
Universidad Complutense

Facultad de Informática

Ingenieria Informática

Tecnología Específica de Computación

June 16, 2017

Persimmon
A visual dataflow language for machine learning

Álvaro Bermejo García

Supervised by Manuel Freire Moran

Cosupervised by Pablo Moreno Ger

Abstract
Persimmon is a visual programming interface that leverages scikit-learn to pro-

vide a drag and drop interface for developing Machine Learning and Data Mining
pipelines. It is based on the dataflow programming principles, giving the user a
functional visual language with a type safety system that checks connections at
write time, non-strict evaluation, task parallelization, and execution visualization.
It has been evaluated by participants on a three-task form, overall receiving good
reviews, being praised by the use of colors to indicate types, consistent design,
easy to navigate and shallow learning curve.

Keywords: Machine Learning , Data Mining , Visual Programming , Dataflow Pro-
gramming , Functional Programming .

2

Contents

1. Introducción 7
Descripción . 7
Motivación . 9
Objetivos . 9
Que no es el proyecto . 10
Estructura de la memoria . 10

2. Introduction 11
Description . 11
Motivation . 12
Objectives . 13
What the project is not . 14
Project Structure . 14

3. Focus 15

4. Literature Review 16
On Machine Learning . 16
On Dataflow Programming . 17
On Visual Programming . 18
State of the art . 18

5. Workflows 21
Simple . 21
Regular . 21
Complex . 22

6. Milestones 23
Tree . 23
Gantt Chart . 24
Development Methodology . 25
Source Code . 25

7. Risk Analysis 27
Stakeholders . 27
Prevention & Mitigation . 27

3

8. Interface Design 29
Sketches . 29
Colour Palette . 31
Typography . 31

9. Implementation 32
First Iteration . 32
Second Iteration . 33
Third Iteration . 33
Model View Controller . 35
Making a Connection . 36
Visualizing the Data Flow . 38
Binary Distribution . 39

10. Type Checking 41
Gradual Typing . 41
Write Time . 41
The two languages . 41
Actual Types . 42
Intermediate Representation . 43

11. Evaluation 45
Method . 45
Proposed Tasks . 45
Evaluation Results . 46

12. Conclusiones 49
Revisión de Objetivos . 49
Retrospectiva . 50
Conclusión . 50
Trabajo Futuro . 51

13. Postmortem 52
Objectives Review . 52
Retrospective . 53
Conclusion . 53
Future Work . 54

Bibliography 55

A. Package Organization 59
Backend . 59
View . 59

4

B. How was this document made? 60
Process . 60
Diagrams . 60
References . 60

C. Persimmon Evaluation 61
Preparation . 61
Previous Questions . 61
Tasks . 61
Additional Feedback . 62

5

List of Figures

4.1. Graph Execution algorithm . 17
4.2. Azure ML Studio web interface . 19
4.3. Unreal Engine 4 Blueprint system . 20

5.1. Just validation of the model . 21
5.2. Prediction using the whole dataset . 21
5.3. Adjustment of hyper parameters . 22

6.1. Milestones Tree . 23
6.2. Gantt Diagram of the project development. 24

8.1. Sketch of the first interface . 29
8.2. Sketch of the second interface . 30
8.3. Types colors . 31

9.1. Implementation of the first interface . 32
9.2. Second iteration implementation . 34
9.3. Third iteration interface showing a warning 35
9.4. Widget Tree . 36
9.5. Connections between elements . 37
9.6. Connection modification handling . 38

10.1. Type hierarchy . 43
10.2. IR definition on Haskell . 44

11.1. Participants familiarity . 46
11.2. Task score per task per participant . 47

12.1. Persimmon en el extranjero . 50

13.1. Chinese machine learning forum . 53

A.1. Persimmon package hierarchy . 59

6

1. Introducción

En este capítulo se presenta Persimmon, así como los objetivos y las motivaciones del
proyecto. También se incluye una sección sobre temas relaciones con el proyecto pero
que quedan fuera del ámbito del mismo. Finalmente se encuentra una breve revisión de
la estructure de la memoria.

Descripción

El campo de Data Science ha visto un incremento exponencial de mercado en los úl-
timos años, con predicciones vaticinando que hasta un millón de científicos de datos
serán necesarios para 2018 (Rajpurohit, 2016). Los científicos de datos se encuentran
en una situación excepcional, para el Harvard Business Review es “the sexiest job of
the 21st century” (Davenport and Patil, 2012). Y sin embargo, a pesar de todo esto
faltan profesionales que puedan cubrir estos puestos, la disciplina es inherentemente
multidisciplinaria (Taylor, 2016), incluyendo conocimiento de estadísticas, matemáticas,
programación y del dominio. Esto hace que el camino para convertirse en un experto
sea largo y complejo, lo cual desemboca en las llamadas “cazas de unicornios” (Harris
and Eitel-Porter, 2015) y (Press, 2015).

Herramientas como scikit-learn1, Weka o Tableau permiten un acceso simplificado y de
alto nivel a las herramientas necesarias para hacer Data Science, suavizando la curva de
aprendizaje y aumentando la oferta de profesionales capaces de desarrollar análisis de
datos.

Estas herramientas por otro lado requieren programación, se centran en tareas de
limpieza y pre-procesamiento de datos, o proveen una interfaz muy limitada.

Persimmon pretende proporcionar una interfaz visual para scikit-learn, dando la habili-
dad de crear complejos procesos de análisis sin escribir una sola línea de código, dando
al usuario una expresividad comparable a la programación tradicional a la vez que se le
ayuda mediante estímulos visuales.

Para poder conseguir esto el proyecto explora las siguientes disciplinas,

1Scikit-learn es una librería de Python que trae una multitud de algoritmos de aprendizaje automático
a una API que permite el uso y comparación del os mismos en un alto nivel de abstracción.

7

• Dataflow Programming. Este paradigma representa programas como grafos acicli-
cos dirigidos, iniciado en los 60 en el MIT y los laboratios Bell (Kelly et al., 1961).
Modela los programas como un flujo de datos que pasa por una serie de intrucciones
en vez de una serie de instrucciones que operan en unos datos externos, i.e. los datos
fluyen por las instrucciones, no al revés (de ahí el nombre de dataflow). Esto pro-
duce programas paralelos por naturaleza, más cercanos al paradigma funcional que
al imperativo y a la arquitectura Von Neumann (sección 15, Backus, 1978).

• Programación Visual. La elección por naturaleza para representar un lenguaje de
dataflow es una interfaz visual, pudiendo representar el grafo de forma clara y
precisa (Shu, 1988). Mejorar más avanzadas que se pueden implementar gracias
a la presentación visual incluyen comprobación de tipos en tiempo de escritura,
indicador de ejecución (señalando que funciones se están ejecutando en el momento),
etc.

• Experiencia del Usuario. El proyecto se nutre de la experiencia de los participantes
en los experimentos con el prototipo. La interfaz debe indicar el camino para
realizar la acción deseada por el usuario, dando facilidades para reducir la dificultad
de uso.

• Ingeniería del Software. Comunicación con múltiples librerías y frameworks, defini-
ción de interfaces y organización del código mediante tecnicas de programación
orientada a objetos y modulos.

• Aprendizaje Automático. Aunque no se implementan los algoritmos en sí, es nece-
sario extenso conocimiento de la implementación, ya que hay que propocionar un
punto de acceso a los hyperparametros y otros tipos de configuración que permite
sklearn (Varoquaux et al., 2015).

• Transformación de Datos. Algunas precondiciones sobre los datos han de ser asum-
idas o el usuario ha de ser provisto con las herramientas necesarias para realiar las
transformaciones necesarias.

• Compiladores. El grafo visual que el usuario dibujo tiene que ser compilado a
codigo fuente en Python (Transcompilación).

La hipótesis del proyecto es que la representación visual del programa y los conceptos
asociados puede ayudar con el aprendizaje y uso de técnicas de aprendizaje automático,
así como acelerar el trabajo de exploración temprana típico del análisis de datos.

Esta hipótesis converge con el espíritu de sklearn (Varoquaux et al., 2015, pp29) en el he-
cho de que intenta simplificar el uso y acceso a herramientas de aprendizaje automático.

Esta estrategia parece haber funcionado para sklearn, convirtiéndose en uno de los
proyectos de aprendizaje automático de código libre más importantes, con más de 16000
estrellas en Github, siendo usado por compañías como Spotify, Facebook o Evernote
(scikit-learn, 2016).

8

https://github.com/scikit-learn/scikit-learn

Motivación

Tras cursar Aprendizaje Automático el año pasado tuve una beca en una empresa de
trading algorítmico como parte del equipo de quants2.

Allí mi principal responsabilidad era reescribir parte de las herramientas de MATLAB a
Python, durante ese proceso observé como algunos de los integrantes del equipo experi-
mentaban dificultades con el cambio de lenguaje.

Todos los integrantes venían de disciplinas más “puras” (Física, Matemática, Estadística,
Ingeniería Aeroespacial, etc..).

Los expertos de estos campos están acostumbrados a trabajar con lenguajes de dominio
específico como MATLAB, R, Simulink o Julia, y el cambio a un lenguaje deu so general
trae dificultades como la programación orientada a objectos, complejas estructuras de
datos, optimización o tipos más “fuertes”.

La situación es aún mas difícil para aquellos que comienzan el aprendizaje, ya que no
solo tienen que lidiar con la barrera de la programación, sino que además tienen que
superar la dificultad de los algoritmos en sí.

Objetivos

Estudio Viabilidad: El proyecto tiene que explorar el espacio de posibles soluciones visuales
de aprendizaje automático, evaluando distintas estrategias en el front y backend de
la aplicación.

Diseño y Usabilidad: El sistema ha de ser diseñado acorde a los requerimientos, tanto en
términos de hacer sencillo el progreso a traves de milestones, como produciendo
software usable en cada release. En todos los casos se debe balancear la compleji-
dad contra la expresividad del sistema, proviniendo al usuario deu na herramiento
potente sin producir una interface compleja.

Evaluación: El sistema será evaluado por participantes que pertenecen a la audiencia
potencial del software, un formulario debe ser preparando detallando las actividades
que tendrán que realizar, así como serán tratados sus datos.

Herramienta de aprendizaje: El software debe ayudar con la barrera de programación, fa-
cilitando el aprendizaje de Machine Learning, ayudando al estudiante a centrarse
en las conexiones, intuiciones y bases matemáticas de los algoritmos y no en los
detalles de implementación y peculiaridades del lenguaje.

