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Las Tablas de Daimie1 National Park has experienced many hydrological and ecological modifications through out its 

history, both of natural as well as anthropogenic origin, which have affected its caIDon storage capacity and caIDon 

fluxes. The study of those variations has been carried out by the analysis of its sedimentary record (geochemistry and 

pollen) and historical data. The natural changes have a wider variation range than the anthropogenic ones, show repetitive 

patterns and the system reacts readjusting the equilibrium among its components. Anthropogenic effects depend on the 

direct or indirect impact on the wetlands of change and its intensity. In addition, the anthropogenic impacts have the 

capacity of breaking the natural balance of the ecosystem and the internal interactions. 

1. futroduction 

One of the main research focuses of the global carbon cycle 

(C-cycle) is finding the 'missing sink'. Although the uncertainty 

associated with each of the known sources and sinks is high, so 

that the missing sink may be the cumulative result of estima­

tion errors, several lines of evidence suggest that it is real and 

located on land (Scholes et al., 1999). But, where those sinks 

and their C budgets are, is still uncertain (Walker and Steffen 

1999). The carlxm dynamics of the terrestrial biosphere is com­

plex and its detailed understanding is basic because the terrestrial 

biosphere plays a major role in the global C-cycle. Also, hu­

man disturbance of the C-cycle not only alters the climate sys­

tem, but also directly affects terrestrial metabolism (Canadell 

et al., 20(0). However, it is imJXlssible to understand the ter­

restrial biosphere as a whole without prior knowledge of the 

particular dynamics of each ecosystem integrated in it and how 

land use changes affect their fluxes through out the different 

compartments of an ecosystem. The results of these studies 

are necessary to complete and improve current global C-cycle 

models. 

Research of the C-cycle and human disruption of terrestrial 

ecosystems has concentrated mainly on a few ecosystems such 

as peatlands (Moore et al., 1998; Turetsky et al., 2002) and 

forests (mainly boreal and tropical). Ecosystems such as tem­

perate forests and aquatic-terrestrial environments such as lakes, 

reservoirs and wetlands, although all of them have im:[X)ftant C 

fluxes (Dean and Gorham, 1998) and are under intense human 

pressure, have received less attention and are sometimes not in­

cluded in models that simulate future carlxm balances. Another 

point that is not usually implemented in the models is the JXlssi­

ble feedbacks of wetland desiccation, such as soil decomposition 

(Field et. aI., 2(04). 

Our main goal in this paper is to present and compare the 

evolution of C storage in a Mediterranean temperate wetland 

in resJXlnse to the modifications that led to the change from 
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2. Study area 

The u.s T.blas de D.imiel N.tioo.l hrk (TDNP) is • Mediter­

rmem fluvi.l wetlmd loo.ted in centr.l Sp.in (Fig, 1), Until 

1 9B3, it w.s fed by CigUeb (sulphated w.ters) md Gu.diana 

rivers (carbooated waters) md groondwaters, As rerult of the 

ccmbin.tioo of these w.ter ruWlies md the low sIeve of this 

ue. the water flow slowed enoogh as to .llow the develcpment 

of the wetland with mnu.l �new.l of waters (both surface md 

groundwaters), Since 1 983, Cigil.eb river waters, n infall md hu­

mm regulated suWlies (ft-cm wells md ch.nnels) are the only 

soorces of w�ter, 

Clim.te is cootinent.l Mediterr.nem, with m .venge m­

nu.l prooipit�tioo of 411, 6 mm and .nnu.l .venge temp'r�ture 

of 14,3 QC (for the 11);h century), with dry md he< summers 

md cold winters, 'The muked se.son�lity is re'I'oosible of the 

stroog fluctu.tioos actu.lly shown by the w.ter t.b � of the wet­

lmd, Befoce 198Ct the situ�tioo w.s very different as the coo­

stmt flow of groondw�ter .t 'I'rings .llowed moce st.b� w�ter 

�vels, 

The veget.tion is dcmin.ted by heliorilytes, m.inly Phrag­
mituaurtraiif, Ciaudiwn marifc"," md Typha dc.m ingemif, dis­

