UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA TESIS DOCTORAL Dinámicas Evolutivas de los Cassettes de Resistencia en Integrones. Profundizando en el Modelo de Integrón Evolutionary Dynamics of Integron Resistance Cassettes. A Deeper Look into the Integron Model MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Alberto Hipólito Carrillo de Albornoz Director José Antonio Escudero García-Calderón Madrid © Alberto Hipólito Carrillo de Albornoz, 2024 Dinámicas Evolutivas de los Cassettes de Resistencia en Integrones. Profundizando en el Modelo de Integrón. UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA Evolutionary Dynamics of Integron Resistance Cassettes. A Deeper Look into the Integron Model. MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Alberto Hipólito Carrillo de Albornoz DIRECTOR José Antonio Escudero García-Calderón TESIS DOCTORAL UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA TESIS DOCTORAL Dinámicas Evolutivas de los Cassettes de Resistencia en Integrones. Profundizando en el Modelo de Integrón. Evolutionary Dynamics of Integron Resistance Cassettes. A Deeper Look into the Integron Model. MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Alberto Hipólito Carrillo de Albornoz DIRECTOR José Antonio Escudero García-Calderón UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA TESIS DOCTORAL Dinámicas Evolutivas de los Cassettes de Resistencia en Integrones. Profundizando en el Modelo de Integrón. Evolutionary Dynamics of Integron Resistance Cassettes. A Deeper Look into the Integron Model. MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Alberto Hipólito Carrillo de Albornoz DIRECTOR José Antonio Escudero García-Calderón Programa de Doctorado de Bioquímica, Biología Molecular y Biomedicina “Imagination is more important than knowledge” Albert Einstein Acknowledgements 9 Acknowledgements Ubuntu is a Bantu term that can be translated as “I am because we are”, and I cannot think of a better word to start writing this thesis. Looking back to the beginning of this journey, I can remember countless moments when this word acquired great relevance, being essential to thank every person who has helped and guided me along this trip. En primer lugar querría dar las gracias a mi familia, especialmente a mis padres. Sin ellos este camino hubiera sido imposible de recorrer. Todo lo que soy os lo debo a vosotros. Gracias por animarme a perseguir mis metas y alumbrar el camino cuando se hacía más oscuro. Mil gracias al resto de mi familia, que tanto se ha preocupado por mí en estos años, en especial a mis abuelos, siempre seréis un referente para mí. In my case, the decision to dedicate my professional career to research and teaching science (a tough but gratifying task) is also inspired by the examples and dedication of several teachers and researchers who have transmitted their curiosity and vocation over the years. In these lines, I would also like to thank Manuel and Toñi for guiding me on my first steps into the scientific world at school; and Cristina, Nacho, and Chema for their passionate dedication to teaching at the university. I am especially grateful to Rocío; thanks for taking care of me inside and outside the lab, and showing me how a great mentor can become an irreplaceable friend. All work begins with an idea in the human intellect, and this thesis was born in Jose's mind, my thesis supervisor. Thank you for the trust placed in me to join your lab and turn your ideas into scientific discoveries. During these years, I had the opportunity and luck to develop myself as a scientist and as a person following your example. Thank you for every piece of knowledge and advice. Alongside José, I have been lucky enough to share fortunes and misfortunes with amazing colleagues: Lucía, for your support and care both personally and professionally; Paula, for being my partner in crime for any crazy and funny idea; Filipa, for sharing all these years of smiles and tears; Nico and André, for every discussion and laugh over a beer; Laura and Amalia, for your energy and push in this last part of this thesis; good luck in your PhDs; Carlota, for your trust and friendship; Cabesa, for making a regular day simply better. And last but not least, Ester, thanks for being the heart of this lab and making a place for me in your own one. I am also very grateful to Prof. Dr. Bärbel Stecher and her lab members for hosting me in Munich for three months and giving me the opportunity to elevate the relevance of this study to another level. I would also like to thank every great scientist, professor, and doctor that I met during this PhD for their advice and guidance, especially Bruno, Nacho, and Álvaro, together with their teams (Bosco, Emilia, Irene, Manu, José, Carlos, Mario, Javi; Miguel, the Javis; Jero, Richi, Javi, Alfonso,…). Discussing science with such great teams and people is one of the best experiences of this journey. Acknowledgements 10 I would like to express my gratitude to all the financial agencies that have supported my research, including Universidad Complutense de Madrid, EMBO, and FEMS. On another note, I want to thank my friends—you have always been there when I needed you, and these years would certainly have been more difficult and sad without you. Christina, Quique, Pablo, Cris, Bea, Nuria, Luis, Miguel, Patri, Alex, Manuela... I could name a long list of people who have supported me during these 5 years. Some of you have been around for the last few years, others for 10 or 20 years, but I know that there is much more to come than what we have already experienced together. Finally, I would also like to thank the Music. Even if science is something that helps you living, music is one of the things that make life worth living. Listening and playing to music is my second activity in which I spend more time right after researching and it has been crucial to stand and enjoy these last years. You will find some of the songs that have accompanied me during this PhD among these pages. Five years is enough time to find amazing people but also to lose contact with some of them. I feel I have also to thank every person that has taken an important role along the way, even if it is not present at the end of the journey. Thank you all for every moment, every memory, and every lesson learned. A.H.C.A. TABLE OF CONTENTS Scan me on Spotify Table of contents 13 Table of Contents ACKNOWLEDGEMENTS 9 TABLE OF CONTENTS 13 List of Figures 16 List of Tables 18 List of Abbreviations 19 RESUMEN 23 SUMMARY 25 1 INTRODUCTION 29 1.1 Antimicrobial Resistance. 29 1.1.1 A brief history of antibiotics. 29 1.1.2 The antibiotic era: discovery of penicillin and antibiotic development. 29 1.1.3 The rise of antimicrobial resistance. 30 1.1.4 Mechanisms of antimicrobial resistance. 32 1.1.5 Transmission of antimicrobial resistance: horizontal gene transfer (HGT). 32 1.1.6 Mobile Genetic Elements (MGEs). 33 1.2 Integrons. 35 1.2.1 Structure and function of integrons. 35 1.2.2 Origin of integrons: chromosomal integrons. 37 1.2.3 Mobile integrons: prevalence and clinical relevance. 37 1.2.4 Recombination system. 39 1.2.5 Recombination reactions. 41 1.2.6 Integron cassettes. 43 2 OBJECTIVES 47 3 MATERIALS AND METHODS 51 3.1 Bacterial Strains, Plasmids, and Culture Conditions. 51 3.2 Generation of the pMBA collection and derivatives. 51 3.3 Antimicrobial resistance characterization by agar diffusion test. 52 3.4 Minimal inhibitory concentration (MIC) determination. 52 Table of contents 14 3.5 Quantitation of GFP expression by flow cytometry. 53 3.6 Quantification of gfp translation by Western blot. 53 3.7 Quantification of gfp transcription by RT-qPCR. 53 3.8 In vitro competition assays by flow cytometry. 54 3.9 OMM12 stocks preparation. 55 3.10 In vitro competition assays by phenotypic selection. 56 3.11 In vivo competition assays. 57 3.12 gDNA extraction from faecal pellets, caecal samples and in vitro competitions. 57 3.13 Quantification of OMM12 microbiota members and E. coli abundance by qPCR. 58 3.14 RNA-Seq analysis. 58 3.15 Motility quantitation by swarming assays. 58 3.16 Recombination assays. 59 3.17 Calculation of the probability of folding attC sites. 60 3.18 Growth curves. 60 3.19 Inducibility of aacA5. 60 4 RESULTS 65 4.1 Evolutionary dynamics of integron resistance cassettes. 69 4.1.1 Generation of the pMBA collection. 71 4.1.2 Antimicrobial resistance characterisation. 73 4.1.2.1 Aminoglycosides resistance cassettes. 73 4.1.2.2 Beta-lactam resistance cassettes. 76 4.1.2.3 Antifolate resistance cassettes. 78 4.1.2.4 Fosfomycin resistance cassettes. 79 4.1.2.5 Chloramphenicol resistance cassettes. 80 4.1.2.6 Rifampicin resistance cassettes. 80 4.1.2.7 Erythromycin resistance cassettes. 80 4.1.2.8 Quaternary ammonium compounds ARCs (qac, smr). 81 4.1.2.9 Influence of the genetic context in ARC activity. 82 4.1.3 Polar effects characterisation. 84 4.1.3.1 ARC identity affects the expression of downstream ICs. 84 4.1.3.2 ARC identity affects the transcription of downstream ICs. 85 4.1.3.3 attC sites are involved in the transcriptional regulation of the array. 86 4.1.4 Fitness cost characterisation. 89 4.1.4.1 ARCs can provide a fitness gain in the absence of antibiotics in vitro. 89 4.1.4.2 Anaerobiosis is a crucial condition affecting the fitness dynamics of some ARCs. 92 Table of contents 15 4.1.4.3 ARCs can provide a fitness gain in the absence of antibiotics in vivo. 97 4.1.4.4 ereA2 reduces E. coli motility. 98 4.1.5 ARC recombination frequency characterisation. 102 4.1.5.1 Generation of the pMBA recombination collection. 102 4.1.5.2 Recombination frequency quantitation. 104 4.1.5.3 Correlation between recombination frequencies and in silico analysis. 106 4.2 A deeper look into the integron model. 111 4.2.1 The expression of AgR genes in ICs is not controlled by riboswitches. 113 4.2.1.1 Expression of aacA5 is not induced by Ags in its native genetic context. 115 4.2.1.2 Generation of the pMBA 5´aaX collection. 117 4.2.1.3 AgR cassettes are not repressed in the absence of antibiotics. 117 4.2.1.4 Aminoglycosides do not induce the expression of AgR cassettes. 119 4.2.1.5 Higher concentrations of Ags neither induce resistance genes. 121 4.2.1.6 Induction is higher in the presence of unrelated antibiotics. 122 4.2.1.7 Increased expression is due to pleiotropic effects of antibiotics. 123 5 DISCUSSION 127 6 CONCLUSIONS 137 7 BIBLIOGRAPHY 141 8 SUPPLEMENTARY MATERIAL 155 Table of contents 16 List of Figures Figure 1. Timeline showing the discovery and first report of clinical resistance. (31) Figure 2. Horizontal gene transfer. (33) Figure 3. Schematic representation of the mobilisation of ICs in integrons. (36) Figure 4. Mobile integron prevalence and classification. (38) Figure 5. Sequence of a double stranded (ds) attI1 site. (39) Figure 6. Sequence and structure of an attC site. (40) Figure 7. Recombination reaction between attC bs and attI sites. (42) Figure 8. Recombination reaction between two attC bs sites. (42) Figure 9. IC occurrence and distribution in MIs. (43) Figure 10. Schematic representation of the cloning region in pMBA derivatives. (51) Figure 11. Flow diagram of the experimental process. (55) Figure 12. Occurrence of each ARC within its gene family across databases. (69) Figure 13. Generation of the pMBA collection. (71) Figure 14. MICs of aminoglycoside resistance cassettes. (75) Figure 15. MICs of b-lactam resistance cassettes. (77) Figure 16. Antifolates resistance characterisation. (79) Figure 17. MICs of ARCs. (81) Figure 18. MIC characterisation of qac and smr ARCs. (82) Figure 19. Comparison of the MIC of ARCs in different genetic contexts. (83) Figure 20. ARC identity affects the expression of downstream ICs. (84) Figure 21. GFP expression of a subset of pMBAdfr strains. (85) Figure 22. GFP fluorescence and protein yields in a subset of pMBAdfr strains. (85) Figure 23. GFP fluorescence, protein yields, and GFP mRNA levels in a subset of pMBAdfr strains. (86) Figure 24. Compilation of attC site parameters in pMBAdfr strains. (87) Figure 25. GFP expression comparison between strains with modified and deleted attC sites. (87) Figure 26. GFP fluorescence comparison between strains with and without PcS promoter. (88) Figure 27. Growth comparison between different pMBA derivative strains. (89) Figure 28. Correlation between fitness cost and GFP fluorescence. (90) Figure 29. Effect of each ARC in the fitness of the host strain. (91) Figure 30. OMM12 consortium phylogenetic tree. (92) Figure 31. Pairwise competitions between pMBA and pMBAARCs strains. (93) Figure 32. Relative abundance of each OMM12 member in batch culture competitions. (94) Figure 33. Effect of each ARC in the fitness of the host strain in anaerobic conditions. (95) Figure 34. Comparison between ARCs-fitness effect in aerobiosis and anaerobiosis. (96) Figure 35. ARCs can provide a fitness gain in the absence of antibiotics in vivo. (97) Figure 36. Volcano plot showing differential gene expression of pMBAereA2 in comparison to pMBA. (99) Table of contents 17 Figure 37. ereA2 reduces E. coli motility. (100) Figure 38. MIC characterisation of pMBA derived strains against erythromycin. (100) Figure 39. ereA2 expression reduces E. coli motility. (101) Figure 40. Schematic representation of a recombination assays. (102) Figure 41. attC site recombination. (103) Figure 42. Recombination frequency of each ARC. (104) Figure 43. Analysis of the average recombination capacity of each ARC family. (104) Figure 44. Structures of bottom strands of attC sites. (105) Figure 45. Comparative analysis of the recombination frequencies of ARCs. (106) Figure 46. Correlation between recombination frequencies and in silico analysis. (107) Figure 47. The AG sensing riboswitch described in an integron cassette is counterintuitive. (114) Figure 48. Mobile integrons contain cassettes encoding varied functions. (115) Figure 49. The expression of aacA5 is not induced by aminoglycosides in its native genetic context. (116) Figure 50. Aminoglycoside resistance cassettes are not repressed in the absence of antibiotics. (118) Figure 51. Aminoglycosides do not induce the expression of aminoglycoside resistance cassettes. (120) Figure 52. High concentrations of aminoglycosides do not induce AgR cassettes. (121) Figure 53. Induction is higher in the presence of unrelated antibiotics. (122) Figure 54. Increased expression is due to pleiotropic effects of antibiotics. (123) Figure 55. Distribution of ARCs by antibiotic class among different bacterial genus. (128) Figure 56. Correlation between ARC recombination rate and GC content of the gene encoded. (132) Supplementary Figure S1. Resistance characterisation of aa ARCs by agar diffusion test. (243) Supplementary Figure S2. Resistance characterisation of bla ARCs by agar diffusion test. (244) Supplementary Figure S3. pMBAARCs fluorescence do not change in stationary growth phase. (245) Supplementary Figure S4. Growth curves of all pMBA derivatives. (246) Supplementary Figure S5. Relative abundance of each OMM12 member in vivo competitions. (249) Supplementary Figure S6. Volcano plots showing DE genes of pMBA and pMBA derivatives. (250) Supplementary Figure S7. Non-corrected recombination frequency of each ARC. (251) Supplementary Figure S8. Cassette expression correlates with the presence of SD-like sequences. (252) Supplementary Figure S9. Antibiotic concentrations used do not affect growth. (253) Supplementary Figure S10. Alternative 5´UTRs are not induced by aminoglycosides. (257) Supplementary Figure S11. Results from statistical models applied to induction assays. (258) Supplementary Figure S12. Hierarchical clustering tree of all attC sites present in ARCs. (259) Table of contents 18 List of Tables Supplementary Table S1. Strains and plasmids used in this study. (155) Supplementary Table S2. Primers and probes used in this study. (164) Supplementary Table S3. Antibiotic discs used in this study. (167) Supplementary Table S4. Antimicrobial compounds used in this study. (168) Supplementary Table S5. Antimicrobial resistance cassettes (ARCs) sequences. (169) Supplementary Table S6. Transcriptomic analysis of pMBA containing E. coli MG1655. (188) Supplementary Table S7. Transcriptomic analysis of pMBA derivatives. (190) Supplementary Table S8. Sequences of all integron cassette 5’UTRs used in this work. (241) Table of contents 19 List of Abbreviations Ab: antibiotic. Ag: aminoglycoside. AgR gene: aminoglycoside resistance gene. aHJ: atypical Holliday junction. AMEs: aminoglycoside modifying enzymes. ARCs: antimicrobial resistance cassettes. ARGs: antimicrobial resistance genes. BC: before Christ. bp: base pairs. bs: bottom strand. BSA: bovine serum albumin. BZK: benzalkonium chloride. ºC: Celsius degrees. Cat. Mut.: catalytic mutant. cDNA: complementary DNA. CFUs: colony forming units. CHX: chlorhexidine. CLSI: Clinical and Laboratory Standards Institute. CmR: chloramphenicol resistance. cpm: cycles per minute. CTAB: hexadecyltrimethylammonium bromide. DDs: disubstituted deoxystreptamines. ddH2O: double distilled water. DE: differentially expressed. DG: Gibbs free energy. DNA: deoxyribonucleic acid. DR: direct repeats. ds: double strand. E. coli: Escherichia coli. EHB: extra helical bases. ESBL: extended spectrum beta-lactamase. EUCAST: European Society of Clinical Microbiology and Infectious Diseases. g: gram. gcu: gene cassette of unknown function. gDNA: genomic DNA. GFP: green fluorescent protein. HGT: horizontal gene transfer. HJ: Holliday junction. IC: integron cassette. ICE: integrative conjugative element. IME: integrative mobile element IQR: interquartile range. IR: induction ratio. IRs: inverted repeats. IS: insertion sequence. K: Kelvin degrees. kb: kilobases. kcal: kilocalories. KO: knockout. L: litre. LB: lysogeny broth. MGE: mobile genetic element. mg: milligram. µg: microgram. MH: Müller Hinton. MI: mobile integron. MIC: minimal inhibitory concentration. MICs: mobile insertion cassettes. MITE: miniature inverted repeats transposable element. mL: millilitre. µL: microlitre. µM: micromolar. mm: millimetre. mRNA: messenger RNA. nm: nanometres. OD600: optical density at 600 nm. OMM12: oligo-mouse microbiota 12. ORF: open reading frame. PBPs: penicillin binding proteins. PCR: polymerase chain reaction. Table of contents 20 PICI: phage-inducible chromosomal islands. QACs: quaternary ammonium compounds. qPCR: quantitative PCR. RNA: ribonucleic acid. rpm: revolutions per minute. rRNA: ribosomal RNA. RT-qPCR: reverse transcription qPCR. SCI: sedentary chromosomal integron. SD: Shine Dalgarno. SEM: standard error of the mean. SI: super integron. spp.: several species. ss: single strand. TA: toxin-antitoxin. TBS: tris buffered saline. tIS: transporter IS. Tn: transposon. ts: top strand. UCS: uncoupled central spacer. VCRs: Vibrio cholerae repeats. VTS: variable terminal structure. WB: western blot. WHO: World Health Organisation. 5´UTR: 5´untranslated region. RESUMEN SUMMARY Scan me on Spotify Resumen / Summary 23 Resumen La resistencia a antimicrobianos es una de las principales amenazas para la salud global del siglo XXI. El uso indiscriminado de antibióticos, entre otros factores, ha provocado un incremento exponencial de bacterias resistentes a antimicrobianos en las últimas décadas. Se estima que cada año mueren entre 1.5 y 5 millones de personas debido a infecciones causadas por bacterias multirresistentes. Estos datos ponen de manifiesto la necesidad de tomar medidas urgentes para combatir esta amenaza, empezando por entender las fuerzas que rigen el éxito de las bacterias multirresistentes. La excepcional capacidad de las bacterias para evolucionar y adaptarse a compuestos antimicrobianos está principalmente promovida por la transferencia horizontal de genes. Gran cantidad de genes de resistencia se transfieren de unas bacterias a otras mediante elementos genéticos móviles y plataformas como los plásmidos, transposones, e integrones. Los integrones son plataformas genéticas capaces de capturar y almacenar nuevos genes embebidos en pequeños elementos genéticos móviles llamados cassettes. Los integrones poseen una estructura conservada, compuesta por una plataforma estable; donde se encuentran codificados el gen de la integrasa, los promotores Pc y Pint, y el sitio attI de integración; y por una colección variable de cassettes. La colección de cassettes se expresa desde el promotor Pc siguiendo un gradiente de expresión que mantiene silenciados los cassettes más alejados del promotor. Ante una situación de estrés, la integrasa se expresa, permitiendo la captación cassettes exógenos, así como la escisión y reordenamiento de los cassettes. Este reordenamiento permite la expresión de cassettes distales recolocándolos en primera posición de la colección. Por ello, los integrones actúan como memorias bacterianas de muy bajo coste capaces de proporcionar adaptación bajo demanda a su hospedador. Los integrones móviles desempeñan un papel crucial en el aumento y propagación de la resistencias a antimicrobianos, siendo capaces de capturar y expresar más de 170 genes de resistencia antimicrobiana frente a la mayoría de antibióticos de relevancia clínica. Los integrones son plataformas de gran éxito, frecuentemente presentes en aislados clínicos de bacterias Gram negativas multirresistentes. Por el contrario, la prevalencia de los cassetes de resistencia en integrones varía ampliamente, incluso entre genes que confieren la misma resistencia a antimicrobianos. Este fenómeno sugiere que existen otros rasgos específicos que gobiernan el éxito diferencial de los cassettes de resistencia distintos al fenotipo que confieren. Esta tesis doctoral tiene como objetivo caracterizar las fuerzas que rigen el éxito evolutivo de los cassettes de resistencia en integrones, así como profundizar en el modelo actual de integrón y su regulación. Para ello, hemos cuantificado los niveles de resistencia conferidos por estos cassettes así como el coste asociado a su expresión. Adicionalmente, y debido a su presencia en esta plataforma, hemos caracterizado el posible efecto de un cassette en la expresión de la colección posterior, así como la movilidad de cada uno de ellos. Resumen / Summary 24 A pesar de la gran relevancia clínica de esta plataforma, el conocimiento acerca de los genes de resistencia que porta se encuentra disperso en la literatura, impidiendo un análisis comparativo de los mismos. Para estudiar de manera comparable las fuerzas que rigen el éxito de estos cassettes hemos generado la colección pMBA, compuesta por 136 cassettes de resistencia clonados en un entorno genético que mimetiza el natural. Abarcando el 76% de los cassettes de resistencia descritos en integrones móviles, es la mayor colección de cassettes de resistencia en integrones en la actualidad. La caracterización del perfil de resistencia de cada cassette ha permitido confirmar la ya conocida especificidad por familias de genes, a la vez que pone de manifiesto grandes diferencias en los niveles de resistencia conferidos por genes filogenéticamente muy cercanos. Asimismo, hemos detectado genes que no confieren resistencia alguna, lo cual pone en duda el papel de las familias de genes qac y smr como genes de resistencia a desinfectantes. Por su parte, la cuantificación del coste asociado a cada cassette ha revelado que ciertas familias, como los genes de resistencia a beta-lactámicos, poseen un gran coste en E. coli. Por el contrario, genes como aacA7 han demostrado ser beneficiosos para el fitness bacteriano en ausencia de selección, tanto in vitro como in vivo, sugiriendo un posible rol metabólico secundario de los mismos. Adicionalmente, competiciones bacterianas realizadas tanto en aerobiosis como en anaerobiosis, han demostrado que los cassettes de resistencia pueden modificar drásticamente su efecto en el fitness bacteriano dependiendo de las condiciones oxigénicas del entorno, como en el caso de ereA2. Este hecho tiene una gran relevancia a la hora de entender la ecología y su prevalencia de los cassettes en entornos clínicos y ambientales. Además de caracterizar la resistencia que confieren los cassettes y el coste que implican para su hospedador, hemos caracterizado la influencia de un cassettes en la colección posterior y su capacidad de recombinación en la plataforma. Por un lado, observamos que la identidad de un cassette puede modular la expresión de la colección posterior de manera transcripcional, añadiendo un nuevo nivel de complejidad al modelo de integrón. Este hecho posee importantes implicaciones en posibles fenómenos de co-selección ocurridos en infecciones tratadas con varios antibióticos. Por otro lado, las frecuencias de recombinación obtenidas para cada cassettes son muy variables, existiendo diferencias de hasta un millón de veces entre las tasas de recombinación de aacA52 y fosN. Si bien no hemos podido relacionar parámetros in silico como DG y pfold de los sitios attC de los cassettes y su tasa de recombinación en nuestros experimentos, encontramos una correlación entre los cassettes de resistencia a aminoglucósidos y altas tasas de recombinación. Adicionalmente, durante el transcurso de este estudio hemos podido demostrar que los genes de resistencia a aminoglucósidos presentes en integrones no están regulados por riboswitches, tema de controversia en el campo hasta ahora. Si bien todavía estamos lejos de comprender en su totalidad el éxito diferencial de cada cassette de resistencia, esta tesis doctoral ofrece una visión general y cuantificada de las fuerzas que rigen el éxito evolutivo de los cassettes de resistencia en integrones. Resumen / Summary 25 Summary Antimicrobial resistance is one of the major global health concerns of the 21st century. The indiscriminate use of antibiotics, among other factors, has led to an exponential increase in antimicrobial-resistant bacteria in recent decades. It is estimated that every year between 1.5 and 5 million people die due to infections caused by multidrug-resistant bacteria. These data highlight the need to take urgent measures to tackle this threat, with a priority on understanding the forces that govern the success of multidrug-resistant bacteria. The exceptional ability of bacteria to evolve and adapt to antimicrobial compounds is mainly promoted by horizontal gene transfer. A large number of resistance genes are transferred from one bacterium to another through mobile genetic elements and platforms such as plasmids, transposons, and integrons. Integrons are genetic platforms capable of capturing and storing new genes embedded in small mobile genetic elements called cassettes. Integrons have a conserved structure, composed of a stable platform encoding the integrase gene, the Pc and Pint promoters, and the attI integration site; and a variable array of cassettes. The cassettes’ array is expressed from the Pc promoter following an expression gradient that maintains the cassettes furthest from the promoter silenced. Under stress conditions, the integrase is expressed, allowing to capture exogenous cassettes, as well as the excision and rearrangement of the cassettes present in the array. This rearrangement allows the expression of distal cassettes by relocating them in the first position of the array, via recombination between the attI site placed in the platform and the attC site of the cassette. Therefore, integrons act as low-cost bacterial memories capable of providing adaptation on-demand to their hosts. Mobile integrons play a crucial role in the increase and spread of antimicrobial resistance, capable of capturing and expressing over 170 antimicrobial resistance genes against most clinically relevant antibiotics. Integrons are highly successful platforms, often found in clinical isolates of multidrug-resistant Gram-negative bacteria. Conversely, the prevalence of antimicrobial resistance cassettes varies widely, even among genes conferring the same antimicrobial resistance. This phenomenon suggests that there are other specific features governing the differential success of resistance cassettes other than the phenotype they confer. This PhD thesis aims to characterize the forces governing the evolutionary success of resistance cassettes in integrons, as well as to delve into the current model of integron and its regulation. To achieve this, we have quantitate the resistance levels conferred by these cassettes, as well as the cost associated to their expression. Furthermore, we have explored the potential impact of a cassette on the expression of the subsequent collection and assessed their mobility, given their presence in this specific platform. Resumen / Summary 26 Despite the significant clinical relevance of this platform, our knowledge about their resistance genes is scattered in the literature, hindering a comparative analysis. To study the forces governing the success of these cassettes in a comparable manner, we have generated the pMBA collection, composed of 136 resistance cassettes cloned in a genetic environment that mimics their natural context. This collection encompasses 76% of the resistance cassettes described in mobile integrons, being largest collection of resistance cassettes in integrons to date. The characterisation of the resistance profile of each cassette has confirmed the already known specificity by gene families, while revealing significant differences in the resistance levels conferred by closely related genes. Additionally, we have identified genes that do not confer any resistance, challenging the role of qac and smr gene families as disinfectant resistance genes. The quantification of the cost entailed by each cassette has revealed that certain families, such as beta-lactam resistance genes, pose a significant cost in E. coli. Conversely, certain genes, such as aacA7, have proven to be beneficial for bacterial fitness in the absence of selective pressure, both in vitro and in vivo. This suggests potential secondary metabolic roles of antimicrobial resistance cassettes in integrons. Furthermore, bacterial competitions conducted both in aerobic and anaerobic conditions have shown that resistance cassettes can drastically modify their effect on bacterial fitness depending on the oxygen availability in the environment, as observed in the case of ereA2. This fact is highly relevant for understanding the ecology of cassettes and their prevalence in clinical and environmental settings. In addition to the characterisation of the resistance conferred by the cassettes and the cost they impose on their host, we have investigated the influence of a cassette on the subsequent collection and its recombination capacity in the platform. On one hand, we observe that the identity of a cassette can modulate the expression of the collection transcriptionally, adding a new level of complexity to the integron model. This has important implications for potential co-selection phenomena occurring in infections treated with various antibiotics. On the other hand, recombination frequencies obtained for each cassette are highly diverse, with differences of up to a million times between the recombination rates of aacA52 and fosN. Although we have not been able to correlate in silico parameters such as DG and pfold of the attC sites of the cassettes with their recombination rate in our experiments, we have found a correlation between cassettes conferring resistance to aminoglycosides and high recombination rates. Additionally, during the course of this study, we have demonstrated that the aminoglycoside resistance genes present in integrons are not regulated by riboswitches, a topic of controversy in the field until now. Although we are still far from a complete understanding of the differential success of each resistance cassette, this PhD thesis provides a comprehensive and quantified view of the forces governing the evolutionary success of resistance cassettes in integrons. INTRODUCTION Scan me on Spotify Introduction 29 1 Introduction 1.1 Antimicrobial Resistance. 