
Alternating bit protocol
as an example of

compositional system specification∗

Technical Report 01/18

Óscar Mart́ın, Alberto Verdejo, and Narciso Mart́ı-Oliet
{omartins,jalberto,narciso}@ucm.es

Departamento de Sistemas Informáticos y Computación
Facultad de Informática, Universidad Complutense de Madrid, Spain

Jan 2018

∗Partially supported by MINECO Spanish project TRACES (TIN2015–67522–C3–3–R),
and Comunidad de Madrid program N-GREENS Software (S2013/ICE-2731).

Abstract

We show a complete modular specification of the alternating bit pro-
tocol. We use the syntax of Maude extended with our constructs for the
synchronous composition. Also, we make intensive use of parameterized
programming to encapsulate components and specify interfaces. This pa-
per must be considered a companion to some of our previous ones.

Contents
1 Introduction 1

2 The alternating bit protocol 1

3 Common 2
3.1 Stages . 2
3.2 Properties . 2
3.3 Matchable sorts . 3

4 Interfaces 5
4.1 Producer and consumer . 5
4.2 Sender and receiver . 6
4.3 Channels . 7

5 Blueprint 7

6 Building packets 9

7 Implementations 10
7.1 ABP sender . 11
7.2 ABP receiver . 14
7.3 The channels . 15

8 Final system 16

9 Final remarks 17

1 Introduction
This is a companion paper to our previous [5, 4, 3]. In them, we describe an
operation of synchronous composition for rewrite systems and the means to
implement and use it in Maude. Some familiarity with those papers is probably
needed to understand the present one. This contains an example implementing
the alternating bit protocol. Parts of this example are already in [5], but here
it is fully detailed and explained.

The example is coded using the syntax of Maude (described, for example,
in [1]), extended with the constructs we propose for synchronous composition.
Indeed, the code that follows is not executable in the existing implementation of
Maude for two reasons. First, the extensions to the language that we propose to
support synchronous composition have not been implemented as yet; we intend
to do so soon. Second, we make intense use of parameterized programming.
Though all of it is theoretically plausible and sticks to the proposals in [2], it
is only partially implemented in Maude. (Full Maude, also described in [1], has
got parameterized theories and views, but not to the limit that we use them
here.)

2 The alternating bit protocol
The alternating bit protocol, or ABP, is used to transmit messages on a lossy
channel, that is, a channel that can lose some of the messages it receives be-
fore delivering them at the other end. According to ABP, a bit is attached to
each packet of information sent through the channel. The sender must keep on
sending the same packet with the same bit until it receives an acknowledgement
(let’s abbreviate it to ack) from the receiver with that same bit. Then, the
sender starts sending the next packet with the bit inverted. As also acks can be
lost in the channel, the receiver must keep on acknowledging until it receives a
new message, with a different bit, that suffices as proof that its ack was received
and processed by the sender.

We consider an ABP system as consisting of six components:

Producer ABP
sender

Message
channel

Ack
channel

ABP
receiver Consumer

msg

pck+bit pck+bit

ack+bitack+bit

msg

At the ends there are a producer and a consumer, that do not care about com-
munication protocols. The sender and the receiver implement the ABP. There
are two channels: one for transmitting messages originating in the producer; the
other for transmitting acks. We call message to whatever the producer wants
to transmit to the consumer. The pieces of information that are sent through
a channel are called packets. It is the sender’s task to transform each message

1

into one or more packets; the receiver has the inverse task. What precisely
is a packet depends on the protocol used. In our implementation of ABP, we
make the rather unrealistic assumption that we can build channels capable of
transmitting packets of whatever data type. Our implementation of channels is
parametric on that data type.

The six modules in our diagram are not all of the same nature. The producer,
the consumer, and the two channels can be seen as representing physical entities,
while the sender and the receiver may well be pieces of software running on some
of them. This difference, however, has no role in specifications.

3 Common
Some pieces of code are used often in the specification. They are best in a
common module to be imported when and where needed. This section contains
their specifications.

3.1 Stages
Atomic egalitarian modules are the ones that implement basic, non-composed
systems, defining what states and transitions are in a particular component.
The following module is useful to be imported in them:

fmod STAGES is
sorts State Trans Stage .
subsorts State Trans < Stage .
op init : -> Stage .

endfm

A stage is either a state or a transition. We declare the name init for the initial
stage; it can be a transition, as well as a state.