triooted .eross the bmk.s md insome p.tches inside the wetlmd, 

.t the 't.bbs' (cpen w.ter zones with depth ft-cm centimetres up 

t04 m) 'pp'ar den", m.sses ofchucphytes, md the rurroonding 

ue.s ue domin.ted by Tamarb;, h.lcrhytes mdcrops ccmposed 

m.inly by Vitif, aiM md Cere�li., 

3. :Materials and methods 

3.1. Corillgand sedimellt.s' 

During Docember1001 w.s m.de . cocing c.mp.ign, t.king 10 

re<.tioncoces md 10mmual PVC, toroooverthe upp'nnost p.rt 

Intact, in five sites (two p'r site, covering the different sedimen­

hry envirooments of the Nation.l Park), md 10 vibracoces for 

Ethologic.l correl.tioo, 

Three representative cores of the present environments o f t he  

wetlmd were seboted f oc  geoohemlc.l, ise<opic, min<'nlogi­

c.l, sedimentologic.l md pol�n malyses, Of the", cores, coce 

CigUeb 4 shows the mo.'d: comp�te record md the moce evident 

ch.nges, 

Three m.jor facies ue represented in this coce (Smti.'d:ebm 

et .1., 11))4) md they coincide with present day m.in enviroo­

ments (Fig, 1), 'The lowennost m.teri.ls are gyprum-rich, p,� 

grey to p,� green mud facies (clay to very fine clayey smd), 

Gyprum oocurs .s disp'rse !ensoid.lcryst.ls tothe top, tut fcrms 

centimetric byers of microoryst.lline gypsum tow�rds the lower 

p�rt, This interv.l shows the lowe.'d: contents in ocgmic md in­

ocgmic C (0,73% and 1.81%, resp'ctively) md N of the who� 

core, low P, high AI, md the highest v.lues in S (T.ble 1), This 

facies repre",nts saline wetlmd envirooments chuacterized by 

high detrit.l inp1t 3Ild neu-rurface saline groundw.ters, 

The following facies is ccmposed by duk grey to black cby­

rich layers with the highest .verage cootent in organic C [13,5%) 

(T.b� 1), In .ddition, this facies shows the highest .ver.ge coo­

tent in AI. S shows its lowe.'d: mem values whi� N md P suffer 

a slight inere.", (Tab� 1), This facies record macrcphyte-rich 

wetlmd environments, 
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Q,>,WlS. Numrers repres","\ rrnin dxurrentary ""eris (Tab), 3) 

Tabk 1 Average ccnteris of rrnin geochemic.J elerrents of each 

facies i&ntified in core Cigueh 4 

GJPSlIIn-riclt Charopliyto 

,- �anic_ridt facie.s layer, 

Inorg. C 1.82>'"0 1.44% 6.97% 

"". C 0.73% n53% 9.77% 

A> 3.85% 5.06% 0.41% 

, 8.86% 0.88% 2.31% 

N 11Wm 17wm 67 PFffi 
, 146ppm 176 ppm 197wm 

Lithologic.lly the tnnsiticn to the uwer facies is m.rked by • 

ne.t change from .Wilfently m.ssive dark clays with fr.gment.s 

of g.str'l'ods md chu'l'hytes to m intert.;,dding of charorhyte 

md veget.l (mainly le.ves) layers. 

The uK"'nnoot deposits, which are the foous of this pap'r, 

ue charorhyte muds and smds of cream coloor that, towuds 

the Wtcm of the interv.l, .ltern.te with dark green to dark 

ttOWll veget.l-rich (m.inly leaves) lamin.e, Oocasion.lly, the 

ocganic sediment coot.ins high amoonts of charcoal. Neu the 

bottom, the ocganic layers cm t.;, tens of millimetres thick, oot 

they .lways coot.in cubonated m.teri.l. The m.in bioclastic 

ccmponents ue fr.gments of chuq:hyte stems md oogonia, 

sparse, but well r<"eserved, g.str'l'od shells, md scarce wood 

fragments, 'The siliciclaaic fraction coosists of sand to silt-sized 

quartz gr.ins, Clay is .!moot .bsent, C cootent rises to uoond 

17%, lnocganic C reaches its highest .veraged value md oc­

gmic C shows the m.ximum 100.1 values, Dospite ocganic C 

mean value is lower thm for the ocgmic-rich facies, tot.l C 

in this zone is . little higher (T.ble 1), Al shows its minimwn 

values and S values ue low, oot ne< the lowest of the core, N 

md P mow their highest mean values oot their vui.tioo ranges 

ue .lso the gre.test, This facies rer<"esents the q>eIl wetland 

emironments, 

3.2. Geoci1emical mldpoliel1 anafyzis 

'The core w.s sampled continuously with an .verage thickness 

of 0, 7 cm md for geochemic.l md pollen m.lyses in each sam­

ple, Samples for geochemistry were m.ly",d foc m.jor, minor 

md trace elements (ICP-MS and ICP-AES), te<.l C md S coo­

tent (Loco c c.rboo and sulphur m.lyser), inorganic C (CO, 

coolcmetry) md orgmic C (c.lculated.s the difference t.;,tween 

tot.l and inorgmic C), .t ALS Chemex labor.tocies in Vmooover 

(Can.da), N was detennined as extract.ble N (NH., md NO" 