1.1.1 A brief history of antibiotics. The word “antibiotic” was first introduced in our vocabulary by Selman Waksman in 1942 to describe “substances produced by microorganisms that provoke an antagonistic effect in other microorganisms growth when present in high dilution”1. This initial and rather simplistic definition of antibiotic laid the foundations for further descriptions of these molecules up to the present day. Currently, antibiotics and antimicrobials can be defined as natural, synthetic, or semi-synthetic substances that, at low concentrations, inhibit or kill susceptible microorganisms2. Although antibiotics were defined during the 20th century, the use of antibiotic-producing microorganisms to treat and prevent diseases dates back thousands of years. The oldest documented report of these medical practices is the Eber´s papyrus from 1550 BC. In this document, the use of mouldy bread and medicinal soil is advised as therapeutic remedies3. Nevertheless, the first use of antibiotics that we can attributed to the modern concept of chemotherapy is generally credited to Paul Ehrlich in 1907 for the development of the synthetic antibiotic Salvarsan, which exhibited activity against Treponema pallidum, the causative agent of syphilis4. Ehrlich´s studies inspired colleagues to discover other synthetic antibiotics such as the sulfonamides, firstly described by Gerhard Domagk and commercialized under the name of Prontosil in 19355. Therefore, sulfonamides are accredited as the first broad spectrum antimicrobials used in the clinic since the decade of 1930 to date. 1.1.2 The antibiotic era: discovery of penicillin and antibiotic development. While the development of synthetic antibiotics was improving the clinical practice, the discovery of the first natural antibiotic by Alexander Fleming in 1928 marked a breaking point in medicine and human wellbeing. His initial observations about the inhibitory, bacteriolytic, and bacteriostatic properties of Penicillium ushered the beginning of the antibiotic era6. Penicillin was finally produced and distributed on a large scale in 1945 due to the effective purification protocol developed by Howard Florey and Ernest Chain in 19407. From 1940 to 1970 there was an exponential increase in the discovery of new molecules, acknowledged as the golden age of antibiotics. During this period, past studies in bacterial pathogens and antibiosis performed by renown scientists such as Louis Pasteur or Robert Koch served as a starting point for the systematic search of natural antibiotics8. The study of potential antimicrobial producers in soil samples by Selman Waksman and Albert Schatz resulted in the identification of Streptomyces genus as one of the most prolific producers of natural antimicrobials, being streptomycin the first discovered compound produced by this genus9. Introduction 30 Waksman´s findings inspired the pharmaceutical industry and triggered the discovery of the vast majority of antibiotics currently in use. All along this golden age, around 20 classes of antibiotics were isolated from bacterial and fungal species10. During this period, the use of antibiotics became a general practice in medicine. This fact resulted in an increase in life expectancy and a great reduction in human mortality derived from infectious diseases. Altogether, we can consider antibiotic discovery and development a milestone in human history and one of the most important improvements in modern medicine. In addition to the extensive research and discovery of new natural antibiotics, the structural and mechanistic description of these new molecules enabled the production of semi-synthetic antimicrobials. A well know example of these studies is the determination of the b-lactam structure of penicillin by Dorothy Hodgkin in 194511. From 1980 onwards, the discovery of new antibiotics slowed down. Finding new classes of molecules exerting antibiotic activity became exceptional, giving way to the medical chemistry age. During this period of time (1980-1990), antibiotic research was focused on the development of semi-synthetic antibiotics from natural molecules discovered in the golden era. These semi- synthetic antibiotics permitted antibiotic usage in lower doses, expanding its action spectrum and avoiding incipient resistances against these molecules12 . Since 1990, antibiotic discovery and development decreased radically. The amount of new antibiotics as well as the investment on their development diminished until our days, with no new antibiotic classes commercially developed since 1980s13. Nevertheless, the emergence of new technologies provides alternative antibiotic screening approaches based on metagenomics and combinatorial biosynthesis14. Unfortunately, these metagenomics and combinatorial biosynthesis screenings have not been successful so far. On the contrary, the prevalence of antibiotic resistant bacteria increased unstoppably. The massive use of antibiotics together with the outstanding evolvability of bacteria triggered the end of the antibiotic era giving rise to the contemporary antimicrobial resistance situation. 1.1.3 The rise of antimicrobial resistance. Antimicrobial resistance is defined as the ability of a bacterium to survive and grow when it is exposed to the hazardous action of a drug against it. Antimicrobial resistance can be displayed due to inherent properties of the bacterium (intrinsic), induced by specific signals or conditions transiently (adaptive), or achieved by genetic mutations or incorporation of exogenous genetic material via horizontal gene transfer (HGT) (acquired)15. Although antibiotic resistance is ancient, with resistance genes found in DNA from 30000 year old sediments16, the selective pressure applied by the excessive use of antibiotics in the last century has caused a great increase in antimicrobial resistant bacteria. Fleming himself advised about the risks of misuse and abuse of these molecules, suggesting that subinhibitory concentrations of these molecules could lead to the selection of resistant bacteria. Introduction 31 As expected, antibiotic resistant bacteria have been discovered all over the world after few years of antibiotic use; starting at 1936 when the first sulfonamide-resistant isolate was described, and continuing to the present day, when we encounter resistant bacteria against every single antibiotic used in the clinical practice (Figure 1). Nowadays we can find multirresistant bacteria against several antibiotic in a number of clinical isolates. Figure 1.Timeline showing the discovery (blue pill) and first report of clinical resistance (red bacterium).10,17. Modified from 18. Antibiotic resistant bacteria are able to survive under antimicrobial-selective conditions, but this ability also entails a theorical cost in the absence of any selective pressure, leading to a reduction in bacterial fitness. Initial hypotheses suggested that a decrease in antibiotic usage could lead to an enriched susceptible bacterial population by outcompeting the resistant ones19. Nevertheless, events such as compensatory evolution and genetic co-selection20, and platforms such as integrons (see below) alleviate the cost produced by the acquired resistance. The fact that bacteria can alleviate the cost derived from acquiring antibiotic resistance, together with the possibility of sharing DNA by HGT facilitates the emergence of multidrug resistant bacteria. Multidrug resistance was first described in Japan among Shigella spp. isolates during 1950´s decade21. These isolates were resistant to several antimicrobials such as streptomycin, tetracycline, chloramphenicol, and sulfonamides. Subsequent research revealed that these resistance determinants were carried in a conjugative plasmid, which also contained an integron22. The emergence of multirresistant bacteria is considered by the World Health Organisation (WHO) as one of the major global health concerns of the 21st century23. Actual estimations reveal that every year between 1.5 and 5 million people pass away from antimicrobial resistant bacterial infections24. This datum, together with the economic cost derived from antimicrobial resistant infections, has alerted numerous international organizations about the irreversible consequences of a post-antibiotic era where antibiotics become ineffective. 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 Sulphonamides Penicillin Tetracycline Erythromycin Vancomycin Methicillin Gentamicin Cefotaxime Ceftazidime Imipenem Ciprofloxacin Daptomycin Ceftazidime - Avibactam Introduction 32 1.1.4 Mechanisms of antimicrobial resistance. As mentioned before, bacteria are capable of avoiding the activity of antibiotics by acquiring resistance to these compounds via mutation or HGT. The mechanisms underlying antibiotic resistance are generally antibiotic modification, target alteration, or reduction of the antibiotic accumulation15. Antibiotic modification consists of the alteration of the antimicrobial structure (via hydrolysis or addition of radicals) to inactivate the molecule. This is the most common mechanism of resistance against b-lactams such in Gram-negative bacteria. b-lactamases (encoded in bla genes) hydrolyse the b-lactam ring (the main structure of these compounds), rendering the antimicrobial harmless25. Also, the action of aminoglycoside modifying enzymes (AMEs) causes antibiotic resistance via acetylation, adenylation, or phosphorylation of aminoglycosides (mediated by aac, aad, and aph genes respectively)26. Enzymatic modification of other antibiotics such as chloramphenicol and rifampicin (via catB and arr genes respectively) are common mechanisms of resistance against these compounds 27,28. Antibiotic target alteration such as point genetic mutations allow the target to escape from the antibiotic activity. A common case of acquired resistance by genetic mutations is the fluoroquinolone resistance mediated by the chromosomal mutations in gyrase and topoisomerase IV genes (gyrA and parC) 29. In addition, antibiotic targets can suffer non-genetic modification to escape from antibiotic activity. An example of post-translational modification leading to antibiotic resistance is the methylation of the 16S ribosomal RNA by armA, which protects against aminoglycosides30. Furthermore, the overproduction or acquisition of resistance homologous genes can bypass the antimicrobial action. Common examples are sulfonamides and trimethoprim resistance, generally mediated by the acquisition of dfr and sul genes that avoid the antimicrobial action31. Moreover, antibiotic evasion can be achieved by antibiotic target protection. Quinolone resistance proteins (qnr) act as DNA analogues that bind to gyrase and topoisomerase IV lowering the available targets, rendering bacteria resistant to quinolones29. Efflux pumps are the main drivers of antibiotic accumulation reduction. These energy- dependent membrane complexes are able to export compounds out of the cell. Multidrug efflux mechanisms are responsible for the intrinsic resistance of some bacterial species against multiple drugs. In addition, several substrate-specific efflux pumps have been described to confer resistance against chloramphenicol, quaternary ammonium compounds (QACs), macrolides and tetracyclines32. 1.1.5 Transmission of antimicrobial resistance: horizontal gene transfer (HGT). Horizontal gene transfer (HGT) is a key process in the development of resistant bacteria. HGT is defined as the ability of a cell to acquire new genetic material from another organism. This mechanism allows bacteria to evolve quickly under stress conditions, such as the presence of antimicrobials, acquiring antimicrobial resistance genes (ARGs)33,34. Introduction 33 Horizontal acquisition of exogenous DNA has to be facilitated by three main mechanisms: natural transformation, conjugation, and transduction35 (Figure 2A). Nevertheless alternative HGT ways mediated by vesicles or nanotubes have also been described 36,37. Natural transformation consists of the active uptake of free DNA present in the environment by a cell38. This mechanism relies on the natural competence of the recepient cell to capture, recombine and express exogenous DNA. Genera such as Vibrio, Acinetobacter and Streptococcus are examples of bacteria that are able to acquire exogenous genes by natural transformation39. Besides, HGT mediated by conjugation needs a type IV secretion system that produces a pilus (cell to cell junction) to perform DNA transference from the donor cell to the recipient one. This mechanism is the main driver of antimicrobial resistance dissemination mediated by plasmids among clinical settings40. Likewise, transduction is mediated by a bacteriophage that transmits DNA from one cell to another. This process occurs due to the packaging of bacterial DNA during encapsulation of the viral genetic material prior to cell lysis and viral dissemination41,42. We can differentiate between three main transduction mechanisms; generalized43, specialized44 and lateral45 transduction. Figure 2. Horizontal gene transfer A) Graphic representation of the three main mechanisms of HGT: transformation, conjugation, and transduction. B) Example of the modular and hierarchical composition of mobile genetic elements (inter and intracellular). The model shows a plasmid that encodes a transposon which also encodes an integron that carries an ARG. 1.1.6 Mobile Genetic Elements (MGEs). Except for natural transformation, HGT requires genetic elements such as plasmids or prophages that mediate gene transmission. These genetic carriers are denominated mobile genetic elements (MGEs). MGEs play a key role in the evolution of multirresistant bacteria due to intra and intercellular sharing of ARGs. We can differentiate between intercellular MGEs such as conjugative plasmids, integrative conjugative elements (ICEs), and prophages; and intracellular MGEs generally encoded in intercellular MGEs as non-conjugative transposons, insertion sequences and integrons (Figure 2B)46,47. Transduction Conjugation Transformation Plasmid Transposon Integron ARG A B Introduction 34 • Intercellular MGEs. Among all intercellular MGEs, conjugative elements (plasmids and ICEs), prophages and phage-plasmids (elements that are both phages and plasmids48) are the main vectors of ARGs that participate in multirresistances dissemination. Nevertheless, other MGEs, such as integrative mobilizable elements (IMEs), and phage satellites also contribute to HGT49. Plasmids can be defined as circular self-replicative extrachromosomal genetic elements. They usually present a modular anatomy. Conjugative plasmids also carry the essential machinery for conjugation, enabling their transfer to adjacent cells. Other conjugative elements, such as ICEs, resemble plasmids in their conjugative machinery and modular structure. However, ICEs encode their own enzymes to catalyse their insertion into host chromosomes, making them neither self-replicative nor extrachromosomal50. These intercellular MGEs can also carry platforms and genetic elements that are not able to move between cells per se but contribute to ARGs spread by collecting and transposing genes between genomic locations. Insertion sequences (ISs), transposons (Tns), and integrons are the main vectors of this intracellular HGT47. • Intracellular MGEs. Insertion sequences (ISs) are classically defined as short DNA sequences encoding exclusively the genetic information for their transposition and insertion in genetic locations surrounded by inverted repeats (IRs). Nevertheless, IS derived structures lacking the transposase gene or/and encoding accessory genes have also being reported. Examples of this IS derived structures are the miniature inverted repeats transposable elements (MITEs), the transporter IS (tIS) and mobile insertion cassettes (MICs)51. Moreover, two close ISs can mobilise genes encoded between them forming a composite transposon52. Transposons are generally associated with spread and dissemination of virulence, infection, and antimicrobial resistance genes. As an example, Tn3 transposon family is known to play a major role in antimicrobial resistance via mobilisation of several resistance determinants53. Furthermore, transposons and conjugative elements can carry additional structures known as integrons, which facilitate the mobilization, storage, and rearrangement of various resistance determinants. In fact, the discovery of multirresistant Shigella spp. isolates in Japan around 1960, which was regarded as the initial description of a strain resistant to multiple antimicrobial agents, has been conclusively associated with the existence of an integron encoding several ARGs22. Due to the relevance of this platform in antimicrobial resistance dissemination54, a detailed and extensive description of it is summarized in the following sections. Integrons and their role in antimicrobial resistance conform the main object of this thesis. Introduction 35 1.2 Integrons. 1.2.1 Structure and function of integrons. Integrons are genetic structures able to capture, accumulate and reorganise genes embedded in small mobile elements described as integron cassettes (ICs). The plasticity of this platform provides a plethora of functions to its host, allowing bacteria to evolve quickly and survive in challenging environmental conditions55. All integrons share the same structure with two well- defined elements: a stable platform and a variable cassette array (Figure 3A). The platform contains the necessary elements for the acquisition and expression of ICs: the gene encoding the integrase (intI) and its promoter (Pint), the integron recombination site (attI site), and the cassette array promoter (Pc). The integrase belongs to the tyrosine-recombinase family and mediates the excision and reshuffling of ICs present in the array, and the insertion of external ICs in the primary integration site (attI), generally located upstream of the intI gene. Meanwhile, the Pc promoter, found within the intI gene or between the intI gene and the attI site, promotes the transcription of the cassettes stockpiled in the array in the opposite orientation to that of the integrase 56,57. Integrase expression is regulated by the SOS response; which can be triggered by several challenges such as starvation, HGT, DNA damage and the presence of antibiotics58. SOS response is mainly controlled by the transcriptional repressor LexA, which regulates intI gene repression by its binding to a conserved LexA-binding motif located at the Pint region. Under stress conditions, RecA mediates LexA cleavage allowing the expression of intI, letting ICs recombination59. Integron cassettes are defined as non-replicative circular elements that usually encode a promoterless gene and a recombination site called attC site 60. attC sites are imperfect palindromic sequences of a variable lengths (ranging from 55 to 143 base pairs, according to IntegrAll database61) downstream the cassette coding region and play a central role in cassette recombination. Every acquired IC is inserted into the platform in the attI site, generating an array of cassettes via consecutive IC integrations. These ICs are transcribed from the Pc promoter and therefore, only cassettes placed close to it will be expressed, remaining the distal ones silent62. Nevertheless, some ICs contain their own promoters affecting the polar expression of the array of cassettes. Examples of self-expressed ICs are toxin-antitoxin (TA) systems63, and some antimicrobial resistance cassettes (ARCs) such as cmlA, qacE, and ereA64–66 Summarizing, under stress conditions the integrase is expressed modifying the array via excision and integration of ICs. The integrase can mediate the recombination of exogenous ICs in the first position of the array to modulate their expression and survive the external stressor. In consequence, the identity and location of ICs present in the array can vary depending on the circumstances, postulating the integron as an adaptive low-cost bacterial memory56. Introduction 36 Figure 3. Schematic representation of the mobilisation of ICs in integrons. A) Integrons are composed by a stable platform and a variable array of ICs (antimicrobial resistance cassettes (ARCs), gene cassettes of unknown function (gcu), etc). The platform contains the integrase gene, the Pc and Pint promoters, and the integron insertion site (attI). Under stress conditions, the integrase is expressed and it is able to excise and reshuffle IC from the platform, as well as to capture foreign ICs. The insertion of these IC in the first position of the array occurs through a reaction between the attI site and the cassette recombination site (attC). ICs are expressed from a Pc promoter following a gradient of expression from the first to the last IC of the array. B) Integrons are able to capture, exchange, and reshuffle integron cassettes (ICs) between mobile genetic elements and chromosomal integrons. Moreover, several mobile integrons are related to transposons that mobilize these platforms between plasmids and genomes. Integrons can be mobilized between cells through plasmid conjugation or transduction by bacteriophages67. Introduction 37 1.2.2 Origin of integrons: chromosomal integrons. Integrons are ancient chromosomal structures present in 17% of the bacterial species sequenced genomes68, commonly found across multiple bacterial phyla. Furthermore, some studies even suggest their presence in archaeal genomes69. Comparative analyses of all integron integrases show a significative sequence homology grouping together within the tyrosine- recombinase family. Moreover, there is a correlation between bacterial speciation and intI gene divergence, being integrases organised in genus-specific clades70. This fact suggests a main vertical transference of these platforms through punctual HGT events between bacteria sharing the same environments, dating the potential origin of sedentary chromosomal integrons (SCIs) hundreds of millions years ago. We can distinguish three major bacterial groups in relation to their chromosomal integrases: soil and freshwater proteobacteria, marine g-proteobacteria, and the inverted integrase group57. This last group is composed by bacteria of several taxonomic groups as Cyanobacteria, Spirochaetes or Planctomycetes, sharing a non-canonical integron structure with the integrase gene oriented towards the cassette array71. Among chromosomal integrons it is worth to highlight a subset denoted as superintegrons (SI). Superintegrons carry more than 20 ICs in their arrays with a high rate of identity in their cassette recombination sites (attC sites). SIs are especially prevalent in Vibrio species´ genomes; being Vibrio cholerae SI the paradigm of these structures72. Vibrio cholerae SI is located in chromosome two of this bacterium, covering the 3% of the entire bacterial genome. It contains 179 ICs distributed between intergenic repeated sequences, that correspond to attC sites, initially known as Vibrio cholerae repeats (VCRs). SI ICs functions are in general not known with few exceptions like a chloramphenicol resistance gene (catB9) and 19 TA systems among others73. 1.2.3 Mobile integrons: prevalence and clinical relevance. Sedentary chromosomal integrons (SCI) are not mobile by themselves, lacking the necessary machinery for their own integration and excision as a platform. Nevertheless, their association with transposable elements and HGT has mobilised integrons to a broader set of clinical bacteria via mobile integrons (MI) (Figure 3B)71. MIs can mobilize ARCs in arrays up to 11 ICs, playing a central role in antimicrobial dissemination. Currently, we can distinguish five canonical classes of MIs based on the sequence of their integrases (intI1-5). In addition, each class is usually linked to a certain MGE; being integron classes 1 and 3 commonly associated with Tn402 transposon74,75, class 2 unequivocally linked to Tn7 derivates76, and classes 4 and 5 generally found in Vibrio spp. elements conferring resistance to trimethoprim and sulfamethoxazole77,78. Introduction 38 Class 1 integrons are by far the most prevalent MIs across databases. Approximately 96% of the classified MIs recorded in the IntegrAll61 database are identified as belonging to this particular class (Figure 4A). Class 1 MIs carry a vast pool of ARCs against 12 different antibiotic families and antiseptics. Due to their adaptive potential, class 1 integrons can be found virtually in all species of Gram-negative pathogens79,80. It is estimated that humans and animals shed to the environment 1023 copies of class 1 integrons per day81. As a result of integron propagation, genomes of human and animal pathogens are constantly connected with those of environmental bacteria, highlighting the importance of evaluating the antimicrobial resistance issue from a One Health perspective. It is estimated that 50% multirresistant uropathogenic E. coli harbour a class 1 integron, being highly prevalent in clinical isolates82. In this line, recent metagenomic analyses have demonstrated the high prevalence (42%) of integrons carrying ARCs in Klebsiella pneumoniae genomes, a closely surveyed pathogen by the WHO due to its high virulence and multirresistance83. Figure 4. Mobile integron prevalence and classification. A) Prevalence of each MI class across IntegrAll database based on the identity of the integrase detected within the integron (intI1-5). B) Occurrence of each Pc variant and Pc P2 combinations across class 1 MIs. Data collected from 84. Among class 1 MIs, we can find several Pc variants classified according to their strength and sequence homology with the s70 promoter (Figure 4B). PcS (strong) variant leads to the highest transcription rate in contrast with the PcW (weak) variant, which corresponds to the lowest rates, about 25-fold weaker than PcS. In between PcS and PcW we can find other hybrid promoter variants such as PcH1 and PcH2, as well as PcSS (super strong) being the strength of this variant still inconsistent between publications84. In addition, class 1 integrons can harbour a second P2 promoter placed in the attI region that increases the strength of every Pc variant84–86. Summarizing, around 13 promoter variants and configurations have been already reported. These promoters are present in databases with different abundance, being PcW (41.7%) the most prevalent, followed by PcH1 (28%), and PcS (24.3%) variants. (Figure 4B). Interestingly, because Pc is encoded within intI1, Pc polymorphism affects integrase sequence modifying its activity in an inverse manner, the weaker the promoter, the stronger the excision activity of the integrase84. A B 0.09% Others 0.01% intI5 0.12% intI4 0.39% intI3 3.72% intI2 95.67% intI1 intI1 96% 24.00% PcS 0.30% PcS P2 4.40% PcH2 26.80% PcH1 1.20% PcH1 P2 0.30% PcSS 33.60% PcW 8.10% PcW P2 1.30% Others PcS 24% PcH1 26,8% PcW 33,6% intI1 Introduction 39 1.2.4 Recombination system. As mentioned above, integrons are able to incorporate and excise several ICs via integrase mediated recombination. This unique recombination system requires the three main elements to accomplish its function: the integron attachment site (attI site), the cassette attachment site (attC site), and the integrase to catalyse the recombination reaction. • The attI site. The attI site is located upstream the intI gene and it is recognised by the integrase as a double stranded (ds) substrate where ICs are integrated. attI sites vary between integrons in line with integrase sequence diversification87. Nevertheless, integrases are able to recombine ICs into non-cognate attI sites, albeit less efficiently. As an example, intI1 can integrate ICs into attI2 and attI3 sites with recombination efficiencies 100 times lower than into attI1 site88. Despite sequence differences, attI sites are essentially composed by two integrase binding sites named L and R that constitute the core site (Figure 5). The recombination point is located in the R box, specifically in the 5´ GTT 3´ triplet, where the integrase is going to perform a cleavage in the complementary or bottom strand (bs) between the C and the A base pairs (bp). On the contrary, the L box and the central region between boxes varies widely across attI sites. Regarding the attI1 site, two imperfect direct repeats (DR1 and DR2) located upstream of the core site have been identified as additional binding domains for the integrase. The presence of these DRs is not essential for the recombination process, suggesting that their role is to attract two more integrase monomers in close proximity to the core site89–91. Figure 5. Sequence of a double stranded (ds) attI1 site. L and R boxes and DRs are indicated with grey arrows. GTT triplet is coloured in purple and cleavage point is indicated with a purple arrow. Integrase binding domains are marked with pink shadows. Modified from 92. • The attC site. attC sites conform the 3´end of ICs and are responsible for ICs mobility. The structure of these recombination sites is more complex than the one described for attI sites. attC site exceptional characteristics make integron recombination a unique process, differentiating it from the canonical tyrosine(Y)-recombinase performance56. 5´ TTTGATGTTATGGAGCAGCAACGATGTTACGCAGCAGGGCAGTCGCCCTAAAACAAAGTTAGTGGATCC 3´ 3´ AAACTACAATACCTCGTCGTTGCTACAATGCGTCGTCCCGTCAGCGGGATTTTGTTTCAATCACCTAGG 5´ R boxL boxDR1DR2 “core site” Introduction 40 attC sites present in MIs can widely differ in sequence and length, from 55 to 143 bp. Nevertheless, all of them conserve the same palindromic organisation with two regions of inverted homology named R’’-L’’ and R’-L’ separated by a variable spacer (Figure 6)91. These palindromic sequences allow attC sites to fold, generating hairpin-like secondary structures that mimic a canonical recombination core site with L and R complete boxes93. Due to the formation of these hairpins, attC sites are recognized by the integrase as single-stranded (ss) substrates, in contrast to the attI site which is identified as a double stranded (ds) sequence. It is worth to mention that the bottom strand (bs) of every attC site is around 1000 times more recombinogenic than the top strand (ts)94. Figure 6. Sequence and structure of an attC site. A) Schematic representation of a double strand (ds) attC recombination site designating L’, L’’, R’ and R’’ boxes, as well as the variable terminal structure (VTS). B) Sequence of aadA7 attC site specifying top and bottom strands (ts and bs). C) Proposed secondary structure of aadA7 attC site indicating the uncoupled central spacer (UCS), the extrahelical bases (EHB) and the variable terminal structure (VTS). L’, L’’, R’, R’’ boxes are indicated with grey arrows/lines while the GTT triplet and the cleavage point are coloured in purple. EHB are also pointed in orange. Integrase binding domains are marked with pink shadows. Modified from 92. Comparative studies between attC sites show a clear sequence conservation in two triplets, 5´ AAC 3´ and 5´ GTT 3´, located in R’’ and R’ regions, being the cleavage point located between C and A bps as in attI sites. In addition, it is possible to extend the conserved region up to 7 nucleotides conforming the inverse core and the core (Figure 6A, 6B). These conserved regions consist on the complementary sequences 5´ RYYYAAC 3´and 5´ GTTYYYR 3´ where R stands for a purine and Y represents a pyrimidine56. A B 5´ ATGTCTAACAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTAGACAT 3´attC aadA7 ts 3´ TACAGATTGTTAAGTAAGTTCGGCTGCGGCGAAGCGCCGCGCCGAATTAAGTTCGCAATCTGTA 5´attC aadA7 bs R’R” L” L’ 5´ --RYYYAAC--------------- VTS ----------------GTTRRRY 3´ 3´ --YRRRTTG--------------- 20 to 104 bp ----------------CAAYYYR 5´ R’R” L” L’ attC site ds C “core”“inverse core” C GA 5´---GTCTAACG TT ATTAAGCCGCGCCGC 3´---CAGATTGT AA TAATTCGGCGCGGCG T G G T G A A attC aadA7 bs folded R box L box UCS VTSEHB Introduction 41 attC site folding adds an extra layer of information and regulation to the recombination process (Figure 6C). The presence of single bases in the R’’-L’’ region with no complementarity in the R’ - L’ region give rise to extrahelical bases (EHBs) in the folded structure. EHBs have an important role determining the recombinogenic strand (bs), stabilising the synaptic complex and avoiding a second cut of the integrase in the L box. Other structures that take part in the correct attC site folding are the variable terminal structure (VTS), located at the end of the stem; and the uncouple central spacer (UCS), which is the region between R’’-R’ and L’’-L’ boxes, also participating in the stabilization of the synaptic complex95–98. • The integrase. Integron integrases are members of the Y-recombinases family, with Xer recombinases as their closest relatives99,100. Consequently, they share some characteristics such as the same active site residues RKHRHY101. In contrast, integrases possess an extra domain named I2 domain that facilitates their unique recombination activity. I2 domain consists in 19 amino acids forming a a- helix structure which is not present in any other Y-recombinases102. This domain plays a crucial role stabilising the synaptic complex and accommodating the EHBs present in attC sites97. Notably, integrases are able to recognise different substrates in terms of sequence and structure; attI sites are dsDNA sequences while attC sites are ssDNA hairpins with little sequence homology. This dual-recognition implies a fined-tuned regulation of the synaptic complex and the interactions between monomers during recombination103. 