3.2 Properties
Properties are used to formulate syncing criteria. They can be thought of as
ports or handles, different metaphors being appropriate in different cases. They
work like functions that take values at states and at transitions. But we do not
implement them as functions but like this (be aware that we slightly modify
this definition in the next section):

fmod PPTY{X :: TRIV} is
pr MAYBE{X} .
sort Stage .
sort Ppty{X} .
op _@_ : Ppty{X} Stage -> Maybe{X} .

endfm

Just as a reminder, the theory TRIV is defined like this:
fth TRIV is

sort Elt .
endfth

2

The idea, thus, is that an element of sort Ppty{X} evaluates, through the operator
@, to a value of sort X$Elt at each stage. Indeed, this is not completely true for
two reasons. First, a property may be undefined at some stages (the rationale
for this is explained in [4, 3]). Second, the operator @ is declared as returning a
value of sort Maybe{X}, instead of plain X$Elt. The definition of the parametric
module MAYBE{X} is this:

fmod MAYBE{X :: TRIV} is
sort Maybe{X} .
subsort X$Elt < Maybe{X} .
op none : -> Maybe{X} .

endfm

That is, the sort Maybe{X} contains all values in the sort of the parameter,
X$Elt, plus a dummy value called none. (In the standard implementation of
MAYBE in Maude’s prelude, this dummy element is called maybe, but the name
none fits better for the use we make of it.) For instance, a property called
messageBeingSent can be set to none when no value is being sent. Not every
property needs to use this extra value, but we include it in the declaration
for the cases when it is useful, that in the present paper are many. Finally,
being undefined and being defined to none must not be confused: an undefined
property does not pose any restriction for syncing. (All properties in our present
implementation of ABP are completely defined.)

3.3 Matchable sorts
Our methodology mandates that each component system must be thoroughly
meaningful by itself. Each has to be specified in such a way that it can be run
either isolated or synced. In many cases, this means that a component shows a
wildly non-deterministic behavior if run by itself. A receiver, for instance, must
be glad to accept any value the sender can send. This could be represented in
the receiver’s side by a rewrite rule like this:

s(v, . . .)→ s(v′, . . .)

Here, s(. . .) is some state term and v and v′ are values of some sort that are
received and stored by the receiver. However, Maude does not accept fresh
variables on the right-hand side of a rule, because they are problematic for
execution. A solution is to include the new value v′ in a matching condition,
where it can be instantiated:

s(v, . . .)→ s(v′, . . .) if {v′} ∪ V := set of possible values

Maude knows how to solve the matching condition, in a non-deterministic way,
and assign values to v′ and V .

When the time comes for the composition to be performed, and syncing
criteria are specified, the composed, global behavior can become deterministic,
if the sender only sends a particular value at any given time, deterministically,
as is usual. But if we are interested in executing or analyzing the receiver by

3

itself, the value of v′ has to be chosen non-deterministically from the “set of
possible values”, which, of course, has to be finite for Maude to be able to solve
the matching.

For our implementation of ABP here, we have insisted that it be parametric
on the sort of messages being interchanged. According to the above, the param-
eter cannot be just a TRIV, but needs to provide the elements needed for writing
and solving matching conditions, among them the set of all possible values for
each sort that we want to use for syncing. For those reasons we define this
theory:

fth MATCHABLE is
sorts Elt Elts .
subsort Elt < Elts .
op noElts : -> Elts .
op _&_ : Elts Elts -> Elts [comm assoc id: noElts] .
op allElts : -> Elts .

endfth

With all the attributes assoc, comm, and id:, the operator & makes Elts equiv-
alent to sets of Elt. This seems appropriate so that we can choose an Elt from
an Elts non-deterministically with total freedom. (A technical side note: in
Maude, it is not possible to declare a sort Elt and then state that we are going
to use SET{Elt} as well. The argument for SET has to be a view, defined outside
the current module.)

The constant allElts is interpreted as providing the whole set of possi-
ble values of sort Elt. The matching conditions we use will have the form
if E & EE := allElts, for E and EE variables of sorts Elt and Elts, respectively.

As a consequence, the sorts returned by a property cannot, in general, be
just a TRIV: they need to be a MATCHABLE. So we redefine the module PPTY:

fmod PPTY{X :: MATCHABLE} is
pr MAYBE{Matchable}{X} .
sort Stage .
sort Ppty{X} .
op _@_ : Ppty{X} Stage -> Maybe{X} .

endfm

To instantiate MAYBE, we are using the fact that a matchable sort can be used
whenever a TRIV is expected:

view Matchable from TRIV to MATCHABLE is
sort Elt to Elt .

endv

There are several instances of use of all this below.
The use of MATCHABLE can be seen as a dirty trick, and its need can be seen

as an annoying consequence of our choices and Maude’s design. For, suppose
the sender and the receiver were specified together. And suppose the sender
works in a deterministic way, so that if it has v stored, then it next sends and
stores a new value f(v), for some function f implemented as part of the sender’s
specification. Then, our rule would look like this:

s(v, . . .) r(v, . . .) → s(f(v), . . .) r(f(v), . . .),

4

where s represents the sender’s states and r the receiver’s. There is no need for
matching and matchable sorts here. But compositionality is lost in this way,
both for specification and for verification. Also, there is some conceptually sound
truth in the matchable solution. Real-world systems are not able to produce,
send or receive data of unbounded size. Any system has its bounds, embedded
into their construction. It is appropriate, then, to include such bounds as part of
their specifications. The matchable trick provides an explicit solution for that.

4 Interfaces
We use theories (in the parameterized-programming sense) to specify the in-
terfaces for component modules, understanding by this the list of properties
they must define and their sorts. All the external world needs to know about
an implementation module is that it conforms to the requirements of a given
theory.