colorimetric.lly) .t ALS Enviroo L.bs (V.ooouver, Cm.d.), 



Samples for pollen were extracted by flotation on Thoulet/s solu­

tion (Goeury and Beaulieu, 1979) without acetolysis (Gil Garcfa 

et al., in press). Pollen data are presented as the relative pollen 

frequency of each taxon. 

3.3. Dating and age rrwdel 

AMS 14C dating of samples (four samples) was made at the 

GADAM Centre (Gliwice, Poland) and 239,240pU (16 sam­

ples) and 2lOpo (20 samples) at the Centro de Investigaciones 

Medioambientales (CIEMAT, Madrid, Spain). 

Bulk samples were used for AMS dating, as there are no proofs 

of contamination and all the C sources are biological (vegetal 

remains and bioinduced carbonates). Samples were selected ac­

cording to their strati graphical position in parts of the core with­

out traces of contamination. For calibration we used CALIB v.5 

(Stuiver and Reimer, 1993; Stuiver et al., 2(03) using Reimer 

et al. (2004) calibration dataset (Table 2). 

For 2lOpo (used to measure the 21OPb) and 239,240pU analy­

ses, the uppermost 15 cm of a PVC core were used, prepared 

and measured by high-resolution alpha-spectrometry. The ob­

tained CrC-model rates (0.184 ± 0.022 cm ye'l fitted with 

the artificial maximum plutonium peak in 1963 and the be­

ginning (estimated in 1952) of its incorporation to the sedi­

ment (Fig. 3a). Additionally, the 210Pb profile confirmed that 

there was no evident mixing of sediment or hiatuses in the up­

per part of the core, which coincides with the visual inspection 

(Fig. 3a). 

With all these data, an age-depth model was constructed by 

linear interpolation of ages between dated samples. The inter­

polation for the upper 73 cm (charophyte layers with vegetal 

remain layers) was extended down to the facies lxmndary as­

suming that there were no noticeable changes in the lower 2 cm. 

For the remaining layers (organic-rich and gypsum-rich muds) a 

linear inter:[X)lation between the boundary interpolated age and a 

sample inside the gypsum-rich muds (0.99 m in depth) was used, 

discarding the lowermost dated sample as the age is considered 

to be too old probably due to contamination. Consequently, for 

the lowermost layers, the preliminary age model is an average 

of the two facies (Fig. 3b). 

The age model was tested against documented local events 

(documentary data for the last millennium, Table 3) likely to 

have been recorded in the sediments. In this sense, we consider 

a documentary event recorded in the sediments, when an anoma­

lous, sudden or local disruption in the trends or relations among 

the geochernical or :[X)llen components of the sediments ap­

pears, and the interpretation of this 'rupture' is consistent 

with the effects of a documented event in a chronological 

:[X)sition near the interpolated age of the geochemical/pollen 

anomaly. 

The obtained final recalibrated model (Fig. 3b) assumes a 

0.184 cm yc1 sedimentation rate for the last 100 yr. 

4. Climate and human evolution of the last 
millennium 

4.1. Regional climate 

Carlxm accumulation in wetlands is mostly controlled by the ex­

tension of the water table and the biological productivity. Also, 

the range of the water table fluctuations and length of the hydro­

logical cycle determines the final budget at different timescales. 

In the case of the TDNP, the annual cycle of water renewal 

txllnts to a clear dependence on rainfall (both for surface and 

groundwaters). Despite the im:[X)rtance of the hydrological cycle, 

many climate reconstructions for the last millennium focus on 

the temperature variations of global or hernisphericrange (Mann 

et al., 1998; Moberg et al., 2(05). His recognized that in the long­

term such variations are correlated to rainfall trends, but this is 

not valid for short timescales. 