1.2.5 Recombination reactions. Canonical recombination mediated by Y-recombinases follows a very conserved process. Initially, four monomers of the protein are assembled to both DNA substrates forming the synaptic complex. The process continues with a first strand exchange between DNA molecules, forming a transient structure called Holliday Junction (HJ), which is finally resolved through a second strand exchange101. Nevertheless, integrases perform a different recombination process by reason of the structural peculiarities of the attI and attC sites. Three different integrase-mediated recombination reactions can occur between attI and attC sites: the attC x attI reaction, which leads to IC insertion; the attC x attC, responsible for IC excision from the array; and the attI x attI reaction, potentially implicated in the rearrangement of ICs arrays located in different integrons, although 1000 times less efficient than the previous ones56. As a result of their participation in shuffling ICs, attC x attI and attC x attC reactions will be described in detail below. Introduction 42 • attC x attI: IC insertion The insertion of new ICs in the array occurs through attCbs x attI recombination (Figure 7). This reaction starts as a canonical recombination up to the formation of the HJ. attC sites are recognised as ssDNA substrates so the resolution of this atypical HJ (aHJ) by the classical second strand exchange would generate a linear DNA product and therefore, an abortive reaction. attC site EHBs impede this second cut of the integrase, resolving the aHJ by replication. Consequently, IC insertion is a semiconservative process producing the initial attI-containing substrate and the insertion of the IC97,104. As mentioned before, the cleavage previous to the strand transfer happens between the C and AA nucleotides in both substrates. This cut implies the formation of “chimeric” attI and attC sites where the last 6 bp of R boxes belong to the other substrate. Figure 7. Recombination reaction between attC bs and attI sites. An atypical Holliday Junction (aHJ) is formed after the first strand exchange between attI site (coloured in red) and the bottom strand of the attC site (coloured in green). The aHJ is resolved by replication (pointed blue arrows) producing the IC insertion and the initial attI-containing substrate. Integrase monomers are represented in purple. Modified from 56. • attC x attC: IC excision The recombination reaction between two attC sites leads to the excision of a IC (Figure 8). Both attC sites have to be folded simultaneously to allow the first strand exchange performed by the integrase, generating an aHJ, as happens in the attI x attC reaction. In this case, a second cut of the integrase would lead to an attC site exchange between ICs so the aHJ is also resolved by replication60,105. This semiconservative mechanism generates as products the excised IC, the original substrate and the substrate lacking the IC excised. Figure 8. Recombination reaction between two attC bs sites. The integrase recognise the bottom strand of two folded attC sites (coloured in orange and green) and cleaves provoking the strand transfer and aHJ formation. The aHJ is resolved by replication (pointed blue arrows) producing the excision of the IC, as well as releasing the original substrate and the substrate lacking the IC excised. Integrase monomers are represented in purple. Modified from 56. attC-containing substrate ss attC bs cleavage OH OH strand transfer aHJ formation replication products attC1/2 attC2/3 attC1/2 attC2/3 attC1/3 substrate IC2 excised attC2 IC2 ds attI ss attC bs GC attI- containing substrate cleavage O H O H strand transfer aHJ formation replication products ds attI attI/attC at tC /a ttI substrate IC inserted IC Introduction 43 1.2.6 Integron cassettes. Integrons carry a pool of more than a thousand different ICs71 recovered from virtually every environmental source and condition106. These ICs generally contain a promoterless open reading frame (ORF) followed by the attC site needed for its recombination in the platform. The size of integron ICs varies depending on the contained ORF generally falling within the range of 500 to 1500 bp. Functions encoded in most ICs are still cryptic and vary depending on their presence in CIs or MIs. CIs harbour a diverse pool of ICs of which only the function of 25% of them is known. This 25% of ICs encode genes with roles in DNA modification, virulence, TA systems, and phage- related functions71. In contrast, gene cassettes of unknown function (gcus) represent just the 11% of the total ICs present in MIs, being the remaining 89% involved in antimicrobial resistance (Figure 9A). Figure 9. IC occurrence and distribution in MIs. A) Occurrence of ICs of unknown function (gcu) and antimicrobial resistance cassettes (ARCs) in class 1 MIs (data collected from IntegrAll database). B) Distribution of ARCs found in MIs in the IntegrAll database. (QACs: quaternary ammonium compounds; Cm: chloramphenicol). Modified from 107. The fact that most MI ICs are involved in antimicrobial resistance is probably a consequence of the selective pressure exerted within the clinical settings. To date, the IntegrAll database records approximately 200 distinct ARC alleles within MIs. However, when a 95% threshold for nucleotide sequence identity is implemented, the count of unique ARCs decreases to 177 cassettes107. These ARCs confer resistance against 13 different antibiotic families (Figure 9B), including the most clinically relevant compounds like aminoglycosides, beta-lactams, sulphonamides, macrolides, phenicols, fosfomycin and quaternary ammonium compounds (QACs)107,108. Interestingly, no ARCs conferring resistance against tetracyclines have being found in MIs. A B intI1 ARCs gcu 11% 89% OBJECTIVES Scan me on Spotify Objectives 47 2 Objectives Antibiotic resistance stands as one of the most significant health challenges of the 21st century. The development of bacterial resistance is facilitated by the spread of resistance factors through horizontal gene transfer (HGT), which facilitates the genetic connection between unrelated bacterial genomes. Several genetic platforms such as plasmids or transposons can mobilize genes. During the rise of multidrug resistance, integrons carrying multiple antimicrobial resistance genes were found associated to both structures, circulating among clinical isolates. Mobile integrons (MIs) carry around 200 antimicrobial resistance cassettes (ARCs) against most antibiotic families and are hence major drivers of multidrug resistance. These genetic platforms are successful in the clinical setting for the adaptive value of their cassettes. Yet, marked differences in the abundance of individual cassettes suggest that each one has distinct evolutionary dynamics. Thus, the main objectives of this PhD Thesis are to characterize and quantitate the forces driving the evolutionary success of each ARC in integrons (namely: resistance levels, fitness cost, polar effects, and cassette recombination frequency), as well as to widen the understanding of the integron platform mechanisms. To accomplish the main objective of this PhD Thesis, a deeper look into the integron model is needed as well as the implementation of the next specific tasks: 1. Generate a comparative and comprehensive collection of strains bearing specific ARCs to characterize them on their native environment. 2. Determine the resistance levels conferred by each ARC. 3. Evaluate the influence of each ARC in the expression of downstream ARCs in the array, also known as polar effects. 4. Assess the fitness cost imposed by individual ARCs to the host. 5. Measure the capacity of single ARCs to be integrated or excised from the integron. 6. Revisit the literate to give light to controversial topics related with integron regulation. MATERIALS AND METHODS Scan me on Spotify Materials and Methods 51 3 Materials and Methods 3.1 Bacterial Strains, Plasmids, and Culture Conditions. Escherichia coli MG1655 and DH5a were used as recipients for all plasmid constructions in this study, unless otherwise stated (Supplementary Table S1). Bacterial strains were cultured at 37ºC in Müller Hinton (MH; Oxoid, UK) or lysogeny broth (LB; Oxoid, UK) liquid media and MH/LB agar (1.5%) solid media (BD, France). Zeocin (Invivogen, USA) was added at 100 µg/mL to maintain pMBA plasmid collection in E. coli. Liquid cultures were incubated in an Infors Multitron shaker at 200 rpm (Infors HT, Switzerland). 3.2 Generation of the pMBA collection and derivatives. Most plasmids used in this study (Supplementary Table S1) derive from pMBA107; a vector that mimics the genetic environment of a class I integron with a cassette of interest in the first position of the array. Antimicrobial Resistance Cassettes (ARCs) were synthesized in vitro (IDT, US) adding homology regions with pMBA vector in both 5´and 3´ends. To generate pMBA collection we cloned each ARC in the first position of the array (attI site) using Gibson Assembly (Figure 10)109. Briefly, pMBA vector was linearized and amplified by Polymerase Chain Reaction (PCR) using Int R bb and GFP F bb primers while each ARC was amplified by PCR using gBlock F and gBlock R primers (Supplementary Table S2). Amplifications were performed using a PCR ProFlex Thermocycler (Applied Biosystems, US) and 2x Phusion Green HSII High-Fidelity PCR MasterMix (Thermo Scientific, US) following manufacturer´s instructions. PCR thermocycling conditions contained an initial stage of 30 seconds at 98°C followed by 30 cycles of amplification (10 seconds at 98°C, 15 seconds at 55°C, and 15 seconds/kb. amplified at 72ºC), with a final stage of 10 min at 72ºC. PCR products were run by agarose (Biotools, Spain) gel (1%) electrophoresis and visualized using a GelDoc apparatus (BioRad). Gibson assembly reaction was performed in a final volume of 4 µl containing 1 µl of the linearised vector, 1 µl of the insert (each AR cassette), and 2 mL of the 2X Gibson Assembly Buffer (5X ISOBuffer, 10.000, 147 u/mL T5 exonuclease, 2,000 u/mL Phusion polymerase, 40,000 u/mL Taq ligase, ddH2O). The mix was incubated for 30 minutes at 50 ºC before being transformed into E. coli MG1655 competent cells. Figure 10. Schematic representation of the cloning region in pMBA derivatives. Each ARC was cloned in its native environment in the first position of the array (integron attachment site or attI site) and followed by a GFP gene. The primers used both for backbone and ARCs amplifications are represented in orange. Materials and Methods 52 Competent cells used in this study were either chemo-competent or electro-competent. Overnight culture of the strain of interest was diluted 1/100 in 100 mL of fresh MH broth and incubated at 37ºC with shaking until reaching optical density (OD600) 0.6 for chemo-competent cells and OD600 1 for electro-competent cells. Cells were then placed in ice and washed twice (centrifuge 6000 rpm, 10 min, 4ºC and resuspended again) using 10 mL of CaCl (0,1 M) or 10% glycerol (Sigma, US) autoclaved ddH20 for acquiring chemo or electro-competence respectively. Cells were finally resuspended in 5 mL of 15% glycerol CaCl (0,1 M) (chemo) or 300 µl of 10% glycerol autoclaved ddH20 (electro), before aliquoting and freezing at -80ºC. Chemo-competent cells were transformed by thermal shock via 45 seconds incubation at 42ºC, while an Eporator (Eppendorf, Germany) was needed to transform electro-competent cells (2 mm electroporation cuvettes (Molecular Bioproducts, US), 2500V). After transformation, cells were resuspended in 1 mL of fresh MH broth and incubated at 37ºC with shaking for an hour prior to plating in MH agar supplemented with selective antibiotics. Primers used to generate pMBA derivatives and mutants are listed in Supplementary Table S2. All construction sequences were verified after transformation by Sanger sequencing (Macrogen, South Korea) of the region of interest (from Pc promoter to the end of gfp gene) using the following primers: Int F, GFP R and GFP 2.0 R (Supplementary Table S2). 3.3 Antimicrobial resistance characterization by agar diffusion test. We assessed the antimicrobial resistance of each strain in pMBA collection using disc diffusion tests in MH-agar broth. Overnight cultures of pMBA-derived strains were adjusted to a 0.5 in the McFarland scale using filtered saline solution (NaCl 0.9%). The resulting solutions were diluted 1/200 and plated on MH agar plates by inundation using approximately 3 mL of solution for 3 minutes. After disposing any excess of inoculum and allowing the plates to dry, antibiotic discs (Supplementary Table S3) (Oxoid, BioRad) were deposited on top of the agar. Plates were incubated overnight at 37ºC. The resulting inhibitory halos around the antibiotic discs were measured to characterise the antibiotic susceptibility of each strain. 3.4 Minimal inhibitory concentration (MIC) determination. MIC determination, defined as the minimal concentration at which bacterial growth was inhibited , was performed according to guidelines set by the Clinical and Laboratory Standards Institute (CLSI)110. To summarize, 105 colony-forming units (CFUs) were inoculated in 200 µl of fresh MH with doubling dilutions of each selected antibiotic. The 96 well-plates (Nunc, US) were then incubated overnight at 37ºC in static conditions. We considered the MIC as the media of at least three biological replicates for each antibiotic and strain. Antimicrobials tested in MIC determination are listed in Supplementary Table S4. Materials and Methods 53 3.5 Quantitation of GFP expression by flow cytometry. To determine Green Fluorescent Protein (GFP) expression, three independent colonies of each pMBA derived strain were inoculated in MH/LB zeocin and incubated at 37ºC overnight. Cultures were then diluted 1/400 in filtered saline solution to measure fluorescence using a Cytoflex-S flow cytometer (Beckman Coulter) for stationary phase measurements. For exponential phase measurements, overnight cultures were diluted 1/100 in MH supplemented with zeocin and incubated at 37ºC with shaking for 2 hours prior to measure fluorescence diluting samples 1/20 in saline solution. The 488 nm laser was used to detect gfp expression through 525/40 nm (FITC) band pass filter. 20,000 events were recorded per sample. Data were analysed using CytExpert software (v.2.4; Beckman Coulter). 3.6 Quantification of gfp translation by Western blot. Specific strains were selected for relative GFP protein quantitation through Western blot. Western blot protocol was followed as described in Hipólito et al, 2022. Briefly, strains were incubated in MH at 37ºC overnight, one mL of each culture was collected, pelleted and resuspended in 50 µl of Laemli buffer (BioRad, US) with 20% b-mercaptoethanol (BioRad). The solutions were boiled, and 10 µl of the supernatants were separated by electrophoresis (30 min 200 V) using 4–12% gradient polyacrylamide precast gels (Invitrogen, USA). Proteins were then transferred to nitrocellulose membrane using iBlot2 system (Invitrogen). Membranes were blocked using a solution containing 2% BSA and 0.2% Tween-20 TBS (BSA TBS-T) for 1 hour, followed by a 2-hour incubation with primary antibodies diluted in fresh 2% BSA TBS-T (mouse a-GFP 1/50,000 (Invitrogen) and mouse a-DnaK 1/6.000 (Enzo Life Sciences, US)). Next, the membranes were washed thrice and incubated for 1 hour with the secondary antibody HRP- labelled goat anti-mouse IgG (Invitrogen) diluted 1/10,000 in fresh 2% BSA TBS-T. Finally, the membranes were developed using SuperSignal West Pico Plus Chemiluminescent Substrate and ChemiDoc XRS+ imaging system Data were analysed with ImageLab software (v.6.0.1, BioRad) to quantitate band intensities. 3.7 Quantification of gfp transcription by RT-qPCR. Reverse transcription qPCR was performed to quantitate gfp differential transcription in each pMBA derivative. Three biological replicates of each strain were diluted 1/100 in MH broth supplemented with zeocin and grown at 37°C with shaking until reaching exponential phase (OD600 = 0.6-0.8). Two mL of each culture were pelleted and resuspended in 50 µl of lysozyme 3 mg/mL (Thermo Scientific) prior to freezing at -20ºC. RNA extraction was performed using the RNeasy Mini Kit (QIAGEN), following the manufacturer’s protocol. Residual DNA was removed using the TURBO DNA-freeTM Kit (Invitrogen). RNA concentration and integrity were measured using a BioSpectrometer (Eppendorf). For cDNA synthesis, 1 µg of RNA was used for reverse transcription using the QuantiTect Reverse Transcription Kit (Qiagen, Germany) according to manufacturer’s instructions. Materials and Methods 54 cDNA was diluted 1/2000 and 1µL of this dilution was used for quantitative PCR (qPCR). qPCR was performed in QuantStudio 3 Real-Time PCR system (Applied Biosystems) with the Sybr Green Fast MasterMix Kit (Applied Biosystems) according to manufacturer’s instructions. Primers used in the mix are listed in Supplementary Table S2. qPCR reactions were previously optimised, with reaction efficiencies within the range of 90-110%. Each PCR reaction contained 400 μM of each primer, Sybr Green Fast MasterMix 2x, and 1 μL of template cDNA. PCR thermocycling conditions contained an initial 10 min at 95 °C step, followed by 40 cycles of 15 s at 95ºC and 1 min at 60ºC. Fluorescence for each cycle was recorded after the step at 60 °C. Design and Analysis software version 2.3.3 (Applied biosystems) automatically determined quantification cycle (Cq) and baseline. Negative controls included both a reaction containing water instead of template and a reverse transcriptase-free reaction. For data analysis, the relative abundance of gfp transcripts was normalized to that of the housekeeping genes rssA and rpoA. 3.8 In vitro competition assays by flow cytometry. To assess the cost of each ARC, we performed in vitro competition assays following the protocol published in DeLaFuente et al, 2020111 (Figure 11). In short, we competed strains containing different ARCs and a strain harbouring the empty vector pMBA with the GFP knockout (GFP KO). This allowed us to differentiate both population using flow cytometry. Measuring the initial and final proportions of each population along the experiment permitted us to determine the fitness cost associated to each ARC. At least 6 biological replicates of each competition were performed per condition. Precultures were incubated overnight in MH broth without any selective pressure at 37ºC with shaking. 1:1 mix of both competitor strains was performed and diluted 1/400 in filtered saline solution to determine the initial distribution of each population. Measurements were performed using a Cytoflex-S flow cytometer (Beckman Coulter, US), as described above. The mixture was also diluted 1/400 in fresh MH broth and incubated at 37ºC with shaking for 22 hours. After 22 h of incubation, final proportions were quantitated as described previously. The fitness of each pMBA derivative strain relative to the parental strain (pMBA KO) was calculated using the following formula: In the formula, wpMBA ARC corresponds with the relative fitness of each pMBA derived strain (pMBA ARC) in comparison with the strain harbouring the empty vector with the GFP knockout (pMBA GFO KO). Ni and Nf refer to the number of cells at the beginning and the end of each competitor along the experiment. 𝑤!"#$ $&' = ln (𝑁(, !"#$ $&' 𝑁*, !"#$ $&'⁄ ) ln (𝑁(, !"#$ +,- ./ 𝑁*, !"#$ +,- ./⁄ ) Materials and Methods 55 Figure 11. Flow diagram of the experimental process. Distinguishable bacterial cultures were mixed in 1:1 ratio prior to measure their initial populations by flow cytometry. The mixture was diluted and incubated for 22 h at 37 ºC with shaking. Lastly, final populations were measured by flow cytometry again. When competitions were performed under anaerobic conditions, 96-well plates were incubated inside hermetic recipients where anaerobe container system sachets (BD, US) were deposited to generate the anaerobic atmosphere. The fact that GFP needs oxygen to fluoresce, forced us to expose cells to oxygen 2h with shaking when diluted 1/400 in filtered saline solution before measurements. 3.9 OMM12 stocks preparation. The Oligo Mouse Microbiota (OMM12) is a synthetic bacterial community comprising twelve different bacterial species (Enterococcus faecalis KB1 (DSM32036), Bifidobacterium animalis YL2 (DSM26074), Acutalibacter muris KB18 (DSM26090), Muribaculum intestinale YL27 (DSM28989), Flavonifractor plautii YL31 (DSM26117), Enterocloster clostridioformis YL32 (DSM26114), Akkermansia muciniphila YL44 (DSM26127), Turicimonas muris YL45 (DSM26109), Clostridium innocuum I46 (DSM26113), Bacteroides caecimuris I48 (DSM26085), Limosilactobacillus reuteri I49 (DSM32035) and Blautia coccoides YL58 (DSM26115)). The OMM12 are able to colonize the murine intestinal system and serve as a model of bacterial mouse gut consortia as its members represent the 5 mayor eubacterial phyla present in the gut112. OMM12 stocks used in competitions assays in vitro and in vivo were prepared from individual monoculture inocula. Monocultures were grown from frozen glycerol stocks under strict anaerobic conditions at 37ºC in 10 mL culture flasks (flask T25, Sarstedt, Germany) filled with anaerobic medium (18 g/L glucose free brain-heart infusion (Oxoid), 15 g/L glucose free trypticase soy broth (USBiological), 5 g/L yeast extract, 2.5 g/L K2HPO4, 1 mg/L haemin, 0.5 mg/L menadione, 3% heat-inactivated fetal calf serum, 0.25 g/L cysteine-HCl‧H2O). Monocultures were diluted 1/10 in fresh anaerobic medium and incubated again for 24 hours. Prior to OMM12 generation, monocultures were checked for contaminations performing Gram stainings. Mix 1:1 Ti Incubate 22 h Tf 22 h Growth rates 22 h Growth rates pMBA ARCpMBA GFP KO Materials and Methods 56 After checking for contaminations, monocultures were diluted to an OD600 of 0,1 in fresh AMM medium and mixed in equal proportions. Final OMM12 stock was then aliquoted and frozen at -80ºC in anaerobic vials with glycerol (final concentration 10%). A 500 µL aliquot was collected to quantify the relative abundance of each member of the OMM12 consortia in the final mixture via qPCR. 3.10 In vitro competition assays by phenotypic selection. Bacterial fitness in the presence of each ARC was also assessed by phenotypic selection in different environments and conditions. In these experiments we competed pMBA derived strains without GFP (pMBA ARC DGFP) against a strain harbouring the empty vector without the GFP (pMBA DGFP). At least three independent biological replicates were performed per competition and condition. We performed three independent competition experiments selecting by phenotype: in the presence of oxygen, in the absence of oxygen, and in the presence of OMM12 bacterial consortia under anaerobic conditions. Aerobic competitions were performed at 37 ºC with shaking. Precultures of pMBA ARC DGFP and pMBA DGFP were grown overnight in MH broth. Then, 106 CFUs of each culture were mixed in 5 mL of MH broth without selective pressure and incubated overnight. A total of 2x106 CFU were transferred to 5 mL of fresh MH broth every 24 hours for 5 days. Samples were taken every day, diluted 100.000 times and plated in MH agar plates. The proportion of resistant colonies was inferred by replica plating of 50 colonies on MH agar plates with specific selective pressure depending the ARC encoded in the vector (Supplementary Table S5). Anaerobic competitions were performed under a specific gas atmosphere (7% H2, 10% CO2, 83% N2). Precultures were grown overnight in 24-well plates (Nunc) and mixed adding 0.1 mL of each culture (OD600 = 0.1) to a final volume of 1 mL of fresh MH broth. After 24h incubation each mixture was diluted 1/10 in fresh MH every 24 hours for 5 days. Plating was performed as stated in the previous paragraph. Anaerobic competitions in the presence of OMM12 consortia were performed following the previous protocol with an exception: initial proportions in the mixture were 10:1, adding 100 µL of OMM12 stock and 10 µl of each competitor to 900 µL of fresh M10 broth (18 g/L glucose free brain-heart infusion (Oxoid), 15 g/L glucose free trypticase soy broth (USBiological, US), 5 g/L yeast extract, 2.5 g/L K2HPO4, 1 mg/L haemin, 0.5 mg/L menadione, 3% heat-inactivated fetal calf serum, 0.25 g/L cysteine-HCl‧H2O, 0.025% mucin, 0.5 g/L of fucose, xylose, arabinose, rhamnose and lyxose, 2 g/L of xylan from beechwood (Roth, Germany)). Moreover; 500 µL of day 5 mixed cultures were collected to quantitate the relative abundance of each OMM12 member. Materials and Methods 57 3.11 In vivo competition assays. In vivo competitions were performed using C57B1/6 mice stably colonized with OMM12 defined bacterial consortia. Mice were housed under germfree conditions in IsoCage P systems (Tecniplast, Italy). Mice were supplied with autoclaved ddH2O and Mouse-breeding complete food for mice (Ssniff, Germany) ad libitum. All mice were males between 10-15 weeks. They were randomly assigned to experimental groups and kept in groups of 2-4 individuals per cage during the experiment. Animal health was scored twice a day along the experiment. Previous to bacterial inoculation, strains were cultured in MH broth for 12 hours at 37ºC on a wheel rotor and mixed 1:1 (pMBA DGFP : pMBA ARC DGFP). Mice were inoculated with mixing cultures by gavage (100 µL on the fur and 50 µL orally). Faecal samples were taken every 24 hours for the first 4 days and at the end of the experiment at day 7 for plating and qPCR analysis. All mice were sacrificed by cervical dislocation at day 7 before collecting their caecal content. E. coli loads in faeces and caecal contents were determined by plating on MacConkey agar (Oxoid) supplemented with vancomycin (7,5 µg/mL), or with vancomycin and zeocin to determine E. coli pMBA loads. The proportion of resistant colonies was inferred by replica plating of 50 colonies per sample on MacConkey agar plates with specific selective pressure depending the ARC encoded in the vector (Supplementary Table S5). 3.12 gDNA extraction from faecal pellets, caecal samples and in vitro competitions. Genomic DNA (gDNA) was extracted from in vitro and in vivo competitions where OMM12 community was present. The protocol used was stablished based on Turnbaugh et at., 2009 and Ubeda et al., 2012 as references113,114. Faecal, caecal or in vitro competition samples were thawed and resuspended in 500 µL of extraction buffer (200 mM Tris (pH 8.0), 200 mM NaCl, 20 mM EDTA), 210 mL of 20% SDS, 500 µl phenol:chloroform:isoamylalcohol (25:24:1, pH 7.9, Roth) and 500 µL of 0.1 mm-diameter zirconia/silica beads (BioSpec Products, Bartlesville, OK, Roth). Bacteria were lysed using a bead beater (TissueLyser LT, Qiagen) at max speed (50 s-1) for 4 min and centrifuged 5 min at full speed (14,000 x g). Supernatants were collected without taking phenol from the lower phase and transferred to a new tube containing 500 µL of phenol:chloroform:isoamylalcohol. Samples were mixed and centrifuged again, collecting the upper phase of the supernatant. This phase was then mixed by inversion with 1 mL of 96 % ethanol supplemented with 50 µl Sodium Acetate 3M to precipitate gDNA. After 30 min centrifugation (14,000 x g), at 4 °C; pellets were washed with 500 µl 70% ice-cold ethanol and centrifuged again 15 min (14,000 x g), at 4 °C. gDNA pellets were air dried and resuspended in 100 µL of TE buffer. Finally gDNA samples were purified using a NucleoSpin gDNA clean-up kit (Macherey-Nagel, Germany), following manufacturer´s instructions. Materials and Methods 58 3.13 Quantification of OMM12 microbiota members and E. coli abundance by qPCR. qPCR of bacterial 16S rRNA genes was performed following Brugiroux et al, 2016 protocol112 to evaluate relative abundance of OMM12 members and E. coli along in vitro and in vivo competition assays. Primers and probes used to this purposed are listed in Supplementary Table S2. qPCR reactions were previously optimised, with reaction efficiencies within the range of 90- 110%. qPCR reactions with gDNA templates extracted from in vitro competitions, faeces, or caecal content were run in duplicate in a LightCycler96 Thermocycler (Roche, Switzerland). Each PCR reaction contained 30 μM of each primer, 25 μM of each probe, FastStart Essential DNA Probes MasterMix (Roche) and 5 ng template gDNA. PCR thermocycling conditions contained an initial 10 min at 95 °C step, followed by 45 cycles of 15 s at 95ºC and 1 min at 60ºC. Fluorescence for each cycle was recorded after the step at 60 °C. LightCycler96 software version 1.1 (Roche) automatically determined quantification cycle (Cq) and baseline. 3.14 RNA-Seq analysis. Total RNA was extracted from E.coli MG1655, pMBA and pMBA derivatives to assess differences in their transcriptomes as stated before. The rRNA depletion and subsequent RNA- Seq library and sequencing was carried out by Oxford Genomics Centre using Illumina´s NovaSeq6000 sequencing platform. Transcriptomic data processing consisted in a first trimming step using Trim galore v0.6.6 (https://github.com/FelixKrueger/TrimGalore). In this step, a trimming quality threshold of 20 was used and adapters and reads shorter than 50 bp were removed. Next, trimmed reads were mapped to E. coli MG1655 reference genome (Accession number: NC_000913.3) using BWA-MEM v0.7.17115. FeatureCounts from the Rsubread v2.10.2 package was then used to obtained read counts116. Differential expression analysis was performed from raw count data using DESeq2, version 1.36.0117 using as threshold parameters log2fold change > 1 and padj < 0.05. 3.15 Motility quantitation by swarming assays. To determine motility in pMBA derived strains we performed swarming assays. Independent colonies were cultured in MH medium at 37ºC overnight. Swarming media (TSB 10 g/L, NaCl 5 g/L, Agar 2.5 g/L) was prepared and poured into squared Petri dishes plates (Deltalab, Spain), letting them dry for 25 min before inoculation. Three microlitres of the overnight cultures were inoculated inside swarming media and incubated at 37ºC for 12 hours. Anaerobic swarming assays were performed following the same protocol with some modifications. Agar plates were placed inside hermetic recipients where anaerobe container system sachets (BD) were deposited to generate the anaerobic atmosphere. Then, these recipients were incubated at 37ºC for 24 hours. At least 6 biological replicates were used for each strain and condition. Motility was then quantitated by measuring the halo diameter around the inoculation point. Images were taken using a GelDoc apparatus using epilight (BioRad). https://github.com/FelixKrueger/TrimGalore Materials and Methods 59 3.16 Recombination assays. We performed recombination assays to compare attI x attC recombination rates depending on the ARC recombined. The purpose of this test is to introduce a recombination substrate (attI site in our experiments) by conjugation into a recipient bacteria that express IntI1 integrase and already possesses the other recombination substrate (each attC site in our experiments). The attI site delivered by conjugation is encoded in a suicide vector from the R6K-based pSW family118, while the recipient strain harbours a p3938 plasmid that encodes an IntI1 integrase under the control of a PBAD promoter, and each pMBA derived plasmids encoding the recombinogenic attC sites. E. coli b2163 (dapA-, pir+) was used as donor strain as it can sustain pSW replication by the expression of the pir gene, although it requires DAP to grow. On the other hand, E. coli DH5a was selected as recipient strain. Donor and recipient strains used in recombination assays are described in Supplementary Table S1. We mimicked the cassette insertion process following the protocol stated in Biskri et al, 2005; with some modifications119. Overnight cultures of donor and recipient strains were diluted 1/100 in 200 µL of fresh MH broth supplemented with arabinose 20% and DAP 0,3 mM, and incubated in 96-well plates at 37ºC with shaking for 3h reaching an OD600 of 0,6. Strains were mixed 1:4 (40 µL donor : 160 µL recipient) and pelleted by centrifugation (3 min. 4.400 rpm). 160 µL of supernatant was removed and the mixture was then resuspended in the 40 remaining microlitres. 10 µL of the concentrated mixtures were plated in 96-well plates coated with 100 µL of LB agar supplemented with DAP and arabinose and incubated overnight at 37ºC. Finally, each well was resuspended in 120 µL of fresh MH and serial dilutions were plated by spots in different selective markers to determine total recipients and transconjugants. In case of low recombination frequencies, 100 µL of the direct resuspension were also plated independently. The frequency of recombination in the recipient bacteria was determined by counting the number of recipients expressing the pSW resistance marker (Chloramphenicol) over the total number of recipients in the absence of DAP, since the replication of pSW depends on the presence of the P protein. In this case, the recombination rate was calculated as the ratio of transconjugants resistant to chloramphenicol (Cm+, Zeo+, Carb+) to the total number of recipients (Zeo+, Carb+). The presence of the attI-attC cointegrate was checked by PCR with specific primers (Swbeg and CheckConjGFP2.0) (Supplementary Table S2) randomly selecting six clones per recombination. Three biological replicates and two technical replicates were performed per recipient strain. A negative control of recombination was also performed in the absence of integrase to stablish background recombination. Materials and Methods 60 3.17 Calculation of the probability of folding attC sites. The probability of folding the recombinogenic structure of each attC site was calculated using the online RNA webserver (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi). First, we submitted the attC sequence for folding using “Matthews model, 2004” as DNA folding parameter. Then, the same sequence was submitted for folding denoting R and L boxes as constrains in the sequence. The free energies of both thermodynamic ensembles were then used to calculate the probability of folding the recombinogenic structure using the following formula120: In the formula, p is the probability of forming the recombinogenic structure, DGu and DGc are the free energy values of both the unconstrained and constrained sequence foldings respectively, R is the gas constant (R=1.987x10-3 kcal/mol/K), and T is the temperature of folding measured in Kelvin (310K). 