We are also interested in compositional verification. This is work still to be
done, so we do not include here anything related to that. But let us point just
that, to that aim, assume and guarantee temporal formulas can be included into
a theory (with the needed extensions to Maude’s syntax), with the same aim
that nonexec equations are included into theories in standard Maude.

Properties can be used to emulate value passing, as described in [5, 4, 3].
In these cases, they can be understood as directional, that is, as being an out
property at the sender side, and an in property at the receiver’s. That is why
we have shown directed arrows in the diagram above. However, properties per
se are not directional, so that the producer and the consumer conform to the
same interface, as do the sender and the receiver. This is exploited below.

One more note, before showing the code for the interfaces. We have decided
to make all the ABP system parametric on the sort of the messages interchanged.
As shown below, this means that we need to use parameterized theories and
views. As noted above, this does not work in the current implementation of
Maude (or Full Maude), but we still have preferred to take the chance to show
the nice possibilities of the use of parameterized programming in rewriting logic.

4.1 Producer and consumer
Both producers and consumers must conform to an interface showing to the
world a port through which messages are synced (sent in one case, received in
the other). That is, they must conform to this parameterized theory:

th PROCESS-IF{Msg :: MATCHABLE} is
pr PPTY{Msg} .
op msgMoving : -> Ppty{Msg} .

endth

We always name interfaces with an ending -IF. We use the name msgMoving for
the property, to be agnostic about whether it is being sent or received.

Syntactically, this is a functional theory, that is, it does not include any rules.
Thus, it could be enclosed between fth and endfth. But the instantiations of

5

this theory have to be system modules, that is, modules including rules. So we
feel it is more fitting to declare the theory as a system one. The same is true
for other theories below.

(As a technical side note, Maude allows a functional theory to be instantiated
by a system module. It happens, however, that a functional module parame-
terized by a functional theory becomes a system module when its parameter is
instantiated by a system module.)

The parameter Msg represents the sort of the messages the process is able to
send/receive. It must be instantiated (when needed) by a module (or, rather, a
view) that conforms to the theory MATCHABLE. Indeed, when the whole system is
put in place by syncing all the components, we must ensure that the producer
and the consumer conform to PROCESS-IF instantiated with the same parameter,
that is, that the producer produces the same sort of messages that the consumer
is able to consume. See below. (To be strict, the sort of the messages produced
must be a subsort of the ones that can be consumed.)

4.2 Sender and receiver
The sender and the receiver are the only components of the system that are
aware of the protocol being used and that are expected to implement the ABP.
Because the lack of directionality of properties, they conform to the same inter-
face:

th PROTOCOL-IF{ProcMsg :: MATCHABLE,
Pck2Chnl :: MATCHABLE,
PckFChnl :: MATCHABLE} is

pr PPTY{ProcMsg} + PPTY{Pck2Chnl} + PPTY{PckFChnl} .
op procMsgMoving : -> Ppty{ProcMsg} .
op pckLeaving2Chnl : -> Ppty{Pck2Chnl} .
op pckComingFChnl : -> Ppty{PckFChnl} .

endth

There are three parameters and three properties, that happen to correspond
one to one. This correspondence is not a general rule; indeed, interfaces do not
even need to be parameterized at all. The first parameter, ProcMsg, represents
the sort of the messages that the sender takes from the producer and that the
receiver handles to the consumer. The second parameter, Pck2Chnl, represents
the sort of the packets that the sender puts into the message channel, or the
receiver puts into the ack channel, to be delivered at the other side. The third
parameter, PckFChnl, is the sort of packets received from the channel. (We often
use 2 as short for to, and F as short for from.) When putting the whole ABP
system in place, the sending channel for the sender has to be the same as the
receiving channel for the receiver, and vice versa.

It is the sender’s job to split the message from the producer in as many
pieces as needed and to transform it into one or more packets. The receiver has
the job of decoding one or more packets to recover the message. This interface,
as it stands, is valid for modules implementing any ack-based protocol, not just
ABP. When putting the whole ABP system together, instantiations of some of

6

these parameters must coincide, to be coherent with the lines in the diagram
above.

4.3 Channels
The complete ABP system uses two channels, one for message packets, the other
for ack ones. Except for the sort of the packets sent through them, the interface
for both channels is the same. Even the implementation of the inner workings of
the channels can be the same, provided it is parametric on the sort of packets.
This is the interface:

th CHANNEL-IF{Pck :: MATCHABLE} is
pr PPTY{Pck} .
ops pckComing pckLeaving : -> Ppty{Pck} .

endth

A channel can lose some of the packets that arrive to it, but it must be
granted that a packet repeatedly put into the channel eventually reaches the
other end. This kind of temporal properties can be added to a theory as se-
mantic requirements, and would also help in compositional verification, assume-
guarantee style. As already mentioned, this is pending work.