Thus, in order to understand the dynamics of this wet­

land, we have compared rainfall series from southern Spain 

(Rodrigo et al., 1999,20(0) and our own data corning from 

the comparison of instrumental and documentary sources (roga­

tion ceremonies), covering in the two last cases around the last 

500 yr, with :[X)llen ratios indicative of climatic or hydrological 

Table 2. AMS radiocaIDon samples raw and calibrated data. Calibration was perlormed with CALIB v.5 (Stuiver and Reimer, 1993; Stuiver et al., 

2003) using calibration data from Reimer et al. (2004) 

95.4% (2 a) Relative area under 

Depth (m) Sample Material Lab. code 14C yr BP cal ADIBC (cal BP) age ranges probability distribution 

0.56 4-2-79 Charophyte sand GdA-308 521 ± 37 1318-1352 (598-632) 0.195 

cal AD 1390-1445 (505-560) 0.805 
0.73 4-2-101 Vegetal layer (charophyte layers) GdA-309 1098 ± 39 832-836 (1114-1 1 1 8) 0.002 

cal AD 869-1021 (929-1081) 0.998 
0.99 4-2-132 Grey mud with gypsum GdA-306 2699 ± 53 974-955 (2904-2923) 0.030 

cal BC 942-792 (2741-2891) 0.970 
1.12 4-2-141 C-poor, gypsum-rich grey mud GdA-353 7700 ± 50 cal BC 6634-6459 (8408-8583) 1.000 
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Fig. 3. (a) 210Pb and 239,240pu activity 

concentrations and (b) proposed age-depth 

model for core Cigiie1a 4. 

conditions (Gil et al., in press), covering the last millennium 

(Rg. 4). 

In the overall, there is good agreement among the reconstruc­

tions from documentary and instrumental data of Spain and the 

pollen interpretation of the record, taking into account the dif­

ferent geographical setting of both areas. 

The first recognized climatic period is only recorded in our 

core and cannot be compared with the other reconstructions. It 

is characterized a low evergreen Quercus/Pinus (eQ/Pi) ratio, 

dominance of emergent against submerged vegetation, decreas­

ing values of Chenop:)(liaceae-Arnaranthaceae and increasing 

values of the arboreal/non-arooreal JXlllen (AP/NAP). These ra­

tios can be interpreted as cool and relatively dry conditions, but 

with a trend to wetter conditions, during the 9th and early 10th 

centuries AD. Such conditions are similar to those described by 

Desprat et al. (2003) who attribute them to the transition from 

the Dark Ages to the Medieval Warm Period. However, as dur-
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ing this period the area was the border between Christians and 

Muslims, it is not possible to discard the influence of man as it 

has been interpreted by Riera et al. (2004) in NE Spain for this 

period. 

From 1 1th to 14th centuries AD, the eQ/Pi ratio, the AP/NAP 

ratio as well as the hydrophytes and sJXlres against the helio­

phytic vegetation increase. On the other hand, Chenopocliaceae­

Amaranthaceae decreases to recover slightly to the top. These 

changes record wanner and wetter conditions and an expanding 

water table but with a trend to more arid conditions in time, iden­

tified as typical Mediterranean climate by Dorado et al. (2002). 

Such conditions are comparable to the Medieval Warm Period as 

descrieed by Desprat et al. (2003), Julia et al. (1998) and Riera 

et al. (2004) for NW and NE Spain. 

From the 15th century AD onwards, our record is character­

ized by highly fluctuating conditions and slightly cooler temper­

atures. These characteristics suggest that this period represents 



Table 3. Documentary events recorded in the sediments and their duration. For their 'physical' location see Fig. 2. 

Event Year or period Record 

Christians conquer Toledo and the Christian-Muslim border 1085 AD Anomalous APINAP ratio (deforestation ?). 
moves to the Guadiana river. 

Continuous battles in the region 12th to early 13th 

centuries 

2 Partial draining of the wetland and lowering of the mill dams. 

Azuer-Guadiana channel was built to diminish the flooding 

of the area but increased freshwater input to the TDNP. 
Cleaning of water courses. 

1751-1780 AD 

Decrease in water salinity (sudden drop in S values) as runoff 

and Guadiana waters flow improved. 

1812 AD 

3 Mendizabal's and Madoz's land privatization. Changes in the 2nd half ofthe 

extension of land pieces. 19th and early 

20th centuries 

4 Demolition of some water mills and wetland desication. 1937 AD 

Al increase (soil erosion) not related to salinity changes (S or 

Chenopodiaceae-Amaranthaceae) followed by a sudden drop. 

Anomalous APINAP and aquatic/emerged vegetation ratios. 

Local drop of inotganic C. 