3.18 Growth curves. Three independent colonies were resuspended in MH zeocin and incubated overnight at 37ºC with shaking. Cultures were then diluted 1:200 in fresh MH zeocin media and 200 µl were inoculated in 96-well plates. Plates were incubated for 22 h and OD600 was measured every 10 minutes using an incubated Synergy HTX plate reader. Prior to measuring, the plates were subjected to shaking at 280 cycles per minute. Growth curves under anaerobic conditions were performed using an incubated GenTech Epoch2 plate reader under strict anaerobic conditions (gas atmosphere 7% H2, 10% CO2, 83% N2). 3.19 Inducibility of aacA5. In an effort to recreate Jia et al.’s experiments121, we studied the inducibility of aacA5 using disc diffusion tests and induction in broth. Disc diffusion tests: Overnight cultures of pMBA, pMBA5´-aacA5 and pBGT were adjusted to a 0.5 in the Mc-Farland scale using saline solution. These solutions were further diluted 1/200 and seeded on MH agar plates by inundation (∼3 ml) for 3 minutes. After discarding the remainder of the inoculum and letting the plates dry, discs containing kanamycin (30 µg), sisomycin (30 µg) or arabinose (2 µg) were placed on top of the agar. Kanamycin disks were obtained from Oxoid (Supplementary Table S3) while sisomicin and arabinose discs were prepared in house using commercial 6-mm sterile discs (Oxoid) and powder reagents (Supplementary Table S3). Plates were incubated overnight at 37ºC. Pictures were taken in a GelDoc apparatus using epilight for growth and UV transillumination for GFP fluorescence (BioRad). Fluorescence pictures were taken using constant exposition values across all plates to avoid misinterpretations derived from exposition differences. Fluorescence profiles across the diameter of the plate were obtained using ImageJ plot profile tool (https://imagej.nih.gov/ij/). 𝑝 = 𝑒[(∆+3!4∆+")/&7] http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi https://imagej.nih.gov/ij/ Materials and Methods 61 Induction in broth: three independent colonies of pMBA and pMBA5´-aacA5 were inoculated in LB and incubated at 37ºC overnight. Cultures were then diluted 1/50 in fresh LB containing a range of inhibitory and subinhibitory concentrations of kanamycin (0.125 - 16 µg/mL) and 2 × 200 µl of each were placed in 96-well plates and incubated at 37ºC without shaking. Growth and GFP expression were followed along 24 h using a Biotek Synergy HTX plate reader and BioStack plate feeder (Agilent, USA). Growth (OD600) and fluorescence intensity at 488 nm were measured every 15 min with prior shaking at 567 cpm for 10 seconds. Growth and fluorescence curves are the result of the mean of the two technical and three biological replicates (six points) of each strain. In an interpretation of the experiments performed by Jia et al. we also took a sample of these cultures after 1 h of incubation, diluted 1/20 in filtered saline solution and measured fluorescence using a Cytoflex-S flow cytometer (Beckman Coulter). RESULTS Scan me on Spotify Results 65 4 Results The results section of the present PhD thesis is structured into two main parts, each of them includes a series of studies. The first part of this section, named “Evolutionary dynamics of integron resistance cassettes”, develops the results obtained from the characterisation and quantitation of the evolutionary forces that drive ARC success. Likewise, this part is subdivided in 5 chapters that enclose the generation of the strains collection, the antimicrobial resistance profiling of all ARCs, the study of ARC-dependent polar effects occurring in integron arrays, the measurement of the fitness cost entailed by each ARC, and the quantitation of the differential mobility of each ARC. The second part of the results section, named “A deeper look into the integron model”, seeks to clarify aspects of the integron regulation that remain controversial in the field. This part deals with the counterintuitive presence of an aminoglycoside-sensing riboswitch that regulates the expression of ARCs in integrons. It is worth mentioning that some of the results shown in this work have been already published in prestigious and peer-reviewed journals. The antimicrobial resistance characterisation of each ARC, enclosed in the first part of the results, has been publish in npj Antimicrobials and Resistance journal under the title “Profile and Resistance levels of 136 Integron resistance Genes”122. In addition, the second part of the results have been successfully published in Nucleic Acid Research journal titled “The expression of aminoglycoside resistance genes in integron cassettes is not controlled by riboswitches”107. PART 1 Evolutionary dynamics of integron resistance cassettes Results: Evolutionary dynamics of integron resistance cassettes 69 4.1 Evolutionary dynamics of integron resistance cassettes. Mobile integrons are present in a plethora of Gram-negative bacterial species carrying around 200 different antimicrobial resistant cassettes (ARCs). These ARCs provide resistance against 13 different antimicrobial families and are widespread across environmental and clinical settings81,82. Despite its general and boundless role in the rise of antimicrobial resistances, individual ARCs have very different prevalence across databases. ARCs displaying the same activity and closely related are found in very different frequencies across datasets (Figure 12). Figure 12. Occurrence of each ARC within its gene family across databases. Graph showing ARC occurrence in IntegrAll database in the three main ARC families: aminoglycoside resistance cassettes (aa), beta-lactam resistance cassettes (bla), and trimethoprim resistance cassettes (dfr). ARCs that comprise half of the datasets for each ARC family are specified by their names and occurrences in the graph. Data collected from the 10 genera with more than 100 class 1 MI sequences described (Acinetobacter, Aeromonas, Citrobacter, Enterobacter, Escherichia, Klebsiella, Proteus, Pseudomonas, Salmonella, and Vibrio). This fact indicates that antibiotic selection is not the only parameter that governs the fate of ARCs, so there should be other factors linked to the identity of the ARC contributing to its success. We believe that this factors are the antimicrobial activity and the fitness cost entailed by each ARC, as any other antimicrobial resistance gene. In addition, due to its presence within the integron platform, the potential polar effects in downstream cassettes as well as its differential capacity to recombine should be taken into account as elements driving ARCs success. In order to study these four evolutionary forces, we have generated a collection of strains bearing specific ARCs in a vector (pMBA) which mimics its natural environment, an integron. 0 50 100 aa aadA2 (33,8%) aadA5 (15,7%) aadB (11,4%) A R C s oc ur re nc e (% ) bla blaVIM-2 (19,2%) blaOXA-1 (15,7%) blaVIM-1 (13,5%) blaOXA-2 (10,8%) dfr dfrA12 (32,5%) dfrA17 (24,6%) Results: Evolutionary dynamics of integron resistance cassettes 71 4.1.1 Generation of the pMBA collection. First, we retrieve all ARCs from the IntegrAll database, the main curated repository of integron sequences. Applying a 95% nucleotidic sequence cut-off, we identified 177 different ARCs in class 1 mobile integrons107, as mentioned in the introduction of this work (Supplementary Table S5). We synthetised each ARC and cloned them in pMBA, a vector designed ad hoc for this study that mimics the natural environment of a class 1 integron allowing us to characterise each ARC on its native background (Figure 13A). pMBA is a non-conjugative small size plasmid based on a p15a origin of replication (9 copies per cell123) including a zeocin resistance marker, ensuring a universal selection that does not interfere with any specific ARC cloned. pMBA, recreates the genetic environment of a cassette in the first position of a class 1 mobile integron, cloning each ARC in the integration site (attI1) simulating an integration event mediated by an integrase. These ARCs are positioned close to a strong Pc promoter (PcS)124 that is encoded within the integrase gene. We choose a PcS promoter since it would allow us to identify even subtle differences in ARC performance, although it is not the most common described in class 1 MI. It is worth mentioning that the intI1 gene present in the vector is truncated to avoid the undesired recombination events and deleterious effects of the integrase activity125. Downstream the integron there is a GFP gene acting as a second cassette in the array. This GFP will help us to determine the effect of each ARC in the expression of the following cassette in the array. Furthermore, it will be useful for fitness cost quantitation by in vitro competition assays using flow cytometry111. Figure 13. Generation of the pMBA collection. A) Diagram of pMBA derived vectors encoding ARCs. pMBA vector is built from a p15a origin of replication, adding to it a zeocin resistance marker and an integron-like platform. This integron is composed by a truncated integrase (DintI1) encoding native PcS and Pint promoters and the array. Each ARC is cloned in the integration site (attI1) in the first position of the array, followed by a GFP placed as second cassette of the array after the ARC attC site. B) Histogram showing the number of ARCs cloned or not against each antimicrobial family (aa: aminoglycoside resistant gene; dfr: dihydrofolate reductase; bla: beta-lactamase; fos: phosphomycin resistance gene; qac: quaternary ammonium compounds resistance gene; smr: small multidrug resistance gene; cat and cml: chloramphenicol resistance genes; arr: rifampicin resistance gene; sul: sulphonamide resistance gene; qnrVC: quinolone resistance gene; lnu: lincosamide resistance gene; ere: erythromycin resistance gene). Modified from 122 A B Results: Evolutionary dynamics of integron resistance cassettes 72 Unless otherwise specified, all ARCs were introduced into Escherichia coli MG1655 and their sequences were verified by Sanger. The selection of this particular bacterium is justified by its significant role as an opportunistic pathogen in both community and hospital settings, along with its tendency to harbour and acquire antibiotic resistance genes. Its relevance it is also confirmed as it is part of the ESKAPEE group, bacterial pathogens highly virulent and multidrug resistant. Among the 177 ARCs, we were able to establish 136 of them in pMBA with the correct sequence (Figure 13B). In an attempt to clone the remaining 41, we used E. coli MG1655 high competent cells with a transformation efficiency approximated of 108 CFU/mL µg DNA. Nevertheless, any colony sequenced of these 41 ARCs showed mutations in essential locations of pMBA derivatives such as the promoter, the ARC open reading frame (ORF), and the attI and attC sites. The 136 ARCs we managed to clone account for 83% of all ARCs ever identified in E. coli and 77% of all ARCs documented within class 1 integrons to date. In summary, the combination of pMBA's native environment, the diverse range of cloned ARCs, and the substantial size of this collection nominate pMBA collection as the most extensive compilation of integron ARCs to date. Consequently, it emerges as a unique tool for understanding the factors that contribute to the success of each individual ARC. Results: Evolutionary dynamics of integron resistance cassettes 73 4.1.2 Antimicrobial resistance characterisation. As mentioned in the introduction, the emergence of multirresistant bacteria is considered nowadays one of the main global health threads. Integrons are able to express and mobilise more than a hundred ARCs against most of antibiotics and among the main human pathogens. Integrons prevalence and ubiquity rule them as one of the main drivers of antimicrobial resistance in Gram-negative bacteria. Nevertheless, a comparative analysis of the resistance levels conferred by each ARC is a complex task as data is dispersed between several studies performed in different bacterial species, plasmid structures and integron classes containing disparate Pc promoters. Moreover, the antimicrobial activity of some ARCs has not been tested experimentally, being identified as ARCs just by sequence similarities. Using pMBA collection, we have being able to achieve a comprehensive and comparable characterisation of the resistance profiles of each ARC. We determine the resistance provided by each ARC by measuring the minimum inhibitory concentration (MIC) of every strain in pMBA collection for a variety of relevant antimicrobials. In the case of antibiotic families composed by several members with very different features (structure, class or generation), as aminoglycosides and beta-lactams, we obtained a preliminary resistance profile using disc diffusion assays (Supplementary Figures S1 and S2) to select for the most relevant molecules to study. This section is divided by ARC families and therefore, antimicrobials tested; summarizing the antimicrobial mechanism of action and the different resistance mechanisms described to bypass it prior to the MIC quantitation for each ARC and antibiotic. Data is presented as column graphs showing both, resistance levels (in µg/mL) and the resistance fold change relative to the empty vector pMBA, representing the mean of three independent replicates. EUCAST clinical breakpoints are also shown as red-dotted lines when available. Gene order in the graph is the result of a hierarchical clustering tree of the proteins encoded in ARCs revealing important phenotypic differences in closely related genes. 4.1.2.1 Aminoglycosides resistance cassettes. Aminoglycosides are included in the WHO’s list of critically important antimicrobials for their efficacy in a wide range of bacterial infections, particularly those caused by Gram-negative bacteria126. They alter protein synthesis by tightly attaching to the A-site on the 16 S ribosomal RNA of the 30 S ribosome subunit127. Resistance to these antibiotics is commonly conferred by numerous antibiotic modifying enzymes (AMEs) that transfer acetyl-, phosphoryl- or nucleotidyl/adenyl groups to the antibiotic molecule, lowering the affinity for its target26,128. Depending on their substrate specificity, these enzymes have different resistance profiles against the broad variety of molecules in the family. Another group of resistance enzymes are 16S-RNA methylases, that modify the target instead of the antibiotic. These enzymes confer extremely high levels of resistance against most aminoglycosides129. Results: Evolutionary dynamics of integron resistance cassettes 74 Aminoglycoside resistance is the largest group of ARCs in our collection, with 54 different genes (Supplementary Table S5). Integrons encode numerous AMEs including acetyltransferases (aacA (31 genes), aacC (8) and sat (1)), nucleotidyl/adenyltransferases (aadA (14) and aadB (1)), and phosphotransferases (aph (2)), but do not encode, to date, RNA methylases. In this work we use the nomenclature in Partridge et al, 2009108 and the IntegrAll database, but another nomenclature is also used in the field128. We provide the equivalence between nomenclatures when possible, and we include the exact sequence used here for disambiguation purposes (Supplementary Table S5). Given the large number of genes and molecules in this family, we first measured resistance by disc diffusion against seven structurally different aminoglycosides. These included 4,6- disubstituted deoxystreptamines (4,6-DDs) like kanamycin, gentamicin, tobramycin and amikacin; the 4,5-DD neomycin; the 4-monosubstituted deoxystreptamine apramycin -of use in Veterinary medicine-; and the non deoxystreptamine streptomycin (Supplementary Figure S1). We then determined the MIC of kanamycin, tobramycin, amikacin, gentamicin, streptomycin, and apramycin for all ARCs (Figure 14). As a general overview, we can see the known trends in resistance where aacAs confer resistance against kanamycin and tobramycin; aacCs against gentamicin; aadAs against streptomycin; aadB against gentamicin; aph genes confer resistance to kanamycin and sat2 did not confer resistance against any of the antibiotics tested (Figure 14). In general, phenotypic differences seem to correlate with protein families. Yet, superposing a dendrogram of sequence relationships reveals known incoherencies in the branching of genes. This highlights that striking phenotypic differences can be found among closely related genes, justifying the need for a study like this. Most aacA genes confer increased resistance against kanamycin (Figure 14A) and tobramycin (Figure 14B) often with >64-fold increases. Surprisingly, aacA2, aacA16 and aacA45 provide very low resistance (2- to 8-fold increases) despite being closely related to genes with high resistance levels. In fact, aacA16 does not clearly reach the clinical breakpoint to tobramycin in our setup. Among the aacAs, amikacin- and gentamicin- resistance is clearly ARC-dependent (Figure 14C,D); and aacAX does not confer resistance to any antibiotic. On their side, aacCs confer clinically relevant resistance to gentamicin (MIC ³ 2 µg/mL), with up to 128-fold increase; (Figure 14D). Notably, aacC5 and aacC13, that branch together, also confer clinical resistance against tobramycin (Figure 14B) Among the adenyltransferases, aadAs present great specificity against streptomycin, (Figure 14E) conferring 16- to 128-fold increases in resistance. Interestingly, aadA4 and aadA10 do not confer increased resistance to streptomycin -or any other antibiotic. It is possible that this is specific of the alleles chosen here, and that other alleles of these genes do confer resistance. The fact that certain alleles might not represent a threat highlights the need for functional and detailed studies like this one. aadB shows a profile more related to aacAs, not showing activity against streptomycin but instead conferring resistance to kanamycin, tobramycin and gentamicin (Figure 14A,B,D). Results: Evolutionary dynamics of integron resistance cassettes 75 Figure 14. MICs of aminoglycoside resistance cassettes. Antimicrobial resistance to kanamycin (A), tobramycin (B), amikacin (C), gentamicin (D), streptomycin (E), and apramycin (F) is shown as MIC (µg/mL) in the right axis, and resistance fold increase compared to pMBA in the left axis. The MIC is the mean of three biological replicates (black dots) for each strain. A red dotted line represents the clinical breakpoint (EUCAST) for E. coli against this antimicrobial. A hierarchical clustering tree showing protein sequence similarity is shown under the graphs. Figure from 122. Kanamycin sa t2 aa cA X ap hA 15 ap hA 16 aa cA 49 aa cA 43 aa cA 64 aa cA 28 aa cA 56 aa cA 16 aa cA 17 aa cA 30 aa cA 42 aa cA 7 aa cA 2 aa cA 48 aa cA 29 aa cA 37 aa cA 34 aa cA 45 aa cA 4 aa cA 50 aa cA 8 aa cA 31 aa cA 51 aa cA 59 aa cA 38 aa cA 27 aa cA 54 aa cA 61 aa cA 3 aa cA 47 aa cA 35 aa cA 52 aa cC 5 aa cC 13 aa cC 3 aa cC 2 aa cC 6 aa cC 4 aa cC 1 aa cC 11 aa dB aa dA 4 aa dA 5 aa dA 29 aa dA 7 aa dA 6 aa dA 10 aa dA 16 aa dA 34 aa dA 1 aa dA 13 aa dA 2 aa dA 28 aa dA 11 aa dA 24 1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024 Gentamicin sa t2 aa cA X ap hA 15 ap hA 16 aa cA 49 aa cA 43 aa cA 64 aa cA 28 aa cA 56 aa cA 16 aa cA 17 aa cA 30 aa cA 42 aa cA 7 aa cA 2 aa cA 48 aa cA 29 aa cA 37 aa cA 34 aa cA 45 aa cA 4 aa cA 50 aa cA 8 aa cA 31 aa cA 51 aa cA 59 aa cA 38 aa cA 27 aa cA 54 aa cA 61 aa cA 3 aa cA 47 aa cA 35 aa cA 52 aa cC 5 aa cC 13 aa cC 3 aa cC 2 aa cC 6 aa cC 4 aa cC 1 aa cC 11 aa dB aa dA 4 aa dA 5 aa dA 29 aa dA 7 aa dA 6 aa dA 10 aa dA 16 aa dA 34 aa dA 1 aa dA 13 aa dA 2 aa dA 28 aa dA 11 aa dA 24 1 2 4 8 16 32 64 128 256 0.25 0.5 1 2 4 8 16 32 64 Apramycin sa t2 aa cA X ap hA 15 ap hA 16 aa cA 49 aa cA 43 aa cA 64 aa cA 28 aa cA 56 aa cA 16 aa cA 17 aa cA 30 aa cA 42 aa cA 7 aa cA 2 aa cA 48 aa cA 29 aa cA 37 aa cA 34 aa cA 45 aa cA 4 aa cA 50 aa cA 8 aa cA 31 aa cA 51 aa cA 59 aa cA 38 aa cA 27 aa cA 54 aa cA 61 aa cA 3 aa cA 47 aa cA 35 aa cA 52 aa cC 5 aa cC 13 aa cC 3 aa cC 2 aa cC 6 aa cC 4 aa cC 1 aa cC 11 aa dB aa dA 4 aa dA 5 aa dA 29 aa dA 7 aa dA 6 aa dA 10 aa dA 16 aa dA 34 aa dA 1 aa dA 13 aa dA 2 aa dA 28 aa dA 11 aa dA 24 1 2 4 8 16 32 64 128 256 4 8 16 32 64 128 256 512 1024 fo ld in cr ea se fo ld in cr ea se fo ld in cr ea se fo ld in cr ea se fo ld in cr ea se fo ld in cr ea se M IC (µg/m L) M IC (µg/m L) M IC (µg/m L) M IC (µg/m L) M IC (µg/m L) M IC (µg/m L) A B C D E F Tobramycin sa t2 aa cA X ap hA 15 ap hA 16 aa cA 49 aa cA 43 aa cA 64 aa cA 28 aa cA 56 aa cA 16 aa cA 17 aa cA 30 aa cA 42 aa cA 7 aa cA 2 aa cA 48 aa cA 29 aa cA 37 aa cA 34 aa cA 45 aa cA 4 aa cA 50 aa cA 8 aa cA 31 aa cA 51 aa cA 59 aa cA 38 aa cA 27 aa cA 54 aa cA 61 aa cA 3 aa cA 47 aa cA 35 aa cA 52 aa cC 5 aa cC 13 aa cC 3 aa cC 2 aa cC 6 aa cC 4 aa cC 1 aa cC 11 aa dB aa dA 4 aa dA 5 aa dA 29 aa dA 7 aa dA 6 aa dA 10 aa dA 16 aa dA 34 aa dA 1 aa dA 13 aa dA 2 aa dA 28 aa dA 11 aa dA 24 1 2 4 8 16 32 64 128 256 0.5 1 2 4 8 16 32 64 128 Amikacin sa t2 aa cA X ap hA 15 ap hA 16 aa cA 49 aa cA 43 aa cA 64 aa cA 28 aa cA 56 aa cA 16 aa cA 17 aa cA 30 aa cA 42 aa cA 7 aa cA 2 aa cA 48 aa cA 29 aa cA 37 aa cA 34 aa cA 45 aa cA 4 aa cA 50 aa cA 8 aa cA 31 aa cA 51 aa cA 59 aa cA 38 aa cA 27 aa cA 54 aa cA 61 aa cA 3 aa cA 47 aa cA 35 aa cA 52 aa cC 5 aa cC 13 aa cC 3 aa cC 2 aa cC 6 aa cC 4 aa cC 1 aa cC 11 aa dB aa dA 4 aa dA 5 aa dA 29 aa dA 7 aa dA 6 aa dA 10 aa dA 16 aa dA 34 aa dA 1 aa dA 13 aa dA 2 aa dA 28 aa dA 11 aa dA 24 1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024 Streptomycin sa t2 aa cA X ap hA 15 ap hA 16 aa cA 49 aa cA 43 aa cA 64 aa cA 28 aa cA 56 aa cA 16 aa cA 17 aa cA 30 aa cA 42 aa cA 7 aa cA 2 aa cA 48 aa cA 29 aa cA 37 aa cA 34 aa cA 45 aa cA 4 aa cA 50 aa cA 8 aa cA 31 aa cA 51 aa cA 59 aa cA 38 aa cA 27 aa cA 54 aa cA 61 aa cA 3 aa cA 47 aa cA 35 aa cA 52 aa cC 5 aa cC 13 aa cC 3 aa cC 2 aa cC 6 aa cC 4 aa cC 1 aa cC 11 aa dB aa dA 4 aa dA 5 aa dA 29 aa dA 7 aa dA 6 aa dA 10 aa dA 16 aa dA 34 aa dA 1 aa dA 13 aa dA 2 aa dA 28 aa dA 11 aa dA 24 1 2 4 8 16 32 64 128 256 512 2 4 8 16 32 64 128 256 512 1024 Results: Evolutionary dynamics of integron resistance cassettes 76 Within the pMBA collection, aphA15 and aphA16 are the only phosphotransferase encoding cassettes (aphs). Both genes confer clinical resistance against kanamycin (Figure 14A), but at different levels: aphA16 provides 8-fold the resistance of aphA15 (128-fold vs. 16-fold increases respectively). sat2 is described as an acetyl-transferase conferring resistance against streptothricin130. This compound has very little clinical relevance due to its toxicity131, and has not been tested here. Our data do not corroborate this phenotype, but at least rule out its role in resistance against other more recent or clinically relevant aminoglycosides (Figure 14). Regarding apramycin resistance (Figure 14F), an antibiotic of use in Veterinary medicine, it is known that aac(3)-IV is the only resistance gene, and it is not found in integrons. Our results generally corroborate this, yet the 4- fold increase in resistance provided by aacA47 and aacA61 is a call for caution. 4.1.2.2 Beta-lactam resistance cassettes. Beta-lactam antibiotics are likely the class of antimicrobials with the highest use to treat infectious diseases132, with some of its members classified as last resource antibiotics by the WHO. These molecules affect cell wall synthesis by binding to specific proteins called penicillin- binding proteins (PBPs). PBPs are transpeptidases involved in the crosslinking of peptidoglycan133. Beta-lactams can be classified into penicillins, cephalosporins, carbapenems, and monocyclic beta-lactams132. These antibiotics are used to treat a plethora of infections in many clinical situations. In our study, we successfully cloned and characterized a total of 19 different integron cassettes, encoding most beta-lactamase classes (Supplementary Table S5). Attending to Ambler´s classification134, these included 11 class D enzymes, commonly referred to as oxacillinases (blaOXA); 5 class B enzymes known as metallo-beta-lactamases (blaVIM and blaIMP variants) and 3 cassettes encoding class A enzymes, specifically blaGES, blaBEL and blaPBL. Applying Bush-Medeiros-Jacoby135 classification, we can find 14 enzymes enclosed in group II and 5 group III beta-lactamases in pMBA collection. Given the variety of antibiotics and generations within the family, we performed preliminary diffusion antibiograms to select representative antibiotics from different classes (Supplementary Table S3) (Supplementary Figure S2). We chose a member of the most clinically-relevant beta-lactam classes for MIC determination, namely amoxicillin (an aminopenicillin), cefaclor and ceftazidime (1st and 3rd generation cephalosporins), ertapenem (a carbapenem), and aztreonam (a monobactam) (Figure 15). Every beta-lactamase encoding ARC confers high resistance to amoxicillin in a clinically relevant manner (MIC ≥ 8 µg/mL) (Figure 15) and only blaOXA-1, blaOXA-9, blaPBL-1, and blaBEL-1 were inhibited by clavulanic acid (Supplementary Figure S2). Results: Evolutionary dynamics of integron resistance cassettes 77 Figure 15. MICs of b-lactam resistance cassettes. Antimicrobial resistance to amoxicillin (A), cefaclor (B), ceftazidime (C), ertapenem (D), and aztreonam (E) is shown as MIC (µg/mL) in the right axis, and resistance fold increase compared to the empty pMBA control in the left axis. The MIC is the mean of three biological replicates (black dots) for each strain. A red dotted line represents the clinical breakpoint (EUCAST) for E. coli against this antimicrobial. A hierarchical clustering tree showing protein sequence similarity is shown under the graphs. Figure from 122. OXA-2 OXA-21 OXA-46 OXA-11 8 OXA-20 OXA-5 OXA-12 9 OXA-10 OXA-19 8 OXA-1 OXA-9 VIM -1 VIM -2 VIM -7 IM P-2 IM P-31 BEL-1 GES-1 PBL-1 1 2 4 8 16 32 64 128 256 4 8 16 32 64 128 256 512 1024 Amoxicillin Cefaclor OXA-2 OXA-21 OXA-46 OXA-11 8 OXA-20 OXA-5 OXA-12 9 OXA-10 OXA-19 8 OXA-1 OXA-9 VIM -1 VIM -2 VIM -7 IM P-2 IM P-31 BEL-1 GES-1 PBL-1 1 2 4 8 16 32 64 128 256 512 2 4 8 16 32 64 128 256 512 1024 Ceftazidime OXA-2 OXA-21 OXA-46 OXA-11 8 OXA-20 OXA-5 OXA-12 9 OXA-10 OXA-19 8 OXA-1 OXA-9 VIM -1 VIM -2 VIM -7 IM P-2 IM P-31 BEL-1 GES-1 PBL-1 1 2 4 8 16 32 64 128 256 512 1024 2048 0.5 1 2 4 8 16 32 64 128 256 512 1024 Ertapenem OXA-2 OXA-21 OXA-46 OXA-11 8 OXA-20 OXA-5 OXA-12 9 OXA-10 OXA-19 8 OXA-1 OXA-9 VIM -1 VIM -2 VIM -7 IM P-2 IM P-31 BEL-1 GES-1 PBL-1 1 2 4 8 16 32 64 128 256 512 1024 0.0078125 0.015625 0.03125 0.0625 0.125 0.25 0.5 1 2 4 8 Aztreonam O X A -2 O X A -2 1 O X A -4 6 O X A -1 18 O X A -2 0 O X A -5 O X A -1 29 O X A -1 0 O X A -1 98 O X A -1 O X A -9 V IM -1 V IM -2 V IM -7 IM P -2 IM P -3 1 B E L- 1 G E S -1 P B L- 1 1 2 4 8 16 32 64 128 256 512 0.25 0.5 1 2 4 8 16 32 64 128 fo ld in cr ea se fo ld in cr ea se fo ld in cr ea se fo ld in cr ea se fo ld in cr ea se M IC (µg/m L) M IC (µg/m L) M IC (µg/m L) M IC (µg/m L) M IC (µg/m L) A B C D E >> > > >>> > > Results: Evolutionary dynamics of integron resistance cassettes 78 Oxacillinases (blaOXA genes) are the most abundant group of beta-lactamases in our collection. This is a broad family of proteins with different resistance profiles, ranging from penicillinases to carbapenemases. Despite not having a clinical breakpoint for cefaclor, fold increases in resistance were high in general, except for blaOXA-1; while only blaOXA-2 and, blaOXA-46 showed an extended spectrum beta-lactamase (ESBL) profile, conferring resistance against 3rd generation cephalosporins. Importantly, although many oxacillinases in our collection have carbapenemase activity, none of them reached clinical resistance against ertapenem, and only blaOXA-9, blaOXA-10, and blaOXA-129 conferred resistance against aztreonam. blaVIM genes are well known carbapenemases found in integrons. Together with blaIMPs in pMBA collection they confer the expected resistance against cephalosporins and carbapenems, but not monobactams. blaBEL-1 and blaGES-1 are ESBLs with similar resistance profiles. They were described for the first time in Pseudomonas aeruginosa136 and Klebsiella pneumoniae137 and they both confer resistance to 3rd generation cephalosporins and monobactams, although at different levels. Also, blaBEL-1 and blaGES-1 are inhibited by clavulanate. blaPBL1 is also an ESBL, that reaches clinically relevant resistance to cephalosporins in our conditions, but differs from the previous ones in that it does not confer resistance to monobactams. 4.1.2.3 Antifolate resistance cassettes. Antifolates such as sulphonamides and trimethoprim, inhibit the synthesis of tetrahydrofolate at different stages and are commonly used synergistically to treat urinary, respiratory, and gastrointestinal infections. Sulphonamides inhibit the dihydropteroate synthase (DHPS) (FolP), while trimethoprim inhibits the dihydrofolate reductase (DHFR) (FolA) enzymes (Figure 14)138 Resistance genes encode homologs of these enzymes with reduced affinity to the drugs139. They generally confer extremely high resistance levels (beyond solubility of the antibiotic). Only exceptionally, some alleles can provide intermediate levels of resistance if expression is low enough. In integrons, several dfr genes conferring resistance to trimethoprim have been reported, while resistance to sulphonamides is conferred by a hybrid cassette in which qacE is truncated and fused to sul1. This cassette is immobile because it has lost its recombination site, and it is hence often found at the end of arrays, what led to the misconception of it being a conserved 3’ region of class 1 integrons. Our collection contains 27 dfrA/B ARCs and 1 qacEDsul1 (Supplementary Table S5). As expected, all genes conferred extreme levels of resistance with MICs of 1024 µg/mL or more (Figure 14 B,C). Incidentally qacE∆sul1 had to be tested in DH5a because of the high intrinsic resistance levels of MG1655 to sulfamethoxazole. Results: Evolutionary dynamics of integron resistance cassettes 79 Figure 16. Antifolates resistance characterisation. A) Folate biosynthesis pathway. FolP/DHPS condenses P-aminobenzoic acid (PABA) and 6-hydroxymethyl-7,8- dihydropterin pyrophosphate (DHPP) into 7,8 dihydropteroate (DHP). FolP is inhibited by sulfonamides (PABA analogs). DHP is then converted to 7,8 dihydrofolate (DHF) by the action of FolC/DHFS; which is again modified by the action of FolA/DHFR into 5,6,7,8-tetrahydrofolate (THF). The action of FolA/DHFR can be inhibited by the drug trimethoprim. Modified from 31 B and C) MIC of qacE∆sul1 and dfr cassettes against antifolate antibiotics. Antimicrobial resistance to sulfamethoxazole (SMX) (B) and trimethoprim (C) is shown as MIC (µg/mL) in the right axis, and resistance fold increase compared to the empty pMBA control in the left axis. The MIC is the mean of three biological replicates (black dots) for each strain. A red dotted line represents the clinical breakpoint (EUCAST) for E. coli against this antimicrobial. A hierarchical clustering tree showing protein sequence similarity is shown under the graph for trimethoprim. Figure from 122. 