negative) nor-
malization and negative (positive) frequency reveals that the
system is energetically unstable. Hence, in practice, we only
need to compute the modes with positive norm since the rest
of the modes are obtained through the conjugation Z,, — Z,,.
Indeed, they are the two sides of the same coin as they both
give rise to the same wave function.

More interesting properties appear in the presence of
a continuous symmetry in the Hamiltonian. A continuous
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symmetry arises when the Hamiltonian is invariant under a
continuous transformation of the form U "(@HU(p) = H,
with U(p) = e~*L, L being a Hermitian operator of the form

L=Y"Lyéfé.
1,k

As well known, the presence of such a symmetry gives
rise to the appearance of a gapless Goldstone mode when the
symmetry is spontaneously broken by the ground state. This
result is recovered in the TDHFA by taking into account that
the ground state is a solution of the HF equations. In that case,
if we rewrite Eq. (B4) as

(B30)

(Wolelea U (@) A O ()| Wo) = 0 (B31)

and expand the exponential for small ¢, we find that a mode
with zero frequency arises, XZg = 0, with

iLy; :|
Zc = . ,
G I:—ILT\A

L ; being the matrix elements of [ that connect filled and
empty states. This gapless mode disappears whenever all the
L 5, are zero; in that case, the unitary transformation given by
U (¢) leaves invariant the state |\W() so the symmetry is not
spontaneously broken.

The above argument also predicts the existence of such
a gapless mode whenever the system presents a continuous
mean-field symmetry, by which we denote a continuous
transformation that is not a exact symmetry of the Hamiltonian,
Ut(@)AU(p) # H, but it satisfies Eq. (B31), which means
that U ()W) is also a mean-field ground state with the same
energy of |\Wy).

Using the developed formalism, it is straightforward to
compute the response function to a small perturbation intro-
duced by an external field Hex(¢) within the TDHFA. Adding
Hy to the equilibrium Hamiltonian H in the functional of
Eq. (B14), using the same ansatz of Eq. (B15) and retaining
only the lowest order terms in the amplitude of the external
field gives an inhomogeneous version of Eq. (B23),

_dW -
lﬁ? =XW+h, hy = — v)(Hexix

(B32)

(B33)

Thus, to first order, the system only responds to the particle-
hole matrix elements of the external field, perturbing only
the expectation value of particle-hole operators. Then, if we
consider the change to lowest order in the expectation value of
a particular observable A due to the coupling with an external
field Hexy = B, AA(t) = Y11 A Wi (1), we find by taking the
Fourier transform in the above expression that.

AA(w) = ATx(w)B(a)), x(w) = (ha)T — X)_' (B34)

with A, B vectors containing the particle-hole matrix elements
of A,B, Ay = A}, and the same for B. The function x (w) is
called the mother of all response functions [64]. Its poles are
given by the condition

det[X — hiwT] =0, (B35)

which after a trivial transformation gives the TDHFA eigen-
value equation det[X — fiw] = 0, completely equivalent to
Eq. (B25). Hence the poles of the different response functions
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are indeed the frequencies of the collective modes, as well
known from the general theory of the response function [66].

c. TDHFA for the v = 0 quantum Hall state in graphene

We now apply the previous formalism to the study of the
v =0 QH state in graphene, although many of the results
presented proceed from the general theory of integer QH
states. In that case, we take the Hamiltonian of Eq. (B1) as
the effective Hamiltonian of Eq. (13). The states of the Hilbert
space are labeled by the dummy index k, which represents
all the quantum numbers (7, px,0) at the same time, with
n; the magnetic number, p; the y-momentum and «; the
polarization in valley-spin space. In particular, in our ZLL
projected Hamitonian, n;, = 0,1 and o4 = a,b,c,d. The single-
particle Hamiltonian Hy, corresponds to the layer voltage,
the Zeeman term and the mean-field interaction with the
Dirac sea while the total effective potential corresponds to the
Coulomb and short-range interactions. Since we are restricting
to the ZLL, where the orbital part of the wave functions is
proportional to the magnetic wave function ¢,, the matrix
elements of the total effective interaction potential [V j,, in
Eq. (B1)] can be straightforwardly calculated with the help of
Eq. (A10) as

_ NN Ny
Vlk,jm = (VO)[)[[’k[’ijaalakgajam
NNgn jiy,
+(VSI)PIPkI7ij E igi(ri)alak(ti)a_fall:’
i

Va(X) = 6(x). (B36)

The corresponding HF equations (B6) read in terms of the
self-consistent wave functions as Eq. (15). As discussed in the
main text and in Appendix (A11l), the orbital part of the self-
consistent wave functions is equal to that of the noninteracting
wave functions and the ground state |\Wy) is given by Eq. (16).

With respect to the TDHFA equations (B2S5), since the
occupation number does not depend on the y-momentum for
integer QH states, we perform the following transformation in
momentum space for an arbitrary vector Z:

Zkl (k) = anozk nay (k)

1 P PIFPE g 2
- N_Ze’ TR ek, Za, (B3
B

Pis Pk

so we get rid of the momentum coordinates and obtain a
discrete matrix equation only in the magnetic and valley-spin
indices:

X(K)Z(K) = ho(K)Z(Kk), X(K)=TX(Kk), (B38)
Z(k) being a vector with components Zj (k) and T the
correspondent version of the same matrix in only mag-
netic and valley-spin indices. The elements of the ma-
trix X(K), X, jm(K) = Xuoumornjojnge, (K), are computed
from

1 i PPk 12 LPjtem o, o
—_ i =5kl g him ey
N Z Z e > " B(SP/—m,kkal,jme 2 ”Bpm—m,k;
PL;Pk PjsPm

= X1, jm(K)k K, (B39)
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which gives
Xi, jim(K) = (Vg — v)(e; — €)8kjbim + Wik, jm(K),

Wi jm(K) = Ut (K) — UAD (k).