5 Blueprint
We call blueprints to the recipes that specify how to assemble component sys-
tems to build a composed one. Blueprints are coded as parameterized modules
that receive as parameters the components, conforming to appropriate theories.
The blueprint’s job is to specify syncing criteria.

We have preferred not to assemble all the six components of the system in
one whole unit. Instead, we assemble only the sender, the receiver, and the
two channels, to produce a communication system to which a producer and
consumer can be attached later. This is the blueprint for such a composition:

emod COMM-SYSTEM-BP
{ Sndr :: PROTOCOL-IF{Msg :: MATCHABLE,

MsgPck :: MATCHABLE,
AckPck :: MATCHABLE},

MsgChnl :: CHANNEL-IF{MsgPck :: MATCHABLE},
AckChnl :: CHANNEL-IF{AckPck :: MATCHABLE},
Rcvr :: PROTOCOL-IF{Msg :: MATCHABLE,

AckPck :: MATCHABLE,
MsgPck :: MATCHABLE}

} is
sync Sndr || MsgChnl || AckChnl || Rcvr

on Sndr$pckLeaving2Chnl = MsgChnl$pckComing
/\ MsgChnl$pckLeaving = Rcvr$pckComingFChnl
/\ Rcvr$pckLeaving2Chnl = AckChnl$pckComing
/\ AckChnl$pckLeaving = Sndr$pckComingFChnl .

endem

There is much to be explained here. First, the module is enclosed between
the keywords emod and endem. The e is for egalitarian. This is a new kind of

7

module that we propose, not present in standard Maude. Egalitarian modules
are expected to include a sync on instruction. They must protect the result of
the syncing, that is, they must not contain new rules, nor add new states or
transition terms, nor make existing ones become equal. The only extra code that
an emod is allowed to contain is whatever may be required for the definition of
properties of the composed system, in case it is going to be used as a component
in turn. We illustrate such an extreme in Section 8.

Each of the four parameters in COMM-SYSTEM-BP implements a theory that,
in turn, is parameterized. All nested parameters have to be made explicit.
Coincidence of names for parameters represents shared parameters. It is the
case, for example, with Msg, that is a parameter of Sndr and Rcvr, and needs to
be shared, as it represents the sort of the messages they interchange.

The sync on instruction shows which systems must be synced and with which
criteria. We stick to a methodology according to which all modules in a sync on
instruction must be among the parameters of the emod (this is not mandatory,
however: they can be any modules already defined). Each criterion is a condition
that must be satisfied when the properties are evaluated at the component stages
visited at each given time.

The four criteria in our on clause nicely correspond to the four arrows in the
diagram above. Each criterion tells that the value that is leaving a component
is arriving to another.

For our implementation to work, each of these properties is expected to be
defined at all states and transitions, with value none when no data interchange is
taking place. In this way, each criterion ensures value-passing and simultaneity
at the same time.

We use the syntax with the $ symbol to make it clear to which component
system each property belongs. This syntax is already used in Maude to qual-
ify sort names from parameters. In standard Maude, operators need not be
qualified, because the sorts of the operands are enough to disambiguate them.
However, in our setting, we prefer to avoid mentioning stages explicitly in our
criteria. So, we need a means to disambiguate.

I want to spend a few more lines on this. We have tried some other possible
syntaxes for writing criteria. For instance:

emod M{M1 :: T1, M2 :: T2} is
sort Stage .
var G : Stage .
sync M1 || M2

on P1 @ M1(G) = P2 @ M2(G) .
endem

We use the name of the parameter modules as projection operators. The variable
G is for the global, composed stage. Thus, it is explicit where each property is
to be evaluated, and the $-syntax is not needed. This possibility, however,
has a formal and a conceptual problem. The formal one is that the sort Stage,
referred to the global, composed stages, can only be in existence after the sync on
instruction, probably produced by it as a side effect. It is odd to declare Stage
and G before that. The conceptual problem is that we prefer not to mention

8

the global stage, or even think about it. Because, what is the global stage of
the system composed by Google’s server and my browser? It does not matter,
and it does not help to think of a global stage. We only need to make sure
that the different components sync as appropriate. We concede that not all
examples are as distributed as web browsing, but we still think it is better to
avoid mentioning explicitly global stages.

6 Building packets
The setting above does not require any relation between messages (what the
producer and the consumer need to interchange) and packets (what the chan-
nels are able to transmit). But they are certainly not independent. As a first
approximation, we define next a module for building packets from some contents
(a part of a message, for example) and a wrapper (a Boolean representing an
alternating bit, in our case). It is important that both arguments are MATCHABLE,
and that the result is as well.

fmod PACKET-BUILDER{Cnt :: MATCHABLE, Wrp :: MATCHABLE} is
sorts Packet{Cnt, Wrp} Packets{Cnt, Wrp} .
subsort Packet{Cnt, Wrp} < Packets{Cnt, Wrp} .
op packet : Cnt$Elt Wrp$Elt -> Packet{Cnt, Wrp} .
op noPackets : -> Packets{Cnt, Wrp} .
op _&_ : Packets{Cnt, Wrp} Packets{Cnt, Wrp}