Acelerar análisis exploratorio: Proveyendo una interfaz visual fácil de usar con la capaci-
dad de arrastrar y soltar el usuario puede provar una plétora de algoritmos, aju-
stando los hyperparámetros acorde a la evaluación sin escribir una sola línea de
código.

2Analista Cuantitativo, en inglés Quantitative Analyst, abreviado Quant.

9

Implementación: Hay ciertos requerimientos no-funcionales que deben ser cumpli-
dos como el proyect ocorriendo en las principales plataformas de escritorio, ser
distribuido en un ejecutable fácil de instalar para facilitar la evaluación, tener un
framerate que permita el uso prolongado, y hacer uso de multiple hilos de jecución
para que la interfaz se mantenga usable mientras el grafo se ejecuta.

Que no es el proyecto

El proyecto no lidia con los siguientes temas:

• Procesado de datos genéricos. Aunque hay algunas funciones de manipulación de
datos que son necesarios y/o están incluidas en sklearn, la manipulación de datos
está fuera del ambito del proyecto, Persimmon trabaja con datos ya limpios. Esto se
hace porque estas funciones son difífiles de presentar de manera visual, requiriendo
interfaces especiales para ser utiles.

• Visualización de Datos. Ya que esto suele requerir código específico para cada caso,
y depende de las características concretas de los datos a visualizar.

• Programación Visual de uso general. Ya que centrando el sistema en el aprendizaje
automático permite hacer asunciones sobre los posibles programas que se pueden
crear, permitiendo características como simplificación de tipos (capítulo type) o
eliminar la necesidad de especificar el orden de ejecución (capítulo literature re-
view).

Estructura de la memoria

La estructura de la memoria sigue la cronología del proyecto. Iniciando con la revisión
de la literatura académica y la definición de workflow (proceso). En el siguiente capítulo
las milestones del proyecto son explicadas, incluyendo un diagrama de Gantt. Siguiendo
se encuentra el capitulo de análisis de riesgos, con una table de riesgos así como una
review de la metodología de desarrollo.

Hacia la mitad de la memoria en el capítulo de interfaz se expone las razones que
llevan al actual aspecto de la interfaz. El capítulo de implementación explica el proceso
iterativo del proyecto, centrándose en problemas complejos e interesante que el proyecto
ha tenido que superar. En la sección de type checking múltiples conceptos teóricos son
introducidos, sobretodo teoría de lenguajes funcionales, compiladores, teoría de tipos y
la representación inmediata.

La última sección antes del post-mortem explica el proceso de evaluación y los resultados.
En el post-mortem se exponen las conclusiones del proyecto, así como posible áreas de
trabajo futuro.

10

2. Introduction

On this chapter Persimmon is introduced, along its main objectives and motivations. It
also includes a section about topics that are related but beyond the scope of this project.
Finally, it includes an overview of the project report structure.

Description

Data Science has seen exponential growth in the market on recent years, with some
predictions stating that one million data scientists will be needed by 2018 (Rajpurohit,
2016). Data scientists find themselves on a golden age, for the Harvard Business Review
it is the sexiest job of the 21st century (Davenport and Patil, 2012). Despite all the hype,
there is a shortage of skilled data scientists, the field is inherently multidisciplinary
(Taylor, 2016), as coding, statistics and domain knowledge are required, making the
path to mastery long and complex, leading to the so called Unicorn hunts (Harris and
Eitel-Porter, 2015) and (Press, 2015).

Tools such as scikit-learn1, Weka or Tableau provide a very high level access to some
of the required tools data scientists require, easing the learning curve and widening the
pool of available data scientists. However these tools either require coding, focus on just
preprocessing tasks (cleaning of the data) or provide a very limited interface.

Persimmon aims to provide a visual interface for scikit-learn, giving the ability to create
pipelines without a single line of code, thus giving most of the power of hand coding the
pipelines with a helpful visual representation.

In order to accomplish this the project explores the following topics,

• Dataflow Programming. This paradigm presents programs as a directed acyclic
graph, pioneered on the 60 at MIT and Bell labs (Kelly et al., 1961). It models
programs as a stream of data that is run through a pipeline of instructions rather
than a set of instructions that operates on external data, i.e. the instructions are
flowing through data, not the other way around. This results in parallel programs
by default, closer to the functional paradigm than imperative programming and
the Von Neumann architecture, as mentioned in functional programming seminal
paper (Backus, 1978).

1Scikit-learn is a python library that aims to bring machine learning to a more general public, by
providing a high-level API that allows the ease of use and interchange of different estimators.

11

• Visual Programming. The natural fit for a dataflow representation is a visual
interface, as we can present the graph visually (Shu, 1988). Further improvements
include type-checking at write time, i.e. when connecting the blocks only allow for
connections that are type safe.

• User Experience. The project is driven by the users’ feedback and engagement with
the prototype. The interface needs to convey the intended course of action, and
give the user hints in order to ease the difficulty curve.

• Software Engineering. Interfacing with previous existing code, laying well-defined
interfaces and organizing code though object-oriented techniques.

• Machine Learning. Although there is no writing implementation of new algorithms
extensive knowledge of current implementations is needed in order to surface all
the available options, as sklearn provides many ways to modify their configuration
through parameters (Varoquaux et al., 2015).

• Data Wrangling. Some preconditions about the data have to be assumed or the
user has to be provided with the tools to perform the transformation.

• Compilers. The graphical form of a workflow involving several steps is compiled
down to Python source code (Transcompilation).

The hypothesis of the project is that the visual representation of the workflow and the
associated concepts can help to both learn and use Machine Learning techniques and to
accelerate early exploratory datascience work.

This hypothesis converges with the spirit of sklearn, (see Varoquaux et al., 2015, pp29)
that also tries to bring the Machine Learning techniques out of PhD dissertations and
niche libraries into the mainstream, providing high-level, easy to use access to those
resources. This strategy seems to have worked for sklearn, becoming one of the most
important open source machine learning libraries in the process, with over 16000 stars
on Github, and is being used on companies such as Spotify, Facebook or Evernote (scikit-
learn, 2016).

Motivation

After learning about Machine Learning at university last year I got an internship on an
algorithmic trading company as part of the quant team.

My main task was helping moving the existing codebase from MATLAB to Python, and
during that process I observed how some of my co-workers were struggling with the
language switch.

They all came from backgrounds such as Maths, Physics, Electric Engineering, Statistics
or Aerospace Engineering. But there were no Computer Scientists even though their

12

https://github.com/scikit-learn/scikit-learn

role as quants requires, apart from maths and stats knowledge, a very good level of
programming expertise.

Experts from these fields tend to have weaker programming skills, as they mostly work
with scientific computing oriented languages such as MATLAB, R or Julia, and moving to a
general purpose language such as Python involves learning about a plethora of additional
topics, such as Object Oriented Programming, custom complex Data structures or cache
optimization.

The situation is even more complex for newcomers to Machine Learning, as they not only
have to deal with the programming barrier but also have to overcome the difficulties of
learning the algorithms themselves.

Objectives

Feasibility: The project has to explore the space of possible solutions on visual machine
learning approaches, trying different estrategies for both the front and backend of
the application (Flow based programming, Dataflow programming, etc).

Design and Usability: The system has to be designed in accordance to requirements, both
in terms of making it easy to progress through the milestones, as well as producing
usable software at each stage. In all cases it must balance complexity against
expresivity, trying to provide the user with a powerful tool while avoiding complex
and unusable interface.

Evaluation: The software will be evaluated by participants that belong to the intended
audience of the system, a form must be prepared detailing the task they will have
to perform, as well as how their data will be treated.

Learning Tool: The software will help both with the programming barrier, easing the
learning curve of Machine Learning as to allow the learner to focus on the connec-
tions, intuitions and mathematical basis of the algorithms and not on the imple-
mentation details and the quirks of the language.

Faster Exploratory Work: By providing an easy to use, drag and drop interface the user
can try a plethora of different estimators and adjusting the hyper-parameters as
they see fit faster, and without writing a single line of code.

Implementation: There are some non-functional requirements, such as the project
running on the desktop platform, being able to pack it into a executable (to make
evaluation easier for participants), have a framerate good enough for pleasant use
(minimum 30 FPS), or support multithreading (as to not block the main/UI thread
from running when executing the backend),

13

What the project is not

The project is not concerned with the following:

• General Data Cleaning/Wrangling. Although there is some data manipulation that
is necesary and included on sklearn it is outside the scope of the project, Persimmon
only works with clean data. This is done because it is very hard to translate code-
based data manipulation into a visual representation.

• Data Visualization. Since this kind of work is very hard to represent without
requiring explict coding on a case by case basis, as it is highly dependent on the
characteristics of the data to visualize.

• General Purpose Visual Programming. Since focusing on Machine Learning allows
Persimmon to make assumptions about the possible programs that enable features
such as type simplification (check type chapter) or removing explicit flow manage-
ment (more on the literature review chapter).

Project Structure

The project structure follows closely the development timeline of the system. Firstly
the literature review is introduced. On the following chapter the project milestones are
explained, including a Gantt chart. Following is the risk analysis table as well as the
development methodology.

The implementation chapter explains the iterative process on each of the iterations of
the project, some interesting technical problems, and the immediate representation of
Persimmon.

After this, the important concept of workflows is explained, and the interface design,
including the sketches or the color palette. The type checking sections introduces a
lot of theory from functional programming and type theory. The final section before
the post-mortem explains the evaluation process and results. On the final post mortem
sections the conclusions of the project are laid down, as well a recap of what went wrong,
what went right, what was achieved, and the potential future improvements.

14

3. Focus

Here is where we thought about contacting the “e-learning UCM” research group at
Complutense University because we saw an opportunity to bring the power of the data-
science to the educational world, in this case via the educative games.

We thought this would be a good stress test for the software, and giving investigators that
may not be datascience experts the ability to measure if serious games were achieving
their purposes, meaning if they are really helping to teach their users what they are
supposed to.

It was an obvious decision to make it Open Source, many of the tools we use are Open
source, and it was the ability to engage with them the reason that we have become
Computer Scientist.

This helps many educational games do not have a big budget and in this way our program
would be accessible to all of them and they can even tweak some parts of the software
if they really need to.

Here is where we started thinking about which technology to use and Python was the
obvious choice in order to keep all the project on the same language.

So after looking for several Python UI libraries kivy seemed the most appropriate UI
framework.

15

4. Literature Review

On this chapter the main sources used for the project are explained as well as some of
the learning needed in order to build the project.

On Machine Learning

Although the project aims to provide a very high-level tool for machine learning without
needing to get too deep into the algorithms, it is necessary to understand the library
that is used for performing the actual machine learning (from here onwards referred as
ml).