URPA (k) —

lk,jm An;nk(_k)An‘,vnm (k)szlak,ajam (k)s

2713
d’q .-
R0 = [ G A

X Ann,, (QUa;ap, 010, ()
Ua,ak.ajam (k) = VO(k)Soqak(Sajam

47 h?

m

+

> 8i(tae (Taja, - (BAO)

The energies URPA, UMAP result from direct (exchange) inter-
actions; see also discussion after Eq. (B59). The matrix X (k)
satisfies the properties

Xut, jm(K) = X7, 1 (K), (B41)

X, jm(K) = X,*k,mj(—k). (B42)

Following Ref. [63], we will refer to the matrix X (k) as the
dispersion matrix.

As a result, the transformation given by Eq. (B39) diago-
nalizes the TDHFA equations so the wave vector k becomes
a good quantum number that represents the momentum of
the magnetoexciton wave function, Eq. (32). By defining

M,L = M,ikak,,/a, (k), the matrix elements of X (k) can be easily
expressed in terms of magnetoexciton matrix elements as

Xinos(k) = (Wo| Mar(K)(H — Eyp) ML, (K)| W),
Xoazo(k) = (V| Ma,(K) Mz, (—K)H | W),
XarosK) = Xo5 4, (K) = X5, 5,(—K)

= (Wl A M}, (—R) ML, (1) Wy),
Xarzo(K) = X5, 2 (k)

= (Wo| Mz, (—K)(H — Enp) M}, (—K)| W),

(B43)

with X A, »x(K), Xsa, 5s(K) the anomalous matrix elements.
The wave functions associated to the collective modes
computed from Eq. (B38), |V (k,?)) = MT(k,t)|\IJO), are char-
acterized by the particle-hole operators MT(k,), which are
given in terms of linear combinations of magnetoexcitons,

M) =" up (MY, (e 0
AA

+ v, My, (—k)e ™,

1 s PATP) 2
[RSRCSy
up(k) = A E e T B,k UAR
BPA,[’L

1 - PATP) 2
e L
var(kK) = N_§ e T Sy pyk, VAL
BPA,P‘A

as can be seen from Eqgs. (B20) and (B37).

(B44)
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FIG. 10. (Top) Diagrammatic representation of the HF equations. The double (single) lines represent the dressed (bare) Green’s function.
The wiggly line represents the Coulomb interaction and the dashed line represents the short-range interactions. The direct (Hartree) term of
the Coulomb interaction is suppressed by the uniform positive charge background. (Middle) Diagrammatic representation of the total potential
and the correlation function I1,, Eq. (B49). (Bottom) Diagrammatic representation of the vertex equation in the TDHFA, Eq. (B53).

If all the vy, coefficients are zero, the excitation is a pure
magnetoexciton with momentum k while for nonvanishing
v, the excitations are combinations of magnetoexcitons with
momentum $K. This can be understood from the fact that, as
the v components arise from the anomalous matrix elements
(connecting the ground state with a state with two magne-
toexcitons created), in order to conserve total momentum the
two magnetoexcitons must sum total momentum zero, see
Eq. (B43).

With respect to the response function, after inverting
relation (B39), one gets from Eq. (B34) that

AA@) =Y Ak x (k.0)B(k,.0) (B45)
k

with the elements Ay;(K),By(K,w) defined as in Eq. (B37).
The mother of all response functions is now diagonalized in

momentum and reads x (k,w) = [AioT — X (k)]_l. Of special
interest is the case where the operators A, B are of the form

A=A =¥ @0} Fx),

B = BX) = A'X), (B46)
with 6,4 some operator in valley-spin space, as they characterize
the response of the system to the introduction of a pertur-
bation in the charge, spin or interlayer density. After some

manipulations, it is seen that

2
AA _ [ K ek
(X, ) e (k,w),

1
AAk,w) = Pl a (k) x (k, w)a(k), (B47)
B

a(k) = A% Ky, Oue, = X OaXa,-

2. Diagrammatic formalism

Following Refs. [48,63], we rederive the results of the previ-
ous section using a diagrammatic expansion. For definiteness,
we restrict from the beginning to the particular case of the
v = 0 QH state (although the extrapolation of the results for
general integer QH states is immediate). The first step is to
compute the self-consistent Green’s function, whose equation
is given by the diagrammatic representation of the first line
of Fig. 10. As well known [66], this equation leads to the HF
equations for the self-consistent wave functions, Eq. (15), in
terms of which the Green’s functions is written

G(x.X.0) = Y W)WY (X)Gr(w),
k

1—Uk Vi
Gilw) = — + —,
w—w+Iin w—wp—1In

(B48)
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with n = 0" and /iw; = €; the HF energy. We follow here the
notation introduced in Sec. B 1 ¢ so the dummy index & labels
all the quantum numbers (ny, pi, o).