-> Packets{Cnt, Wrp} [comm assoc id: noPackets] .
op allPackets : -> Packets{Cnt, Wrp} .

var C : Cnt$Elt .
var W : Wrp$Elt .
var CC : Cnt$Elts .
var WW : Wrp$Elts .
eq allPackets = cartesianProd(allElts.Cnt$Elts, allElts.Wrp$Elts) .

op cartesianProd : Cnt$Elts Wrp$Elts -> Packets(Cnt, Wrp) .
eq cartesianProd(noElts, WW) = noPackets .
eq cartesianProd(C & CC, WW) = cartesianProdAux(C, WW)

& cartesianProd(CC, WW) .
eq cartesianProdAux(C, noElts) = noPackets .
eq cartesianProdAux(C, W & WW) = packet(C, W)

& cartesianProdAux(C, WW) .
endfm
view Packet{Cnt :: MATCHABLE, Wrp :: MATCHABLE}

from MATCHABLE
to PACKET-BUILDER{Cnt, Wrp} is
sort Elt to Packet{Cnt, Wrp} .
sort Elts to Packets{Cnt, Wrp}
op noElts to noPackets .
op _&_ to _&_ .
op allElts to allPackets .

endv

In our case, wrappers are always Booleans, so we need to proof they are
matchable:

9

view MatchableBool from MATCHABLE to BOOL + SET{Bool} is
sort Elt to Bool .
sort Elts to Set{Bool} .
op noElts to empty .
op _&_ to _,_ .
op allElts to term (false, true) .

endv

The view Bool is the standard one from TRIV to BOOL, and is defined in Maude’s
prelude. We need to use Booleans and sets of Booleans together; that’s why
the destination of our view is BOOL + SET{Bool}. (A quite technical side note:
the MATCHABLE theory requires subsort Elt < Elts. The standard implementa-
tion of SET, in Maude’s prelude, includes subsort X$Elt < NeSet{X} < Set{X},
so everything works. But it is implementation dependent. That is, if SET were
implemented using a constructor to transform an element into a singleton set,
the view MatchableBool, as coded above, would not work.)

Packets sent from the receiver to the sender (that is, acks) consist, in our
implementation, of the alternating bit plus a contents consisting on an ack mark.
We need this:

fmod ACK is
sort Ack .
op ack : -> Ack .

endfm
view Ack from TRIV to ACK is

sort Elt to Ack .
endv
view MatchableAck from MATCHABLE to ACK + SET{Ack} is

sort Elt to Ack .
sort Elts to Set{Ack} .
op noElts to empty .
op _&_ to _,_ .
op allElts to ack .

endv

A concrete implementation of messages is missing, because we still insist that
all our implementation is parametric on the sort of messages. So we assume that
a module MSG and a view MatchableMsg have been defined, or are going to be
defined when needed. With that, the two views that we are going to use are

Packet{Msg, MatchableBool}
Packet{MatchableAck, MatchableBool}

That means, in particular, that a message packet contains a whole message in
one piece (in addition to the alternating bit).

7 Implementations
We show next possible implementations of the ABP sender, the ABP receiver,
and the channels. As announced above, the two channels work the same, just
with different arguments for the contents of packets, so only one implementation
is needed for them.

10

7.1 ABP sender
It is often useful to identify the internal modes in which a system can be, and
use them as part of the state terms and transition terms of the system. For the
ABP sender, we use three state modes:

• ready2Send: ready to send a packet through the message channel,

• waiting4Ack: waiting for an ack to arrive through the ack channel, and

• ready4Msg: ready to receive a new message from the producer.

For transitions, we use three modes as well:

• takingMsg: taking a new message from the producer,

• sending: sending a packet through the message channel, and

• receivingAck: receiving a packet from the ack channel.

We tend to give transition modes names ending in, or containing, ing (in this
particular case, also a state bears such a name).

With these modes, the workings of the sender can be pictured like this:

ready2Send

sending waiting4Ack

receivingAck

ready4MsgtakingMsg

The flow from mode to mode is rather deterministic, except in two cases: after
having received an ack, depending on the value of the alternating bit, we may
need to keep waiting for an appropriate bit or to go on for the next message
from the producer; and we can exit a waiting4Ack state either because we have
indeed received an ack (be it valid or not) or because, tired of waiting, we decide
to send our message one more time.

Apart from the mode, a state or transition term needs to include information
about the internal configuration, or internal memory, of the system. In our case,
the internal configuration of the sender may include the last message taken from
the producer, the value of the alternating bit currently in use, the messages or
packets ready to be interchanged, and so on. Many of these values would be
none some time, even most of the time, but this is no problem. However, it
seems appropriate to keep the number of variables to a small decent amount.

11

Our packets are built from messages and bits, and these two pieces of data are
almost enough. These two values alone are enough to deduce the whole internal
configuration of the sender, except in one case: when the sender is in the course
of receiving an ack, the bit coming and the bit last sent have to be kept both,
for comparison purposes. We decide, in this example, to use the same three
data all the time, even though some of them are going to be none most of the
time. See below how all this translates into code.