While from the conception of the project python was set as the main language, a com-
parison between ml libraries was done in order to evaluate scikit-learn against the com-
petitors. There comparison over different solutions (Ryan, 2016), but they mostly look
at deep learning frameworks. In fact, while deep learning is going through a golden age
right now (no doubt helped by the push from companies such as Google or Facebook)
it is a bleeding edge field (Gschwind, 2017). Neural networks with many layers and
complex connections between them are also very difficult to visually represent compared
to traditional statistical methods that can be represented as functions more easily, and
whole frameworks are dedicated just to represent them such as Tensorflow (Abadi et al.,
2016).

On the other hand, traditional machine learning libraries are either embedded on
purpose-specific languages (such as R, Matlab, Julia) or have less users than others
(Torch has only 7k Github starts).

And finally, cluster-oriented computing frameworks like Spark or Hadoop are usually in
compiled languages like Java or C++ for performance reasons.

Persimmon main tool is scikit-learn (Varoquaux et al., 2015), scikit-learn (also known
as sklearn) is based on Numpy (a n-dimensional array for Python (Walt et al., 2011))
and scipy (a scientific computing framework (Jones et al., 2014)). Persimmon also uses
pandas (McKinney and others, 2010) for input and output handling.

Others papers related to the pitfalls of machine learning that proved useful when ana-
lyzing workflows were (Hughes, 1968), (Khabaza, 2005).

16

https://github.com/torch/torch7

On Dataflow Programming

After reviewing dataflow seminal paper Kelly et al. (1961), and Sousa (2012) it was clear
the fundamental step to have a working system was writing a compilation algorithm from
the visual representation to python code.

There are different ways to implement dataflow programming compilers, for now let’s
just consider the language representation as formed by blocks that have pins. Pins on
the left side of a block are called input pins and each must come from a single output
pin. Pins on the right side are called output pins and one can be connected to multiple
input pins.

This results in what is effectively a directed acyclic graph, in order to compile and run
the program (actually it is theoretically possible to have multiple parallel programs on
the same blackboard) the graph has to be explored, checking the dependencies of each
block, executing them if necessary, executing the function and adding the next blocks
to be executed until there is no block left to be executed.

Require: G is a Directed Acyclic Graph that does not break type safety on all the relationships.
1: function execute(G : Graph)
2: queue← Queue()
3: seen←Map()
4: queue.put(G.get input blocks()) ▷ We can start in a random vertex
5: while ¬queue.empty() do
6: queue, seen← explore(queue.get(), queue, seen)

7:

8: function explore(current : V ertex, queue : Queue, seen : Map) → Queue, Map
9: for all in pin ∈ current.get in pins() do
10: corresponding ← in pin.origin.uid
11: if ¬seen.has(corresponding) then
12: dependency ← corresponding.block
13: if dependency ∈ queue then ▷ Remove if already in queue
14: queue.remove(dependency)

15: queue, seen← explore(dependency, queue, seen)

16: in pin.value← seen.get(corresponding)

17: current.function() ▷ function uses in pins and sets out pins
18: for all out pin ∈ current.get out pins() do
19: seen.put(out pin, out pin.value)
20: queue.add(pin.destinations)

21: return queue, seen

Figure 4.1.: Graph Execution algorithm

The algorithm looks each input pin on the block. If the corresponding value has already
been computed (i.e. is already on a hashtable) it is assigned, else that block is processed
first and then the execution of the current block resumes. Then the function inside the

17

block is executed and after that the value of each output pin is saved on the hashtable.

There is an alternative way of doing the compilation without needing to check depen-
dencies when compiling/executing. Through a topological sort on the graph the graph
can be processed “forward only”, no recursive step is needed, both approaches are O(N),
more closely they are O(n ∗m) where n is the number of blocks and m the number of
pins.

On Visual Programming

For designing the interface many notes were taken from Shu (1988), but most importantly
from the blueprint system (Shah, 2014) and Azure ML studio web interface (Barga et al.,
2015), all these influences are discussed on the state of the art section, and the interface
design itself along with the sketches can be seen on the Interface Design chapter.

State of the art

Before implementing the system it was necessary to look at existing solutions on the
field of visual programming and visual Machine Learning for inspiration and avoiding
common pitfalls.

Microsoft Azure ML Studio (Barga et al., 2015) is one of the most direct inspirations
for this project; it is a Microsoft cloud-based platform for creating predictive analytic
solutions on data using a drag and drop interface.

There is plenty to like, lots of different pre-processing steps, multitude of estimators,
runs on the cloud, and a web interface that runs on any platform. However, some of
these features are also shortcomings, the web interface feels basic, especially on the
classificators parameters view, lack of native support means that dragging and dropping
do not feel as smooth as they should. Cloud support is very good, as it integrates with
the rest of Microsoft’s Azure platform, but for sensitive data such as financial or medical
records a self hosted version is a must.

The variety of algorithms is interesting, but the limited ability to extend them is a
shortcoming, azure is written on compiled languages (Ericsson et al., 2017), unlike most
ml that is written on either R or Python (Puget, 2017), and running custom code is
very limited, as scripts are treated as black boxes. This in turns severely handicaps the
extensibility of the given primitives in any meaningful way.

Weka (Hall et al., 2009) is a popular machine learning suite, written in Java and devel-
oped at the University of Waikato. It provides both a command line interface and a
graphical interface.

18

Figure 4.2.: Azure ML Studio web interface

However it is starting to show its age, the interface feels dated and the composition of
algorithms through graphical means is very restricted. Because it is written on Java
it also means that it need the JVM1, which is a bit of a disadvantage, especially in
production servers where dependencies bring a long and arduous process of review and
approval (Zmud, 1980).

Epic’s Unreal Engine 4 (Shah, 2014) introduced Blueprints as an alternative to C++ pro-
gramming. It represents all the programming structures as blocks that can be connected,
for example an “and” is a block that takes to inputs and returns one output. Because it
provides what is essentially a general-purpose programming language it has constructs
to represent state, because of this it also needs a explicit flow mechanism, meaning that
blocks do not only need to be connected through data but also by execution order, this is
necessary because the order in which side-effects are performed is important, and many
procedures do not return meaningful values. With this knowledge, it is clear that in
order to not have an explicit flow line the visual language represented must be pure, con-
straining side effects to either the start or the end of a pipeline (McBride and Paterson,
2008).

1The Java Virtual Machine is the underlying platform where the Java language is usually run on top
of. It provides a single platform in which is abstracted of the underlying hardware architecture at
the cost of paying some performance overhead.

19

Figure 4.3.: Unreal Engine 4 Blueprint system

Blueprints provides an intuitive interface, when one cable is dragged from a block and
a prompt appears with only the blocks that make sense to be connected to the previous
block. Another example is how different types are represented by different colors in both
pins and cables, making it easier to predict whether a connection makes sense or not
without even trying to create it.

These small details improve the user experience, making it faster and easier to use.

20

5. Workflows

A workflow in the context of this project refers to the typical ML exploratory work
analysis, i.e. the pipelines that are used early on the project when it is still not known
what strategies will work best for the given data.

This concept is generalization of sklearn pipelines.

Simple

The simplest workflows are those that involve no pre-processing, no adjustment, and
just either test how good the model works (validate) or predict using both the train file
and another file without class feature.

.csv

Estimator Validation

Figure 5.1.: Just validation of the model

.csv

Estimator Validation Prediction

.csv

.csv

Figure 5.2.: Prediction using the whole dataset

Regular

A more usual workflow involves also tunning the hyper-parameters of the selected hyper-
parameters, this involves making a grid of the possible hyper-parameters and trying all

21

http://scikit-learn.org/stable/modules/pipeline.html

of them, resulting in finding the best possible value.

.csv

Estimator Adjustment Validation Prediction

.csv

.csv

Figure 5.3.: Adjustment of hyper parameters

Complex

More complex workflows involve pre-processing, or automating multiple classifiers hyper-
parameter tuning at the same time through the use of pipelines, this varies widely on
a case by case basis, and can often involve data cleaning, feature engineering (such as
combining two features into one) or dimensionality reduction (like PCA).

However, there are even further examples of pipelines where the whole process is au-
tomated to the maximum, even going as far as identifying the suitable data features,
selecting classifiers for bagging, boosting and other meta-classifiers, etc… (Thakur, 2016).

It should be noted that this kind of workflow is outside the scope of the project, as this
is far away from exploratory work, and either requires manual data cleaning anyway or
an extremely complex pipeline.

In fact, this kind of use case would result unwieldy and messy on a visual form, vi-
sual programming gets too bloated when representing programs that are too complex.
On Dalke (2003) some workarounds are proposed, such as modules, different shapes
for different kinds of blocks, etc… But even with these techniques visual programming
languages never truly fulfilled their promises and gained mainstream adoption (Simões,
2015).

However, visual languages managed to become relevant in small niches such as PLCs
design (Minas and Frey, 2002) or music composition (Twells, 2016). Presumably because
the complexity can be predicted and accounted for when the number of actions is limited,
this is the basis for the project programming interface being limited on the number of
blocks, as not to allow the graphs to become inscrutable, and as mentioned on the
introduction this also allows making assumptions about the interface which reduce the
complexity such as not needing an explicit flow line, more on the explicit flow line can
be read in the implementation chapter.

22

6. Milestones

In order to guarantee the delivery of the software an incremental approach has been
chosen, this implies breaking down the objectives into smaller milestones that can be
accomplished more easily, so in case the last milestone is not reached there is still a
substantial product to submit.

Tree

Capped

Parity

Compilation

Out of scope

Web Synthesis

Figure 6.1.: Milestones Tree

Capped is more than a minimum viable product, a extensive proof-of-concept, with a
few limited algorithms and the ability of inputing .csv files, with a restricted interface
in which algorithms are not dragged and dropped but merely selected through buttons.

Parity means a more or less complete parity in terms of features and visual interaction.
It is not very important to have the same number of underlying algorithms because that’s
not the focus of the project, and creating new blocks having the underlying algorithm
is easy.

And the final milestone is Compilation, the ability to get the python source code from
the visual representation, also improving the interface to have a better flow, more akin
to Unreal Engine, as discussed on the literature review chapter, state of the art section.

This milestone would bring Persimmon utility beyond the realm of learning tool, as it
would be a convenient tool for the exploratory work of any ML solution (business case,

23

a Kaggle1 competition, etc…).

Out of scope, but possible further applications of the system are web/junyper integra-
tion, which would mean the system would be accessible from a website interface, and
script synthesization, which is the opposite of compilation, in other words the ability
to translate a python source file to the Persimmon visual representation.