Since the corresponding formalism is closely related to that
of the response function [66], the collective-mode frequencies
can also obtained from the poles of the set of correlation
functions:

M4(x,x") = =i (T{AGF T 00 O1A [ ()840 (1),

(B49)

where x = (x,7), T denotes time-ordering, all the expectation
values are evaluated in the ground state of the system in
the Heisenberg picture and AO = O — (O) denotes the
fluctuations of an operator around its mean value.

The Fourier transform of the correlation function gives

Ms(k,w) = /d%f"kan(x,O),

d&’x = d’xdt, kx =kx — ot, (B50)

after taking into account that the correlation function is
invariant under time translations (due to the fact that the
Hamiltonian is time independent) and also under spatial
translations (this last property is shown explicitly later). We
now proceed to compute the previous correlation functions
within the diagrammatic version of the TDHFA, in which the
equation for IT4(k,w) reads

i d(,() 1 A(O)*
Makk,w) = —— E / E Ay (ko)
h o 21 S

x Gi(@)Gi(w + ALK ),  (B5])

where we have introduced the dressed vertex function
A,?l(k’,w). In the above equation, we have made use of the
identity ), e’¥X = §5(x’). We remark that the index k in
Eq. (B51) labels the quantum numbers (n, px,ox) and not
momentum. The expression for the noninteracting vertex
APk w) is

AN k,w) = / d*x W/ (x)e™*6,, Wy (x)

—e —iky l’k+Pl 125 " A:wl
with 6,0, defined in Eq. (B47).
In the TDHFA, the Dyson’s equation for the dressed vertex
function is given by

(K)0ye, (B52)

i
AGK . 0) = Ay (K ) - 7 2 Vikim = Vikan]

Jj.m
dw A ’
X /2—G ()G (a)—l—a))Ajm(k ,W)

(B53)

with Vi, the matrix elements of the total interaction
potential, see Eq. (B36).

The diagrams for the total bare interaction, the correlation
function and the vertex equation in the TDHFA are shown in
Fig. 10. Hence, within the TDHFA, the dressed vertex function
is the bare vertex (first term) plus the series corresponding to
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bubble (second term) and ladder (third term) diagrams. The
RPA approximation would correspond to just keep only the
bubble diagrams. By defining the two-particle propagator

) do’
i Dyy(w) E/ o

_l|: (@ —v)
o+ oy —w +in

v (1 —wp)
w+wp—w —in]

(B54)
we simplify Eqs. (B51) and (B53) as

AT 4K, 0) = Z Z AL (k,0) Dy (@) Ay (K ),

A//?[(k/va)) = A(O)(k/ W)+ = Z[Vlk jm — Vjk, im]

j m

X Djm(@) A%, (K 0). (B55)

We note that the two-particle propagator Dy;(w) does not
depend on the momenta py, p; and it is only nonzero whenever
the pair index k/ represents one filled level and one empty.

Further simplifications can be made by summing over all
the momenta

Ap(k,) = Y > 0k, Aun (K)Du(@)L (kK ),

ngny K

(%

(B56)

1 . PP,
Lig(k K ) = 3 e hlis, L ARK ). (BST)

Pis Pk

The function L, only depends in &,/ through the magnetic
level and the valley-spin polarization so, thanks to these
manipulations, we get rid of the momentum indices and
simplify the vertex equation. For instance, for the bare vertex,
A,fl(o)(k/,a)), one finds

1 )
(O)A(k K,w) = S Z ¢ i LAk, ’28 . AA(O)(k/’w)

Pis Pk

Sk Apy, (K)o (B58)

- 27112

while for the ladder and bubble diagrams, after using the
expression for the matrix elements given in Eq. (B36),

Jj.m Di,Pk

—Pr.ky [Vlk,jm - ij,lm]Djm(w)

x A%, (K ) = Z Wik, jm(K)Djm(@) L%, (kK @)

n, 7™
Oy

(B59)

with Wi (k) given in Eq. (B40). From the above expres-
sion, it is easy to understand the notation of the quantities
URPA and UAP: they take into account the energy contribution
from bubble and ladder diagrams, respectively [63]. Since we
have performed the summation in all the momentum dummy
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variables, from now on we use the index k to label just the
quantum numbers (71, 0).

After inserting the expression for A,f,(k,a)) of Eq. (B55)
in Eq. (B57) and using Eqs. (B58)-(B59), one realizes that
L}k K o) is diagonal in (k,k). Hence after defining a new
dressed vertex function

A / 1 AA
Lkl(k’k ,a)) = TSk,k/Akl(k,a)),
B

(B60)

the original integral equation (B53) for the dressed vertex is
transformed into a discrete matrix equation:

Afko) = A] , (K, (B61)

+- Z Wik im0 D j(@) A%, (K,0),

_]m

where we remark that the labels /,k, j,m now only represent
the pair index corresponding to the magnetic level n and the
valley-spin polarization «. The correlation function then reads

AT (k,0) = 12 > 02 o A () Dig(@) Ay (K, 0).