4.1.2.4 Fosfomycin resistance cassettes. Fosfomycin is used to treat urinary tract infections, and skin and soft tissue infections140. It inhibits MurA, interfering with peptidoglycan biosynthesis at a step prior to that of beta-lactams. Resistance often arises through mutations in active transporters that prevent the entrance of the antibiotic; the acquisition of plasmid encoded enzymes that degrade the antibiotic, or the modification of MurA141. Integrons encode Fos enzymes that inactivate fosfomycin either through hydrolysation (fosL and fosM genes), addition of glutathione (fosC2, fosF, fosG, fosK) or addition of bacillithiol (fosE, fosH, and fosI)142–144. Here we have determined the MIC to fosfomycin of 10 different fos ARCs (Supplementary Table S1) (Figure 17A). Most alleles confer strong increases in resistance that are clinically relevant (MIC ³ 32 µg/mL), with the exception of fosM, that only increases 8-fold the MIC of the strain, and fails to reach the clinical breakpoint. B C DHPP PABA DHP DHF THF FolP DHPS FolC DHFS FolA DHFR Sulfamethoxazole Trimethoprim PPi ATP, Glu AMP NADPH NADP+ A df rA 7 df rA 17 df rA 29 df rA 6 df rA 31 df rA 1 df rA 15 df rA 16 df rA 35 df rA 27 df rA 5 df rA 30 df rA 14 df rA 34 df rA 25 df rB 7 df rB 9 df rB 3 df rB 2 df rB 6 df rB 1 df rB 5 df rB 8 df rB 4 df rA 21 df rA 22 df rA 12 1 2 4 8 16 32 64 128 256 512 1024 2048 0.5 1 2 4 8 16 32 64 128 256 512 1024 fo ld in cr ea se > > > > > > > > > > > > > > > > > > > > > > > > > > > M IC (µg/m L) Trimethoprim qa cE D su l1 1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024 fo ld in cr ea se M IC (µg/m L) SMX Results: Evolutionary dynamics of integron resistance cassettes 80 4.1.2.5 Chloramphenicol resistance cassettes. Chloramphenicol is a broad-spectrum antibiotic, that is now usually reserved for serious infections that have not responded to other antibiotics, due to the risk of serious side effects145. This antibiotic inhibits protein synthesis by binding to the 50 S subunit of the bacterial ribosome. Chloramphenicol resistance can be mediated by the modification of the chemical structure of this compound -either by acetylation (CatB)27 or phosphorylation-, as well as via efflux pumps such as CmlA64. A number of catB and cmlA ARCs are present in mobile integrons108. In the pMBA collection we could only clone catB alleles (Supplementary Table S5) that conferred high resistance levels against chloramphenicol, that in all cases reached the clinical breakpoint (MIC ³ 8) (Figure 17B). 4.1.2.6 Rifampicin resistance cassettes. Rifampicin acts inhibiting bacterial RNA polymerase (RNAP)146. Resistance can be mediated by mutation in the target (the b-subunit of the RNA polymerase encoded in the rpoB gene), or by enzymatic modification of the antibiotic; an example of these enzymes are the ADP- ribosylating transferases (encoded in arr genes)28,147 present in integrons148. We have cloned and characterized 8 arr variants (Supplementary Table S5) (Figure 17C). Resistance levels vary significantly across alleles, with two genes providing >64-fold increases in resistance, while arr7 increasing resistance only 2-fold. 4.1.2.7 Erythromycin resistance cassettes. Erythromycin is commonly used to treat skin and respiratory tract infections caused by Gram positive bacteria. This macrolide inhibits bacterial protein synthesis by binding to the 50 S subunit of the bacterial ribosome. Erythromycin resistance can be due to ribosome methylation (erm genes)149, erythromycin esterification (ereA genes)66, and antibiotic transportation (mef genes)150. Enterobacteria are not generally susceptible to erythromycin, but can be treated in some cases with azithromycin, a broader spectrum macrolide with several therapeutical uses151. We have cloned two ereA genes in our collection (ereA2 and ereA3) and characterized the resistance against both antibiotics (Figure 17D). These two alleles increased more than 16-fold the resistance of E. coli to erythromycin, reaching MICs > 1024 µg/mL. In contrast, with only two- fold increases in resistance to azithromycin, neither gene is likely to confer clinical resistance to this antibiotic, for which EUCAST provides a loose estimation of the threshold above 16 µg/mL. Results: Evolutionary dynamics of integron resistance cassettes 81 Figure 17. MICs of ARCs. Antimicrobial resistance to fosfomycin (A), chloramphenicol (B), rifampicin (C), erythromycin and azithromycin (D) is shown as MIC (µg/mL) in the right axis, and resistance fold increase compared to the empty pMBA control in the left axis. The MIC is the mean of three biological replicates (black dots) for each strain. A red dotted line represents the clinical breakpoint (EUCAST) for E. coli against this antimicrobial. A hierarchical clustering tree showing protein sequence similarity is shown under the graphs. Figure from 122. 4.1.2.8 Quaternary ammonium compounds ARCs (qac, smr). Quaternary ammonium compounds (QACs) and antiseptics are commonly used in healthcare settings, food processing facilities, and households to disinfect surfaces and products. QACs antiseptic potential is based on its ability to interact with and disrupt the cell membranes of bacteria, viruses, and fungi152. Chlorhexidine (CHX), benzalkonium chloride (BZK), hexadecyltrimethylammonium bromide (CTAB), and sodium hypochlorite (NaOCl) are examples of commonly used antiseptics. QAC resistance genes (qacs) and small multidrug resistance (smr) ARCs are generally considered to provide resistance against antiseptics via efflux pumps153. Studies characterising resistance mediated by qac and smr ARCs show, at best, 2 to 4-fold increases154,155. ca tB 5 ca tB 6 ca tB 3 ca tB 2 ca tB 10 1 2 4 8 16 32 64 128 256 4 8 16 32 64 128 256 512 1024 fo ld in cr ea se Chloramphenicol M IC (µg/m L) ar r2 ar r8 b ar r6 ar r7 ar r5 1 2 4 8 16 32 64 16 32 64 128 256 512 1024 fo ld in cr ea se Rifampicin M IC (µg/m L) > > ere A2 ere A3 1 2 4 8 16 32 64 128 256 4 8 16 32 64 128 256 512 1024 fo ld in cr ea se Azithromycin M IC (µg/m L) A B C D fo sE fo sI fo sL fo sH fo sM fo sF fo sN fo sK fo sC 2 fo sG 1 2 4 8 16 32 64 128 256 512 2 4 8 16 32 64 128 256 512 1024 fo ld in cr ea se Fosfomycin M IC (µg/m L) >> >>> ere A2 ere A3 1 2 4 8 16 64 128 256 512 1024 fo ld in cr ea se Erythromicyn M IC (µg/m L > > Results: Evolutionary dynamics of integron resistance cassettes 82 Here we tested the resistance conferred by 8 qac and 3 smr ARCs (Supplementary Table S5) against CHX, BZK, CTAB, and NaOCl and found no increase in MIC against any compound (Figure 18). Only against CHX we found single replicates growing at 2-fold higher concentrations, a variability accepted in the field as not significant, and not changing the final MIC. In our hands, none of these genes confer resistance against disinfectants, a relevant finding with strong implications for co-selection phenomena. Figure 18. MIC characterisation of qac and smr ARCs. Antimicrobial resistance to antiseptics chlorhexidine CHX, benzalkonium chloride (BZK), hexadecyltrimethylammonium bromide (CTAB), and sodium hypochlorite (NaOCl). MIC (µg/mL) is shown in the right axis, and resistance fold increase compared to pMBA in the left axis. The MIC is the mean of three biological replicates (black dots) for each strain. A hierarchical clustering tree showing protein sequence similarity is shown under the graphs. Figure from 122. 4.1.2.9 Influence of the genetic context in ARC activity. One of the main aims of this thesis is to provide a comparative view of ARCs. As mentioned before, cassettes can be found in a variety of genetic backgrounds that influence their expression levels. Therefore it is impossible to provide a single (universal) measure of resistance for ARCs. Consequently, MIC values provided here might not be directly translatable to the clinical setting. Indeed, some peculiarities of the integron platform need to be considered to better interpret these results. Our genetic setup mimics a class 1 integron with a strong variant of the Pc promoter, and is located on a plasmid with approximately 9 copies per cell123. This setting was chosen to maximize the phenotype of each gene. Results: Evolutionary dynamics of integron resistance cassettes 83 Yet integrons are normally borne on large conjugative plasmids with low copy number, and they can encode a variety of Pc promoters with different strengths, or even the combination of two promoters84. It is therefore probable that phenotypes in clinical settings are not as strong as the ones reported here, but the impact of genetic context is probably different among resistance mechanisms. Typically, antifolate genes generally have an almost digital behaviour with all genes conferring extremely high resistance, while genes encoding modifying enzymes are known to display a more linear behaviour with copy number156. To exemplify the influence of genetic context, we have investigated both types of resistance mechanisms in a low number/low expression genetic context. We have determined the MIC of dfrA5 and aadB borne in the low copy plasmid R388157 and located in first position of an integron array with a truncated integrase, as in pMBA vector, but under the control of a weak Pc promoter (PcW, 26 to 30 times weaker than PcS) (Figure 19). As expected, trimethoprim resistance is not conditioned by the genetic context while aminoglycoside resistance conferred by aadB is clearly lower when expressed from a PcW promoter 57 in a low copy plasmid. Figure 19. Comparison of the MIC of ARCs in different genetic contexts. Antimicrobial resistance of dfrA5 (A), and aadB (B), in R388 is shown as resistance fold increase compared to MG1655 without the plasmid. The MIC is the mean of three biological replicates (black dots) for each strain. MIC values for pMBA derivatives are taken from figures 14 and 16 and plotted side by side for comparison. Figure from 122. R38 8 pM BA 1 2 4 8 16 32 64 128 256 512 1024 2048 fo ld in cr ea se dfrA5 > > R38 8 pM BA R38 8 pM BA R 38 8 pM BA 1 2 4 8 16 32 64 128 256 512 fo ld in cr ea se aadB Kanamycin Tobramycin Gentamicin Trimethoprim A B Results: Evolutionary dynamics of integron resistance cassettes 84 4.1.3 Polar effects characterisation. Integron cassettes (ICs) are generally expressed from a Pc promoter located at the 5´ integron conserved segment86. Due to this operon-like regulation of IC expression, ICs placed at the 3´end of the integron array tend to be less expressed or even silent. It is known that some ICs can encode promoters modulating the expression of the following cassettes64–66; nevertheless the potential effect of each IC, on particular ARCs, in the expression of the following ones has not being assessed in detailed yet. 4.1.3.1 ARC identity affects the expression of downstream ICs. We measured GFP expression in all strains of the pMBA collection to analyse the effect of each ARCs on the following ones. gfp acts as the second cassette of the array in our model so any fluctuation in its expression/fluorescence in comparison with the empty vector (pMBA) should be caused by the identity of the previous cassette. Results show huge differences in GFP expression among pMBA derived strains in an ARC-dependent manner (Figure 20). Some ARCs such as catB5, arr8b, dfrA31, smr1, dfrB4, and aacA43 enhance the fluorescence of the downstream gfp up to 2 fold in comparison with the empty vector, with no known promoters associated with them. In contrast, most ARCs tend to repress GFP fluorescence being blaOXA-20 the highest repressor with a 52-fold GFP repression level. Taking into account GFP expression levels of the entire pMBA collection, we find a 100-fold variation in expression levels between strains with the highest and lowest GFP expression. Data was also collected when strains where in stationary phase with a high correlation rate between GFP fluorescence in both phases (r = 0.895) (Supplementary Figure S3). A possible explanation for this range of GFP fluorescence within pMBA collection could be size of each ARC cloned. We perform a correlation between fluorescence and ARC size to demonstrate that (r2= 0.03), ARC identity rules the expression of the following ICs of the array independently of their size (Figure 20 inset) . Figure 20. ARC identity affects the expression of downstream ICs. GFP fluorescence normalized to pMBA levels of each pMBA derived strain in exponential phase. Data is expressed as the mean of three independent replicates, error bars represent the standard error of the mean (SEM). GFP expression and ARC size do not correlate (inset: r2= 0.03). bla OX A- 20 aa cA 54 aa cA 35 qa cE Δs ul1 aa cA 27arr 7 dfr A1 2 aa cA 38 aa cA 59 bla IM P- 31 bla OX A- 1 bla OX A- 10 bla BE L-1 dfr A2 1 bla IM P- 2 dfr A2 2 aa cA 45 aa cC 11 aa cA 48 qa cL dfr A3 4 dfr B7 fos M ap hA 15 aa cA 31 aa dA 5 bla OX A- 46 bla OX A- 11 8 aa cA 3 aa dA 16 aa cA 61 aa dA 4 arr 6 arr 5 bla OX A- 2 bla PB L-1 bla OX A- 21 qa cK aa cA 64 dfr A1 4 aa dA 34sa t2 aa cA 7 aa cA 29 dfr B6 aa dA 6 bla OX A- 5 bla OX A- 19 8 aa cC 3 aa cA 51 dfr B5 aa cC 1 dfr B1 qa cH aa cC 4 bla OX A- 12 9 qa cF dfr A2 5 fos L qa cE aa cA 2 ca tB 10 aa cA 50 aa cA X ere A3 bla VI M- 7 aa dA 1 aa cC 2 dfr A3 0 aa dA 29 qa cGfos G aa dA 7 aa dA 24 dfr A2 9 aa cC 6 aa cA 42 ca tB 6 aa cA 34 aa dA 11 dfr B9 dfr A3 5 aa cA 47 aa cA 49 dfr A1 6 sm r2 qa cM aa cA 4 fos H aa cA 17 aa cA 8 dfr A5 aa cA 16 dfr A6 aa dA 10 aa cA 52 fos I bla GE S- 1 bla OX A- 9 dfr A7 dfr B3 aa dA 2 dfr A1 7 dfr A1 dfr A2 7 ere A2 ca tB 3 ca tB 2 dfr B2 aa cA 28 aa cA 30 dfr B8 aa cC 13 aa cC 5 aa dA 28fos E bla VI M- 1 ap hA 16 fos N dfr A1 5 sm r3 fos F arr 2 bla VI M- 2 fos K fos C2 aa cA 37 aa dA 13 aa dB aa cA 56 ca tB 5 arr 8b dfr A3 1 sm r1 dfr B4 aa cA 43 0.01 0.1 1 10 ARCs G FP fl uo re sc en ce (n or m . p M B A ) 0.0 0.5 1.0 1.5 2.0 2.5 0 500 1000 1500 2000 GFP expression (norm. pMBA) A R C s iz e (b p. ) Correlation GFP expression vs. ARC lenght (bp.) r2 = 0.03371 Results: Evolutionary dynamics of integron resistance cassettes 85 4.1.3.2 ARC identity affects the transcription of downstream ICs. There are two main possible explanations for this phenomenon; ARCs can regulate the array expression in a translational and/or transcriptional level. To decipher how deeply ARCs can regulate ICs expression we select a subset of ten ARCs for further studies (Figure 21). We selected ten different strains that harbour members of the dfr family, covering a significant range of GFP expression (20-fold). These strains contain ARCs with varying lengths, attC sites, and molecular features. To this purpose, we quantitated the amount of GFP protein and RNA in these strains via Western blot and qPCR respectively. Figure 21. GFP expression of a subset of pMBAdfr strains. GFP fluorescence normalized to pMBA levels of each pMBA derived strain. Data is expressed as the mean of three independent replicates, error bars represent the standard error of the mean (SEM). As expected, GFP expression and protein yields follow the same trend validating our flow cytometry results via Western blot (Figure 22). In this experiment, we quantitated DnaK protein levels as an internal control to normalize absolute GFP protein levels. Figure 22. GFP fluorescence and protein yields in a subset of pMBAdfr strains. GFP protein yields were measured by Western blot and normalize to DnaK as an internal control and to the empty vector pMBA levels for easier comparison with GFP fluorescence. Data is expressed as the mean of four independent replicates, error bars represent the standard error of the mean (SEM). dfr A2 1 dfr A2 2 dfr A3 4 dfr B5 dfr A1 6 dfr A5 dfr B2 dfr B8 dfr A1 5 dfr B4 0.01 0.1 1 10 ARCs G FP (n or m . pM BA ) Fluorescence Protein DnaK 70 kDa GFP 27 kDa MG 21 22 34 5 15 16 pMBA MG 5 8 2 4 pMBA - dfrA + - dfrB + dfr A2 1 dfr A2 2 dfr A3 4 dfr B5 dfr A1 6 dfr A5 dfr B2 dfr B8 dfr A1 5 dfr B4 0.01 0.1 1 10 ARCs G FP fl uo re sc en ce (n or m . pM BA ) Results: Evolutionary dynamics of integron resistance cassettes 86 This approach helps us determine whether GFP fluorescence levels are influenced by each ARC or are a result of a general change in the bacterial proteome. We used E. coli MG1655 as a negative control for GFP and the empty vector pMBA to normalize our results, thus acting as a positive control. As it happens with GFP fluorescence, dfrB4 contains the higher yields of GFP and dfrA21 presents the lower GFP levels. We can see mild discrepancies between GFP fluorescence and protein amount in some pMBA derived strains as in dfrA34. This is likely due to technical reasons such as Western blot analysis and sensitivity. We also quantitated the amount of gfp mRNA in each strain of this subset by RT-qPCR. We used two different housekeeping genes (rssA158 and rpoA159) to normalise gfp mRNA levels (Figure 23A). Focusing on GFP RNA levels, strains with the lower GFP fluorescence intensity (dfrA21 and dfrA22 containing strains) also display the lower gfp mRNA levels, in agreement with protein yields (Figure 23B). In addition, dfrA15 and dfrB4 containing strains, display the higher levels of gfp mRNA, correlating with GFP fluorescence and protein amount. Strains containing mid-range repression ARCs show variable levels of GFP mRNA within the same range but not following an exact trend. This fact could be explained by technical reasons such as batch effect or low number of replicates; and/or by biological reasons like the participation of posttranscriptional regulation of the GFP transcript in certain strains. This data clearly shows that the identity of the first IC of the array affect the transcription of the downstream cassettes. Figure 23. GFP fluorescence, protein yields, and GFP mRNA levels in a subset of pMBAdfr strains A) GFP mRNA levels were measured by qPCR and normalize to two housekeeping genes (rssA and rpoA) as an internal controls and to the empty vector pMBA GFP mRNA levels. B) GFP quantitation via flow cytometry, western blot and qPCR for comparison purposes. GFP mRNA levels are expressed as the mean of two independent replicates, error bars represent the standard error of the mean (SEM). 4.1.3.3 attC sites are involved in the transcriptional regulation of the array. Translational and transcriptional regulation of ICs in integron arrays has been studied by several authors using different approaches. Some studies postulate that attC sites could be the main regulators of these processes due to their hairpin secondary structure and variable sequence. Collis and Hall suggested that attC sites could act as transcriptional terminators62, while Jacquier et al. described attC sites as translational regulators of downstream ICs160. A B dfr A2 1 dfr A2 2 dfr A3 4 dfr B5 dfr A1 6 dfr A5 dfr B2 dfr B8 dfr A1 5 dfr B4 0.01 0.1 1 10 ARCs G FP (n or m . pM BA ) Fluorescence Protein mRNA 0.1 1 10 dfrA21 dfrA22 dfrA34 dfrB5 dfrA16 dfrA5 dfrB2 dfrB8 dfrA15 dfrB4 GFP mRNA (norm. pMBA) AR C s rssA rpoA Results: Evolutionary dynamics of integron resistance cassettes 87 We first studied in silico the possible implications of the attC sites on the expression of ICs. The main factors that could affect downstream expression of ICs could be attC size (Figure 24A) and the energy needed to release the secondary structure of the attC site, in other words the folding stability of each attC site (Figure 24B). While the strain containing dfrB4 is associated with the highest GFP expression levels within this subset and has the shortest attC site with the lowest energy required for unfolding it, other pMBA derived strains with similar attC site lengths and free energy levels significantly inhibit the expression of downstream ICs, such as dfrB5.In conclusion, neither attC site size nor folding explain entirely the ARC-dependent expression of downstream GFP. Figure 24. Compilation of attC site parameters in pMBAdfr strains. A) attC site size (base pairs) of each dfr containing strain. B) attC site folding energy of each dfr containing strains, measured as free energy (DG (kcal/mol)). To calculate DG, we used the online RNAfold webserver from Vienna University web page. After the in silico analysis we decided to perform some experiments to elucidate the impact of particular attC sites in the expression of the downstream array. To do so, we followed the double approach of modifying or deleting attC sites in our pMBA derived strains (Figure 25). We modified dfrB4 ARC changing its attC site for the ones belonging to the strains displaying the lowest GFP fluorescence levels within the dfr family: pMBAdfrA12 and pMBAdfrA21. Additionally, we deleted the attC sites of these strains to test whether the GFP located afterwards changed its expression. Figure 25. GFP expression comparison between strains with modified and deleted attC sites. dfrB4 attC site was modified replacing it by dfrA12 and dfrA21 attC sites. In addition, dfrA21 and dfrA12 attC sites were deleted. GFP fluorescence was measured by flow cytometry and normalised to empty vector pMBA levels. GFP fluorescence levels are represented as the mean of three independent replicates, error bars represent the standard error of the mean (SEM). Unpaired t-test with Welch´s correction were used to assess statistical significance among strains. These differences are marked as * (p < 0.05), ** (p < 0.01). 0 20 40 60 dfrA21 dfrA22 dfrA34 dfrB5 dfrA16 dfrA5 dfrB2 dfrB8 dfrA15 dfrB4 ΔG (kcal/mol) AR C s attC site folding 0 50 10 0 dfrA21 dfrA22 dfrA34 dfrB5 dfrA16 dfrA5 dfrB2 dfrB8 dfrA15 dfrB4 size (bp.) AR C s attC site size A B dfr B4 dfr B4 a ttC df rA 12 dfr B4 a ttC df rA 21 dfr A21 dfr A21 Δa ttC dfr A12 dfr A12 Δa ttC 0.01 0.1 1 10 Strains G FP fl uo re sc en ce (n or m . pM BA ) * * *** Results: Evolutionary dynamics of integron resistance cassettes 88 These results show that changing dfrB4 attC site for other potentially repressing attC sites lead to a statistically significant yet minor reduction in the expression of the downstream GFP (using an unpaired t-test with Welch´s correction). In agreement with these results, the complete deletion of the attC sites of dfrA21 and dfrA12 increases the expression of the GFP located afterwards. Although there is a repressive effect of dfrA21 and dfrA12 attC sites in the expression of the following ICs of the array, this effect does not entirely explain GFP repression reduction in comparison with the empty vector. This fact suggests the participation of other factors in the array transcription and translation. Contrarily, the presence of additional promoters within ARCs can upregulate the expression of the following ICs. Several examples of ARCs encoding secondary promoters have been described in the literature such as cmlA and ereA1 ARCs64,66. Here, we want to check for secondary promoters within ARCs that lead to a high expression of the following array such as dfrA15 and dfrB4. To do so we deleted the primary PcS promoter in the integron platform in this pMBA derived strains and measure their fluorescence intensity, as well as in pMBAereA3 strain as a potential positive control due to its sequence similarity with ereA1(Figure 26). Figure 26. GFP fluorescence comparison between strains with and without PcS promoter. pMBA strains were modified by deleting the main promoter PcS from the integron platform. GFP fluorescence was measured by flow cytometry and normalised to empty vector pMBA levels. GFP fluorescence levels are represented as the mean of three independent replicates, error bars represent the standard error of the mean (SEM). A red dotted line represents GFP expression level (norm. to pMBA) of DPcS pMBA strain. Unpaired t-test with Welch´s correction were used to assess statistical significance among strains. These differences are marked as n.s. (non-significative), * (p < 0.05), ** (p < 0.01), *** (p < 0.001). The deletion of the main PcS promoter in the empty vector pMBA leads to a GFP fluorescence reduction of approximately 800 fold. When comparing GFP fluorescence between promoter and promoterless strains we can see a dramatic decrease of GFP expression in pMBAdfrA15 and pMBAdfrB4 promoterless strains (DPcS). DPcS dfrB4 containing strain exerts similar GFP fluorescence levels to the ones presented by DPcS pMBA, coherent with the absence of any secondary promoter. Nevertheless, DPcS dfrA15 and ereA3 containing strain shows significantly higher GFP fluorescence levels, suggesting the potential existence of a secondary weak promoter within the ARCs. Nevertheless, the existence of secondary promoters within ICs do not explain every case where IC array expression is enhanced as it happens in pMBAdfrB4 strain, which shows higher GFP expression than pMBA strain. This fact suggests other mechanisms not yet described. ΔP cS pM BA dfr A15 ΔP cS df rA 15 dfr B4 ΔP cS df rB 4 ere A3 ΔP cS er eA 3 0.001 0.01 0.1 1 10 Strains G FP fl uo re sc en ce (n or m . pM BA ) *** n.s. ** Results: Evolutionary dynamics of integron resistance cassettes 89 4.1.4 Fitness cost characterisation. Bacterial fitness is a complex parameter that encompasses various elements defining a microorganism's ability to thrive in a competitive environment. It is widely recognized that the acquisition of genes conferring resistance to antimicrobials is linked to alterations in bacterial metabolism, which may result in a reduction in overall fitness20,161. In the absence of any selective pressure, carrying antimicrobial resistance genes (ARGs) imposes a fitness burden on the resistant bacterium. However, when antibiotics are present, the resistant strain can survive and outcompete the susceptible one162. This equilibrium between fitness cost and adaptability is crucial for bacterial evolvability and survival. Integrons are low-cost structures entailing a general reduction in the host fitness ranging between 1.3 and 4%163. This cost is mitigated by a tight regulation of the integrase activity. It is also known that the fitness of a certain integron correlates with the strength of the Pc promoter and the IC content; the higher number of ICs in the array, the costlier the integron163. However, it is noteworthy that ICs in the array generally follow a polar expression from the Pc promoter, which ameliorates the cost of long arrays, with distal ICs slightly expressed or even silent. Few studies have assessed the cost of each ARC164 and none of them have been performed in the native context of an integron with a representative amount of ARCs. Here we aim to characterize the fitness cost associated with each ARC of pMBA collection under different and relevant environmental and clinical conditions. 4.1.4.1 ARCs can provide a fitness gain in the absence of antibiotics in vitro. ARC fitness cost can be estimated from exponential growth rates of resistant (ARC encoded) and sensitive bacteria in monocultures. When we compared growth curves of each pMBA derived strain we can observe ARC-dependent differences in bacterial growth if the cost of this ARCs is high (Figure 27) (Supplementary Figure S4). However, we conducted pairwise competitions of isogenic resistance and sensitive strains due to the precision of the technique, which can detect differences in fitness up to 1%20. Figure 27. Growth comparison between different pMBA derivative strains. Growth (OD600 nm) was measured along 24h. Growth curves are represented as the mean of three independent replicates, the standard error of the mean (SEM) is represented as a shadow in lighter colour. 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O pt ic al d en si ty (O D 60 0 nm .) pMBA pMBAblaVIM-2 pMBAfosN Results: Evolutionary dynamics of integron resistance cassettes 90 In vitro pairwise competitions were performed in the absence of any selective pressure by flow cytometry111 (see Materials and Methods). We first quantitated the cost of the pMBA vector in our genetic background (E. coli vs. E coli bearing pMBA), resulting in a 22% of cost. Then, we competed each pMBA derivative against a pMBA GFP KO mutant strain allowing us to differentiate both bacterial populations and measure the fitness cost of each ARC by flow cytometry. We also have to consider and correct for the differential cost imposed by the GFP in each pMBAARC derivative. As shown in the previous chapter, the identity of each ARC modulates the expression of the GFP afterwards, resulting in different GFP expression levels. To determine the fitness cost associated to each GFP expression level we selected a subset of 17 different strains from pMBA collection that yielded different GFP fluorescence intensities to generate their GFP KO mutants. We quantitated GFP cost of each of this strains by pairwise competition against their respective GFP KO mutants (Figure 28). Figure 28. Correlation between fitness cost and GFP fluorescence. A) Graph showing the fitness cost of 17 different strains from pMBA collection (named beside each point) and its correlation with GFP fluorescence levels. Simple linear regression is represented as a dotted line along the 95% confidence interval (CI) B) Simple linear regression forced to go through y = 1. Data is represented as the mean of three independent replicates. GFP fluorescence and fitness cost were directly proportional following a simple linear regression (r2= 0.82) (Figure 28A). In principle, Y-intercept should be 1, as the absence GFP fluorescence should not cause any fitness modulation. To maintain this premise, we adjusted the linear fit to pass through y = 1, obtaining an equation ( y = 7.64*10-7x + 1) that allowed us to correct the cost associated with ARC-dependent GFP fluorescence for each pMBA derivative (Figure 28B). We then performed every in vitro competition (pMBA GFP KO vs pMBAARC) by flow cytometry. After data collection we corrected the fitness effect of each ARC by subtracting the cost relative to the GFP expression using the equation described in Figure 28B. Finally, we could estimate the fitness effect of each ARC in our experimental conditions: aerobic, in vitro pairwise competitions. (Figure 29A). 0 100000 200000 300000 400000 0.9 1.0 1.1 1.2 1.3 1.4 GFP fluorescence (a.u.) Fi tn es s co st Fitness cost vs. GFP expression aacA59 aacA8 aadB aacC2 aacA28 aacA52 aacA30 aadA24 aadA13 aacC13 dfrA35 dfrB4 dfrA22.2 dfrA16 dfrA14 dfrA34 pMBA y = 1.1*10-6 x + 0.9343 r2 = 0.82 0 100000 200000 300000 400000 0.9 1.0 1.1 1.2 1.3 1.4 GFP fluorescence (a.u.) Fi tn es s co st Fitness cost vs. GFP expression y = 7.64*10-7 x + 1 A B Results: Evolutionary dynamics of integron resistance cassettes 91 Figure 29. Effect of each ARC in the fitness of the host strain. A) Graph showing the fitness effect of each ARC. This graph shows data already corrected taken into account ARC-dependent GFP fluorescence intensity. ARCs conferring a gain in fitness are represented with green bars while ARCs entailing a cost are coloured in red. Data is represented as the mean of at least six independent replicates, error bars represent the standard error of the mean (SEM). B) Histograms showing the fitness distribution of ARCs from the main gene families: dfrs, AgRs genes (aa, aph and sat) and blas. Grey lines represent gaussian fits to the data. Gain in fitness is represented in green, no fitness effect in yellow and fitness cost in red. Dark red represents a fitness cost >30%. Data collected from pairwise competitions show that approximately the 60% of ARCs (82/136) are costly in the absence of any selective pressure. It is worth mentioning that 9,5% of all ARCs (13/136) entail more than 30% cost, making it impossible to exactly quantify their fitness effect, even leading to the loss of the plasmid during the competition assays. Unexpectedly, 19% of all ARCs (26/136) are able to confer more than a 5% gain in fitness to their hosts reaching up the 38% of fitness gain in the case of ereA2. Focusing on the distribution of fitness effects in ARCs of the same family (Figure 29B), we can see Gaussian distributions for dfrs and aminoglycoside-resistance (AgR) genes, with members of both families conferring fitness cost and gain. dfrs distribution shows fitness levels close to 1, with all members showing a fitness effect of +/- 10% with the exception of dfrB4 and dfrA31 which are costlier (15%). AgR genes cause a higher modulation of bacterial fitness with some members providing a 18% of gain such as aphA16, and others such as aacA56, aacA43 and aacA17 imposing a substantial cost (>30%) that impedes their precise quantitation in our experimental setting. Besides, bla genes impose a great cost with 31% of them entailing >30% cost, while only 4 of them (blaOXA-10, blaBEL-1, blaOXA-1 and blaOXA-198) confer a mild growth advantage to their hosts in the absence of any selective pressure. The fact that bla genes tend to be costly could be related to both the mechanism of action of their encoded enzymes and their location within the periplasm, which requires a potentially costly signal peptide for translocation162,165. 