5 Changes in the traditional techniques. Machinery 2nd half ofthe 

and fertilizers begin to be used in agriculture. 20th century 

Anomalous increase in N and P. 

6 Draining works inside the wetland, demolition of water mills. 1966-1971 AD 

7 The natural springs dried out as result of water 1980 AD 

Sudden S and Chenopodiaceae -Amaranthaceae 

increase and APINAP and organic C drop. 

Sudden drop of inorganic C. 

overexploitation. 

Puente Navarro dam was finished. 

8 Artificial water supply starts. 

1985 AD 

1987 AD 

1988 AD 

Decrease in water salinity (S). 

Inner dam is built. 
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Fig. 4. Regional climatic reconstructions and comparison to the pollen derived climate reconstruction of core 4. Rainfall index data for southern 

Spain are from Rodrigo et al. (1999, 2000); annual rainfall in Ciudad Real and rainfall index from rogation ceremonies in central Spain data have been 

compiled by ourselves from data coming from the Meteorological National Institute of Spain (instrumental data) and the Toledo Cathedral archives. 

For each set of rainfall data we have calculated the sum of cumulated differences and a 20-yr moving average. He: heliophytes; Hy: hydrophytes; Sp: 

spores; Che: Chenopodiaceae-Amaranthaceae; AP: amoreal pollen; NAP: non-amoreal pollen; Pi: Pinus and eQ: evergreen Quereus. 



the Little Ice Age, also identified by Desprat et al. (2003), Julii\ 

et al. (1998) and Riera et al. (2004) in other records in Spain. 

Three periods can be identified and compared with the complete 

set of reconstructions. 

From 15th to late 17th centuries AD the record is charac­

terized by lower, but still representative, eQ/Pi and still high 

submerged/emergent vegetation ratios and AP/NAP ratio im­

plying a wet and mild climate on the average but with a marked 

interannual variability. These coincide with the all the rainfall re­

constructions that show a trend to more humid conditions with a 

wetter episode around the beginning of the 17th century AD that 

is also recorded in the Chenop:)(liaceae-Arnaranthaceae record 

and in the APINAP and submerged/emerged vegetation ratios. 

Despite the drop in eQ/Pi ratio around middle 17th century 

AD, what places the next period (late 17th to middle 19th cen­

turiesAD) is the rise in Chenopodiaceae-Amaranthaceae and the 

expansion of emerged against submerged vegetation to recover 

the initial conditions from around late 18th century AD onwards. 

These changes :[X)int to drier and colder conditions. These con­

ditions are clearly reflected in our rainfall reconstruction but are 

less evident in the southern Spain record. 

The last period (from middle 19th century onwards) begins 

with very high and local eQ/Pi values and an anomalous rise in 

the AP/NAP ratio and sudden expansion of the emerged veg­

etation. After them, there is an increase in Chenopodiaceae­

Amaranthaceae, expansion of submerged vegetation and drop 

in the AP/NAP and eQ/Pi ratios almost until today. These val­

ues should be interpreted as a cooling trend until the end of the 

20th century and a progressive increase in aridity coeval with 

expansion of submerged vegetation. These anomalies and the 

absence of coincidence with the instrumental record points to 

those values are not reflecting the climate but other factors. 

4.2. Recent human stresses on the wetland 

The historical records reveal that this area has been under rel­

atively low human pressure until two centuries ago when illus­

trated governments attempted to improve the living conditions 

of fanners and small towns (Table 3). The first significant trans­

formation (late 18th century) was the attempt of draining the 

wetland in order to prevent floods and epidemics. To achieve 

this, main channels were cleaned and an artificial channel was 

carved to join the Azuer and Guadiana rivers. As a consequence, 

surface water flow improved and caused an increase in the sup­

ply of freshwaters causing a drop in the salinity of the wetland 

waters (Rg. 2, Table 3). 

The following human action with evident consequences for 

the wetland (middle 19th to early 20th centuries) was a land re­

distribution (Mendizabal and Madoz's land privatisation) with 

the aim of increasing land productivity (Fig. 2, Table 3). This 

led to an increase in the size of the land fields and the aban­

donment of the traditional alternating cycles of cultivation and 

non-cultivation and, as a consequence, an increase in ploughing. 

However, the most intense change occurred in the second half 

of the 20th century as introduction of new farming techniques 

(machinery, pumps, fertilizers, new cultivations, etc.) allowed in­

tensive fanning and, therefore, land and water demand increased. 