B
(B62)

The &y i factor appearing in Eq. (B60) ensures the translational
invariance of the correlation function previously assumed. In
order to solve the matrix equation (B61), we define

1
= Dkl(a))Akl(k w),

Mg (k,w) = (B63)
Xit, jm(&,0) = Wik jm(K) — 881 Dy (), (B64)

and then
D X jmk )T, (ko) = —au(k)  (B6S)

jm

with ay; given by Eq. (B47). According to Eqgs. (B54), (B63),

and (B64), the only valid matrix elements of Xy j(K,w) are

those where the index pair £/ correspond to one level occupied

and the other level empty (the same goes for jm). Therefore

Xu, jm(K,0 = 0) = Xy, ju(K) is exactly the same of Eq. (B40).
Indeed, after rewriting Eq. (B62) as

27-[[2 Z Z akl(k)XkI jm(k7w)ajm(k)

B i jm

I'IA(k,a)) =

al (k)X ~'(k,w)a(k) (B66)

2m I
and following the discussion leading to Eq. (B35), we find that
the poles of the correlation function also give the collective-
mode energies, as they are given by the condition det[X (k) —
hw] = 0, which is the same eigenvalue problem of Eq. (B38).
In particular, note that Eqs. (B47) and (B66) are equivalent
as X~ !'(k,w) = —x(k,w), revealing the close link between
the correlation and the response functions mentioned at the
beginning of the section.

Although the diagrammatic formalism may be more robust
from a fundamental point of view, the form of the TDHFA
equations obtained in Sec. B 1 ¢ provides a simpler and clearer
physical picture of the TDHFA since it allows us to understand
the collective modes in terms of wave functions.
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APPENDIX C: COMPUTATION OF THE DISPERSION
RELATION IN THE TDHFA

We devote this section to the computation of the solutions
to the TDHFA equations for the v = 0 QH state within the
projected model considered in this work.

1. Analytical results for the dispersion matrix

We start by computing analytically the elements of the
dispersion matrix, Xy j, (K), given by Eq. (B40). In particular,
we focus on the nontrivial many-body contribution arising
from interactions, Wy j, (k). In order to give its explicit
expression, we separate the Coulomb from the short-ranged
terms

Wik jm &) = Wi, () + W . (K). (C1)

The Coulomb term, Wlk, jm(K), has no direct (RPA) contribu-
tion as it vanishes when considering the proper elements of
the dispersion matrix because in our model the empty levels
have different valley-spin polarization from that of the filled
ones. Thus we only have to consider the exchange (ladder)
contribution, which yields

‘/Vlgjm(k) _Uncnk NN, (k)aijk Salam s
d’*q i(quky—qyko)l
n nk nmm( ) = me AR “'An,nk(—Q)
X Anln,,, ((I) Vo((l) (CZ)

These energies are given in terms of modified Bessel functions,
as seen by computing the element U, oo(K). After changing
to polar coordinates, taking into account that only the real part
of the complex exponential survives, performing the integral
over the radial coordinate and using the integral representation
of the modified Bessel functions,

1 2w )
Li(x) == / dpe™ e, (C3)
2 0

one finds that

27 (uB)Z sin2 g
UOO OO(k) Fo()— / dgoe

kl Ly

= F0010|:( j) i|€(u4) (C4)
with Fy given by Eq. (18).

The other elements Ufnk um, (K) can also be computed

analytically. Instead of using the complicated expression found

in the tables, we simply take into account that A,,, (q) is a

2
polynomial in ¢g,,q, multiplied by s Then,
d2q l .
n e n’nM( )= (%4 )2 n]nk minw (Gx-qy)e (g:ky=qyko)lg
_(ql 3)2
x Vo(qle™ > (C5)

with Py, nn, (gx.qy) some polynomial. For Ug, o(k),
Poo,00(gx,qy) = 1. Therefore, from the usual properties of
Fourier transforms, one has that

0

C _ .
Un RNy, (k) - Pn/nk,n/nm <_l k

ad
o U0, (€O
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Since the Bessel functions are solutions of a second order
differential equation, their higher order derivatives can always
be put in terms of themselves and their first derivatives. For
Ip(x), % = I;(x), which means that the elements U,,C, ey, (K)
are expressed through combinations of Iy, /; and pofynomials
in k,,k,. For instance, from Eq. (A7), we obtain

PHYSICAL REVIEW B 95, 165427 (2017)

present the following properties:
0, (uot,um,aka,)* — (ua,ak,amaj)* — g Ok 1

(€9

u

In order to simplify the notation, we define a matrix C (k)
containing the exchange Coulomb energies with the following

9 4 ;D
ok, T LAk, index ordering in orbital space:
Ulo.00 = ——=—Ug 00K g p
V2 C C C C
ky + ik, (kp) TR N 0000 Cooor  Coo.10  Coo11
= Fyo .2\/5 I 1 |- Iy 2 e 4 Clk) = 201,00 201,01 201,10 201,11 ’
7 10,00 10,01 1010 Cion
Cioo Cirot Cirio Cin
and so on. For large x, a saddle-point approximation of the c '
integral in Eq. (C3) gives Io(x) ~ ;—; Then, for large wave Coinrnjn, () = Uy, (K). (C10)

vector k, klg > 1, Uo%,oo(k) ~ (klg)~'. As the other elements
are obtained from derivatives of U(f),oo(k)’ the total matrix U°€

decays at least as (klz)~! for large k.