0.7 0.8 0.9 1.0 1.1 1.2 1.3 2 4 6 AR C s (n ) dfrs 0.7 0.8 0.9 1.0 1.1 1.2 1.3 Fitness aa, aph, sat 0.7 0.8 0.9 1.0 1.1 1.2 1.3 bla A B qa cH aa cA 56 aa cA 43 qa cK bla OXA-5 bla OXA-9 bla OXA-21 aa cA 17 bla OXA-46 bla OXA-20arr 2 sm r1 arr 8b bla VIM -1 bla VIM -2 bla IM P-31 bla OXA-2 bla OXA-11 8 aa dB bla OXA-12 9 dfr B4 aa cA 30 dfr A31 qa cE Δs ul1 aa cA X qa cE aa cC 4 aa cA 49 aa cA 28 qa cM aa cA 16fos F aa cC 3 qa cG aa cA 64fos K ca tB 2 dfr A7 aa dA 24 bla VIM -7 dfr B2 ca tB 3 fos N aa dA 13 bla IM P-2 aa cC 13 aa cC 6 ca tB 6 ca tB 5 fos G dfr A12 aa cA 51sa t2 dfr B5 sm r2 dfr B9 sm r3 dfr B8 aa cA 29 dfr A5 dfr A35 aa dA 28 aa dA 29 dfr B3 fos H fos C2 aa cA 35 aa cC 5 aa dA 16 dfr B1 dfr A17 dfr A30 dfr A14fos E arr 5 aa dA 1 aa cA 37 dfr A15 bla PBL-1 aa cA 52 ca tB 10 aa cC 1 aa dA 10 dfr A27 qa cF aa dA 34 arr 6 aa cA 54 dfr A1 aa dA 2 aa cA 38 dfr A16 bla GES-1 aa cA 50 arr 7 aa dA 4 dfr A29fos L aa cC 11 dfr B6 bla OXA-19 8 qa cL aa dA 7 dfr A22 aa dA 6 dfr B7 dfr A6 aa cA 48 fos M aa cA 61 dfr A34 dfr A25 aa cA 8 bla OXA-1 bla BEL-1 ap hA 15 aa cA 34 aa cA 31 aa cA 2 dfr A21 fos I aa cA 4 bla OXA-10 aa cA 27 aa cA 3 aa cA 59 aa cA 7 aa cA 45 aa cC 2 aa dA 5 ere A3 aa cA 47 aa cA 42 aa dA 11 ap hA 16 ere A2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 ARCs Fi tn es s < Results: Evolutionary dynamics of integron resistance cassettes 92 4.1.4.2 Anaerobiosis is a crucial condition affecting the fitness dynamics of some ARCs. The observation that many ARCs provide a growth advantage to their host in the absence of selective pressure raised questions about the clinical relevance of our results. Specifically, explaining the fitness advantage of ereA2 (38% gain) in our experimental conditions proved challenging. Our bacterial host, E. coli MG1655, is intrinsically resistant to high levels of erythromycin (MIC = 64 µg/mL), so the acquisition of an erythromycin resistance gene should not confer any adaptative advantage to the bacterium. Moreover, this ARC is mostly found truncated or interrupted in E. coli isolates described in databases. The disparities observed between our data and the clinical situation documented in databases prompted us to bring our data closer to clinical scenarios. The presence of microbial communities as well as the lack of oxygen are definitory elements of life in the gut, therefore we decided to quantitate the fitness effect of ARCs in these conditions: anaerobiosis and within a microbial community. We modified the experimental procedure by conducting pairwise competitions based on phenotype selection over a period of four days (as described in the Materials and Methods). This allowed us to track the resistant bacterial population's dynamics throughout the competition. To achieve this, we generated DGFP mutants of a subset of pMBA derivatives, eliminating the need for GFP fitness correction in pairwise competitions between pMBADGFP and pMBAARCDGFP. The microbial community selected for batch culture competitions was the controlled Oligo-Mouse- Microbiota (OMM12)112. The OMM12 consortium comprises twelve different bacterial species representing the five major eubacterial phyla found in the murine gastrointestinal tract (Figure 30). This consortium has been widely utilized to study microbial interactions and enteric infections and has demonstrated stability both in vivo and in vitro 112,166,167. Figure 30. OMM12 consortium phylogenetic tree. Phylogenetic relation between the twelve strains that composed the OMM12 consortium based on its 16S sequence. OMM12 includes the five mayor phyla present in the murine gastrointestinal track: Bacteroidetes (orange), Verrucomicrobia (purple), Actinobacteria (blue) and Proteobacteria (red) and Firmicutes (green). Modified from 166 Results: Evolutionary dynamics of integron resistance cassettes 93 Pairwise competitions were then performed under aerobic and anaerobic conditions, and in batch cultures in the presence of the OMM12 consortium (Figure 31). First, dfr ARCs exhibit consistent fitness trends in both the presence and absence of oxygen. Specifically, dfrA21 promotes bacterial growth, while dfrA31 has a detrimental effect. In contrast, the rest of ARCs tested modify their fitness effect in an oxygen-dependent manner. aacA7, which provides a gain in fitness (8.4%) in our flow cytometry competition assays, seems to be detrimental in our long term competitions. In the same line, blaOXA-10, which entails an initial fitness gain in both competition assays, after four days confers a fitness cost to its host. Both, aacA7 and blaOXA-10 confer slight fitness gain in anaerobic conditions, or at least they do not impose any cost. The opposite phenomenon happens with ereA2 which is beneficial for aerobic bacterial growth but entails a huge cost in anaerobiosis (>40% cost after 4 days). These data suggest that the presence or the absence of oxygen can modulate the fitness effect of ARCs in integrons. Figure 31. Pairwise competitions between pMBA and pMBAARCs strains. In vitro competitions of DGFP strains (denominated as pMBA and pMBAARC in the figure) were perform (from left to right) in aerobic, anaerobic and anaerobic adding OMM12 microbiota conditions. Along four days pMBA (grey line) strain was co-cultured with (from top to bottom) pMBAdfrA21 (orange), pMBAdfrA31 (brown), pMBAaacA7 (purple), pMBAblaOXA-10 (blue), or pMBAereA2 (green) strains to assess ARCs fitness effect. Each time point represents the mean of three independent replicates, error bars represent the standard error of the mean (SEM). 0 10 20 30 40 50 60 70 80 90 100 df rA 21 (% ) Aerobiosis 0 10 20 30 40 50 60 70 80 90 100 df rA 31 (% ) 0 10 20 30 40 50 60 70 80 90 100 aa cA 7 (% ) 0 10 20 30 40 50 60 70 80 90 100 bl a O XA -1 0 (% ) 1 2 3 4 0 10 20 30 40 50 60 70 80 90 100 Time (days) er eA 2 (% ) 0 10 20 30 40 50 60 70 80 90 100 Anaerobiosis 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 1 2 3 4 0 10 20 30 40 50 60 70 80 90 100 Time (days) 0 10 20 30 40 50 60 70 80 90 100 Anaerobiosis + OMM12 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 1 2 3 4 0 10 20 30 40 50 60 70 80 90 100 Tiime (days) pMBAereA2pMBAblaOXA-10pMBAaacA7pMBAdfrA21 pMBAdfrA31 pMBA Results: Evolutionary dynamics of integron resistance cassettes 94 However, conducting these competitions within a controlled microbiota, OMM12, does not appear to significantly alter the fitness effects of ARCs. ARCs follow a similar trend to competitions performed in anaerobic conditions. It is worth mentioning that ARCs that impose a fitness cost in anaerobic conditions are even more costly in the presence of OMM12 consortium. Bacteria encoding dfrA31 or ereA2 almost disappeared from the mixture after 4 days competitions due to the high cost of these ARCs in this environmental conditions. We also checked whether ARCs could modulate OMM12 consortium composition (Figure 32). To do so, we quantitated by qPCR the relative abundance of each member of the consortium in the beginning and in the end of each competition. We do not appreciate relevant differences in OMM12 composition depending on the ARC encoded in the competed strain. Differences between stock and final OMM12 community are usually related to substrate depletion in the media during the experiment166. We can conclude that E. coli can colonize on top of the OMM12 community without destabilizing the microbiota independently of the ARC encoded. Figure 32. Relative abundance of each OMM12 member in batch culture competitions. Relative abundances of every member of OMM12 consortia before (stock) and after each replicate of the batch culture competition of pMBAARC DGFP (dfrA21, dfrA31, aacA7, blaOXA-10 and ereA2) vs. pMBA DGFP. OMM12 members are represented in different colours following the figure legend pattern. In light of these results, we decided to measure the fitness effect of all ARCs from the original pMBA collection in anaerobic conditions via pairwise competitions by flow cytometry (Figure 33). This data will enable us to compare the fitness effects of ARCs based on the presence of oxygen in the environment. In this scenario, we can see clear differences in the fitness effect derived from each ARC in comparison with the results collected from aerobic pairwise competition assays (Figure 33A). 0 50 100 OMM12 Community batch culture re la tiv e ab un da nc e (% o f t ot al g en e co pi es ) YL2 I46 I49 YL31 YL58 YL32 KB1 YL45 YL27 I48 YL44 aacA7 blaOXA-10 ereA2dfrA21 dfrA31 KB18 Stock Results: Evolutionary dynamics of integron resistance cassettes 95 If we arrange all ARCs in the graph by their costs (Figure 33B) we can observe that the vast majority of ARCs (81% vs 60% in aerobiosis) entail fitness cost, with 43 ARCs (32% of all ARCs) conferring more than 5% cost, and 10 of them entailing more than a 30% of fitness detriment. In addition, only arr7 confers more than 5% benefit to the bacterial growth (26 ARCs that have this beneficial effect in aerobiosis). In general, anaerobic conditions reduced the potential fitness gain provided by ARCs. The three main ARC families (dfrs, AgR genes and blas) tend to be costly (Figure 33C). bla genes follow a clear cost trend, with milder costs than the ones displayed in aerobiosis (Figure 29). In this line, dfrs tend to be detrimental with a mean family cost of 3% in the absence of oxygen. However, AgR genes generally had a mixed effect on bacterial fitness, with variations of up to 5%. Some of its members encode huge cost (aacA17, aacA49 and aacA58) being the exception to AgR gene family trend, which is centred in 1. Figure 33. Effect of each ARC in the fitness of the host strain in anaerobic conditions. A) Graph showing the fitness effect of each ARC in anaerobiosis. This graph shows data already corrected taken into account ARC-dependent GFP fluorescence intensity. ARCs conferring a gain in fitness are represented with green bars while ARCs entailing a cost are coloured in red. Data is represented as the mean of at least six independent replicates, error bars represent the standard error of the mean (SEM). B) Graph showing the ARC fitness effect in anaerobiosis organized by their cost. C) Histograms showing anaerobic fitness distribution of ARCs from the main families: dfrs, AgR genes (aa, aph and sat) and blas. Grey lines represent gaussian fits to the data. Gain in fitness is represented in green, no fitness effect in yellow and fitness cost in red. Dark red represents a fitness cost >30%. 0.7 0.8 0.9 1.0 1.1 1.2 1.3 2 4 6 8 10 AR C s (n ) dfrs 0.7 0.8 0.9 1.0 1.1 1.2 1.3 Fitness aa, aph, sat 0.7 0.8 0.9 1.0 1.1 1.2 1.3 bla C A B qa cH aa cA 56 aa cA 43 qa cK bla OXA-5 bla OXA-9 bla OXA-21 aa cA 17 bla OXA-46 bla OXA-20arr 2 sm r1 arr 8b bla VIM -1 bla VIM -2 bla IM P-31 bla OXA-2 bla OXA-11 8 aa dB bla OXA-12 9 dfr B4 aa cA 30 dfr A31 qa cE Δs ul1 aa cA X qa cE aa cC 4 aa cA 49 aa cA 28 qa cM aa cA 16 fos F aa cC 3 qa cG aa cA 64 fos K ca tB 2 dfr A7 aa dA 24 bla VIM -7 dfr B2 ca tB 3 fos N aa dA 13 bla IM P-2 aa cC 13 aa cC 6 ca tB 6 ca tB 5 fos G dfr A12 aa cA 51sa t2 dfr B5 sm r2 dfr B9 sm r3 dfr B8 aa cA 29 dfr A5 dfr A35 aa dA 28 aa dA 29 dfr B3 fos H fos C 2 aa cA 35 aa cC 5 aa dA 16 dfr B1 dfr A17 dfr A30 dfr A14 fos E arr 5 aa dA 1 aa cA 37 dfr A15 bla PBL-1 aa cA 52 ca tB 10 aa cC 1 aa dA 10 dfr A27 qa cF aa dA 34 arr 6 aa cA 54 dfr A1 aa dA 2 aa cA 38 dfr A16 bla GES-1 aa cA 50 arr 7 aa dA 4 dfr A29 fos L aa cC 11 dfr B6 bla OXA-19 8 qa cL aa dA 7 dfr A22 aa dA 6 dfr B7 dfr A6 aa cA 48 fos M aa cA 61 dfr A34 dfr A25 aa cA 8 bla OXA-1 bla BEL-1 ap hA 15 aa cA 34 aa cA 31 aa cA 2 dfr A21 fos I aa cA 4 bla OXA-10 aa cA 27 aa cA 3 aa cA 59 aa cA 7 aa cA 45 aa cC 2 aa dA 5 ere A3 aa cA 47 aa cA 42 aa dA 11 ap hA 16 ere A2 0.6 0.7 0.8 0.9 1.0 1.1 ARCs Fi tn es s < < < < < << < < arr 2 arr 8b sm r1 aa cA 17 aa cA 49 aa cA 56 bla OXA-20 bla OXA-21 bla PBL-1 bla OXA-46 ap hA 16 bla IM P-31 bla OXA-2 bla OXA-12 9 ca tB 2 dfr A7 ere A2 aa cA 16 aa cA 43 dfr B4 dfr A6 bla VIM -2 bla OXA-1 dfr A31 aa cA 30 aa cA 8 bla OXA-5 aa cA 28 ere A3 aa cC 13 aa cA 64 aa cA 42 dfr A1 bla VIM -1 dfr A12 ca tB 5 bla IM P-2 qa cK qa cE Δs ul1 fos C 2 dfr A27 dfr A17 aa cA 7 fos K ca tB 6 dfr A5 aa cA X aa cC 5 sm r3 aa dA 24 dfr A16 dfr B8 dfr B3 aa dB dfr A15 fos E fos N fos F fos H dfr A35 bla OXA-9 aa cA 27 bla OXA-11 8 ca tB 3 sm r2 aa cA 61 aa dA 13 qa cF bla GES-1 bla BEL-1 fos G aa cC 3 dfr B1 dfr B9 aa cA 47 qa cG dfr B6 qa cH aa cA 34 aa cA 52 bla VIM -7 dfr A14 dfr A25 dfr A30 ca tB 10 aa cA 35 fos I qa cM aa cC 11 aa dA 2 aa cA 29 aa cA 51 dfr A34 aa cA 31 aa cA 50 aa cC 2 aa cC 1 qa cL fos L aa dA 28 arr 5 dfr B7 dfr A29 bla OXA-19 8 arr 6 aa dA 11 dfr B5 aa cC 6 dfr B2 aa cC 4 sa t2 fos M aa cA 45 aa cA 38 aa cA 4 aa dA 29 qa cE aa dA 10 aa cA 59 aa cA 48 aa dA 4 ap hA 15 aa cA 37 aa dA 1 aa cA 3 bla OXA-10 aa dA 34 aa cA 54 aa dA 5 aa dA 16 aa cA 2 dfr A21 dfr A22 aa dA 6 aa dA 7 arr 7 0.6 0.7 0.8 0.9 1.0 1.1 ARCs Fi tn es s < Results: Evolutionary dynamics of integron resistance cassettes 96 After quantifying the fitness effects of each ARC in both aerobic and anaerobic conditions, we can conduct a comprehensive analysis of how the presence of ARCs impacts bacterial fitness (Figure 34). In general, ARCs tend to display a weaker fitness effect (cost or gain) in anaerobiosis. In aerobic conditions, the fitness effects exhibit an interquartile range (IQR) of 12%, compared with the 5% in anaerobiosis. Moreover, the difference between minimum and maximum fitness values is way higher in aerobiosis (70%) than in anaerobiosis (30%). Figure 34. Comparison between ARCs-fitness effect in aerobiosis and anaerobiosis. Violin plots showing the fitness effect of all ARCs in the presence (dark blue) and in the absence (light blue) of oxygen. Median and quartiles are represented as dashed lines. ARCs measured in aerobiosis and anaerobiosis are linked with dotted lines, highlighting ereA2 (red) and qacE (green) ARCs. Each data point is the mean of at least six independent replicates. We can conduct a detailed analysis of the data, examining specific ARCs and their responses to oxygen-dependent changes. Most of ARCs are influenced by the lack of oxygen by slightly reducing either their cost or gain; nevertheless, the growth of some pMBAARC strains can be drastically affected by the absence of oxygen changing the sign of the ARC fitness effect. ARCs such as ereA2 (Figure 34 red line) and aphA16 shift their aerobic fitness gain (38% and 18% respectively) into a cost (13% and 25% respectively) when oxygen is removed from the environment. This drastic modulation also occurs in the opposite sense, with qacE being detrimental in aerobic environments (13% cost) and changing its fitness effect to slightly beneficial (1% gain) (Figure 34 green line). In contrast, the fitness effect of other ARCs seem to be oxygen- independent, as it happens with aacA54 and aacA16 which entails 2% benefit and 11% cost respectively in both conditions. Summing up, ARCs fitness effect is generally conditioned by the presence or the absence of oxygen in the environment. Consequently, specific ARCs can modulate the fitness of the bacterial host in opposite directions (from cost to gain and vice versa) depending on the oxygenic conditions. aero anaero 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 fit ne ss qacE ereA2 Results: Evolutionary dynamics of integron resistance cassettes 97 4.1.4.3 ARCs can provide a fitness gain in the absence of antibiotics in vivo. Next, we aimed to validate our in vitro experiments by replicating pairwise competitions (pMBADGFP vs. pMBAARCDGFP) in vivo using mice that were stably colonised by the OMM12 bacterial consortium. The use of mouse models to perform pairwise bacterial competitions increases the environmental complexity, adding the immune system of the host as a new factor involved in the competition. Thus, we believe this is the best approach to approximate our experimental setup to the clinical reality. For this purpose, we selected three different pMBA derivatives to assess the fitness effect of their ARCs: ereA2, aacA7 and blaOXA-10. These three ARCs belong to different families, target different antibiotics and exhibit different fitness effect under the tested conditions. This diversity between ARCs allows us to draw general conclusions from this experimental data. We performed in vivo bacterial competitions (Figure 35) inoculating the 50:50 mixed culture at day 0 and collecting faecal samples from mice every day until day 4. At day 7 we performed the final sampling and mice were sacrificed to collect caecal samples from mice intestine. Samples were used to quantitate pMBA loads in faeces, relative populations of pMBAARC and potential fluctuations in the OMM12 consortium along the competition. Figure 35. ARCs can provide a fitness gain in the absence of antibiotics in vivo. A) pMBA loads quantitated as CFU/g faeces or GFU/mL caecal content at day seven (7C). B) Fitness effect of each ARC during 7 days in vivo competition assays. Each competition is represented with a different colour which stands for the ARC fitness effect assessed: ereA2 in green, aacA7 in purple and blaOXA-10 in blue. Experimental groups were composed of at least 5 individuals represented in the graphs as data points. A B 0 1 2 3 4 7 7C 0 1 2 3 4 7 7C 0 1 2 3 4 7 7C 104 105 106 107 108 109 1010 Time (days) C FU /g o r C FU /m L E. coli::pMBA loads 0 1 2 3 4 7 7C 0 1 2 3 4 7 7C 0 1 2 3 4 7 7C 0 25 50 75 100 Time (days) pM BA AR C (% ) in vivo competitions ereA2 aacA7 blaOXA-10 Results: Evolutionary dynamics of integron resistance cassettes 98 pMBA loads (Figure 35A) in faeces and caecal content are generally stable at around 107 CFUs/g or CFUs/mL along the experiment in aacA7 and blaOXA-10 groups. Nevertheless, pMBA mice infected with pMBA-pMBAereA2 mixture show a lower colonisation capacity during the initial 4 days of the experiment (106 mean CFUs/g faeces). In contrast, by day 7, their levels reach those observed in the other groups. When examining each of the three groups, we can observe two contrasting fitness effects associated with the encoded ARCs (Figure 35B). pMBAereA2 population is nearly depleted within 24 hours of competition, in line with our anaerobiosis results, underscoring the substantial cost associated with this ARC in vivo. In contrast, aacA7 and blaOXA-10 clearly provide a growth advantage to their bacterial hosts in the mouse gut. After four days of competition pMBAaacA7 and pMBAblaOXA-10 populations almost replace bacteria carrying the empty vector, with a prevalence of 98% in mouse faeces. By the end of the competition, the percentages of pMBAaacA7 and pMBAblaOXA-10 in both faeces and caecal content have decreased to 83%. This shift in the composition of the mixture might be explained as a result of adaptive mutations in the pMBA plasmid, which enhance the fitness of the strain containing the empty vector and stabilize its population. Attending to OMM12 composition, no relevant differences between groups are found in faecal and caecal samples in day 0 and day 7 (Supplementary Figure S5). In conclusion, while some ARCs impose a significant cost to their bacterial host in vivo, others like aacA7 and blaOXA-10 clearly confer a growth advantage in the absence of any selective pressure within the mouse gut. 4.1.4.4 ereA2 reduces E. coli motility. In light of ARCs fitness results, we wanted to study in detail the molecular processes that lead to ARC bacterial fitness modulation. To do so, we performed transcriptomic analysis via RNA- Seq of certain strains harbouring ARCs grown in aerobic conditions. We selected ereA2 and ereA3 as they confer a gain in fitness in aerobic conditions, conferring large cost in the absence of oxygen. Similarly, we chose dfrA21 and dfrA31 for their distinct fitness effects in various environments, entailing fitness gains and costs, respectively. To date, transcriptomic data needs a further analysis, being the following preliminary results. We considered transcriptional changes significant if they exceeded a 2-fold change and had a significance level of padj < 0.05. We first exanimated if pMBA plasmid presence modify in E.coli MG1655 transcriptomic profile. We found few transcriptomic changes between MG1655 and pMBA strains, potentially due to the plasmid presence (Supplementary Figure S6A, Supplementary table S6). Genes up or downregulated when pMBA plasmid is transformed exceptionally surpass 4-fold change after analysing the raw data using DESeq2 method117, which corrects data dispersion to obtain better estimations of transcription fold change. When comparing pMBAereA3 or pMBAdfrA31 strain transcription against their parental strain pMBA we can see clear differences with several genes up and downregulated in both cases (Supplementary Figure S6B,C, Supplementary table S7). In contrast, dfrA21 does not seem to modify extensively the host transcriptome with few genes up or downregulated. (Supplementary Figure S6D, Supplementary table S7). Results: Evolutionary dynamics of integron resistance cassettes 99 pMBAereA2 transcriptome has been analysed further (Figure 36). Following DESeq2 analysis, we can conclude that several of the genes that are upregulated in pMBAereA2 belong to the s32 regulon. This transcriptional factor (encoded in the rpoH gene) controls the heat-shock response and therefore, the expression of most genes involved in it168–170 (Figure 36, indicated by purple dots). Our transcriptomic analysis revealed a slight increase in rpoH gene transcription (1.62-fold increase). This increase is further amplified in downstream genes associated with the heat-shock response, including ibpA/B, groL, dnaK/J, lon, hsIU, etc. For instance, ibpA is expressed 30 times more in pMBAereA2 than in pMBA. This massive modulation of heat-shock response it is not observed in ereA3, dfrA31 or dfrA21 pMBA derivatives (Supplementary Table S7), and needs to be exanimated in more detail. Among all the genes that are downregulated in pMBAereA2, we wanted to highlight flg and fli operons (Figure 36, indicated by yellow dots), as these genes do not show this massive downregulation in any other pMBA derivative in the RNA-seq analysis (Supplementary Table S7). These genes belong to FlhDC-dependent operons which are crucial in the E. coli flagellar regulatory network171. In our analysis these genes show significantly lower transcriptional levels in pMBAereA2 strain, being flgB 20 times less transcribed than in pMBA. In this case, the master flagellar regulator flhDC shows the same transcription levels in both strains. Figure 36. Volcano plot showing differential gene expression of pMBAereA2 in comparison to pMBA. Gene expression was measured by RNA-seq both in pMBAereA2 and pMBA. Dotted-lines represent significance and fold change thresholds (padj <0.05 and fold change >2 respectively). Genes with a similar transcription in both strains are coloured in blue, while upregulated and downregulated genes are represented in green and red respectively. Genes involved in flagellar regulatory network (flg, fli) are named and coloured in yellow. A variety of genes involved in heat-shock response are also named close to their dots and coloured in purple. Data is represented as the mean of three independent replicates. -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 0 50 100 150 200 log2 (FoldChange) -lo g 10 (p ad j) pMBAereA2 vs pMBA flgB flgD flgC flgF flgE fliF fliI fliA flgG fliN flgH fliG fliH rpoH ybeZ lon cspB hsIU groL dnaJ hsIV ycjF groS dnaK clpB ibpB ibpA Results: Evolutionary dynamics of integron resistance cassettes 100 The downregulation of genes related to flagellar proteins in pMBAereA2 led us to consider a potential motility defect associated to ereA2 expression or activity. To investigate this, we quantitated bacterial motility of pMBA and pMBA derivatives ereA2 and ereA3 after 12 hours via swarming assays. Results reveal a significant reduction of bacterial motility in pMBAereA2 compared to the parental strain, with some replicates showing complete immobility. pMBAereA3 does not exhibit a significant motility defect. (Figure 37). These results correlate with the transcriptomic downregulation of flagella-related genes observed in pMBAereA2 but not in pMBAereA3. Figure 37. ereA2 reduces E. coli motility. A) Bacterial motility is measured after 12 hours. The graph shows the mean of three independent experiments with 3 biological replicates each, error bars correspond to the standard error of the mean (SEM). Unpaired t-test with Welch´s correction were used to assess statistical significance among strains. These differences are marked as * (p < 0.05). B) Representative images showing bacterial motility of each strain after 12 hours. Next, we investigated whether the motility defect associated with ereA2 is due to the protein expression or its enzymatic activity. To address this, we generated a subset of mutants, including ereA2 Dmet, in which we deleted the initial methionine of the ARC, and ereA2 cat. mut. (H50P E47A), a catalytic mutant of ereA2 with mutations in its active site172. In parallel we generated the same mutants for ereA3 as a control, where flagellar genes are not downregulated. We measured resistance levels against erythromycin for each strain to confirm whether the protein is not expressed or it has lost its enzymatic activity (Figure 38). Results show a decrease in resistance in both Dmet and cat. mut. Strains, reaching the parental levels and confirming the loss of expression or activity of ereA2 and ereA3 ARCs. Figure 38. MIC characterisation of pMBA derived strains against erythromycin. The MIC is the mean of three biological replicates (black dots) for each strain. The parental strain pMBA is shown in green while ereA2 mutants are coloured in blue and ereA3 mutants in a red to yellow palette. pM BA ere A2 ere A2 c at. m ut. ere A2 Δ met ere A3 ere A3 c at. m ut. ere A3 Δ met 16 32 64 128 256 512 1024 pMBA derived strains M IC (µ g/ m L er ith ro m yc in ) > > pMBA ereA2 ereA3 0 5 10 15 20 pMBA derived strains di am et er (m m .) * pMBA ereA2 ereA3 A B Results: Evolutionary dynamics of integron resistance cassettes 101 Finally, we quantitated the bacterial motility of pMBAereA mutants (Figure 39). The motility reduction observed in pMBAereA2 is maintained when ereA2 is not functional (ereA2 cat. mut.) but returns to motility levels similar to pMBA when ereA2 is not translated (ereA2 Dmet). ereA3 and its mutants (ereA3 cat. mut. and ereA3 Dmet) exhibit similar motility rates than the parental strain pMBA. These data suggest that the motility defect observed in ereA2 encoding strains is due to the protein expression itself rather than its enzymatic activity. Figure 39. ereA2 expression reduces E. coli motility. A) Bacterial motility is measured after 12 hours. The graph shows the mean of three independent experiments with 3 biological replicates each, error bars correspond to the standard error of the mean (SEM). The parental strain pMBA is shown in green while ereA2 mutants are coloured in blue and ereA3 mutants in a red to yellow palette. Unpaired t-test with Welch´s correction were used to assess statistical significance among strains. These differences are marked as * (p < 0.05). B) Representative images showing bacterial motility of each strain after 12 hours. In light of these results we can assume that the expression of ereA2 reduces E. coli motility through the transcriptional downregulation of FlhDC-dependent operons, which are involved in the formation and regulation of the flagellar complex. Whether this reduction in motility is a moonlighting activity of ereA2 or simply arises from nonspecific interactions with other proteins remains to be studied. In any case, the observation that E. coli strains harbouring ereA2 exhibit a motility defect has significant implications for their bacterial ecology and proliferation, as it may interfere with their ability to search for nutrients in a competitive environment. pM BA ere A2 ere A2 c at. m ut. ere A2 Δ met ere A3 ere A3 c at. m ut. ere A3 Δ met 0 10 20 30 40 pMBA derived strains di am et er (m m .) * * A B pMBA ereA2 ereA3ereA2 cat. mut. ereA2 Dmet ereA3 cat. mut. ereA3 Dmet Results: Evolutionary dynamics of integron resistance cassettes 102 4.1.5 ARC recombination frequency characterisation. Integrons are genetic platforms able to capture, excise, and reshuffle ICs. These processes require the integrase to interact with the attI site situated on the platform and/or the attC sites associated to each IC. It is important to note that the attI site is conserved within class 1 MIs, while the attC site is cassette-specific. Despite the low sequence similarity among attC sites in MIs, the integrase is able to recognise attC sites due to their conserved hairpin-folded structure94,173. Nevertheless, several studies suggest that specific features in the sequence and structure of attC sites have important consequences in the differential recombination frequency of each IC95,96,174,175. In this chapter we quantitate the recombination frequency of each ARC present in pMBA collection and attempt to find correlations between these values and specific features of attC sites. 4.1.5.1 Generation of the pMBA recombination collection. Recombination assays are generally conducted by conjugating an attC site, located in a suicide vector from a donor strain, to a recipient strain that contains an attI site. The delivered attC is inserted via integrase recombination (see Materials and Methods). These assays are designed to provide the optimal conditions for recombination to occur. The attC site is delivered into the recipient bacterium as ssDNA, which facilitates its recombinogenic folding. Simultaneously, the attI site in the recipient strain is already structured as dsDNA. To mimic a more natural scenario, we chose to perform the conjugation in reverse. We conjugated an attI site, located in a suicide vector, to a recipient strain which harbours each pMBAARC vector from pMBA collection (Figure 40). Figure 40. Schematic representation of a recombination assays. Briefly, a suicide vector (pSW) containing an attI site is conjugated from a donor strain to a recipient strain that harbours a pMBAARC vector. When the integrase is expressed in the recipient strain, attI x attC recombination takes place, generating chloramphenicol-resistant (CmR) transconjugants . We calculated the recombination rate of each strain as the ratio between CmR transconjugants and total number of recipient bacteria. Donor Recipient Transconjugant Results: Evolutionary dynamics of integron resistance cassettes 103 In the modified recombination assay, the attI site is conjugated in the recipient cell as a ssDNA which needs to reach a dsDNA form to be recombinogenic. In addition, attC sites need to be extruded from the dsDNA integron sequence to be recognised as ssDNA recombinogenic sequences, as it happens naturally. In contrast, the classic recombination assay requires fewer substrate modification because the attC sites are delivered as ssDNA sequences in the recipient strain, which already contains the attI site in its recombinogenic form as dsDNA. Thus, this new conjugation assay will also provide information about the likelihood of each structure reaching its recombinogenic state. It is worth noting that each ARC in pMBA collection is located in the first position of the array, followed by a gfp gene which act as a second cassette of the array. To be coherent with IC natural integration, the 3´end of each attC site does not belong to the actual cassette downstream the integrase cleavage site (G/TTRRRY). We decided to standardize every R’ box along ARCs cloned in pMBA collection using AGGC as the RRRY sequence, as it is the most prevalent R’ box sequence in ARCs (logo). Every vector from pMBA collection was subcloned into the DH5a E. coli strain, which is recA-, reducing its capacity for homologous recombination176. This approach helps to quantitate specific integrase-mediated recombination without the interference of homologous recombination. We also subcloned a p3839 plasmid encoding an int1 gene under the control of an inducible promoter which is required for recombination. We will refer to each DH5a strain harbouring pMBAARC and p3839 vectors as pMBAARC R strain in an effort to simplify the nomenclature in this chapter (Supplementary Table S1). We first validate our recombination assay procedure comparing recombination frequencies achieved using the classical assay, where aadA7 attC site is encoded in a donor strain, with the recombination rates reached when the same attC is present in the recipient strain: pMBAaadA7 R. (Figure 41). Recombination frequency decreases by one logarithm when the attC site is located in the recipient compared to when the same attC site is delivered from the donor strain. This phenomenon could be consistent with the extra processes needed to achieve recombination in our modified procedure. Figure 41. attC site recombination. Comparison between recombination frequencies achieved when aadA7 attC site is present in the donor or the recipient strain of the recombination assay. Graph represents the mean of at least 15 biological replicates and error bars stand for the standard error of the mean (SEM). attC donor attC recipient 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 Strains R . F . Results: Evolutionary dynamics of integron resistance cassettes 104 4.1.5.2 Recombination frequency quantitation. Despite the decrease in recombination rates observed in our modified recombination assay, the achieved recombination frequencies are also consistent with those published in the bibliography177. Therefore, we quantitated recombination frequency of each ARC present our pMBA recombination collection (Figure 42). It is worth considering that the following recombination frequencies might be one logarithm lower than the actual values, as indicated by our previous validation experiment. The recombination rates presented here have been corrected to subtract non-integron-mediated recombination. To do this, we performed PCR on every transconjugant to identify attI-attC cointegrates. Recombination rates before this correction are shown in Supplementary Figure S7. Figure 42. Recombination frequency of each ARC. Graph showing integron-mediated recombination rates of all ARCs present in pMBA recombination collection. Bars represents the mean of at least 3 biological replicates and error bars correspond to the standard error of the mean (SEM). Recombination frequency and attC site length do not correlate (inset: r2 = 0.007981). Recombination rates vary drastically between ARCs with a million-fold change between the highest (aacA52) and the lowest (fosN) integron-mediated recombination rates. These differences in recombination do not seem to correlate with attC site length (Figure 42 inset). However, when we group ARCs by gene families, we can observe that cassettes encoding aminoglycoside resistance genes (AgR genes) recombine with substantially higher rates than the rest of families (Figure 43). The other gene families display similar average recombination frequencies, although dfr and fos ARCs exhibit greater data dispersion compared to bla and qac/smr ARCs. This findings suggest that AgR ICs may, on average, have more opportunities for recombination than any other ARC, potentially making them more mobile. Figure 43. Analysis of the average recombination capacity of each ARC family. Graph showing the recombination tendency of each ARC family by grouping the recombination frequencies of every member of each ARC family. Only ARC families with at least 10 members are represented in this graph. AgR bla dfr fos qac, smr 10-8 10-6 10-4 10-2 100 ARC families R . F . dfr A3 5 fos K qa cE Δs ul1fos N fos F dfr A1 6 dfr A5 dfr A3 0 dfr A1 5 dfr A1 4 aa dA 4 dfr A2 5 dfr A3 4 dfr A1 2 ap ha 16 dfr A2 9 bla OXA-5 bla IM P-31 aa dA 16 dfr A2 7 qa cK sm r2 bla OXA-1 aa dA 10 ere A3 aa dA 13 fos G qa cG ap ha 15 ca tB 6 dfr B6 bla OXA-2 bla OXA-12 9 bla OXA-21 aa dA 5 arr 8b aa cC 11 bla VIM -7 ca tB 2 arr 2 aa cC 13 dfr B3 aa dA 11 aa dB bla OXA-46 aa dA 24 sm r3 dfr B5 dfr A7 fos C2 aa dA 28 aa cC 6 dfr B7 dfr B8 dfr A1 bla OXA-19 8 dfr B1 dfr A1 7 ca tB 3 dfr B2 bla OXA-20 ca tB 5 bla OXA-9 bla OXA-10 aa cA 49 aa cA 16 aa dA 2 ca tB 10 bla PBL-1 dfr B4 ere A2fos L aa dA 34 qa cL fos M qa cE bla OXA-11 8 bla VIM -1 dfr A3 1 aa cC 2 fos H bla VIM -2 fos I dfr B9 qa cH qa cM aa dA 1 arr 6 arr 5 aa cA 30 aa cA 42arr 7 dfr A2 2 sa t2 bla IM P-2 qa cF bla BEL-1sm r1 dfr A6 aa cC 5 aa cA 38 dfr A2 1 aa cA 43 aa cC 3 fos E aa cC 1 aa cA 27 aa cA 3 aa cA 54 bla GES-1 aa cA 28 aa dA 29 aa cA 17 aa cA 56 aa cA 47 aa dA 6 aa cA 48 aa dA 7 aa cA 35 aa cA 4 aa cC 4 aa cA 8 aa cA 59 aa cA 2 aa cA 31 aa cA 34 aa cA 64 aa cA 45 aa cA 29 aa cA 37 aa cA 51 aa cA X aa cA 50 aa cA 61 aa cA 7 aa cA 52 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 ARCs R . F . 