Gantt Chart

With the defined milestones a Gantt chart of the project development was drawn.

2016 2017

October November December January February March April

Distil Idea

Planning

Implementation

Iteration 1

Capped

Iteration 2

Parity

Iteration 3

Compilation

Report Building Refinement

Figure 6.2.: Gantt Diagram of the project development.

1Kaggle.com

24

https://www.kaggle.com/

Development Methodology

The chosen methodology is based on agile methodologies such as Scrum or Extreme
Programming, meaning that there is not a complete model of the desired system like
in model driven development (Selic, 2003), nor a complete planning of every develop-
ment detail at the start of development, such as on Waterfall (Petersen et al., 2009),
instead there are continuous iterations, faster and smaller than traditional development
iterations that allow for more opportunity to react and adapt to change (Beck et al.,
2001). These iterations last two weeks and are called sprints, and a board is used to
keep track of all current and future tasks.

On a traditional Scrum methodology, the product owner puts uses cases (items) into
the product backlog. Each sprint the scrum master and the development team have
a meeting called Sprint Planning event (Schwaber and Beedle, 2002), where items the
current sprint items from the product backlog to be done are decided and broken down
into tasks to be done. Items can also be pushed back into the backlog if they are not
achievable or have a lower priority.

However, this methodology does not really fit the development of this project, since
there is no team, there is no need for superfluous and unnecessary processes. There is
no retrospective after each sprint and there is no specific weight or cost assigned to each
task. During a sprint the next sprint tasks are moved from the product backlog into the
sprint planning column and broken down further if necessary.

Task are defined by use cases and can be broken down further by using checklists on the
tasks.

If a task is not fully completed it can be moved back onto the product backlog.

The planning board can be found at https://trello.com/b/JmG3xy0U/persimmon

Source Code

The source code for this project is hosted on https://github.com/AlvarBer/Persimmon,
the organization of the code follows the feature branch workflow (Atlassian, 2014), it
can be described in terms of its branches.

Master branch. The master is the main branch, meaning that it is the default on the
remote web interface, and the only branch where deployments happen, there is
no actual development apart from hotfixes, insetead it merges commits from dev,
forming a release on each merge.

Dev branch. The dev branch represents the most recent commits, commits are made
usually direct to this branch. Test are run when commits from this branch are
pushed to the repo, but not deployment.

25

https://trello.com/b/JmG3xy0U/persimmon
https://github.com/AlvarBer/Persimmon

Feature-specific branches Sometimes feature specific branches are done in order to test
whether the feature is feasible or not. This branches are usually short lived, and if
it is decides to merge that code it must be to dev.

Continuous Integration runs on travis CI, more on that on the Appendix How was this
document made?

26

7. Risk Analysis

Since there is a significant number of different stakeholders with different interests on
the project it is necessary to lay down the risk associated and planning for the biggest
and more probable risks.

Stakeholders

I. Project author.
II. Academic Reviewers (Project Supervisor, Moderator…).
III. Users.

On the case of the project author is the main stakeholder, his aim being developing a
satisfactory project.

The academic reviewers play a support role on the project, they are concerned with
ensuring the report follows the university guidelines and making sure the development
stays on course.

Prevention & Mitigation

Using Boehm (1991) let’s create a table of risks ordered by impact and risk factor. Take
into account all risks presented on the table are probable.

Risk Factor Low Impact Medium Impact High Impact
Project Ethics Denial Project Denial
Requirements Not defined enough Change at late stage Unreachable goal
Technology Performance issues Interoperability Major errors

Starting with Project Risks the denial of the proposed hypothesis would be fatal. In
order to mitigate this mistake a solid report skeleton has to be made early on, and getting
in contact with suitable project supervisors in order to start morphing the project as
soon as possible if required.

Same goes for Ethics Approval denial, in the worst case self-experience of the software

27

would have to be the main tool to measure user engagement.

If a requirements is not defined enough a break by user goals and use case diagrams can
help make clear what the requirement details are. If a requirement change appears at
a late stage the impact is mitigated by the employment of an agile methodology that
allows working on smalls sprints and refocus on ever-changing requirements.

In the case of an unreachable goal partial objectives could established that would be
easier to archive, splitting the main goal into several smaller goals, making it easier to
at least accomplish some, if not all. This is explored on the milestones chapter.

Performance issues can be countered reducing the data used for processing, making it
more of a proof of concept while retaining the validity of the project claims. Another
solution is caching the results of the bottlenecks (expensive operations) and using those
results in the final application. On the other hand there is no easy solution for interop-
erability issues, besides changing development platform/core language there is not a lot
that could be done.

Same goes for major errors on the used platform, some alternatives were considered but
in case of a major failure later down the line the only real solution is rewriting those
parts. For preventing these issues a technical analysis of the capabilities of the platform
must be carried out before starting the project, identifying possible faults and providing
possible solutions and or alternatives.

28

8. Interface Design

The main way users interact with the system is through the visual interface, and as such
is very important that all the information and operations available are easily accessible
on an intuitive manner, removing the need for extensive training with the software.

Sketches

Figure 8.1.: Sketch of the first interface

On the first interface, there was a focus on getting a prototype done as soon as possible.
For this reason, the interface had to be easy to implement and easy to use, with the few
navigations steps required to perform all possible actions as to allow for quick debugging.
This meant sacrificing flexibility in favour of usability, because the algorithms implement

29

were so few the button-based interface worked as intended for this prototype. No special
considerations were taken for color palettes, shapes or any other kind of visual aid.

Figure 8.2.: Sketch of the second interface

For the second iteration, however, the extensibility had to be present, meaning the old
interface was not reusable for the new functionality. The block based interface gives a
lot more of control to the final user, still some underlying mechanisms such as optional
parameters or saving into file were not present.

Finally, on the third iteration the proposed improvements to the interface were:

• Adding a smart bubble1 that shows the blocks that make sense to spawn according
to the connection.

• Optional parameters.
• Hide/Toggle parameters.
• Data transfer visualization, meaning that the connection between two blocks starts

signalling when data from one is moved onto the other.
• Type safety indicator while dragging a connection, such as turning the connection

cable to a bright red to signal that if the cursor is unpressed at that location a
connection will not form.

1A bubble is a form of menu or a small popup where the menu options are stacked either vertically or
horizontally. They are usually associated with the right click action.

30

• Make connections bézier curves instead of straight lines.

Some of these points are not realistic goals to be achieved during the short development
time, but they are possible further improvements of the interface.

Colour Palette

One of the most important parts of the system where colour played a vital role was
connections, symbolizing types with colours. The relations go as far as each types has
a colour associated with it on code, meaning that pins are not coloured, their type is
specified and their colour is derived from the type.

The color palette is based on (Staníček, n.d.), on a tetrad (4-colours) scheme plus addi-
tional primary colours for representing additional types, the Any colour is represented
as almost white to symbolize it is consistent with any other type.

Dataframe Classificator CrossV alidator StateAny

Figure 8.3.: Types colors

Typography

The default font for kivy is Roboto, and for a good reason, as one of Kivy targets is
Android, which has Roboto as the most commonly used font. Roboto is a neo-grotesque
sans-serif with a modern robotic feel, it really feels at home on mobile screens, and it
is also used on other Google’s products and websites. However on the desktop it feels
a bit too cold and ubiquitous, as John Gruber calls it “Google’s Arial’. The better
solution would be platform-dependent, but since Mac default choice, Helvetica, has
trouble rendering in some Window and Linux desktop environments, Roboto was left as
the choice for font rendering.

31

http://daringfireball.net/linked/2011/10/19/roboto-v-helvetica

9. Implementation

On this chapter the implementation of the system is detailed, explained what was done in
each iteration. After the iterations Persimmon intermediate representation is explained.
Finally, some of the most complex technical problems along their respective solutions
are detailed.

First Iteration

Figure 9.1.: Implementation of the first interface

32

For the first iteration, the priority was to get a proof of concept in order to see where
the difficulties can appear, with a few simple classifiers and cross-validation techniques.
As such a button-based interface with very limited workflow creation was chosen.

The chosen classifiers were simple and well-understood methods such as K-Nearest Neigh-
bors, Logistic Regression, Naive Bayes, Support Vector Machines and Random Forest,
which a slightly more complex method that involves ensemble of Decision Trees, but
gives good results in wide variety of problems.

All these classifiers have few parameters on their respective sklearn implementations,
and for this prototype the interface did not allow modifying any of them, as the it would
have cluttered and it was not a necessary feature. Also, all of them are classifiers, as it
simplifies the interface, since regression and clustering have some incompatibilities.

Apart from the temporary interface the backend had to be built. Since the workflow was
fixed the backend simply received the node as arguments and executed those, meaning
the previously explained execution algorithm was not needed for this iteration.

Second Iteration

For the second iteration the drag and drop feel was the main priority. As such after
developing the tab panel draggable boxes were developed, these boxes needed to be
connected through pins. The logic behind the pins and the blocks is quite heavy, as
there is a tight coupling between the blackboard1, blocks and the pins on them, as all of
these parts relay information to each other while the user is dragging a cable between
two pins, this is further explained on the “Making a connection” section.

This tight coupling means there is a noticeable lag when moving the cable too fast
on low-end computers, there are several solutions to this, but the most convenient is
optimizing the method. If more optimization is needed for this particular function tools
such as Numba2 or Cython could be used.

Third Iteration

For the third and final iteration, the focus was on improving the visual aspect, adding
helpful aids to the user experience. The main addition being adding a notification
systems that gives feedback to the user about the outcome of their actions and the type
systems that prevents creating malformed pipelines. Other minor improvements to the
system were the addition of a warning when the intended connection is not possible, by

1Blackboard is where the blocks and connections reside.
2Numba is a python library that allows the compilation and jitting of functions into both the CPU

and the GPU http://numba.pydata.org/

33

http://numba.pydata.org/

Figure 9.2.: Second iteration implementation

34

changing the color line to red, and a warning showing up when a block has only some
of their inputs connected.

Figure 9.3.: Third iteration interface showing a warning

Model View Controller

Since the beginning of development separation of logic and presentation has been a pri-
ority. For this reason, the Model View Controller3 pattern has been applied, separating
Model (represented by the subpackage backend), View (represented by the .py files on
view subpackage) and Controller (corresponding to the .kv files on view subpackage).

This way coupling is kept as minimal as possible, enabling swapping the current kivy
framework for another one by just changed the view, no modifications to the backend
needed.

3Model View Controller is a software pattern.