We now turn our attention to the short-range interactions.
Using the property (A25), one finds that the orbital part of RPA
and ladder contributions is the same and then

1 .
W;]:]m(k) = EAn,nk(_k)Anjnm (k)uaka/,a/ ",

Yo E o = Z ui[(fi)oqak (Ti)otjot,,l _(Ti)ozjak (Ti)oqam]' (C8)

Thus all the valley-spin structure of the short-range interac-
tions is captured by the effective couplings u**%%" which

J

We also define an analog matrix R(K) for the short-range
interactions

Ry () = A0, (KA, 0, (K) = 1A% (K)A, 5, (K).
(C1D)

Then, after taking into account that the only valid matrix
elements of Xy, ;,(k) are those with the pair indices kI, jm
corresponding to one level filled and one level empty and that
the occupation number for the v = 0 QH state only depends
on the valley-spin polarization, it is seen that the matrix X (k)
of the TDHFA equations (B38) is a 32 x 32 matrix of the
form

- yacac Yac.ad yac.be Yac,bd yac.ca Yac,da Yac,cb Yac,db—

Yad,ac Yad,ad Yad,hc Yad,bd Yad,ca Yad,da Yad,cb Yad,db

ch,ac ch,ad th,bc th,bd ch,m th,da th,cb th,db

B de.ac de,ad de,bc de,bd de,ca de,da de,cb de,db
X(k): _yca.ac _Yca,ad _Yca,bc _Yca,bd _Yyca.ca _Yca,da _Yca,cb _Yca,db ’ (C12)

_Ydu,ac _Ydu,ad _Yda,bc _Yda.bd _Ydu,c'u _Yda.da _Yda,cb _Yda,db

_ch,ac _ch,ud _ch.bc _Y('b,bd _ch,ca _Y('b,da _ch,cb _ch,db

_de,ac _de.ad _de,bc _de,bd _de,ca _de,da _de,cb _de,db

where the 4 x 4 matrices Y %*-%% (k) are the building blocks of X (k) and represent the different valley-spin sectors. As discussed
after Eq. (B29), computing just the modes with positive norm is sufficient for characterizing the collective modes.
After some straightforward manipulations, the matrices Y ** %% (k) can be written as

Yakot/,otjotm(k) — [Aotkotll + F(k)]aakajaoqam + R(k)uaer,,a,am’

Fo+ Fi Fo+ Fy
2 2 7

(C13)

. F(k) = diag|:F0, Fl] — C(K).

AN — (V(xk _ Va,)(ea/ — Eak) = |Ea, — €

(

We remind that the occupied states (v, = 1) correspond to po-
larizations o« = a,b while the empty ones (v, = 0) correspond
toa = c,d and that [ is the 4 x 4 identity matrix. Between the
square brackets of Eq. (C13), A“* represents the valley-spin
part of the mean-field energy gap [see Eq. (20)], while
the matrix F(K) contains all the terms involving Coulomb
interactions, both mean-field and many-body contributions. At
the same time, they are all multiplied by a diagonal tensor with
respect to the valley-spin indices, so the different valley-spin
sectors of X are only connected through terms arising from
short-range interactions, proportional to u**-*“"_This fact

simplifies notably the calculations since many of the effective
couplings u®* %% are related to each other through Eq. (C9)
and also some of them vanish due to symmetry considerations
(see next section) and consequently we do not need to take into
account the full 32 x 32 problem. In particular, using Eq. (C9),
itis shown that the only independent and nonvanishing element
in the anomalous sector [the off-diagonal boxes in Eq. (C12)]
is uac,db.

Some analytical properties of the dispersion relation can
be obtained from the above results. First, as explained in the
main text, at k = 0 the total orbital pseudospin O and its
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z-component O, are good quantum numbers. We can check
this fact by making a unitary transformation in the matrix X
that switches to the singlet and triplet magnetoexciton base,

T
MOO ,ao! (k)

11 ao’ (k) MlTaOa’(k)’

1 . .
Bz [Mszla’(k) - M(;aoa,(k)],

\/_
Oala (k )

MIO,aa’(k) =
S (C14)
Ml—l,aa’(k) =

= [Mi[-ozla’(k) + M(Loa/(k)]-

V2

This transformation yields a simplified form at k = O for the
matrices Y *®%i%m

M(l)O ao’ (k) =

yeranitn(k = 0) = (A% ] 4+ F)SOlkOlj ‘Sazam + Ry &e-%j%m |

Foo+ Fii Foo+ F
F = diag|0, -0 =71 T0E 0 5
2 2
R = diag[1,0,0,0], (C15)

J

00 1 2 22 sing
_ _ iqkly sin(pq—px) ,—i(g+nm,—n;—n;)e
U, nk nn,, (K) = / dq <2n /(; dpge! s TV e ’ q>wn,-nk,nznm (@)
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where the order of the magnetic indices for rows and columns
corresponds to OO, = 00,11,1 — 1,10. All matrices are now
diagonal in this new basis. In particular, the energy of the
singlet OO, = 00 mode is independent of the Coulomb
strength and is the only one that presents a nontrivial structure
in valley-spin due to many-body contributions from short-
range interactions, represented by the matrix R. This contrasts
to the case of orbital-triplet modes, where the many-body
corrections due to short-range interactions vanish and the
collective-mode frequencies are immediately obtained from
the diagonal of A%“ [ + F.