Two main human actions impacted the wetland: (1) a desicca­

tion attempt that almost drained the wetland (1965-1971) and 

(2) a continuous increase in irrigation that caused the water table 

to drop several meters. As a consequence, the wetland surface 

decreased by more than 85% (100 km2 in 1937, 60 km2 in 1965 

and 15 km2 in 1971) and, now, it only exists by an artificial 

water supply Those changes leave their imprint in sediments by 

means of variations in their bulk composition and trends (Figs. 2 

and 5). 

5. Discussion 

5.1. The 'quasi-natural state' 

Until the 18th century, human-wetland interactions were mainly 

related to the usage of the wetland as a source of energy (wa­

ter mills), primary products for handcrafts (reed, cattail, etc.), 

fishing, and hunting. The im:[X)rtance of shepherding and for­

est ownership was also a factor that determined the equilibrium 

between human activity and the wetland. Thus, human impacts 

were of low intensity, and wetland dynamics was mainly gov­

erned by natural factors. 

Figure 2 shows the main chemical composition interesting 

elements in core Cigiiela 4 for the last 1100 yr (AI, S, or­

ganic and inorganic C, N). The main trends shown in this figure 

reveal a negative relation between inorganic C and organic C 

and N, and a :[X)sitive relation between inorganic C and the 

(hydrophytes+s:[X)res)lheliophytes ratio. But a detailed obser­

vation reveals trends or relations of different orders. 

(1) Short-scale relations. For the lower half of the core, the 

increases of AI, S, organic C and N are directly correlated (in po­

sition but not necessarily in magnitude) and are reversely related 

to the inorganic C. This, in turn, can be correlated to the evolu­

tion of the submerged/emerged vegetation ratio. For the upper 

part of the core this relation can be occasionally observed but is 

partially masked by the drop in the range of their values (Fig. 2). 

The logical relation of inorganic C (mostly charophyte stems and 

oogonia) with the evolution of the aquatic vegetation serves to 

use this parameter as an indicator of the local water table extent, 

as the charophytes are light limited and do not expand in areas 

with emergent vegetation. Consequently, its inverse relation to 

organic C (mostly derived from vegetal remains -Typha, Cla­
dium and Phragmites leaves) results from their competition for 

light and it is depth controlled as Typha, Phragmites and Cla­
dium are depth limited (despite they tolerate episodic flooding). 

Therefore the correlative increment of organic C, N, Al and S 

record episodes of low waters and, as it derives from the relation 

of rainfall with water table extent (Fig. 4), they represent arid 
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Fig. 5. Annual temperatures and rainfall (Martinez-Santos et al., 2004) and flooded surrace for the 20th century. Geochemistry and pollen record for 

the last 200 yr. 

periods with gypsum nucleation in the surface and soil degra­

dation (increase in AI). These relations reverse during periods 

of rising water table (wetter). Such trends have been studied 

in the TDNP by Sanchez-Carrillo et al. (2004) during a 5 yr 

period. 

(2) Long-term trends. On a longer scale the relations among 

elements change considerably and depend on the climatic pe­

riod considered. During the Medieval Warm Period (around 

55-72 cm in depth, Fig. 2) the relations are similar to those 

for the humid short-scale relations, high inorganic C values re­

lated to high submerged/emerged vegetation ratios and moderate 

to low contents in organic C, N, S and Al with local excursions. 

For this period the water table should be in its maximum extent, 

as it derives from the JXlllen ratios, and the low variability during 

this period could be responsible of such sustained values. How­

ever, for the first part of the Little Ice Age (from around 32 to 

55 cm in depth, Fig. 2) the values of S show an increasing trend 

which is followed by the increase of the background values of 

inorganic C while the upper lxmndary values of the organic C 

and N decrease. On the average, there is also an increase trend 

in AI, but it is not as evident as for the other elements. For this 

period, the climate was very fluctuating but conditions were rel­

atively humid and mild. These conditions should have improved 

faster oscillations of the water table and of greater range which 

could have conduced to an increase of the number and length 

of periods of emersion and, in consequence an increase in gyp-

sum formation. As salts became preserved in the soil, emergent 

vegetation had difficulties to develop, while charophytes (living 

in the aquatic media and more tolerant to salts) increased their 

representation in percentage. 

5.2. Disturbances afthe natural system 

The more obvious change to the top of the sediments is the dis­

appearance of the previous relations among elements and among 

them and climate (Fig. 2, Fig. 5 upper). 