In the implementation of the sender that follows, each transition involves
some interchange of data with other components. This seems to be a useful
pattern, but it is not necessary: there may be internal transitions and also
interchanging states. This is our implementation:

aemod ABP-SENDER{Msg :: MATCHABLE} is
pr STAGES .
pr MAYBE{Matchable}{Msg} .
pr MAYBE{Bool} .
sorts StateMode TransMode Config .
ops ready2Send waiting4Ack ready4Msg : -> StateMode .
ops takingMsg sending receivingAck : -> TransMode .
op (_,_,_) : Maybe{Matchable}{Msg} Bool Maybe{Bool} -> Config .
op (_,_) : StateMode Config -> State .
op (_,_) : TransMode Config -> Trans .
var M : Msg$Elt .
var MM : Msg$Elts .
var B : Bool .
var C : Config .
crl [(takingMsg, (M, B, none))] :

(ready4Msg, (none, B, none)) => (ready2Send, (M, B, none))
if M & MM := allElts .

rl [(sending, C)] :
(ready2Send, C) => (waiting4Ack, C) .

rl [(sending, C)] :
(waiting4Ack, C) => (waiting4Ack, C) .

rl [(receivingAck, (M, B, not B))] :
(waiting4Ack, (M, B, none)) => (waiting4Ack, (M, B, none)) .

rl [(receivingAck, (M, B, B))] :
(waiting4Ack, (M, B, none)) => (ready4Msg, (none, not B, none)) .

eq init = (ready4Msg, (none, true, none)) .
endaem

This module is enclosed between aemod and endaem. The e in those keywords
is for egalitarian, as above; the a is for atomic, that is, not composed. Atomic
egalitarian modules are the ones used to implement basis systems. These are the
only ones allowed to contain rules, and the definition of states and transitions.
Syntactically, aemod is very similar to a standard system module, with the main
difference that rule labels can be terms of any complexity.

The internal configuration of the sender is given by a triplet:
Maybe{Matchable}{Msg} Bool Maybe{Bool}

The only piece of data that is always available is the value of the alternating
bit currently in use. It is set to true in the initial state init, and after that, it
always has an actual Boolean value. The other two pieces of data, the message
being processed and the bit being received, are sometimes none, and we need to

12

declare the parameters as Maybe{...}. The module MAYBE expects a TRIV, but
we need to feed it a MATCHABLE; that is why we need the partially instantiating
view Matchable.

The rules represent the mode transitions shown in the diagram, together
with their associated changes in the internal configuration.

In the definition of the init stage, we set the initial message to none. It
relies on this data being of a maybe sort, guaranteed to include the special value.
Otherwise, the initial stage could not have being defined so easily, because it
would depend on the particular instantiation of the parameter Msg.

This implementation needs some fairness conditions to work properly. Oth-
erwise, the sender may have an ack available but ignore it and keep on sending
the same message with the same bit, preventing the whole system from evolv-
ing. The same happens to the implementation of the receiver, and to that of
the channels, both below. Fairness conditions like these ones are not possible to
add as code within the implementation. Again, temporal properties like these
ones, representing semantic requirements, can be added to our theories.

For this implementation to actually conform to PROTOCOL-IF, we need to
define properties. In this case, it even seems the implementation is not complete
without the properties, as their values tell us what they are ready to receive or
send through their ports. Properties for syncing are usually defined in a module
extending the one that specifies the inner workings of the system.

aemod ABP-SENDER-PPT{Msg :: MATCHABLE} is
pr ABP-SENDER{Msg} .
pr PACKET-BUILDER{Msg, MatchableBool} .
pr PACKET-BUILDER{MatchableAck, MatchableBool} .
pr PPTY{Msg} .
pr PPTY{Packet{Msg, MatchableBool}} .
pr PPTY{Packet{MatchableAck, MatchableBool}} .
op procMsgMoving : -> Ppty{Msg} .
op pckLeaving2Chnl : -> Ppty{Packet{Msg, MatchableBool}} .
op pckComingFChnl : -> Ppty{Packet{MatchableAck, MatchableBool}} .
var G : Stage .
var M : Msg$Elt .
vars B B’ : Bool .
eq procMsgMoving @ (takingMsg, (M, B, none)) = M .
eq procMsgMoving @ G = none .
eq pckLeaving2Chnl @ (sending, (M, B, none)) = packet(M, B) .
eq pckLeaving2Chnl @ G = none .
eq pckComingFChnl @ (receivingAck, (M, B, B’)) = packet(ack, B’) .
eq pckComingFChnl @ G = none .

endaem

The view is now easy:
view AbpSender{Msg :: MATCHABLE}

from PROTOCOL-IF{Msg,
Packet{Msg, MatchableBool},
Packet{MatchableAck, MatchableBool}}

to ABP-SENDER-PPT{Msg} is
op procMsgMoving to procMsgMoving .
op pckLeaving2Chnl to pckLeaving2Chnl .
op pckComingFChnl to pckComingFChnl .