For k # 0, we show that the resulting dispersion relation
is isotropic. The key point is the polar structure of the
magnetic form factors, shown in Eq. (A6). As (k,,k,) =
k(sin gk, cos gx),

Ry jn, (k) = e/ 7m0l O R, L, (K) - (C16)

with Ry, n;n,, (k) a function that only depends on k = |K| [not
to be confused with the subindex k that labels the quantum
numbers (11,0 )]. For the Coulomb interaction, we switch to
the following polar coordinates in the integral of Eq. (C2),
q = g(sin ¢q, cos @q). This gives

(C17)

with Wy, nn,, (¢) some function that only depends on g. The polar integral gives

1 2w

- -~
2_ dwqel‘]klg sin(pq ‘pk)e
T

—i(tnm—nj—n)eq _ e

—i(ngAn,—nj;—n)eg Jngtn, P (qkl%) ) (C18)

This implies that the matrix C(k) has the same dependence on the polar angle of Eq. (C16). On the other hand, for the diagonal
elements nyn; = n;n, and the factor e =%k ol =)ok pecomes the unity. Hence Xy j,(K) is of the form

Xkl,jm(k) = eii(nkim)(/)k)?kl,jm

(k)ei("j*”m)sﬂk (C19)

with Xy j (k) depending only on k = |k|. Then, after making an appropriated phase transformation in the magnetic indices we
get rid of the dependence on the polar angle of the momentum and obtain a matrix X;;, jm(k) which explicitly depends solely on
k = |K|. Therefore the resulting dispersion relation is isotropic, w(k) = w(k).

We remark that the previous proof only relies on the fact that the Coulomb interaction is rotationally invariant and not on its
particular form. Thus this result applies for any rotationally invariant interaction potential; in particular, it holds for the screened

interaction considered in Sec. VI.

For completeness, we give the expression of the rotationally invariant matrices F(k), R(k) that arise from the matrix X (k) in

Eq. (C19). For Coulomb interactions,

I le (R01)

_wg? ZH}R 2+ _(klzf) Roi

C(k) = Fye ¢ )

My p Lo_ ®s) g

—545 o 5 — ~2—Ro

B W Ry MaqSe — (klp)Rol
_ (klp)® _ _
lo1 = I e Soo=lh+15, Ry=I—1,

and F (k) obtained through Eq. (C13), while for short-range interactions

Rk) = r(k)ak)a’ k), a(k) =

2(1-+ 5)

kj}R01 % - (k{f)“ Ro1
2
L Gy g, k”‘ 5101 — (klp)*Roi]
by ®ar g, —%[Sm (kl3)*Roi
My IS — KIp2Ro] 3l — Bl g, 4 Wla gy,
(C20)
1
kip
Kip 5 kl 4
el r(k):e—(“‘z“<1 4 ¢ ;) ) (C21)
—
(klp)*
1=
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Note that the matrix R(k) is a matrix of rank 1 as it is
proportional to the projector on the vector a(k). Interestingly,
from the above expressions it is immediate to check that
the vector [0,1,1,0]" is an eigenvector of the matrices
F (k) and R(k); in particular, it is orthogonal to a(k). Hence
the following linear combination of magnetoexcitons with

O, ==land vy, — vy, =1,
Vil 1 ig prt —ig gyt
Mgy ) = [ Mg 00, 00 + 7 My 1, W], (C22)

is always an eigenmode of the TDHFA equations, which
describes the N = 2 orbital modes, with frequency
11 L+1 »?

Rl (k) = A% +F00[§ - OJZF ‘e‘“?}. (C23)
Note that the only dependence on the short-range interactions
of this mode is contained in the valley-spin contribution
of the single-particle gap, A%*, so the dependence in k
solely involves Coulomb interactions. Finally, we note that
considering screened Coulomb interactions only amounts to
replace the matrix F(k) by its screened version, F (k).

2. Computation of the collective modes in bilayer graphene

We now discuss the details of the computation of the
collective modes for the different states of Eqgs. (23), (24), (26),
and (28). For all the phases, we give the independent non-
vanishing coefficients u**-% %" that characterize the valley-
spin structure, discuss the symmetries of the modes and
the associated eigenvalue problem and compute the stiffness
coefficients for all the modes.

a. Ferromagnetic phase

udcac — ubd,bd — ac,bd —

—U;, U —2u |,

.. (C24)

Z

ubc,bc — uad,ad —

The problem is diagonalized in valley-spin space by consid-
ering magnetoexcitons with well defined valley pseudospin
numbers, M;n pr.(K):

Mljn’,]l(k) = Mr]:cn’b(k)’
M}ln’,l—l(k) = Mr-[dn’a(k)’

| (C25)
W10 = = 1,00 = g KL,
~ | B N
M 0000 = = 1,00 + M )L

Since the ground state has well-defined quantum number
for §,S;,L,L,, and all magnetoexcitons have S = 1,5, =
—1, the anomalous matrix element vanish due to spin con-
servation and hence dynamical instabilities cannot appear
in the ferromagnetic state. As a consequence, for a fixed
value of LL,, the frequency and the orbital structure of the
modes (corresponding to the N = 0,1,2,3 orbital modes) are
computed from the 4 x 4 eigenvalue equation