The first evidence of change is observed during the second 

part of the Little Ice Age (around 23-32 cm in depth, Fig. 2) 

when the values of S suddenly fall to their minimum average. 

This sudden change is not recorded in any other element and, 

on the other hand, Chenopodiaceae-Arnaranthaceae (saline soil 

taxa) increases noticeably its values. The rest of the elements 

follow the trend of the previous stage and narrow their range 

of variation, except for the AI. Additionally, for this period the 

climate became drier. Such alterations are not consistent with a 

climate driven change and therefore an alternative explanation 

must be found. During the second half of the 18th century and 

up to the beginning of the 19th century, there were many works 

on the channels feeding the wetland, one of the most important 

the channel to connect the Azuer river to the Guadiana river 

that is the present river channel (Table 3), in order to prevent 

flooding and epidemics. As a result, the surface water supply of 



freshwaters was enhanced but also the residence time of the wa­

ters diminished as consequence of the better drainage conditions. 

Probably, the decrease in S (gypsum formed inside the wetland) 

records this decrease in water salinity centred in the wetland. 

In contrast, the increase in Chenopocliaceae-Amaranthaceae, 

which uses groundwaters and it is a prairie group (external 

to the wetland), records the drier climatic conditions that pro­

moted the development of saline soils in the surroundings of the 

wetland. 

The following level (around 17-23 cm in depth) is character­

ized by a sudden and important rise of AI, while the rest of ele­

ments remain almost unchanged, and a noticeable increase in the 

AP/NAP ratio (Fig. 2) coincidental with a decrease in grasses and 

increases in evergreen Quercus and Oleaceae. Chenopocliaceae­

Amaranthaceae almost disappears and, in the aquatic domain, 

emergent vegetation (heliophytes) spread whereas submerged 

taxa (bydropbytes) almost disappeared (Rg. 5). Additionally, 

instrumental records show that this period was relatively wet 

and, consequently, we cannot argue soil degradation related to 

arid conditions. 

During the second half of the 19th century there were two 

land privatisation processes ("Desamortizaciones de Madoz y 

Mendizabal", Table 3) in order to farm (notice the increase in 

Oleaceae and later increase in Cerealia in Fig. 5 lower) an im­

portant extension of land owned by the church, military orders, 

town councils and the nobility. This led also to a reorganiza­

tion of land property by concentration of lands (increasing the 

size of the fanning pieces). As a consequence, during a certain 

period, soil remobilization by ploughing and clearance of lands 

(grasses removal) increased the amount of siliciclastics reaching 

the wetland (AI increase). This caused the almost disappearance 

of the submerged vegetation as water turbidity increased and the 

artificial increase in emerged vegetation. 

From 5 to 17 cm in depth (Fig. 2, early 20th century to 1960s 

in Fig. 5), there is a sudden decrease in Al together with a re­

covery of the 'normal' values of the vegetation (Fig. 5 upper). 

There is an increase in grasses that correlates with the rise in 

Chenopocliaceae-Amaranthaceae but opposite to the decreasing 

trend in S. Organic C increases slightly, reversely to inorganic 

C. Oleaceae is substituted by Cerealia. This record points to 

a slightly decreasing water table, increasing organic C against 

inorganic C confirmed by the decrease in submerged vegetation 

towards the top. Water salinity drop (decrease in S) but salinity of 

soils in the surrounding areas increase (rise in Chenopocliaceae­

Amaranthaceae). The sudden decrease in Al points to a sheltered 

area, but the increasing values reveal continuous soil erosion. 

With this constraints the best hypothesis points to a stabilization 

of fanning (cease of land reorganization) and wetland started 

to recover developing a well vegetated margin that protected 

it from runoff (drop of AI). Increase of irrigation, in number 

of wells, and the introduction of mechanical pumps caused the 

slow but progressive lowering of the water table and soil saliniza­

tion. However, the slightly increasing rainfall during this period 

(Fig. 5 upper) caused the progressive freshening of the incoming 

waters inside the wetland (slow drop in S). 

Around the 1960s, there was a new change evidenced by a 

increase in S together with a break in the increasing trend of 

the organic C and followed later by a decrease in inorganic C 

and increase in N (Fig. 5 upper). In the vegetation, the most 

evident change was the noticeable increase in Chenopocliaceae­

Amaranthaceae together with a decrease in trees and shrubs fol­

lowed a little later by a decrease in heliophitic (emerged) wetland 

taxa (Fig. 5 lower). 