35

In order to avoid repetition extensive use of classes coupled with reusable custom kivy
Widgets were used. This for example meant that each individual pin on each block
is a class, this proved useful for defining matching pins in different blocks (like when
connection a pin that sends data to a pin that receives it).

For more information about internal package distribution check appendix A.

Making a Connection

One of the most complex parts of the system is starting, reconnecting and deleting a
connection between blocks, it involves several actors, asynchronous callbacks and a very
strong coupling between all elements.

Blackboard

Block

OutPin

Connection Block

InPin

Figure 9.4.: Widget Tree

In order to understand how connections are made it is necessary to understand how
Kivy handles input. At surface level Kivy follows the traditional event-based input
management, with the event propagating downwards from the root. However, while
traditionally inputs events are only passed down to components that are on the event
position Kivy passes the events to almost all children by default, this is done because in
phones (one of Kivy targets is Android) gestures tend to start outside the actual widget
they intend to affect.

On Kivy there are three main inputs events, on_touch_down that gets called when a
key is is pressed, on_touch_move that is notified when the touch is moved, i.e. a finger
moves across the screen, or on this cases when the mouse moves, and on_touch_up that
is fired when the touch is released.

Let’s represent the possible actions as use cases, the outer * represents on_touch_down,
- represents on_touch_move, and the inner * on_touch_up:

• (On pin) Start a connection.
• (On connection) Modify a connection.

– Follow cursor.
– (On pin) Type check.

* (On a pin) Establish connection if possible.

36

* (Elsewhere) Remove connection.

Logic is split in two big cases, creating a connection and modifying an existing one.
Creating a connection involves creating one end of the connection, both visually and
logically and preparing the line that will follow the cursor. On the other hand, modifying
a connection means removing the end that is being touched. These two cases can be
handled by different classes, pin on the first case and connection for the last. Moving
and finishing the connection use the same code for both.

ConnectionBlock

OutPin end

Block

InPinstart

Figure 9.5.: Connections between elements

Without getting too deep into implementation details, ends cannot just be removed,
there are visual binds that have to be unbinded and removed from the canvas, and
when a connection is destroyed (this only happens inside on_touch_up, but it can be
either the pins or the blackboard on_touch_up depending if the connection is destroyed
because the pin violates type safety or there is no pin under the cursor respectively) it
has to unbind the logical connections of the pins themselves. For this reason, connection
has high-level functions that do the unbind, rebind and deletion of ends, as long as the
necessary elements are passed (dependency injection pattern).

This is the reconnecting logic, notice how the reconnecting is forward or backwards
depending on which edge the touch has happened, of course if neither has been touched
the touch event is not handled.
def on_touch_down(self, touch):

""" On touch down on connection means we are modifying an already
existing connection, not creating a new one. """

if self.start.collide_point(*touch.pos):
self.forward = False
self.unbind_pin(self.start)
self.uncircle_pin(self.start)
self.start.on_connection_delete(self)
touch.ud['cur_line'] = self
self.start = None
return True

elif self.end.collide_point(*touch.pos):
self.forward = True
self.unbind_pin(self.end)
self.uncircle_pin(self.end)
self.end.on_connection_delete(self)

37

touch.ud['cur_line'] = self
self.end = None
return True

else:
return False

Figure 9.6.: Connection modification handling

Visualizing the Data Flow

One of the latest features that made it into Persimmon is the visualization of the data
flowing through the cables between blocks, this was an interesting technical problem,
since it involving relaying data back from the backend into the frontend (previously the
communication between front and backend was unidirectional). But in order to preserve
the decoupling between both the backend IR had to remain untouched. For this reason it
was decided that the backend has an event where it announces it has finished executing
a block and the frontend has to subscribe to it.

But the frontend does not receive the block, only the hash, since that is all the backend
has, and it has to compare with all block hashes to find the actual block.

After this, the backend has to make the outgoing connections of that block pulse, mean-
ing for example changing the value of the width of the line between certain values, a
function that works well for this is the sin function. The tricky part is that each time the
function is called it has to remember the previous value in order to grow or decrease the
width accordingly, this cannot be done on a regular function since using sleep would
freeze the entire application, and the best way to maintain state between executions is
using a generator (also known as semi-coroutines).

But what happens when coroutine needs to be stopped from being called? Kivy has a
mechanism where if the scheduled function returns False it will stop calling, by default
our coroutine does not return any meaningful value, but it is possible to yield a final
False that will stop the calls. But how is that yield triggered? The proper solution
solution is using a full coroutine (either a generator-based one of the newer asyncio
ones), but then concurrency issues appears, such that since the coroutine is being called
20 times per second if the coroutine is called while it is executing the scheduled interval
it will ignore the second call.

The solutions comes from executions, similar to a fast interrupt in hardware it is possible
to throw a execution on a coroutine that (maybe) is running, this also mean that the
throwing hijacks the current execution, leading to two different returns needed, one for
the interrupt execution and another for the previous running execution (if it was running,
if not it will be on the next scheduled call).

38

With the throw solution there is no need for a full coroutine anymore, and a generator
can be used again.
def pulse(self):

self.it = self._change_width() # Create iterator
Clock.schedule_interval(lambda _: next(self.it), 0.05) # 20 FPS

def stop_pulse(self):
self.it.throw(StopIteration) # Hijacking execution

def _change_width(self):
try:

for value in self._width_gen():
self.lin.width = value
yield

except StopIteration:
self.lin.width = 2 # Return width back to default
yield # This yield is for the hijacking execution
yield False # And this for the regular execution

def _width_gen(self):
""" Infinity oscillating generator (between 2 and 6) """
val = 0
while True:

yield 2 * np.sin(val) + 4
val += pi / 20

Binary Distribution

The interpretative nature of Python does not make creating an executable binary easy,
particularly cPython the standard implementation and reference provides no tooling to
create an executable binary.

For this task PyInstaller was chosen, the process of creating a binary is mostly auto-
mated, given a script it tries to read the imports and include them, finally it embeds
a small interpreter to run this code. The problem with this approach is that Python
allows for alternative ways of importing, it also breaks resource loading at execution
time (since it has to create a temporary folder). This results in manually specifying
hidden dependencies and non python files (on this case mostly kv files).

Unfortunately, this process has to be done on a windows system, and as such cannot be
done on the CI4 server, to see how Persimmon utilizes CI check the appendix B.

4Continuous Integration is a term that refers to the idea of testing, building, generating documentation

39

and even deploying automatically through a commit on the version control system.

40

10. Type Checking

Although Python has no robust type checking step it is possible for our visual language to
have hard guarantees of correctness at write time, meaning that the building of incorrect
pipelines can be avoiding altogether.

Gradual Typing

Python allows for gradual typing since 2014 (Rossum et al., 2014), meaning that function
parameters can be specified and tools such as mypy will check for possible type errors, if
some parameter or function type is not specified the tool will simply ignore the associated
checks.

These tools provide a useful tool to introduce type checking in current and new python
code, however they run outside the python execution (i.e. they run on the non-existent
python compile time) and Persimmon needs run time type checking for dynamic block
connections.

Nevertheless, this is a useful tool for improving the code quality, specially for the backend
code, because it is much pure that the frontend. It is also a reference for Persimmon
type system.

Write Time

On the previous section runtime type checking was mentioned, this is because on the
Python side the type checks have to be done at runtime due to blocks being spawned
and connected dynamically. But from the visual language perspective the checks are
done even before compile time (on the literature referred as write time).

The two languages

As seen on the previous sections and the implementation chapter Python and Persimmon
are essentially two different languages, but just how different are they?

41

Python Persimmon
Paradigm Imperative Functional (Dataflow)
Dynamic or Static Dynamic Static
Strong or Weak Weak (Duck typing) Strong
Evaluation strategy Eager Non-strict

• Paradigm. Although Python is multi-paradigm (it supports OOP, Module pro-
gramming) and it even has some functional tools (map/filter/functool) they are
very weak compared to a truly functional language, even Python creator Guido
van Rossum has hesitations with the current state of functional programming in
Python (Biancuzzi and others, 2009). On the other hand Persimmon is functional,
as there is no asignment, nor statements, there is only functions.

• Dynamic or Static. Static types refer to the notion of the language using the type
information to check for type safety on compilation time/before runtime. The only
close thing Python has to this is type hinting, but it is still a relative young addition
to the language, most of the existing codebases have not been annotated yet, and
the community debates whether it is necessary or not. Persimmon on the other
hand checks the type safety of the relations on write time, meaning before execution.
Dynamic types is the oposite concept, where type information is used at run time,
this can be useful for concepts such as dynamic dispatch.

• Strong or Weak. This refer to the notion of the language coercing the types or
certain expressions without the explicit command of the programmer. On some
languages this is done only where the type conversion is always safe (most common
example is converting an integer to a float) and it is known as upcasting. A very
strong language does not perform implicit type coercions [madsen1990strong].

• Evaluation strategy. Most imperative languages have eager evaluation, meaning
that expressions and statements are evaluated as soon as encountered. It is also
possible to have a non-strict evaluation, meaning that expressions are evaluated at
a latter time. When exactly depends on the exact strategy, optimistic evaluation for
example tries to run statements early only if they are fast, if they fail to complete
before a certain time they are pushed to a later time (Ennals and Jones, 2003). In
fact the extreme version of non-strictness is lazy evaluation, that evaluates only at
the last possible time (and only if needed) (Launchbury, 1993).

Actual Types

As explained before the type checks must be done before the execution of the pipeline.
However the actual types of the python code underlying functions and parameters do
not support this, as duck typing makes interfaces not defined on explicit manners but
on the methods used by the underlying code. For example, most algorithms accept
Numpy arrays, panda dataframes, Scipy sparse matrices and almost any array type that

42

implements __get__ in a manner Numpy understands, but there is no actual interface
that can be used to know which objects will run without crashing unless the code is
executed.

Any

Classificator Dataframe State CrossV alidator . . . ⊥

Figure 10.1.: Type hierarchy

Because of this, types had to be invented, sometimes they correspond to underlying duck
typing based interfaces, but sometimes they do not have a direct equivalent on Python.
Types on Persimmon follow a simple tree structure, checking whether a connection is
safe on the notion of the types having a is-consistent-with relation, this is based on
Rossum and Levkivskyi (2014). A is-consistent-with notion extends the more typically
used is-subtype-of relation used in type theory, with Any representing the notion of a
type that is-consistent-with every type (meaning that it is not a subtype of other types
but all types are consistent with any and vice versa). Adding to this blocks of the
respective edges of a connection must be different, one of the pins must be an InputPin
and the other an OutputPin, and the InputPin must have no connection already.