13

endv

This view only needs a parameter to implement a theory with three, because
the other two parameters are built from the first using the PACKET-BUILDER tool
define earlier.

7.2 ABP receiver
The workings of the receiver are similar to the ones for the sender. We hope
the diagram of modes and the code are now easy to understand with no further
remarks.

ready2SendAck

sendingAck waiting4Pck

receivingPck

pckReceivedgivingMsg

aemod ABP-RECEIVER{Msg :: MATCHABLE} is
pr STAGES .
pr MAYBE{Matchable}{Msg} .
pr MAYBE{Bool} .
sorts StateMode TransMode Config .
ops ready2SendAck waiting4Pck pckReceived : -> StateMode .
ops givingMsg sendingAck receivingPck : -> TransMode .
op (_,_,_) : Maybe{Matchable}{Msg} Bool Maybe{Bool} -> Config .
op (_,_) : StateMode Config -> State .
op (_,_) : TransMode Config -> Trans .
var M : Msg$Elt .
var MM : Msg$Elts .
var B : Bool .
var C : Config .
rl [(givingMsg, (M, B, none))] :

(pckReceived, (M, B, none)) => (ready2SendAck, (none, B, none)) .
rl [(sendingAck, C)] :

(ready2SendAck, C) => (waiting4Pck, C) .
rl [(sendingAck, C)] :

(waiting4Pck, C) => (waiting4Pck, C) .
crl [(receivingPck, (M, B, B))] :

(waiting4Pck, (none, B, none) => (waiting4Pck, (none, B, none))
if M & MM := allElts .

crl [(receivingPck, M, B, not B)] :
(waiting4Pck, (none, B, none)) => (pckReceived, (M, not B, none))
if M & MM := allElts .

eq init = (waiting4Pck, (none, false, none)) .
endaem

14

aemod ABP-RECEIVER-PPT{Msg :: MATCHABLE} is
pr ABP-RECEIVER{Msg} .
pr PACKET-BUILDER{Msg, MatchableBool} .
pr PACKET-BUILDER{MatchableAck, MatchableBool} .
pr PPTY{Msg} .
pr PPTY{Packet{Msg, MatchableBool}} .
pr PPTY{Packet{MatchableAck, MatchableBool}} .
op procMsgMoving : -> Ppty{Msg} .
op pckLeaving2Chnl : -> Ppty{Packet{MatchableAck, MatchableBool}} .
op pckComingFChnl : -> Ppty{Packet{Msg, MatchableBool}} .
var G : Stage .
var M : Msg$Elt .
vars B B’ : Bool .
eq procMsgMoving @ (givingMsg, (M, B, none)) = M .
eq procMsgMoving @ G = none .
eq pckLeaving2Chnl @ (sendingAck, (none, B, none)) = packet(ack, B) .
eq pckLeaving2Chnl @ G = none .
eq pckComingFChnl @ (receivingPck, (M, B, not B)) = packet(M, B) .
eq pckComingFChnl @ G = none .

endaem

view AbpReceiver{Msg :: MATCHABLE}
from PROTOCOL-IF{Msg,

Packet{Msg, MatchableBool},
Packet{MatchableAck, MatchableBool}}

to ABP-RECEIVER-PPT{Msg} is
op procMsgMoving to procMsgMoving .
op pckLeaving2Chnl to pckLeaving2Chnl .
op pckComingFChnl to pckComingFChnl .

endv

7.3 The channels
The implementation of a channel is quite straightforward. It can just accept a
packet, deliver it, or lose it. We could use here the same modes thing as above,
but it doesn’t pay off for this simple system.

aemod CHANNEL{Pck :: MATCHABLE} is
pr STAGES .
pr MAYBE{Matchable}{Pck} .
subsort Maybe{Matchable}{Pck} < State .
ops acceptingPck deliveringPck : Pck$Elt -> Trans .
op losingPck : -> Trans .
var P : Pck$Elt .
var PP : Pck$Elts .
crl [acceptingPck(P)] : none => P if P & PP := allElts .
rl [deliveringPck(P)] : P => none .
rl [losingPck] : P => none .
eq init = none .

endaem

aemod CHANNEL-PPT{Pck :: MATCHABLE} is
pr CHANNEL{Pck} .
pr STAGES .
pr PPTY{Pck} .