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 0 50 100 150 R. F. at tC s iz e (b p) Correlation R.F. vs. attC site lenght (b.p) r2 = 0.007981 Results: Evolutionary dynamics of integron resistance cassettes 105 Remarkably, some ARCs exhibit very low or none integrase-mediated recombination in our experimental setup (Figure 42). Specifically, dfrA35, fosK, and qacEDsul1 do not show any integrase-mediated recombination, while fosN and fosF display extremely low recombination rates, with values lower than 10-7. It is known that qacEDsul1 do not contain any attC site which aligns with the lack of integrase-mediated recombination. However, a detailed analysis is required to understand this phenotype in the rest of ARCs. Certain anomalies in the attC site structure of these ARCs may interfere with proper integrase-mediated recombination (Figure 44). Figure 44. Structures of bottom strands of attC sites. fosK (A), fosN (B), fosF (C), and dfrA35 (D) attC site structures predicted by Geneious DNA fold plugin using DNA Matthews 2004 energy model. Colour code represents base-pair pairing probability (red: high, green: mild, blue: low). R and L boxes are described in de sequence when possible as well as the integrase binding sites represented as purple ellipses. The canonical attC site structure of fosK (Figure 44A) differs from an archetypical attC site as it appears to lack any L box with EHB protruding from the hairpin. Additionally, as mentioned earlier, the 3´end of every ARC attC site in our pMBA collection is generic, potentially leading to mismatches in the R box of attC sites. In the case of fosK, this modification disrupts the hairpin structure, completely destabilizing R box formation. These two factors could be the main drivers of the non-recombinogenic phenotype of fosK in our assays. attC - fosK attC logo - fosK attC – dfrA35 attC logo – dfrA35 attC - fosN attC logo - fosN attC - fosF attC logo - fosF R box R box R box R box R box R box L box L box L box L box A C B D Results: Evolutionary dynamics of integron resistance cassettes 106 Similarly, the attC site structure of fosN (Figure 44B) is altered when the logo is added to its 3´end, disrupting the R box and reducing substantially its recombination capacity. The attC site structure of fosF (Figure 44C) is not deeply modified in pMBAfosK but it seems to lack of a canonical L box, which could explain its low recombination frequency. Conversely; dfrA35, which exhibits a non-recombinogenic phenotype in our setup, contains a well-structured attC site (Figure 44D) with a minor variation in the R box This minor variation should not lead to such a dramatic decrease in recombination capacity, as similar variations are naturally found in integron arrays during IC excision. After confirming that certain ARCs might have reduced their recombination rates due to 3´end modifications, we aimed to analyse if this phenomenon could significantly bias our results. If the presence of mismatches in the R box of attC sites were always linked to a reduction in recombination frequency, we should find all of these ARCs in the lower quartile of our recombination rates distribution. However, we can find attC sites with the same R box mismatches both in the 10% of ARCs with the highest and lowest recombination rates (Figure 45). Some cassettes differ from their canonical attC site 3´end sequence in 1,2 or even 3 base pairs resulting in recombination rates that are evenly distributed between the highest (10-2) and the lowest (10-7) rates, validating our experimental setup and highlighting the biological relevance of this result. Figure 45. Comparative analysis of the recombination frequencies of ARCs. Graph showing by pairs recombination rates of ARCs with the same number of mismatches in their attC site 3´ends. R boxes of each ARC are described above each pair of ARCs, being mismatches with the logo coloured in red. Data collected from figure 42. 4.1.5.3 Correlation between recombination frequencies and in silico analysis. ARC recombination frequency is known to depend on certain features of the attC site, such as EHB position, free energy of the folded structure, positional entropy, probability of folding in a recombinogenic hairpin, GC content, etc178. Here, we aim to evaluate if there is a direct numerical correlation between the recombination frequencies obtained in vitro and some of these parameters measured in silico. aacA52 aadA4 a aacA64 dfrA12 a aacA37 dfrA5 a aacA45 dfrA16 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 ARCs 5´GTTAGGC3´ 3´CAATCCG5´ R .F . 5´GTTAACC3´ 3´CAATCCG5´ 5´GTTAAAA3´ 3´CAATCCG5´ 5´GTTAGCC3´ 3´CAATCCG5´ 5´GTTAACT3´ 3´CAATCCG5´ Results: Evolutionary dynamics of integron resistance cassettes 107 We believe that the free energy of the structure and its probability of folding generating a recombinogenic substrate (pfold) could potentially be the main parameters governing recombination. These parameters are related to the stability of the attC site hairpin and its recombinogenic conformation. The Gibbs free energy (∆G) indicates whether the folding of a ssDNA molecule into a particular secondary structure is energetically favourable or not, with lower (negative) values suggesting that the molecule is more stable in its folded state. Additionally, pfold calculation considers ∆G of both the unconstrained and constrained (recombinogenic) potential structures of the attC site to quantitate the probability of achieving the recombinogenic conformation of the attC site. For this analysis, we selected a subset of 34 ARCs, all of which have attC site 3´ ends matching the logo. This selection aims to minimize the introduction of additional parameters that could potentially affect the recombination capacity of ARCs and increase the background noise of our results (Figure 46A). Subsequently, we quantitated DG of the potential secondary structures of their attC sites as well as the probability of folding into recombinogenic structures (pfold) We then compared these values with their respective recombination frequencies (Figure 46B,C). Figure 46. Correlation between recombination frequencies and in silico analysis. A) Graph showing recombination frequencies of ARCs that have attC site 3´ends that match with the logo. B) Correlation between recombination frequency and DG of the unconstrained attC site sequence C) Correlation between recombination frequency and pfold of the attC site sequence. Recombination rates collected from figure 41. Recombination frequencies of ARCs achieved in our in vitro experiments do not exhibit correlations with either the ∆G or pfold values of their attC sites calculated in silico (r2 DG = 0.002644 and r2 pfold = 0.001408) (Figure 45B,C). Thus, more detailed studies of attC site structure are needed to establish a numerical correlation between in vitro recombination frequencies and potential attC site features measured in silico. aa dA 4 aa dA 5 arr 8b ca tB 2 aa cC 13 aa dB dfr B7 dfr B2 bla OXA-20 bla PBL-1fos M dfr B9 arr 6 arr 5 aa cA 30 aa cA 42 arr 7 sa t2 aa cC 5 aa cA 38 aa cC 3 aa cA 27 aa cA 3 aa cA 54 aa cA 35 aa cA 4 aa cA 8 aa cA 59 aa cA 2 aa cA 31 aa cA 51 aa cA 61 aa cA 7 aa cA 52 10-8 10-6 10-4 10-2 100 ARCs R . F . 0 25 50 75 100 10-8 10-6 10-4 10-2 100 pfold (%) R . F . r2 = 0.001408 -60 -50 -40 -30 -20 -10 10-8 10-6 10-4 10-2 100 ΔG (kcal/mol) R . F . r2 = 0.002644 A C B PART 2 A deeper look into the integron model Results: A deeper look into the integron model 111 4.2 A deeper look into the integron model. The integron model describes this platform as an operon-like structure. ICs present in the integron array are generally promoterless and are transcribed from the Pc promoter located in the integron platform. However, the literature describes several exceptions to this model, such as cassettes containing promoters64–66, the presence of secondary structures that regulate IC translation121, or the existence of small ORFs acting as control elements for translational initiation in class 1 integrons179,180. These regulators of IC expression directly effect to the modulation of the potential cost and resistance attributed to ICs, making their study essential for understanding the success of each IC. While the existence of cassette containing promoters and small ORFs affecting IC translation is generally accepted in the field, the presence of a common mechanism that regulates the translation of AgR ICs via a riboswitch remains controversial181. In this section, we provide experimental evidences addressing the validity of this puzzling and counterintuitive integron regulatory mechanism. Results: A deeper look into the integron model 113 4.2.1 The expression of AgR genes in ICs is not controlled by riboswitches. The expression of antibiotic resistance (AR) genes can influence the phenotype and the fitness of the bacterial host, and is a fundamental factor driving their fate in the clinical setting161. Inducible resistance mechanisms can alleviate the cost of resistance in the absence of antibiotics while preserving a high resistance phenotype in its presence182–184. Several mechanisms are known to induce the expression of AR genes in the presence of antibiotics, like ribosome stalling185,186, ribosome-mediated transcriptional attenuation187,188, and the sensing of the antibiotic molecules189 or their effects190,191. Because the cost of resistance is the main driver of its reversibility at the community level192, a clear understanding of the transcriptional and translational mechanisms regulating the expression of resistance genes is key in the fight against AR. Aminoglycosides (Ag) are critically important antibiotics against which the most common resistance mechanism is enzymatic modification. Many such modifying enzymes are plasmid- borne and circulate among clinically relevant species. To fight against the emergence and spread of Ag resistant bacteria it is necessary to understand the expression of these determinants. Notably, the expression of AgR genes has recently been claimed to be under the control of a riboswitch121. The authors observed a strong level of conservation of the 5´ leader RNA of several AgR genes and suspected a common regulation mechanism. They investigated experimentally the (6´)-N-acetyltransferase encoded in aacA5 (GenBank L06163) and found a potential secondary structure in the 5´ untranslated region (5´UTR) of its mRNA that involved a large part of the conserved region (Figure 47). Through a series of experiments combining bioinformatic, genetic and biochemical techniques, they concluded that 4,6 disubstituted deoxystreptamine (4,6- DDs) aminoglycosides bind to this structure and destabilize it, releasing the trapped Shine- Dalgarno (SD) sequence and allowing for the translation of the gene. This structure would hence act as a riboswitch. Given the sequence conservation they observed among AgR genes, in follow up works from the same group, they investigated the regulation of other AgR genes using a similar methodology and concluded that riboswitches are also present in other acetyltransferases193 and adenyltransferases194. º A puzzling aspect of these riboswitch-controlled genes is that they are encoded in integron cassettes, and that the conserved region encoding a large part of the riboswitch is actually the integration site (attI) of a class 1 integron, where genes of unrelated functions are inserted (Figure 46). The variety of functions encoded in integron cassettes makes the presence of such a riboswitch counterintuitive, since the expression of unrelated genes would be contingent on the presence of aminoglycosides. Also, in the initial report on these putative riboswitches, the induction levels observed for aacA5 were arguably very low (1.5–2.5-fold) and it has been suggested that these effects might be the result of pleiotropic effects of antibiotics on protein production, rather than the consequence of a specific induction mechanism181. Yet, data supporting this claim was not provided and is still nowadays unavailable. Hence the presence of Ag riboswitches in integron AgR cassettes remains today counterintuitive and controversial, and experimental proof from independent laboratories is necessary. Results: A deeper look into the integron model 114 Figure 47. The Ag-sensing riboswitch described in an integron cassette is counterintuitive. Diagram of the riboswitch described in Jia et al.121, upstream the aacA5 integron cassette. A large part of the structure is composed of the attI1 integration site of class 1 integrons (blue shade) including the direct repeats (DR) 1 and 2 (partially) and the L box. This region is the sequence found by the authors to be conserved upstream aminoglycoside resistance genes. Cassettes start at the crossover point between the G and the T of the conserved 5′-GTT-3′ triplet (dotted box). It is of note that most of the R box (5′-GTTRRRY-3′) in attI sites is provided by cassettes in first position, but are a functional part of the site. Modified from 107. Two strong argument against the biological meaning of an Ag-sensing riboswitch are IC mobility and variety. This mobility goes way beyond the reshuffling of positions within the same platform and deserves a deeper look into it. A wealth of data in the field put forward that mobile integrons recruit their cassettes from sedentary chromosomal integrons in environmental bacteria. It is remarkable that cassettes can be exchanged between different integrons. The variety of functions found in cassettes also argues against the biological rationale behind an Ag-sensing riboswitch that is composed mostly (47/75 bp) of the attI1 site of a class 1 integron, since the expression of unrelated genes would be contingent on the presence of aminoglycosides. As mentioned previously, we have found 177 different ARCs against most antibiotic families. From this ARC pool, AgR genes are found in the first position of the array in only 35% of class 1 integrons of the database, which correlates well with their relative abundance (36%: 64/177) and suggests there is no particular bias on the function encoded in first position. Indeed, genes conferring resistance against other antibiotics are also found frequently in first position (beta-lactams: 25%; trimethoprim: 20%; other families: 8.7%) together with cassettes not related to resistance or even cassettes of unknown function (10%) (Figure 48A). Hence, we could not find a bias towards the first position for cassettes that could potentially use the attI1 site to form a riboswitch. Results: A deeper look into the integron model 115 4.2.1.1 Expression of aacA5 is not induced by Ags in its native genetic context. To test the behaviour of aacA5 in the presence of aminoglycosides, we exchanged the 5´UTR of the gfp in pMBA vector by the 5´UTR of aacA5, obtaining pMBA5´-aacA5 (Figure 48B). This is the native genetic context of cassettes in class 1 integrons and is a more biologically relevant genetic environment than the cloning vector used in Jia et al.’s work in which expression is controlled by an inducible Plac, preceded by the lacI repressor gene. Figure 48. Mobile integrons contain cassettes encoding varied functions. A) Distribution of functions encoded in cassettes in first position of class 1 integrons in IntegrAll. B) Diagram of pMBA derived vector used to analyse cassette expression by fusing 5′UTRs to a GFP encoding gene. Not to scale. Modified from107. We subjected this construction to induction with kanamycin and sisomicin (members of the 4,6-DDs family) in diffusion antibiograms, in an effort to recreate Jia et al.’s experiments in which they used a beta-galactosidase reporter instead (Figure 49A). As controls, we exposed a strain containing pMBA to both antibiotics, and a strain containing the pBGT plasmid, in which the gfp gene is under the control of a PBAD promoter156, to an arabinose-containing disc to induce its expression. Results with pBGT validated the assay and provided a plot with a clear inducibility profile. pMBA5′-aacA5 did not show increased levels of fluorescence at the border of the inhibition halos, as would have been expected from a riboswitch-mediated induction of expression, and instead had a profile similar to that of the pMBA control. We have also recreated Jia et al.’s induction experiments in broth, by growing strains carrying pMBA and pMBA5′-aacA5 in doubling concentrations of kanamycin ranging from subinhibitory to inhibitory and measuring fluorescence after 1 h through flow cytometry (Figure 49B). We did not observe an increase in fluorescence at any concentration. Instead, fluorescence started decreasing as antibiotic concentrations approached the MIC of our strain (1 µg/ml). It is worth noting that the bacterial inoculum used in these experiments was higher than the one used to determine the MIC, which explains the visible growth at concentrations above the MIC (a well- known phenomenon named inoculum effect195). A B Results: A deeper look into the integron model 116 To test whether a longer time period was necessary to observe an induction, we analysed growth and expression levels in all concentrations of kanamycin for 24 h (Figure 49C). Our data revealed an inhibitory effect in growth at all concentrations that was overlooked in Jia et al.’s experiments and could be relevant since it seems to affect bacterial physiology. We took it into account by normalizing fluorescence to optical density. Data showed that the expression of gfp was not induced in the presence of kanamycin at any concentration tested. Instead, fluorescence (both raw, and normalized by the OD) was lower in the presence of the antibiotic than in its absence in agreement with previous results. We observed a similar behaviour for the empty pMBA control, suggesting that the decrease in fluorescence/OD600 is a consequence of the general inhibition of protein synthesis caused by kanamycin rather than a specific effect on the 5′UTR of aacA5. Figure 49. The expression of aacA5 is not induced by aminoglycosides in its native genetic context. A) Diffusion antibiograms of pMBA5′-aacA5 and pMBA in the presence of sisomicin and kanamycin, and pBGT confronted to an arabinose disc (positive control). B) GFP fluorescence of pMBA and pMBA5′-aacA5 in broth experiments after 1 hour of induction with kanamycin. Statistically significant differences compared to the no-antibiotic condition are marked with * (p < 0.05), **(p < 0.01) and ***(p < 0.001). C) pMBA5′-aacA5 and pMBA growth (OD600), fluorescence (arbitrary units) and cassette expression (measured as fluorescence/OD600) along 24 h. Figure from 107. Altogether, our data do not support a riboswitch-controlled model of expression for the ARC aacA5 cassette. Yet it is possible that other AgR genes in integrons possess such control mechanisms. A B C Results: A deeper look into the integron model 117 4.2.1.2 Generation of the pMBA 5´aaX collection. The expression of aacA5 is, in our hands, not induced by kanamycin or sisomicin. Nevertheless, we sought to analyse the inducibility of all known AgR cassettes. As we did for pMBA5′-aacA5, we generated a collection of 64 pMBA derivatives that harbour the 5´UTRs of each AgR gene cassette present in class 1 integrons (Figure 50A, Supplementary Table S8) between the attI site and the gfp start codon in pMBA. These UTRs were defined as the sequence starting at the TT of the 5′-GTT-3′ triplet (where the recombination crossover takes place in integrons) to the start codon of the gene. We used gene and attC site annotations from IntegrAll, but in the case of cassettes with potentially dubious annotations, alternative (alt) UTRs were also tested (see below). The 5′UTRs selected here varied considerably in size from 3 to 86 bp (Figure 50B). Eleven out of 13 aadA cassettes in our collection had the same 5′ UTR, but were cloned and treated independently as biological replicates (mauve dots in Figure 50A and onwards). This was also the case for the 5′UTRs of aacC2 and aacC6 (brown dots in Figure 50A). This provides a control of technical and biological variability in our assays. Once this collection of 5′ UTRs from AgR cassettes was established and verified, we included as additional controls: the pMBA vector; a plasmid-less MG1655 strain that does not contain a gfp gene (MG); three constructions with the 5′UTRs of integron cassettes that confer resistance to unrelated antibiotics; such as trimethoprim (dfrA5), fosfomycin (fosG), and beta- lactams (blaOXA-9); and a thermometer riboswitch that responds to temperature, not antibiotics196. 4.2.1.3 AgR cassettes are not repressed in the absence of antibiotics. To characterize the expression of AgR cassettes in resting conditions, we measured the fluorescence of all 5′ UTR-gfp fusions in the absence of antibiotics (Figure 50C). Fluorescence levels varied 170-fold between the least (pMBA5′-aacA38 ) and the most expressed (pMBA5′-aacA42) strains, and the rest of pMBA5´ strains were evenly distributed throughout this scale. To put these levels of expression in context, we have included as a landmark of expression a PBAD promoter in repressed, unrepressed and induced conditions (yellow dots in Figure 50C). This promoter is known to have a broad dynamic range with good levels of induction and repression. pMBA5´ derivatives with the highest expression levels were similar to the induced PBAD. Instead, the least expressed strain was 10-fold higher than the repressed PBAD or the no-GFP control (MG1655 strain). pMBA5´ strains derived from cassettes conferring resistance against other antibiotics did not group together in a qualitatively distinct expression range, but instead were found among the least and the most expressed strains. Results: A deeper look into the integron model 118 Thus, the differences in expression levels among pMBA5´ derivatives do not support a common repressing mechanism. Contrarily, expression levels correlated well (r2 = 0.69) with the presence of a Shine-Dalgarno sequence in the vicinity of the start codon (Supplementary Figure S8). The net expression levels of most pMBA5´ derivatives are incompatible with a biologically relevant repressed status, as one would expect for an uninduced riboswitch. Figure 50. Aminoglycoside resistance cassettes are not repressed in the absence of antibiotics. A) Tree showing the phylogenetic relationship of the 64 AgR proteins found in integron cassettes. The enzymatic activity is marked with coloured lines. Proteins encoded in cassettes with identical 5′ UTRs are marked with mauve and brown dots, and pMBA5′-aacA5 is marked with a red dot. B) Size distribution of 5′ UTRs within AgR cassettes. C) Expression of AgR cassettes in resting conditions measured as the fluorescence of 5 ́UTR-gfp fusions. Expression levels of the PBAD promoter are depicted as landmarks of expression (yellow dots). Controls include the MG1655 strain without the gfp gene (MG: black dot), pMBA (green dot), cassettes conferring resistance to unrelated antibiotics (light blue dots) and the thermometer riboswitch (dark blue dot). As in panel A, constructions with identical 5′ UTRs are marked with mauve and brown dots, and pMBA5′-aacA5 with a red dot. Modified from 107. A B C Results: A deeper look into the integron model 119 4.2.1.4 Aminoglycosides do not induce the expression of AgR cassettes. As mentioned previously, aminoglycosides are a large family of antibiotics that can be classified in three subclasses attending to their chemical structure: 4,5- and 4,6-disubstituted deoxystreptamines (-DD), and the non-deoxystreptamines. Most clinically relevant molecules like kanamycin, sisomicin, gentamicin or amikacin are 4,6-DDs, while neomycin and paromomycin are 4,5-DDs, and streptomycin is a non-DD. Induction of aacA5 was shown to occur in the presence of 4,6- but not 4,5-DDs. Therefore, we will use ‘inducing’ Ags to refer to 4,6-DDs and ‘non- inducing’ for 4,5-DDs. We aimed to better verify the inducibility of all AgR cassettes by aminoglycosides by broadening the molecules tested to include the inducers gentamicin and amikacin. All antibiotics were used at 1/2 of the MIC to provide conditions in which concentrations are maximal before strongly inhibiting bacterial growth (0.5 µg/mL kanamycin, 0.06 µg/mL sisomicin, 0.5 µg/mL amikacin, 0.125 µg/mL gentamicin). As a control, we included the non- inducing aminoglycoside neomycin (1/2 MIC = 4 µg/mL). Correct growth was verified for all conditions (Supplementary Figure S9). We calculated the induction ratio (IR) of all cassettes as the ratio between the fluorescence in the presence over the absence of the antibiotic, so that non-inducible genes should have an IR around 1, while inducible genes should have an IR > 1. As an example, the IR of the PBAD promoter in Figure 50C is 170. IRs of all cassettes showed distributions with a median close to 1 in the presence of inducer aminoglycosides (0.99 for kanamycin, 1.05 for sisomicin, 1 for amikacin and 1.07 for gentamicin) (Figure 51A). The non-inducer neomycin showed the highest median of induction (1.077), although very similar to that of gentamicin. Maximal and minimal IR values observed were around 1.3 and 0.8 respectively for all Ags except for gentamicin that showed a higher dispersion (1.56–0.63). We also tested alternative UTRs for cassettes with potentially dubious annotations, and showed a similar non-inducible profile (Supplementary Figure S10). The small increase observed for maximal IR values argues against a biologically relevant induction for any gene. Instead, the distribution of IR values suggests that variations are likely due to noise, whether biological or technical. To address this, we examined more closely the 11 constructions with identical 5´UTRs (from aad ICs) that were treated as independent biological replicates. Their IR values showed differences that comprised a large part of the variation in the whole dataset (Figure 51A, mauve dots). Taking kanamycin as an example, the IR values of 76% (49/64) AgR cassettes fell between the highest and lowest IR of these identical 5´UTRs. If we include the controls that are not related to AgR, this figure reached 81% for kanamycin and sisomicin, 72% for gentamicin, 87% for amikacin and 84% for neomycin. This strongly suggests that the variability found among genes is non-specific, and that it most likely reflects biological or technical noise, and/or the pleiotropic effect of the antibiotic. Results: A deeper look into the integron model 120 We performed a statistical analysis of our data comparing fluorescence levels through linear regression. We did not find significant differences in the presence of an aminoglycoside compared with the baseline readings in the absence of antibiotic (p > 0.3). We then applied a linear mixed model accounting for genes and experimental batches as random effects, and observed significant changes in the fluorescence readings in the presence of gentamicin and amikacin, but not kanamycin, sisomicin nor neomycin (Supplementary Figure S11). These effects were extremely mild, with a mean increase in expression of 5% for gentamicin, and a mean decrease of 7.5% for amikacin. Figure 51. Aminoglycosides do not induce the expression of aminoglycoside resistance cassettes. A) Violin plots showing the induction ratios of all cassettes in the presence of four inducing aminoglycosides, and the non-inducing neomycin. Colour code of the dots as in Figure 49. Median and quartiles are represented by dashed lines. Linear regression analysis did not find significant differences (p > 0.3) in fluorescence readings in the absence versus the presence of Ags. Each data point represents the mean of at least three measurements. B) Induction ratio measured through Western blot of the 10 pMBA5´ derivatives with highest and lowest IRs in kanamycin measured by flow cytometry (orange and violet boxes in panel A). GFP abundance was normalized to DnaK. Cytometry and Western blot results do not correlate (inset: linear regression r2 = 0.02). Figure from 107 A B Results: A deeper look into the integron model 121 We have also quantitated GFP protein in the presence and the absence of kanamycin using Western blot (Figure 51B) as we previously did for polar effects characterisation. We have analyzed ten strains showing the highest IR values with kanamycin, and have compared them to the ten pMBA5´ derivatives with the lowest IRs (orange and violet boxes in the kanamycin violin plot in Figure 51A). Cytometry and WB data clearly show a lack of correlation (r2 = 0.02) (inset in Figure 51B) suggesting that genes with high IRs in cytometry do not represent a distinct subset of cassettes with a specific induction mechanism. Altogether, the lack of coherent effects among inducer molecules and of biological significance of the induction ratios, rules out the presence of a common regulatory mechanism capable of sensing aminoglycosides and inducing gene expression. 