These are all the rules used for checking if a connection is safe, it is a primitive type
system, with further improvements ranging from the ability to define arbitrary subtypes
to type classes.

Intermediate Representation

The visual blocks represent a visual-dataflow language, however the backend uses a
simpler representation of the relations between the blocks, this in turn helps decoupling
backend and frontend.

The frontend blocks are translated on function to_ir, which aparts from translating
the blocks it avoids considering orphaned blocks to achieve the desired intermediate
representation. Runs on O(n) with n being the number of pins.

Let’s represent the types on a more strongly typed language than Python.
type Id = Int -- The hash is an integer
data Inputs = Inputs {origin :: Id, block :: Id}
data Blocks = Blocks {inputs :: [Id], function :: IO a -> IO a,

outputs :: [Id]}
data Outputs = Outputs {destinations :: [Id], block :: Id}

43

data IR = IR {inputs :: Map Id Inputs, blocks :: Map Id Blocks,
outputs :: Map Id Outputs}

Figure 10.2.: IR definition on Haskell

As we seen on figure 8.2 the intermediation representation is just three Maps1, one
for blocks, one for input pins and one for output pins. But the maps do not contain
pins themselves, merely unique hashes (Int on this case). This reflects the fact that
pins model only relationships, not state. The only non-hash value on IR are the blocks
functions. These functions are indeed impure2, but earlier on the literature review it
was established that dataflow programming was mainly side-effect free, so why do they
involve side effects3?.

There are two reasons, first on the actual python programs this types do not exist, at
least not on an enforceable way, so when translating them to Haskell the function field
represents the “worst case”, that is to say only a few functions will actually end up
producing side-effects. The second and more important reason is that blocks actually
execute themselves, meaning the block function does not has parameters, it relays on
getting the values from the pins values and sets the values of the output values, leaving
us with the work of setting those input pins and retrieving results from the output pins.

This goes against the previously stated “pins represent relationships, not state”, in fact
an alternative implementation was created in which the function returned a tuple of
results, and it is the compiler job to now associate the output pins to each of the
elements on the tuple. This was done using the same current mechanism, saving into
a dictionary, the difference being that while currently the values appear on the output
pins and have to be moved into the dictionary (or otherwise a reference to the pin itself
must be kept on the dictionary) on this case the values were fed directly to the algorithm.
However, this proved limiting, as code became more complex since more checks have to
be done, there was no obvious advantage and side-effects did not disappeared but merely
were harder to do.

With this kind of language it is possible to create arbitrary functions as a composition
of functions, all the inputs are either omitted if they are connected through the blocks,
else they are promoted to the output of the new function. This works as long as side
effects blocks do not depend on each other, this only happens when having both “entry”
and “exit” blocks.

1A Map is Haskell is called a dictionary in Python and Hashtable in other languages. It represents
a data structure in which keys are used to retrieve values in a very efficient manner (on hashmap
O(1)).

2The term purity here refers to the absence of side effects on a function, so a impure function is a
function that performs side effects,

3Value manipulations other than the arguments passed and the returned value.

44

11. Evaluation

From the conception of the project it was intended to be tested by participants, evalu-
ating the usability of the prototype. This chapter explains that evaluation process, how
the survey was designed, and the analysis of the results.

The evaluation corresponding to this system has been subjected to ethics approval by the
SCIENCE & TECHNOLOGY ECDA with protocol number COM/UG/UH/02090,
and titled ‘An Evaluation of Persimmon’ at date 22/02/17, amended by the HEALTH
SCIENCES ENGINEERING & TECHNOLOGY ECDA at date 20/04/2017.

Method

The method for conducting the evaluation is based on conducting a series of increasingly
difficult closed tasks that consist of creating workflows and giving feedback on each of
them, as well as some free forms questions at the end of the form. The complete form
can be seen at appendix C.

The questionnaire selected is the Single Ease Question as explained in Sauro (2012).
It based on of asking how difficult a task was on a seven point scale after it has been
performed. Research shows that it provides equal or greater accuracy than more difficult
measures of task-difficulty (Sauro and Dumas, 2009).

Along this questions, the participant knowledge and familiarity with Data Mining and
Machine Learning is saved, as well as any additional feedback about the system.

Proposed Tasks

The evaluation consists of three different closed tasks. The task are defined as to grad-
ually introduce more complex concepts, following the seen workflows on the workflow
chapter, being introduced to the concepts of modifying an existing connection and com-
plex block that require more interaction from the user.

• First task is the creation of a simple workflow, the objective of this task being
to introduce Persimmon to the participants in the simplest terms. Using the iris
dataset they perform a cross validation evaluation of their chosen classificator.

45

• Second task is modifying the previous workflow to create a more complex worflow
that fits and predicts using an estimator and two sources of files. It is only slightly
more complex than the previous one, but it introduces the concept of re-cabling to
the participants.

• Third task and final task. This one involves adding hyper-parameter tunning, which
in turns means providing a dictionary with desired parameters.

To see the complete form please check Appendix C.

Evaluation Results

At time of submission the population of the evaluation is n = 3.

All participants showed a good level of familiarity with the subject, defining themselves
as quite familiar in the fields of Machine Learning, Data mining and Visual Machine
Learning/Data Mining tools (76%, 71.4% and 57.14% average score respectively).

Figure 11.1.: Participants familiarity

The scores for the tasks were quited good, averaging 85.71%, 90.47% and 85.71%, com-
pared to the average score SEQ questions tends to have (which is 71.42%, or a 5 in a 7

46

point scale). This means that the participants found the tasks relatively easy, they also
performed the tasks on schedule (30’ or less).

The tasks standard deviation were quite uniform, with σ equal to 1, 1.15 and 0 for tasks
one, two and three respectively. This indicates that the population largely agrees, with
no visible outliers.

Figure 11.2.: Task score per task per participant

While these are good indicators that the interface of the system succeeded on its inten-
tions, the most important data from the evaluation is perhaps the free form questions,
where participants unanimously agreed on the need for the ability to delete blocks.

Another complain is the placements of the blocks, by default they all spawn at the same
point, that can result in blocks stacking on top of each other,

The blocks participants struggled with the most are those including file dialogs, citing
how the path does not reset on cancel, sometimes responding to single click and some-
times not responding at all, and the need for a way to show the current selected file
without clicking on the file dialog.

Some other complains/suggestions align with the suggestions on the final interface pro-

47

posed, such as adding a zoom ability, a bubble spawning block system instead of tabs.
Also some new ideas were proposed, such as undo functionality, or visualization options.

On the other hand participants praised the drag and drop nature of the interface, the
wide selection of ml algorithms and test options, the use of colors to indicate types,
consistent design, easy to navigate and shallow learning curve.

The error handling and the resilience of the application were mentioned, as well as the
simple installation process without the need for dependencies installation.

48

12. Conclusiones

Tras la evaluación es una oportunidad para observar lo que el sistema ha conseguido.

Revisión de Objetivos

Estudio de Viabilidad: La evaluación parece demostrar que es posible crear una interfaz
de aprendizaje automático visual que es flexible a la vez que relativamente fácil
de usar, incluso para estudiantes, incluyendo un sistema de tipos y notificación de
errores en tiempo de escritura.

Diseño y Usabilidad: La implementación final sigue los bosquejos iniciales, demostrando
que el diseño inicial tenía fundamentos sólidos. Los buenos resultados de la evalu-
ación, incluyendo los comentarios finales de los participantes, parecen indicar que
la interfaz satisface los objetivos manteniendo una interfaz simple.

Evaluación: A pesar del bajo número de participantes la evaluación resultó en resultados
mayormente positivos, incluyendo feedback que influyó la fase final de desarrollo.

Herramienta de Aprendizaje: Con la mayor parte de los objetivos cumplidos el sistema ha
alcanzado un estado en el cual tiene suficiente funcionalidad como para ser usado
como herramienta de aprendizaje, especialmente gracias al soporte de los workflows
más simples y usados. Incluso dos participantes reseñaron la facilidad de uso y la
capacidad de realizar acciones complejas (como ajuste de hyper-parametros) de
manera sencilla comparado con otros frameworks y librerías.

Acelerar análisis exploratorio: Al igual que en el último objetivo, el sistema ha alcanzado
un nivel de funcionalidad suficiente en el que realizar análisis de datos e iterar
sobre distintos métodos es relativamente rápido (simplemente desenganchar y en-
ganchar las conexiones a otro bloque). Cuando un bloque necesario no estaba im-
plementando la implementación era relativamente sencilla (la mayoría de bloques
son menos de 20 lineas de código).

Implementación: Al final del proyecto los requerimientos no-funcionales han sido cumpli-
dos, culminando en un ejecutable sin dependencias que los participantes han usado
para la evaluación. Este proceso de fácil instalación ha sido comentado por varios
participantes, así como el rendimiento del sistema, manteniendo la interfaz sensible
al input mientras se renderizan múltiples bloques y el proceso se ejecuta simultánea-
mente (multihilo).

49

Retrospectiva

Con más de 7000 líneas de código, 10 releases, y más de 200 commits, Persimmon se ha
convertido en un proyecto de tamaño medio, desde su concepción ha llamado la atención,
con más de 3000 visitas y 100 estrellas en Github.

Ha aparecido en múltiples, páginas web, e incluso ha ganado el premio al mejor proyecto
en el compshow 2017 en la universidad de Hertfordshire.

Figure 12.1.: Persimmon en el extranjero

Conclusión

En conclusión el sistema ha conseguido alcanzar un estado testeable en el cual los partic-
ipantes han evaluado la usabilidad, flexibilidad y potencial, valorándolo positivamente.
Esto parece indicar que es posible mejorar la situación de herramientas visuales de
aprendizaje automático con pequeñas mejoras que impactan la experiencia de usuario.
Características como el menú de búsqueda inteligente usa la introspección para sugerir
bloques adecuados, usando el sistema de tipos para ayudar al usuario a crear procesos
más rápida y fácilmente.

Esto se corresponde con la hipótesis del proyecto, así como con el objetivo de que el
sistema no debería solo hacer difícil o imposible crear procesos incorrectos, sino hacer
más fácil y rápido crear grafos correctos.

50

htttps://github.com/AlvarBer/Persimmon/releases
htttps://github.com/AlvarBer/Persimmon
http://mailchi.mp/pythonweekly/python-weekly-issue-295
http://forum.ai100.com.cn/blog/thread/ml-2017-05-10/
https://twitter.com/HertfordshireCS/status/857266574356598785

Dar más poder al usuario no significar complicar la interfaz, de hecho puede ser lo
contrario.