15

op pckComing pckLeaving : -> Ppty{Pck} .
var P : Pck$Elt .
var G : Stage .
eq pckComing @ acceptingPck(P) = P .
eq pckComing @ G = none .
eq pckLeaving @ deliveringPck(P) = P .
eq pckLeaving @ G = none .

endaem

view Channel{Pck :: MATCHABLE}
from CHANNEL-IF{Pck}
to CHANNEL-PPT{Pck} is
op pckComing to pckComing .
op pckLeaving to pckLeaving .

endv

8 Final system
With all the components implemented, it only remains to feed them to the
blueprint to obtain the ABP system. We prefer to let the sort of messages as a
parameter until the end:

emod ABP-SYSTEM{Msg :: MATCHABLE} is
pr COMM-SYSTEM-BP{AbpSender{Msg},

Channel{Packet{Msg, MatchableBool}},
Channel{Packet{MatchableAck, MatchableBool}},
AbpReceiver{Msg}} .

endem

Before finishing, it is interesting to note that any implementation of COMM-SYSTEM-BP
can be viewed as a channel—a kind of trustworthy channel. We only need to
make explicit the properties:

emod COMM-SYSTEM-BP-PPT
{ Sndr :: PROTOCOL-IF{Msg :: MATCHABLE,

MsgPacket :: MATCHABLE,
AckPacket :: MATCHABLE},

MsgChnl :: CHANNEL-IF{MsgPacket :: MATCHABLE},
AckChnl :: CHANNEL-IF{AckPacket :: MATCHABLE},
Rcvr :: PROTOCOL-IF{Msg :: MATCHABLE,

AckPacket :: MATCHABLE,
MsgPacket :: MATCHABLE}

} is
pr COMM-SYSTEM-BP{Sndr, MsgChnl, AckChnl, Rcvr} .
pr PPTY{Msg} .
ops msgComing msgLeaving : -> Ppty{Msg} .
var G : Stage .
eq msgComing @ G = procMsgMoving @ Sndr(G) .
eq msgLeaving @ G = procMsgMoving @ Rcvr(G) .

endem

This also allows us to show how properties of a composed system are defined
in terms of the properties of the components. The sort Stage for the composed
system is assumed to be declared and defined (in a tuple-like way) as a side

16

effect of the sync on instruction. The same for the projection operators with
the names of the component systems.

We are using here the global stage of the composed system, against which
we argued in Section 5. It is difficult to avoid it, and it can be justified now:
if the composed system is going to be used as a component in turn, it is an
indication that it has a kind of unity, a complete existence as a system.

With these properties, the following shows how the system can be viewed as
a channel:

view CommSystemAsChannel{Msg :: MATCHABLE}
from CHANNEL-IF{Msg}
pr COMM-SYSTEM-BP{AbpSender{Msg},

Channel{Packet{Msg, MatchableBool}},
Channel{Packet{MatchableAck, MatchableBool}},
AbpReceiver{Msg}

} is
op pckComing to msgComing .
op pckLeaving to msgLeaving .

endv

9 Final remarks
Unfortunately, as already mentioned, most of the code in this paper does not
run on the current implementations of Maude and Full Maude. We can make
do without nested parameters by using the poor man’s parameterization trick:
importing the implementation module msg.maude into any module that would
instead take Msg as parameter. This is certainly not perfect. A complete im-
plementation of parameterized programming in Maude would be great, but it
remains to be seen if it will be available at some future time.

We take as our job to implement in the near future the other missing ingredi-
ent, that is, everything that is needed to perform the synchronous composition
in Maude. Our aim is to make executable a specification equivalent to the one
given up here.

17

References
[1] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J.,

Talcott, C.L.: All About Maude - A High-Performance Logical Framework,
How to Specify, Program and Verify Systems in Rewriting Logic, Lecture
Notes in Computer Science, vol. 4350. Springer, Berlin, Heidelberg (2007),
http://dx.doi.org/10.1007/978-3-540-71999-1

[2] Durán, F., Meseguer, J.: Parameterized Theories and Views in Full
Maude 2.0. Electronic Notes in Theoretical Computer Science 36, 316–
338 (jan 2000), http://www.sciencedirect.com/science/article/pii/
S1571066105801367?via{%}3Dihub

[3] Mart́ın, Ó., Verdejo, A., Mart́ı-Oliet, N.: Modular specification in rewrit-
ing logic (extended version). Tech. rep., Departamento de Sistemas In-
formáticos y Computación Facultad de Informática, Universidad Com-
plutense de Madrid, Spain (2017), http://eprints.ucm.es/45264/1/
modspec-techrep.pdf

[4] Mart́ın, Ó., Verdejo, A., Mart́ı-Oliet, N.: Modular specification in rewriting
logic. Submitted for publication (to TPoLP) (2018)

[5] Mart́ın, Ó., Verdejo, A., Mart́ı-Oliet, N.: Parameterized programming for
compositional system specification. In: Submitted (to WRLA) (2018)

18

http://dx.doi.org/10.1007/978-3-540-71999-1
http://www.sciencedirect.com/science/article/pii/S1571066105801367?via{%}3Dihub
http://www.sciencedirect.com/science/article/pii/S1571066105801367?via{%}3Dihub
http://eprints.ucm.es/45264/1/modspec-techrep.pdf
http://eprints.ucm.es/45264/1/modspec-techrep.pdf

	Introduction
	The alternating bit protocol
	Common
	Stages
	Properties
	Matchable sorts

	Interfaces
	Producer and consumer
	Sender and receiver
	Channels

	Blueprint
	Building packets
	Implementations
	ABP sender
	ABP receiver
	The channels

	Final system
	Final remarks