Y () Zp (k) = ho™t (k) Z 11 (K),

T
ZLL; = [MOO,LLZ,ulo,LL;aMOI,LL:aull,LLZ] , (C26)
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where we have made use of the isotropic expressions (C19)—
(C21). All the matrices Y*=L%<(k) present the same structure:

Y*(k) = A*I + F(k) + u* R(k), (Cc27)

where the valley-spin gaps A* and effective coupling energies
ut are

AOO — AIO — A4 A“ — Abc

MLO — uac,ac + (_I)Luac,bd’ I/lll

Al = A%
=u'"" = ut. (C28)

The previous relations imply that the dispersion relation for the
triplet modes with L, = %1 is the same, only shifted by the
layer voltage, o'~ !(k) = w'!(k) + 4€y, and that Z;_,(k) =
Z11(k). The wave function of each mode is created by the
operator

MZLZ(kJ) = Zei(n—n’)wkunn,,LLz (k)MrTm’,LL, (K)e ik

(C29)

Using standard techniques it is straightforward to compute
from Eq. (C27) the stiffness coefficients of the different modes:

_ GFo- uﬂ)z),z

7 B>
ZFOO — 2um

3 Foo — ut g
+(;‘°°—) 13, (C30)
ZF()()—ZM”'

1 7
Py =pr= T wlg, Py =ps= e 00l3-

The expression for the stiffness of the N = 2 modes can also
be obtained directly from Eq. (C23). Note that the stiffness
coefficients of the modes N = 2,3 are independent of short-
range interactions and hence of the valley-spin symmetry of
the mode; this result holds for all the phases. Remarkably,
p}" < 0 for every mode as the leading contribution goes as

27 3 ut 27
p{i = —|:—F00 — —ut + 0<—)i|l% ~ ——F()()l%;.

112 294 Foo 112
(C31)
b. Full layer-polarized phase
uac,ac — ubd,hd — ZMJ_ + us, uac,hd _ ZMJ_,
ubc,bc — uad,ad =u,. (C32)

As this phase is the analog of the F phase in valley space,
the results for the FLP phase are formally analog to those
of the F phase and they are obtained by replacing LL, by
SS; in Egs. (C25)—(C30). As mentioned in the main text, all
triplet modes present the same dispersion relation, only shifted
by the Zeeman energy, '*! (k) = w'°(k) = 2¢; and Z,(k) =
Zyo(k) = Z1-1(k).

c. Canted antiferromagnetic phase

§46ac — ubd,bd = —u,, Mac,bd — _ZML COS2 '95»
Mbc,bc _ Mad,ad =u. + ZMJ_ sin2 05,
u = 24 | sin’ 6. (C33)
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Since the CAF state has only well defined value of the
z valley pseudospin, L, = 0, the anomalous element 94"
becomes nonzero, so the collective modes are combinations
of magnetoexcitons with +k, see Eq. (B44) and related
discussion. For the same reason, complex-frequency modes
can appear.

The eigenvalue problem is split in sectors with fixed
L.. First, we consider the subspace with L, = 0, where we
define

Mr]:n’,+(k) 7 [Mr]:cn a(k) + MTdn’h (k)]
N 1 N
M), (k) = ﬁ[Mim W) = My, (0], (C34)

Note that, due to the different spin orientations of s,,s;, these
modes have no well-defined value of L; only in the limit 85 = 0
they match the proper L = 0,1 modes. In this new basis, the
eigenvalue problem is diagonalized in valley-spin space and

J
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reduced to two independent 8 x 8 blocks:
VR0 Z4(k) = ho* () Z+(k),
Zy = [woo,+,U10,+,U01,+;

T
U11,4,Y00,+,V01,4,V10,+,V11,+]",  (C35)

i YE(K) AR
P = [¢A<k) —Y*(k)}

where the reader is advised to pay attention to the interchange
of magnetic indices in the v components of the vector
Z. The matrices Y*(k) are given by Eq. (C27) with the
values AT = A% and u* = % £ y**¥ and the matrix
A(k) characterizes the anomalous matrix elements of X(k),
A(k) = u®P R(k).

The velocity of the Goldstone mode is computed, after some
tedious but straightforward algebra [note that the eigenvalue
problem of Eq. (C35) at k = 0 gives a nondiagonal Jordan
canonical form for the orbital-singlet modes rather than the
usual diagonal matrix], as

W _ ol Broea—
ls 3

The wave function of the modes is created by the operator

ML) =D Ny (M, LR vt (M, L (—K)e 0],

n,n’

3 2
=Fpo+ A
(;100—) A = A%,
1Foo +2A

A = [ue. (C36)

(C37)

For the components with L, = %1, the eigenvalue problem reads

Y'* ) Z111(k) = ho'* (k) Z111(k),

T
Zix = [MOO,H:I7u10,1:t17u01,1:|:17u11,1:|:1s000,1117U01,11F17U10,111vvll,lﬂFl] )

—A(k)

Aty —Y'F @)

PIE () = |:Y1il(k)

(C38)

where the expressions for Y '#!(k) are the same as in the F state, and the operator associated to the wave function of the collective

modes is

Wy Ge0) = 3™ it 1 (M1 (0 407y Oy (00T,

n,n’

(C39)

which we see that mixes magnetoexcitons with Kk, L, = 41 in order to conserve both total momentum and total value of L, in

the anomalous matrix element. As in the F phase, a)llv_

(k) = o)\ (k) + 4ey and Z,_, (k) =

Z1(k).