Trabajo Futuro

• Exponer parámetros opcionales.
• Pulir aspectos visuales.

– Categorías en el menú de búsqueda.
– Más indicadores durante acciones de arrastre.

• Serialización de los grafos.
• Soporte de movimiento y zoom sobre el grafo.
• Generación automática de bloques desde funciones en Python.
• Capacidad de deshacer (Command pattern).
• Selección en área.
• Creación de worflows comunes mediante plantillas.
• Unit/Integración/End to end testing.
• Deployment automático en Windows
• Integración contigua.
• Cacheado de resultados similares a un REPL1.

1Un Read Eval Print Loop es una consola interactiva proveniente de LISP que permite la ejecución
interactiva de expresiones, guardando los resultados intermedios para el uso exploratorio.

51

13. Postmortem

After the evaluation it is time to make a retrospective, look what Persimmon has
achieved.

Objectives Review

Feasibility: Evaluation seems to show that it is possible to create a machine learning
visual interface that is both flexible and relatively easy to use, even for learners,
including a type system and errors in compilation time.

Design and Usability: The final implementation closely followed the initial sketches, prov-
ing the initial design had solid fundamentals. The good evaluation scores, and
final remarks given by participants, seem to demonstrate that the interface has
accomplished its objectives of producing a powerful yet simple to use interface.

Evaluation: Despite having a low number of participants the evaluation resulted in a
mostly unanimous good reviews of the software, as well as providing very useful
feedback for future improvements.

Learning Tool: Because most of the milestones were achieved the final system has reached
a state where it is useful enough for its use as a learning tool thanks to supporting
the simplest (and most common) workflows, it was even remarked by two partici-
pants how easy it was to use, and how easy it was to do complex actions (such as
hyper-parameter tuning) compared to other frameworks/libraries.

Faster Exploratory Work: Like last objective thanks to the current state of the system it
is pretty fast to perform early ml analysis, when limited by the lack of a block it
was pretty easy and fast adding a block that solved the problem (in around ~20
lines of code).

Implementation: At the end of the project the non-functional requirements have been
met, delivering a windows single executable file that participants used for the eval-
uation, while keeping a good performance, handling many blocks without a hitch,
and keeping the frame rate steady while modifying connections and running the
execution of the pipeline simultaneously.

52

Retrospective

With over 7k lines of code, 10 releases, and more than 200 commits, Persimmon stands
as a medium size codebase, since its inception it has gathered attention, with over 3000
visits, and more than 90 stars on Github.

It has been featured on multiple, websites, and even won best project at the 2017 comp-
show at University of Hertfordshire.

Figure 13.1.: Chinese machine learning forum

Conclusion

In conclusion the system has managed to reach a testable state in which participants
have remarked its usability, flexibility and potential. This seems to indicate that is is
possible for small improvements on visual machine learning tools do make an impact
on the user experience Features like the smart bubble that use introspection to suggest
suitable blocks to connect leverage the type system to help the user create the pipelines
faster and easier.

This corresponds with the hypothesis of the project, as well as the objective that the
system should not only make it hard or impossible to construct incorrect graphs, but
should make it easier and faster to create correct graphs.

53

htttps://github.com/AlvarBer/Persimmon/releases
htttps://github.com/AlvarBer/Persimmon
http://mailchi.mp/pythonweekly/python-weekly-issue-295
http://forum.ai100.com.cn/blog/thread/ml-2017-05-10/
https://twitter.com/HertfordshireCS/status/857266574356598785

Giving more power to the user does not mean convoluting the interface, in fact it can
be the opposite.

Future Work

• Surface of optional parameters.
• Visual Polish.

– Smart Bubble breakdown by category.
– More indicators when dragging/dropping.

• Graph Serialization.
• Support move and zoom in background.
• Automatic block generation from Python function.
• Undo functionality (Command pattern).
• Area drag select.
• Skeletons of common workflows.
• Unit/Integration/End to end testing.
• Automatic windows deployment.
• Continuous integration.
• Cache results similar to a REPL1.

1A Read Eval Print Loop is an interactive console many modern programming languages that allows
for the interactive execution of expressions, saving the results in a local session.

54

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
et al. (2016), “Tensorflow: Large-scale machine learning on heterogeneous distributed
systems”, arXiv Preprint arXiv:1603.04467.

Atlassian. (2014), “Feature branch workflow”, available at: https://www.atlassian.com/
git/tutorials/comparing-workflows#feature-branch-workflow (accessed 22 April 2017).

Backus, J. (1978), “Can programming be liberated from the von neumann style?: A
functional style and its algebra of programs”, Communications of the ACM, ACM, Vol.
21 No. 8, pp. 613–641.

Barga, R., Fontama, V., Tok, W.H. and Cabrera-Cordon, L. (2015), Predictive Analytics
with Microsoft Azure Machine Learning, Springer.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., et al. (2001), “Manifesto for agile software development”.

Biancuzzi, F. and others. (2009), Masterminds of Programming: Conversations with the
Creators of Major Programming Languages, “ O’Reilly Media, Inc.”

Boehm, B.W. (1991), “Software risk management: Principles and practices”, IEEE
Software, IEEE, Vol. 8 No. 1, pp. 32–41.

Dalke, A. (2003), “Visual dataflow programming”, available at: http://www.
dalkescientific.com/writings/diary/archive/2003/09/22/VisualProgramming.html
(accessed 21 February 2017).

Davenport, T.H. and Patil, D. (2012), “Data scientist: The sexiest job of the 21st cen-
tury”, available at: https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
(accessed 25 February 2017).

Ennals, R. and Jones, S.P. (2003), “Optimistic evaluation: An adaptive evaluation strat-
egy for non-strict programs”, in ACM Sigplan Notices, Vols. 38, ACM, pp. 287–298.

Ericsson, G., Glover, D., Price, A. and Franks, L. (2017), “Azure machine learning
frequently asked questions: Billing, capabilities, limitations, and support”, available
at: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-faq
(accessed 11 April 2017).

Gschwind, M. (2017), “PowerAI: Looking back on a year of deep learning innovation -
and into the future”, available at: https://www.ibm.com/developerworks/community/

55

https://www.atlassian.com/git/tutorials/comparing-workflows#feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows#feature-branch-workflow
http://www.dalkescientific.com/writings/diary/archive/2003/09/22/VisualProgramming.html
http://www.dalkescientific.com/writings/diary/archive/2003/09/22/VisualProgramming.html
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-faq
https://www.ibm.com/developerworks/community/blogs/fe313521-2e95-46f2-817d-44a4f27eba32/entry/PowerAI_Looking_back_on_a_year_of_Deep_Learning_innovation_and_into_the_future?lang=en
https://www.ibm.com/developerworks/community/blogs/fe313521-2e95-46f2-817d-44a4f27eba32/entry/PowerAI_Looking_back_on_a_year_of_Deep_Learning_innovation_and_into_the_future?lang=en

blogs/fe313521-2e95-46f2-817d-44a4f27eba32/entry/PowerAI_Looking_back_on_a_
year_of_Deep_Learning_innovation_and_into_the_future?lang=en (accessed 12
April 2017).

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I.H. (2009),
“The weka data mining software: An update”, ACM SIGKDD Explorations Newsletter,
ACM, Vol. 11 No. 1, pp. 10–18.

Harris, J.G. and Eitel-Porter, R. (2015), “Data scientists: ’As rare as uni-
corns”’, available at: https://www.theguardian.com/media-network/2015/feb/12/
data-scientists-as-rare-as-unicorns (accessed 3 April 2017).

Hughes, G. (1968), “On the mean accuracy of statistical pattern recognizers”, IEEE
Transactions on Information Theory, IEEE, Vol. 14 No. 1, pp. 55–63.

Jones, E., Oliphant, T. and Peterson, P. (2014), “SciPy: Open source scientific tools for
python”.

Kelly, J.L., Lochbaum, C. and Vyssotsky, V.A. (1961), “A block diagram compiler”, Bell
System Technical Journal, Wiley Online Library, Vol. 40 No. 3, pp. 669–676.

Khabaza, T. (2005), “Hard hats for data miners: Myths and pitfalls of data mining”,
available at: http://www.spss.ch/upload/1113911601_data_mining_khabaza (3).pdf
(accessed 16 December 2016).

Launchbury, J. (1993), “A natural semantics for lazy evaluation”, in Proceedings of the
20th Acm Sigplan-Sigact Symposium on Principles of Programming Languages, ACM,
pp. 144–154.

McBride, C. and Paterson, R. (2008), “Applicative programming with effects”, Journal
of Functional Programming, Cambridge Univ Press, Vol. 18 No. 01, pp. 1–13.

McKinney, W. and others. (2010), “Data structures for statistical computing in python”,
in Proceedings of the 9th Python in Science Conference, Vols. 445, van der Voort S,
Millman J, pp. 51–56.

Minas, M. and Frey, G. (2002), “Visual plc-programming using signal interpreted petri
nets”, in American Control Conference, 2002. Proceedings of the 2002, Vols. 6, IEEE,
pp. 5019–5024.

Petersen, K., Wohlin, C. and Baca, D. (2009), “The waterfall model in large-scale de-
velopment”, in International Conference on Product-Focused Software Process Improve-
ment, Springer, pp. 386–400.

Press, G. (2015), “The hunt for unicorn data scientists lifts salaries for all data ana-
lytics professionals”, available at: https://www.forbes.com/sites/gilpress/2015/10/09/
the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/
#38147ccc5258 (accessed 3 April 2017).

Puget, J.-F. (2017), “The most popular language for machine learning and data science is

56

https://www.ibm.com/developerworks/community/blogs/fe313521-2e95-46f2-817d-44a4f27eba32/entry/PowerAI_Looking_back_on_a_year_of_Deep_Learning_innovation_and_into_the_future?lang=en
https://www.ibm.com/developerworks/community/blogs/fe313521-2e95-46f2-817d-44a4f27eba32/entry/PowerAI_Looking_back_on_a_year_of_Deep_Learning_innovation_and_into_the_future?lang=en
https://www.theguardian.com/media-network/2015/feb/12/data-scientists-as-rare-as-unicorns
https://www.theguardian.com/media-network/2015/feb/12/data-scientists-as-rare-as-unicorns
http://www.spss.ch/upload/1113911601_data_mining_khabaza%20(3).pdf
https://www.forbes.com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/#38147ccc5258
https://www.forbes.com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/#38147ccc5258
https://www.forbes.com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/#38147ccc5258

…”, available at: http://www.kdnuggets.com/2017/01/most-popular-language-machine-learning-data-science.
html (accessed 11 April 2017).