This was the result of a drop in the water table that corre­

s:[X)nds to the desiccation attempt of the 1960s causing saliniza­

tion both in the wetland and in the surrounding emerged areas. 

These changes coincide with the sudden drop of the flooded sur­

face of the wetland (Fig. 5, upper). The sustained high values of S 

are the result of the definitive disconnection of the groundwaters 

to the surface due to increased water exploitation for irrigation 

(notice the sudden increase of N values that are related to the 

use of fertilizers). The decreasing trend of S in the uppermost 

part of the record is due to the artificial supply of surface waters, 

but despite this, salinization of surrounding soils (as recorded 

by the high values of Cheno:[X)diaceae-Arnaranthaceae) became 

permanent. The decrease of inorganic C values was noticeable, 

but organic C values did not change and as a result the local C 

storage rate did not decrease. 

5.3. Qualitative valuation of C budget evolution. 

Until now, we have ex:[X)sed how the system has reacted to hy­

drological climate-driven changes and man-induced hydrologi­

cal and land-use changes for a single location. In first instance, 

analyzing Fig. 2 it could be said that C storage has not decreased 

through time as total C remains almost constant. 

But in order to have an estimate of the 'real' wetland storage 

variation, it is necessary to analyze spatially the evolution of 

C-rich facies. 

Figure 6 (upper) shows a sketch of the distribution of the main 

facies of the wetland that is controlled by the morphology of the 

wetland basin. Its elongated shape, related to its fluvial origin, 

and the presence of internal islands determines a NE-SW facies 

pattern with the silicic1astic-rich facies to the NE changing to the 

inner wetland, protected by islands, where the open waters are 

encountered (the charophyte-rich 'tablas' , shallow and open wa­

ter oodies). Towards the SW and E, in relation to the Guadiana­

Azuer rivers, peat was the main de:[X)sit as the increased speed of 

the waters was not favourable for the development of charophyte 

stands. 

The correlation of cores following this facies distribution 

(Fig. 6, lower) reveals that the maximum thickness of the 

C-rich facies increases towards the SW (correlation of vibra­

cores 5, 6, cores 2 and 4, vibracore 2 and core PN- I )  while 

in a NW-SE direction the thickness remains ahnost unchanged 

(correlation of cores 4 and 1). 
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dams have allowed the retention of waters and partial restoration 

of the southern part of the wetland and the. However, it is also 

evident that the upper reach of the Cigiiela and Guadiana rivers 

have been definitively lost. 

This lost implies a change from around 100 krn2 of flooded 

area in 1937 to a maximum flooded area of 18.4 km2 in the period 

1979-2006, what means that more than 82.6% of accumulation 

surface has been lost (without taking into account the oxidation 

of peat and its shelf-combustion, relatively frequent in the area). 

6. Conclusions 

The comparison of changes during 'natural' and 'anthroJXlgenic' 

periods allows the characterization of changes in C storage in 

the environment. 'Natural' C changes show a greater range of 

variation (Fig. 2) than human-induced changes and they can be 

directly related to climate fluctuations (Figs. 2 and 4). 

But the main difference between natural and human-induced 

changes is the ability of the system to recover from changes. 

Climate-driven changes show how the different parts of the sys­

tem interact among them to sustain a balance both in the short 

and in the long-term (Fig. 2). On the other hand, land-use and 

technological human events are short-term and usually sudden 

changes or events without a clear recovery trend (Fig. 5). 

Changes linked to human activity depend on the location (di­

rect or indirect impact) and intensity of the impact. During the 

land-use changes of the late 19th century, activity was external 

to the area of the wetland (indirect impact) and its intensity was 

medium, so the system was able to recover in about 50 yr. The 

wetland was mainly affected by collateral effects of this activity 

(debris carried to the wetland by runoff), but its internal mecha­

nisms were able toreactin some way to recover previouslevels of 

C storage. In addition, the flooded surface was scarcely affected 

and, therefore, total C storage was not substantially modified. 

However, draining and water overexploitation in the latter part 

of the 20th century broke the hydrological balance of the wetland 

in less than 30 yr and there is still no signal of recovery. Under 

those circumstances, despite human actions to prevent total des­

iccation, the loss of the flooded surface and salinization caused 

a dramatic drop in the volume of stored C in the system. 

In any case, water availability (via temperaturelrainfall or wa­

ter exploitation changes) is the true limiting factor on the equi­

librium of this environment and, due to the human demand of 

water, the role of water availability must be stressed in future 

projections of the C-cycle on the terrestrial domain. 
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