The expression of the stiffness coefficients for the orbital-singlet modes (when p does not correspond to the Goldstone

one) is

(Cu[%FOO —u]

—d,A)’

23
s |:(ci +d,) (32 Foo — u“) —2c,d, A —

TFo0 4+ 2A =2/t + A)? — Az

(

[ /ut+A—AN:  [ul+A+A\? |
Cu== + L dy ==
2 ubk + A+ A ut + A — A 2

(d [ F()() - u"] - CMA)2
TFoo 4+ 2A +2/(uk + A2 — A2

1 1
HEA— AN KA+ AT
WAAZAN (Ul AT AN (C40)
ut + A+ A ut + A —A

For the N = 1 modes, the expression varies if there is a Goldstone mode:

(cu[3 Foo —u] - dﬂA)z

(d,[3 Foo — u] — ciA)°

Y L
Py = 16 00 )

(o —w) — 22

ITFo+2A =2/ + A? — A2

} B2, w=+,11,1-1,

TFy0 4+ 2A +2/(u* + A2 — A2

TFoo +2A

A(%FOO_”M_A)2:| 2

(2Fo +24)

[ — (C41)
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We note that the leading contribution in the Coulomb interac-
tion strength for ,0{‘ still satisfies Eq. (C31).

d. Partially layer-polarized phase

plcac — ubd,bd =u, + ZMJ_,

uP =2y 4 (u, — u)sin® by,

ubc,bc ad,ad

=u =u, — (u, —u)sin’ Oy,

uac,db —

(u; —uy)sin®Oy. (C42)
The valley-spin structure of the modes is similar to that of
the FLP phase and the problem is diagonalized by considering
modes with well defined spin number S, S,. The main differ-
ence is that, as the Hamiltonian does not commute with the
operator f,n, the anomalous matrix element is nonzero.

For the modes with S, = 0, we find that the collective modes
are given by

750(k) Zso(k) = ha® (k) Zso(k),

Zso = [100,50,U410,505101,50, 411,505 V00,50

V01,50 V10,50 V11,501 » (C43)
750 = YU (= DSA®K)
| —=DSAGk) -k |

The corresponding wave functions are those of Eq. (C37)
but changing + by SS, = 00,10, respectively. The exact
expression for the velocity of the Goldstone mode, w)’(k) ~
vgk, is also given by Eq. (C36). For the modes with S, =
+1, the results are formally analog to those of Egs. (C38)
and (C39), but with S§, playing the role of LL,. The values of
ASS: 55 characterizing the matrices Y5% (k) are computed
in the same way as in the FLP case, also finding that
wlil(k) = w'o(k) F 262 and le(k) = Zlo(k) = Zlfl(k). The
expression of the stiffness coefficient for the orbital-singlet
mode p(;o is given by Eq. (C40) and those of ,01'O and ,0?0 by
the first and second line of Eq. (C41), respectively.

3. Computation of the collective modes
in monolayer graphene

The TDHFA previously developed for computing the
collective modes of the v = 0 QH state of bilayer graphene
is also valid for the monolayer. In particular, the dispersion
relation is also obtained from the eigenvalues of the matrix
X (k) of Eq. (C12) but now there is only one possible value
for the magnetic index, n = 0. Thus, as the structure in the
valley-spin space is the same as for the bilayer problem, the
building blocks of the dispersion matrix X, Y% (Kk), are

PHYSICAL REVIEW B 95, 165427 (2017)

now scalars instead of 4 x 4 matrices:
Y (k) = (AN F () B, B, + RO
F(k) = Foo — Coo,00(k)

kip)* :
R IR it

_ (kip)?

R(k) = 2Rqo,00(k) =e™ 2,

(C44)

where we have made explicit the isotropy of the dispersion
relation. All the coefficients A%** and %% have the same
value as in the bilayer case but with €y = 0; the same holds
for the magnitudes A* and u*. Hence the dispersion relation
is computed in the same way as in the previous section but
replacing all the matrices Y by the corresponding scalars,
notably simplifying the calculations.

We now give the explicit analytical results for the dispersion
relation of the collective modes w*”(k) and the associated
stiffness p* for every phase, characterized by the same
valley-spin symmetries u as in the bilayer case. Note that the
components U, ,v,, of the magnetoexciton wave functions
are reduced now to scalars as the orbital structure is trivial for
monolayer graphene.

a. Ferromagnetic and charge-density wave phases

ik (k) = YP(k) = A" + F(k) + R(ku",

F()() u*

As ey = 0, for the F phase o'~ (k) = w'' (k). Note the strong
similarity in the formula for the stiffness with that of bilayer
graphene for dominant Coulomb interactions, Eq. (45).

(C45)

b. Canted antiferromagnetic and Kekulé distortion phases

hao' (k) = \/ [Yr()] — [ARK)]. (C46)
Similarly, o' ~!(k) = @' (k) in the CAF phase.
The velocity of the Goldstone modes is simply
h F
296 _ Al 2% 4 Ac (C4T)
Ip 2

with AS = A~ for the CAF phase and A® = A% for the KD
phase, while the stiffness coefficients are

F ut A?

p_ WA -+ T

NGy

Both results can be compared with those for the bilayer for
dominant Coulomb interactions, Eqgs. (49) and (55).
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