Rajpurohit, A. (2016), “Businesses will need one million data scientists by 2018”, avail-
able at: http://www.kdnuggets.com/2016/01/businesses-need-one-million-data-scientists-2018.
html (accessed 25 February 2017).

Rossum, G. van and Levkivskyi, I. (2014), “PEP 483 – the theory of type hints”, available
at: https://www.python.org/dev/peps/pep-0483/ (accessed 20 April 2017).

Rossum, G. van, Lehtosalo, J. and Langa, Ł. (2014), “PEP 484 – type hints”, available
at: https://www.python.org/dev/peps/pep-0484/ (accessed 20 April 2017).

Ryan, F. (2016), “A look at popular machine learning frameworks”, available at: http:
//redmonk.com/fryan/2016/06/06/a-look-at-popular-machine-learning-frameworks/
(accessed 12 April 2017).

Sauro, J. (2012), “10 things to know about the single ease question (seq)”, Measuring
U, 2012.

Sauro, J. and Dumas, J.S. (2009), “Comparison of three one-question, post-task usability
questionnaires”, in Proceedings of the Sigchi Conference on Human Factors in Computing
Systems, ACM, pp. 1599–1608.

Schwaber, K. and Beedle, M. (2002), Agile Software Development with Scrum, Vols. 1,
Prentice Hall Upper Saddle River.

scikit-learn. (2016), “Who is using scikit-learn?”, available at: http://scikit-learn.org/
stable/testimonials/testimonials.html (accessed 8 February 2017).

Selic, B. (2003), “The pragmatics of model-driven development”, IEEE Software, IEEE,
Vol. 20 No. 5, pp. 19–25.

Shah, R. (2014), Mastering the Art of Unreal Engine 4-Blueprints, Lulu.com.

Shu, N.C. (1988), Visual Programming, Van Nostrand Reinhold New York.

Simões, T. (2015), “Visual programming is unbelievable… here’s why we don’t believe in
it”, available at: https://www.outsystems.com/blog/visual-programming-is-unbelievable.
html (accessed 11 February 2017).

Sousa, T.B. (2012), “Dataflow programming concept, languages and applications”, in
Doctoral Symposium on Informatics Engineering, Vols. 130.

Staníček, P. (n.d.). “Paletton. com (aka color scheme designer 4)”.

Taylor, D. (2016), “Http://www.kdnuggets.com/2016/10/battle-data-science-venn-
diagrams.html”, available at: http://www.kdnuggets.com/2016/10/battle-data-science-venn-diagrams.
html (accessed 7 June 2017).

Thakur, A. (2016), “Approaching (almost) any machine learning problem”, available at:
http://blog.kaggle.com/2016/07/21/approaching-almost-any-machine-learning-problem-abhishek-thakur/

57

http://www.kdnuggets.com/2017/01/most-popular-language-machine-learning-data-science.html
http://www.kdnuggets.com/2017/01/most-popular-language-machine-learning-data-science.html
http://www.kdnuggets.com/2016/01/businesses-need-one-million-data-scientists-2018.html
http://www.kdnuggets.com/2016/01/businesses-need-one-million-data-scientists-2018.html
https://www.python.org/dev/peps/pep-0483/
https://www.python.org/dev/peps/pep-0484/
http://redmonk.com/fryan/2016/06/06/a-look-at-popular-machine-learning-frameworks/
http://redmonk.com/fryan/2016/06/06/a-look-at-popular-machine-learning-frameworks/
http://scikit-learn.org/stable/testimonials/testimonials.html
http://scikit-learn.org/stable/testimonials/testimonials.html
https://www.outsystems.com/blog/visual-programming-is-unbelievable.html
https://www.outsystems.com/blog/visual-programming-is-unbelievable.html
http://www.kdnuggets.com/2016/10/battle-data-science-venn-diagrams.html
http://www.kdnuggets.com/2016/10/battle-data-science-venn-diagrams.html
http://blog.kaggle.com/2016/07/21/approaching-almost-any-machine-learning-problem-abhishek-thakur/

(accessed 30 January 2017).

Twells, J. (2016), “The 14 pieces of software that shaped modern music”, available at:
http://www.factmag.com/2016/10/01/the-14-pieces-of-software-that-shaped-modern-music/
(accessed 21 February 2017).

Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F. and Mueller, A.
(2015), “Scikit-learn: Machine learning without learning the machinery”, GetMobile:
Mobile Computing and Communications, ACM, Vol. 19 No. 1, pp. 29–33.

Walt, S. van der, Colbert, S.C. and Varoquaux, G. (2011), “The numpy array: A struc-
ture for efficient numerical computation”, Computing in Science & Engineering, IEEE,
Vol. 13 No. 2, pp. 22–30.

Zmud, R.W. (1980), “Management of large software development efforts”, MIS Quar-
terly, JSTOR, pp. 45–55.

58

http://www.factmag.com/2016/10/01/the-14-pieces-of-software-that-shaped-modern-music/

A. Package Organization

Persimmon source code is written on the form of a typical python package, on the
following section the specifics of how the different subpackages are distributed and what
is on each of them.

persimmon

backend view

blocks util

Figure A.1.: Persimmon package hierarchy

Backend

The backend performs all the calls to sklearn, as it receives the graph of execution and
performs the desired calls to the estimators.

The backend does not know anything about the view, and as such the current kivy
frontend could be replaced by any other visual framework.

View

The view contains all of the kivy code, both python source files and kivy lang files.

59

B. How was this document made?

This document was written on Markdown, and converted to PDF using Pandoc.

Process

Document is written on Pandoc’s extended Markdown, and can be broken amongst
different files. Images are inserted with regular Markdown syntax for images. A YAML
file with metadata information is passed to pandoc, containing things such as Author,
Title, font, etc… The use of this information depends on what output we are creating
and the template/reference we are using.

Diagrams

Diagrams are were created with LATEXpackages such as tikz or pgfgantt, they can be
inserted directly as PDF, but if we desire to output to formats other than LATEXis more
convenient to convert them to .png files with tools such as pdftoppm.

References

References are handled by pandoc-citeproc, we can write our bibliography in a myriad
of different formats: bibTeX, bibLaTeX, JSON, YAML, etc…, then we reference in our
markdown, and that reference works for multiple formats

60

C. Persimmon Evaluation

Preparation

Please go to https://github.com/AlvarBer/Persimmon/releases and download the latest
executable. You will also need to download the iris dataset along with it.

Previous Questions

Please tell us something about yourself first.
How familiar are you with Machine Learning?

very familiar →
← not familiar at all

How familiar are you with Data Mining? .
How familiar are you with tools such as Weka, RapidMiner,
Azure ML Studio, etc? .

Tasks

For the first task you will create a small pipeline using persimmon blocks.

• Execute Persimmon.exe, spawn a “Read csv” block from the Input/Output tab
and using the file dialog locate the iris.csv file you have downloaded earlier.

• Spawn a classificator block from the Classificators tab (any will suffice), and a
“K-fold block” (from the Cross Validators tabs).

• Now spawn a “cross-validation score block” (which can be found at the Model
Selection tab) and connect the previous three blocks to the “cross-validation score”
block.

• Finally pipe the result from that block into a “print” block (again on the In-
put/Output tab).

Congratulations! You just made your first pipeline.
Overall, how did you find this task? .

very easy →
← very difficult

61

https://github.com/AlvarBer/Persimmon/releases

For the second task you will learn about reconnecting cables, if you have not already,
you will also change the output, putting the result into a file instead off on the screen.

• Spawn a “Fit” block (Fit & Predict tab), and reconnect the previous input block
and the estimator to it. Make sure you leave the previous “cross validation score
block” completely unconnected, another possiblity is to restart the program to delete
all blocks.

• Spawn another “Read csv” block and load file “iris_no_class.csv”.
• Spawn a “Predict” block, and connected the result from the fit block onto the first

input pin and the new “Read csv” to the second one.
• Now pipe that result into a “Write csv” (Input/Output tab) block. Put a valid

filename on the file dialog text input and execute.

You just predicted a dataset using a previously fitted estimator!
Overall, how did you find this task? .

very easy →
← very difficult

For the final task you will use several complex blocks, and by doing so will also perform
hyper-parameter optimization using a grid search.

• Spawn “Grid Search” block from the Model Selection tab. Orphan both the
“Fit” and “Predict” blocks you previously created and connect the first “Read csv”
block (the one with “iris.csv”) to the “Grid Search” block.

• Spawn a “SVM” block from the Classificators (if you had not before). Connect
it to the “Grid Search”.

• Spawn a “Dictionary” block (State tab). This block is a bit different to the
previous, it requires that you write a Python dictionary with the params you want
to test, write “{‘C’: [0.03, 0.3, 1], ‘tol’: [0.00001, 0.0001, 0.001]}” (without the
outer double quotes but take care to write the iner single quotes). Once you are
done connect the params block to the “Grid Search”.

• Finally pipe the second result of the grid search into a “Print” block.

The results on the screen are the best parameters along the best score.
Overall, how did you find this task? .

very easy →
← very difficult

Additional Feedback

List 2 negative aspects of the application.

62

List 2 positive aspects of the application.

Please tell us any additional feedback you may have.

Thanks for taking the time to participate on this evaluation.

63

	Introducción
	Descripción
	Motivación
	Objetivos
	Que no es el proyecto
	Estructura de la memoria

	Introduction
	Description
	Motivation
	Objectives
	What the project is not
	Project Structure

	Focus
	Literature Review
	On Machine Learning
	On Dataflow Programming
	On Visual Programming
	State of the art

	Workflows
	Simple
	Regular
	Complex

	Milestones
	Tree
	Gantt Chart
	Development Methodology
	Source Code

	Risk Analysis
	Stakeholders
	Prevention & Mitigation

	Interface Design
	Sketches
	Colour Palette
	Typography

	Implementation
	First Iteration
	Second Iteration
	Third Iteration
	Model View Controller
	Making a Connection
	Visualizing the Data Flow
	Binary Distribution

	Type Checking
	Gradual Typing
	Write Time
	The two languages
	Actual Types
	Intermediate Representation

	Evaluation
	Method
	Proposed Tasks
	Evaluation Results

	Conclusiones
	Revisión de Objetivos
	Retrospectiva
	Conclusión
	Trabajo Futuro

	Postmortem
	Objectives Review
	Retrospective
	Conclusion
	Future Work

	Bibliography
	Package Organization
	Backend
	View

	How was this document made?
	Process
	Diagrams
	References

	Persimmon Evaluation
	Preparation
	Previous Questions
	Tasks
	Additional Feedback