4.2.1.5 Higher concentrations of Ags neither induce resistance genes. The concentrations of antibiotics used for in vivo experiments in the first report of the putative riboswitch121 were close or above the minimal inhibitory concentration of a susceptible E. coli K-12 derivative such as their (and our) strain. Indeed, the highest induction level they observe for kanamycin is at 2.4 µg/ml (5 µM), in a strain with a MIC around 1 µg/ml. Therefore, we decided to address whether riboswitches could be acting at concentrations above the MIC, despite not conforming to a biologically sound rationale. To do so, we introduced the AgR gene armA in a subset of our strains. ArmA is a 16S rRNA methylase that provides high levels of resistance against 4,6-DDs, but does not modify the antibiotic. Crucially, armA is not encoded in an integron cassette197. We repeated induction experiments of cassettes in the presence of 256-fold higher concentrations of kanamycin and confirmed that they remain uninduced (Figure 52). Figure 52. High concentrations of aminoglycosides do not induce AgR cassettes. A) Induction ratio of a subset of AgR cassettes in the presence of 128 µg/ml of kanamycin (blue dots). As a reference, the IR values at 0.5 µg/ml of kanamycin from Figure 50 are also represented (green dots). B) Induction ratio (calculated as the ratio of fluorescence/OD600 with kanamycin over fluorescence/OD600 without kanamycin) of these strains along their growth curve (18 h). Colour code is as in A). Green: pMBA; red: pMBA5′-aacA5; blue: control strains; mauve: strains with identical 5′UTRs; grey: rest of strains. A B Results: A deeper look into the integron model 122 4.2.1.6 Induction is higher in the presence of unrelated antibiotics. Our experiments at 1/2 the MIC show that aminoglycosides can have a very mild and non- specific influence in the measures of IRs. To provide a broader context to our data we have tested the effect of unrelated antibiotics in the induction of all 5′UTRs (Figure 53). We chose molecules with different modes of action, such as tetracycline (1/2 MIC = 0.125 µg/mL); a protein synthesis inhibitor, like aminoglycosides, but with a distinct mode of action; ciprofloxacin (1/2 MIC = 0.008 µg/mL), a topoisomerase inhibitor; and trimethoprim (1/2 MIC = 0.06 µg/mL), that inhibits the biosynthesis of folate. With these antibiotics, the medians of IR were all higher than with aminoglycosides (tetracycline: 1.08; ciprofloxacin: 1.26; trimethoprim: 1.19), and estimated differences in our linear mixed model due to the antibiotic were larger than those associated with the addition of aminoglycosides (Supplementary Figure S11). No construction showed an IR > 2 in any antibiotic, and >93% of the IR values of AgR cassettes fell within those of control strains, pointing to a non- specific effect of these molecules on the expression of AgR cassettes. To address if there is any cassette with a mild but consistent inducible behaviour across our experiments, we analysed independently the IRs of each 5´UTR in the presence of inducing aminoglycosides (4,6-DDs) and non-inducing antibiotics (4,5-DDs and unrelated antibiotics) (Supplementary Figure S11). Our data clearly shows that 4,6-DDs do not induce the expression of AgR cassettes to biologically relevant levels in any case. The stronger effects of other antibiotics are also evident in this analysis since 83% (53/64) of the genes had higher median IRs in the presence of non-inducing molecules compared to 4,6-DDs, and statistically significant differences were observed in 10 of them. Figure 53. Induction is higher in the presence of unrelated antibiotics. Violin plots showing the induction ratio of all genes in the presence of non-aminoglycoside antibiotics. Colour code as in Figure 50. Median and quartiles are represented by dashed lines. Statistically significant differences compared to the no-antibiotic condition are marked with **(p < 0.01). Each data point represents the mean of at least three measurements. 0.5 1.0 1.5 2.0 In du ct io n ra tio TetracyclineCiprofloxacin PROTEIN SYNTHESISDNA TOPOLOGY FOLATE SYNTHESISAffected Process Trimethoprim MH ** Results: A deeper look into the integron model 123 4.2.1.7 Increased expression is due to pleiotropic effects of antibiotics. Other authors as Roth and Breaker suggested that the mild induction observed by Murchie and collaborators could be due to pleiotropic effects of antibiotics181. Conveniently, we can test this experimentally because the presence of trimethoprim can be decoupled from its antibiotic effect, by measuring IRs in Lysogeny Broth (LB), instead of Müller Hinton (MH). In contrast to MH, LB contains traces of thymine that render the folate route redundant so that trimethoprim is not lethal in LB. We analyzed the induction of all cassettes in the presence of trimethoprim in LB and compared them to our previous results in MH (Figure 54). The observed mean of IR values decreased from 1.17 to 0.98 in the absence of antibiotic and this effect was statistically significant using both linear regression and a random linear mixed model (p < 0.0001). This confirms that pleiotropic effects of antibiotics can alter the expression of genes 1.5-fold range in a non-specific manner, which is approximately the range observed by Jia, et al. Figure 54. Increased expression is due to pleiotropic effects of antibiotics. Induction ratio of all cassettes in the presence of trimethoprim in LB compared to MH (data from Figure 52). Colour code as in Figure 49. Median and quartiles are represented by dashed lines. Statistically significant differences compared to the no-antibiotic condition are marked with ****(p < 0.0001). Each data point represents the mean of at least three measurements. Altogether, our results rule out the existence, in integron AgR ICs, of a regulatory mechanism that induces gene expression in the presence of aminoglycosides. It therefore challenges the validity of the Ag-sensing riboswitch. DISCUSSION Scan me on Spotify Discussion 127 5 Discussion Antimicrobial resistance is a major threat for global health, causing between 1.5 and 5 million deaths per year24. Evolution towards resistance is mainly driven by the dissemination of resistance determinants through horizontal gene transfer facilitated by various agents, including phages, plasmids, transposons, and mobile integrons. Notably, integrons are key elements in multidrug resistance among Gram negatives, harbouring more than 170 resistance determinants against 12 antibiotic families122. This, together with their high prevalence in clinical isolates make integrons crucial genetic elements for the study and tackling of antimicrobial resistance. While the success of mobile integrons among clinical and environmental isolates is undeniable, the prevalence of each IC in databases varies significantly, even among ICs conferring the same phenotype. We believe that various evolutionary forces, such as antimicrobial resistance, fitness cost, polar effects, and mobility, as well as the factors that modulate these forces, play a significant role in driving the success of each IC. In the literature, we can find studies that focus on characterizing each of these forces separately. However, the data is scattered and reported in different genetic backgrounds and conditions, which makes impossible to conduct comparable analysis. The establishment of the pMBA collection facilitates a comprehensive and comparable study of all features potentially associated with the success of each ARC in its biologically-sound genetic environment. It is worth noting that this collection represents the most extensive compilation of ARCs to date, encompassing 136 ARCs (Figure 13). However, as mentioned in the Results section, this number accounts for 77% of all ARCs found in mobile integrons, which constitutes a limitation of our study. More than half of the non-cloned ARCs (22 out of 41) belong to the bla ARC family. In our experiments, most cloned members of this family impose a significant fitness cost to their host, which may explain our limitation in cloning blas in E. coli. For instance, when we examine the distribution of ARCs among bacterial species, blas constitute a small percentage of all ARCs in E. coli (4.1%), in contrast to other species like Pseudomonas spp. (34.4%). An analysis of the distribution by resistance mechanism reveals a similar pattern, with nearly 50% of bla ARCs found in Pseudomonas spp., while only 7% are present in E. coli (Figure 55). These data highlight the potential existence of species-specific barriers to horizontal gene transfer mediated by integrons122, phenomenon that would be worth assessing in the future. In addition, the high expression levels achieved in the pMBA vector, a consequence of its copy number and the PcS promoter, could hinder the cloning of costly ARCs, such as blaVEB-1, which has been successfully cloned in R388 under a PcW promoter198 but not in pMBA. However, we consider that our genetic context, in which ARCs are strongly expressed, offers more benefits than drawbacks, as it allows us to distinguish subtle phenotypic differences between the studied ARCs. Discussion 128 Figure 55. Distribution of ARCs by antibiotic class among different bacterial genus. Each column represents the whole set of reports of ARCs against a given antimicrobial family available in IntegrAll (each ARC can be reported more than once). Colours represent the bacterial genus in which it was found. Characterizing the resistance profile of each ARC not only provides essential information for understanding their success but also serves as a valuable guide in clinical contexts. By coupling MICs to hierarchical clustering trees, we observe that profiles do not follow strictly the identity signal between proteins, highlighting that genes annotated automatically might not behave as predicted. Indeed, some ARCs do not follow the resistance pattern of the family, like aadB, that shows a resistance profile closer to that of acetylases than to other adenylases (Figure 14). In other cases, closely related genes such as blaOXA-1 and blaOXA-9 (Figure 15) show different resistance profiles against cephalosporins and aztreonam, similarly to what we see for aadA4 and aadA5 in which the latter confers high streptomycin resistance, while the former (the closest related protein) does not (Figure 15). In more extreme cases, the annotation of a gene as a resistance gene might be mistaken, as for aadA10 or aacAX (Figure 14); or at least it is unlikely that these genes are clinically relevant, like for aacA16 and fosM (Figures 14 and 17). The most striking case revealed by our results is that of complete families of genes that do not confer resistance against the compounds described in the literature in E. coli. Such is the case of qac, and smr, that did not rise the MIC against any quaternary ammonium compound tested (Figure 18), although we cannot rule out a stronger impact of these determinants in different conditions, such as in biofilms155, or species. Beta -la cta ms Amino gly co sid es Chlo ram ph en ico l Tri meth op rim Fos fom yc in Small dr ug s Rifa mpic in Mac rol ide s Quin olo ne s0 50 100 Antibiotic class % Distribution of ARCs among genus Acinetobacter (n=415) Citrobacter (n=200) Enterobacter (n=336) Aeromonas (n=261) Klebsiella (n=1259) Escherichia (n=1512) Pseudomonas (n=1055) Proteus (n=187) Salmonella (n=647) Vibrio (n=101) n=1960 n=5624 n=857 n=2668 n=19 n=401 n=413 n=149 n=37 Discussion 129 In this context, the fact that some ARCs do not appear to confer resistance in our experiments does not necessarily imply that these genes would behave similarly in other genetic backgrounds. As an example, it is also noteworthy that R388 carrying aadB in first position confers significantly higher resistance levels to gentamicin in P. aeruginosa (64-fold)198, compared to E. coli (4-fold) (Figure 19B). Therefore, it becomes essential to expand this resistance characterization to other clinically relevant bacteria from the ESKAPEE family, as it is crucial to effectively combat antimicrobial resistance. On a different note, an interesting aspect of this resistance profiling is its potential impact in biotechnology. Integron ARCs have been broadly used as resistance markers, and sometimes the availability of different markers is a limiting factor when delivering strains with multiple genetic modifications. Our results provide researchers with a useful guide with options that are counterintuitive for many, like the possibility of using erythromycin resistance genes in E. coli or the possibility of selecting 5 consecutive markers within a single family of antibiotics: for example aacC11 and aadA5 can be independently selected with gentamycin and streptomycin. Then, respecting the order, aphA16 can be selected with kanamycin; aacA34 with tobramycin; and aacA49 with amikacin (Figure 14). Together with the resistance conferred, the cost entailed by an antimicrobial resistance gene is one of the main drivers of its success. We have quantitated the fitness effect of each ARC under different conditions such as aerobic, anaerobic and in the presence of a controlled microbiota. It is worth noting, that to bring our data closer to the clinical reality we also performed in vivo competition experiments to complement and reinforce data acquired in vitro. The cost associated with each ARC varies in our experiments depending on the environmental conditions and is partially linked to the encoded resistance mechanism. Competition assays show a strong tendency toward cost associated with bla ARCs, independently of the experimental conditions. This, together with their low prevalence in E. coli isolates described in the IntegrAll database (Figure 55) and our cloning limitations linked to this family of ARCs, supports the hypothesis of species-specific barriers to horizontal gene transfer in integrons. We could apply the same hypothesis to explain the differential prevalence of individual ARCs, expecting that the costlier ARCs may be rare in databases, while beneficial ARCs should be reported more often. This hypothesis holds in some cases, with aadA5 being the most reported ARC in class 1 MIs in E. coli and also conferring a growth benefit to E. coli in our experiments (9% and 2% in aerobiosis and anaerobiosis, respectively) (Figures 29 and 33). However, this approximation could be biased due to the lack of metadata for the samples submitted to databases. Several factors, such as the sample origin (clinical or environmental), the MGE that carries the integron, and, in clinical samples, specific antibiotic exposure, play a crucial role in the selection of specific arrays or ARCs. Therefore, the fitness effect of each ARC in databases cannot be directly correlated with its prevalence and should be considered only as a possible explanation for its success. Discussion 130 One of the most remarkable results of this thesis is the fact that some ARCs, in certain conditions, confer a gain in fitness to their hosts in the absence of selective pressure both in vivo and in vitro. This finding suggests that certain ARCs play an accessory role, along with their function as resistant determinants, enhancing bacterial growth. These beneficial ARCs might play a key role in the spread and stabilization of plasmid-mediated resistance in antibiotic-free conditions, breaking the general fitness-resistance trade-off199 without needing compensatory mutations to alleviate the “cost” derived from ARCs200,201. It is known that several of the so-called ARGs may not act as resistance determinants in their native host context, displaying their function in bacterial metabolism202. In this line of thought, we suggest that ARCs conferring a gain in fitness in the absence of selective pressure could be playing a dual role, conferring resistance to antimicrobials and participating in bacterial metabolism. As an example, we have discovered that ereA2, in aerobiosis, modulates the transcriptome of E. coli repressing motility-related genes (Figure 36). This transcriptomic modulation could be related to the gain in fitness conferred by this ARC in aerobic competitions, where saving energy destinated to motility in shaking conditions could lead to a growth benefit, while in anaerobiosis and in vivo might be detrimental causing great fitness cost to the bacterium. This dual role of certain ARCs could explain the significant prevalence of ARCs that confer low resistance levels or even fail to confer resistance, such as qac and smr ICs. Nevertheless, further studies are needed to confirm this hypothesis and unveil these hidden accessory functions. Another observation worth considering is the influence of oxygen in fitness effects of most ARCs (Figure 34). This phenomenon could lead to strikingly different fitness effects due to environmental changes or in clinical settings, which could be key in the ecology and maintenance of these ARCs, even if they are costly to the bacterium under certain conditions. Using ereA2 as an example again, this ARC is beneficial under aerobic conditions but detrimental in anaerobiosis and in vivo competition assays. This duality in fitness effect could explain why ereA2 is rarely found in databases, where clinical isolates are overrepresented compared to environmental samples, or when found, it is often truncated. Nevertheless, all these hypotheses are only valid for cassettes located in the first position of the array. ARCs located further from the dedicated Pc promoter are less expressed and, therefore, entail a lower cost. Thus, the operon-like structure of the integron and the modulation of ARCs expression by distal ICs within the platform make direct correlations between prevalence and fitness effect a simplistic approximation to a complex phenomenon. Integrons can harbour more than one ARC, forming IC arrays. We have demonstrated that the identity of an ARC can modulate the expression of the following ICs in the array at a transcriptional level, adding an extra layer of complexity to the canonical operon-like integron model. This phenomenon has been demonstrated for a subset of ARCs from the dfr family (Figure 23). However, further experiments with a broader subset of ARCs from different families would be necessary to generalize this regulation. Discussion 131 This finding has important clinical implications, impacting in potential co-selection phenomena during antibiotic treatment when bacteria are exposed to different antimicrobials and antiseptics. In this scenario, it is crucial to understand that ARCs in distal positions of the integron array can be expressed and exert their functions as antimicrobial resistance genes, depending on the identity of previous ICs in the array. These arrays can be selected during antibiotic treatments, fixing a resistant bacterial population both in patients and clinical environments, despite their higher cost in the absence of selection. Hence, ARCs present in mobile integrons could be defined by the resistance conferred, the fitness cost entailed, and their capacity to modulate the expression of the cassettes in the array. Nevertheless, one of the main features of ICs is their capacity to reshuffle within the platform under stress conditions and their mobility between integrons via excision and recombination. The differential recombination frequency of each IC should also be taken into account when exploring the forces that drive the success of each ARC. The difference in the recombination frequency between ARCs is classically attributed to attC site structural features and sequence95,96,178. In the classic recombination assay, a donor strain delivers an attC site as ssDNA into the recipient strain to recombine with an attI site structured as dsDNA. Therefore, the folding of each attC site into a recombinogenic structure, as well as its sequence, are key for successful recombination. Conversely, our modified recombination assay adds an extra parameter to the process, as the attC site (present in the recipient strain as dsDNA) needs to be extruded from a dsDNA sequence to form a recombinogenic structure as a ssDNA hairpin, as it would happen naturally in excision reactions. This extra processing of the recombination substrates might explain why recombination rates observed in our experiments tend to be significantly lower than the ones published in the literature174. In addition, the wide range of recombination rates observed in our assays (from 10-2 to 10-8) (Figure 42) could be due to the differential ability of each attC to acquire its recombinogenic conformation from a dsDNA, which is not tested when the attC site is delivered following the classic recombination assay. This modification in the recombination assay might also explain why in silico parameters such as DG and pfold do not directly correlate with the recombination frequencies measured in vitro following this modified protocol (Figure 46). In our experiments, attC sites are initially dsDNA sequences before their extrusion, while in silico parameters are calculated considering the attC a ssDNA sequence. Therefore, in silico calculation does not take into account this process. To correlate both in silico and in vitro results we should find a way to quantitate the energy needed for a specific attC site to be extruded from dsDNA to a ssDNA conformation before structuring as a ssDNA hairpin. It is remarkable that AgR cassettes show higher recombination rates on average than the rest of ARC families (Figure 43). This observation might correlate with any distinctive feature of the attC site such as a potential similarity in sequence. It could be also possible that the co- evolution of the attC site´s sequence with the antimicrobial resistance gene encoded might lead to this observation. Discussion 132 Mobile integrons are believed to appear from mobilised cassettes of sedentary chromosomal integrons, where attC site sequences are very conserved within the same integron.70,203. Thus, ARCs arising from close origins/environments might contain attC sites with similar sequences. A hierarchical clustering tree of the nucleotidic sequences of all attC sites in the pMBA collection (Supplementary Figure S12) shows great differences in sequence between ARCs, particularly in the AgR genes family, ruling out the idea of a common origin of AgR genes with high recombination rates. We also wonder if any specific feature of the antimicrobial resistance gene encoded in the cassette might influence attC site structuration and hence, the recombination frequency of the cassette. It is demonstrated that high GC-content near the apical loop of attC sites plays a crucial role in attC folding and recombination204. In this line, gene GC-content might also have an influence in this process as a proxy of the bonding strength of the dsDNA in the vicinity of the attC site structure, which needs to get extruded and form a ssDNA hairpin. If we correlate recombination frequency with GC content of the encoded gene we find a significant but mild positive correlation (r = 0.3130) (Figure 56A). Figure 56. Correlation between ARC recombination rate and GC content of the gene encoded. Graphs showing the general correlation of all ARCs (A) or specific ARC families (B). Spearman´s rank correlation coefficient (r) and p-values are indicated. This significance is conserved in the AgR family but disappears in the rest of ARC families (Figure 56B), potentially due to the smaller sample size of these families. However, a higher correlation is observed in bla and fos ARC families (r > 0.4), suggesting a stronger effect of the GC content on the recombination frequency. While there is a correlation between gene GC content and recombination frequency, this correlation is mild, and further experiments are needed to affirm that the gene GC content influences the recombination frequency of the ARC. 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 30 40 50 60 R. F. % G C ρ = 0.3130 p-value = 0.0004 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 30 40 50 60 R. F. % G C AgR genes ρ = 0.3007 p-value = 0.0231 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 30 40 50 60 R. F. % G C dfrs ρ = 0.2931 p-value = 0.1379 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 30 40 50 60 R. F. % G C bla ρ = 0.4363 p-value = 0.0618 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 30 40 50 60 R. F. % G C fos ρ = 0.4667 p-value = 0.1786 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 30 40 50 60 R. F. % G C qacs, smr ρ = 0.2121 p-value = 0.5603 A B Discussion 133 Apart from the already mentioned general evolutionary forces ruling the fate of ARCs, certain specific regulatory elements have being described to participate in ARC function and success121,179,180. In the second part of this PhD thesis, we have also provided experimental evidences against the existence of one of these regulatory elements: a controversial Ag-sensing riboswitch present in the integron platform121,193,194. This study emphasizes the importance of revisiting the existing literature, challenging it, and building a solid base to continue expanding our knowledge. In summary, this PhD thesis offers a detailed quantitation of the forces that we believe govern the success of ARCs: antimicrobial resistance, fitness cost, polar effects, and mobility. To achieve this, we have generated the most extensive collection of ARCs in their native environment to date, the pMBA collection122. Although we are still far from a complete understanding of the success of each ARC, this work contributes to an holistic approach in explaining the ecology of ARCs and presents novel and promising observations regarding the evolutionary dynamics that determine their fate. CONCLUSIONS Scan me on Spotify Conclusions 137 6 Conclusions I. Closely related antimicrobial resistance cassettes (ARCs) confer drastically different resistance levels even finding ARCs not conferring resistance, suggesting possible mistaken annotations of them as resistance determinants. II. Integron cassette (IC) identity modulates downstream expression of the array at a transcriptional level. III. ARC fitness effect is variable being some of them beneficial for bacterial growth in the absence of any selective pressure both in vitro and in vivo. IV. Anaerobiosis is a crucial condition affecting the fitness dynamics of ARCs. V. ARCs such as ereA2 can modulate bacterial success independently of their antimicrobial resistance function via transcription regulation. VI. ARC recombination frequencies vary widely across cassettes tested, finding a positive correlation between aminoglycoside resistance cassettes and high recombination rates. VII. The expression of aminoglycoside resistance genes in integron cassettes is not controlled by riboswitches. BIBLIOGRAPHY Scan me on Spotify Bibliography 141 7 Bibliography 1. Waksman, S. A. What is an antibiotic or an antibiotic substance? Mycologia 39, 565–569 (1947). 2. Singleton, P., & Sainsbury, D. Dictionary of microbiology and molecular biology (3rd ed. rev). Wiley. (2006). doi:10.1002/9780470056981 3. Haas, L. F. Papyrus of Ebers and Smith. J. Neurol. Neurosurg. Psychiatry 67, 578 LP – 578 (1999). 4. Gensini, G. F., Conti, A. A. & Lippi, D. The contributions of Paul Ehrlich to infectious disease. J. Infect. 54, 221–224 (2007). 5. Otten, H. Domagk and the development of the sulphonamides. J. Antimicrob. Chemother. 17, 689–690 (1986). 6. Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. The British Journal of Experimental Pathology 10, 226–236 (1929). 7. Chain, E. et al. THE CLASSIC: penicillin as a chemotherapeutic agent. 1940. Clin. Orthop. Relat. Res. 439, 23–26 (2005). 8. Brunel, J. Antibiosis from Pasteur to Fleming*. J. Hist. Med. Allied Sci. VI, 287–301 (1951). 9. Waksman, S. A., Schatz, A. & Reynolds, D. M. Production of antibiotic substances by actinomycetes. Ann. N. Y. Acad. Sci. 1213, 112–124 (2010). 10. Hutchings, M., Truman, A. & Wilkinson, B. Antibiotics: past, present and future. Curr. Opin. Microbiol. 51, 72–80 (2019). 11. Hodgkin, D. C. The X-ray analysis of the structure of penicillin. Adv. Sci. 6, 85–89 (1949). 12. Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016). 13. Durand, G. A., Raoult, D. & Dubourg, G. Antibiotic discovery: history, methods and perspectives. Int. J. Antimicrob. Agents 53, 371–382 (2019). 14. Kealey, C., Creaven, C. A., Murphy, C. D. & Brady, C. B. New approaches to antibiotic discovery. Biotechnol. Lett. 39, 805–817 (2017). 15. Christaki, E., Marcou, M. & Tofarides, A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J. Mol. Evol. 88, 26–40 (2020). 16. Dcosta, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011). 17. Stennett, H. L., Back, C. R. & Race, P. R. Derivation of a Precise and Consistent Timeline for Antibiotic Development. Antibiotics 11, (2022). 18. Torres, P. B. Inducible and acquired antibiotic resistance in stenotrophomonas maltophilia. (Universidad Autónoma de Madrid Faculty of Science, 2019). 19. Levin, B. R. et al. The population genetics of antibiotic resistance. Clin. Infect. Dis. 24, (1997). 20. Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999). Bibliography 142 21. Mitshuhashi, S., Harada, K., Hashimoto, H. & Egawa, R. On the drug-resistance of enteric bacteria. 4. Drug-resistance of Shigella prevalent in Japan. Jpn. J. Exp. Med. 31, 47–52 (1961). 22. Partridge, S. R. & Hall, R. M. Complex multiple antibiotic and mercury resistance region derived from the r-det of NR1 (R100). Antimicrob. Agents Chemother. 48, 4250–4255 (2004). 23. O´Neill, J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations The Review on Antimicrobial Resistance Chaired by J O’Neill, and supported by the Wellcome Trust and the UK Government. (2014). doi:10.1038/510015a 24. Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022). 25. Abraham, E. P. & Chain, E. An enzyme from bacteria able to destroy penicillin. 1940. Rev. Infect. Dis. 10, 677–678 (1988). 26. Shaw, K. J., Rather, P. N., Hare, R. S. & Miller, G. H. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57, 138–163 (1993). 27. Shaw, W. V. The enzymatic acetylation of chloramphenicol by extracts of R factor-resistant Escherichia coli. J. Biol. Chem. 242, 687–693 (1967). 28. Quan, S. et al. ADP-ribosylation as an intermediate step in inactivation of rifampin by a mycobacterial gene. Antimicrob. Agents Chemother. 43, 181–184 (1999). 29. Aldred, K. J., Kerns, R. J. & Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry 53, 1565–1574 (2014). 30. González-Zorn, B. et al. armA and aminoglycoside resistance in Escherichia coli. Emerg. Infect. Dis. 11, 954–956 (2005). 31. Kordus, S. L. & Baughn, A. D. Revitalizing antifolates through understanding mechanisms that govern susceptibility and resistance. Medchemcomm 10, 880–895 (2019). 32. Poole, K. Efflux-mediated antimicrobial resistance. Journal of Antimicrobial Chemotherapy 56, (2005). 33. Sørensen, S. J., Bailey, M., Hansen, L. H., Kroer, N. & Wuertz, S. Studying plasmid horizontal transfer in situ: a critical review. Nat. Rev. Microbiol. 3, 700–710 (2005). 34. Charpentier, X., Polard, P. & Claverys, J. P. Induction of competence for genetic transformation by antibiotics: Convergent evolution of stress responses in distant bacterial species lacking SOS? Curr. Opin. Microbiol. 15, 570–576 (2012). 35. Daubin, V. & Szöllősi, G. J. Horizontal Gene Transfer and the History of Life. Cold Spring Harb. Perspect. Biol. 8, (2016). 36. Ficht, T. A. Bacterial exchange via nanotubes : lessons learned from the history of molecular biology. 2, 1–4 (2011). 37. Fischer, S. et al. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles. PLoS One 11, 1–22 (2016). 38. Redfield, R. J., Schragt, M. R. & Dean, A. M. The Evolution of Bacterial Transformation: Sex With Poor Relations. Genetics 146, 27–38 (1997). Bibliography 143 39. Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J.-P. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 12, 181–196 (2014). 40. Thomas, C. M., Nielsen, K. M. & N, S. P. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3, 711–721 (2005). 41. Zinder, N. D. Bacterial transduction. 23–49 42. Haaber, J., Penadés, J. R. & Ingmer, H. Transfer of Antibiotic Resistance in Staphylococcus aureus. Trends Microbiol. 25, 893–905 (2017). 43. Lennox, E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1, 190–206 (1955). 44. Morse, M. L., Lederberg, E. M. & Lederberg, J. Transduction in Escherichia coli K-12. Genetics 41, 142–56 (1956). 45. Chen, J. et al. Genome hypermobility by lateral transduction. Science (80-. ). 362, 207–212 (2018). 46. Frost, L. S., Leplae, R., Summers, A. O., Toussaint, A. & Edmonton, A. Mobile genetic elements : the agents of open source evolution. 3, 722–732 (2005). 47. Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, 1–61 (2018). 48. Ravin, N. V, Svarchevsky, A. N. & Dehò, G. The anti-immunity system of phage-plasmid N15: identification of the antirepressor gene and its control by a small processed RNA. Mol. Microbiol. 34, 980–994 (1999). 49. Horne, T., Orr, V. T. & Hall, J. P. How do interactions between mobile genetic elements affect horizontal gene transfer? Curr. Opin. Microbiol. 73, 102282 (2023). 50. Hall, J. P. J., Brockhurst, M. A. & Harrison, E. Sampling the mobile gene pool: Innovation via horizontal gene transfer in bacteria. Philos. Trans. R. Soc. B Biol. Sci. 372, 1–10 (2017). 51. Siguier, P., Gourbeyre, E., Varani, A., Ton-Hoang, B. & Chandler, M. Everyman’s guide to bacterial insertion sequences. Microbiol. Spectr. 3, (2015). 52. Bennett, P. Genome plasticity. Methods in Molecular Biology (Humana Press, 2004). 53. Nicolas, E. et al. The Tn3-family of replicative transposons. Mob. DNA III 693–726 (2015). doi:10.1128/9781555819217.ch32 54. Macesic, N. et al. Genomic dissection of endemic carbapenem resistance reveals metallo- beta-lactamase dissemination through clonal, plasmid and integron transfer. Nat. Commun. 14, 4764 (2023). 55. Stokes, H. W. & Hall, R. M. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol. Microbiol. 3, 1669–1683 (1989). 56. Escudero JA, Loot C, Nivina A, M. D. The integron: Adaption on demand. Microbiol. Spectr. 25–32 (2014). doi:10.1128/microbiolspec 57. Mazel, D. Integrons: agents of bacterial evolution. Nat. Rev. Microbiol. 4, 608–620 (2006). 58. Fonseca, É. L. & Vicente, A. C. Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms 10, (2022). Bibliography 144 59. Guerin, É. et al. The SOS Response Controls Integron Recombination. Science (80). 324, 1034 (2009). 60. Collis, C. M. & Hall, R. M. Gene cassettes from the insert region of integrons are excised as covalently closed circles. Mol. Microbiol. 6, 2875–2885 (1992). 61. Moura, A. et al. INTEGRALL: A database and search engine for integrons, integrases and gene cassettes. Bioinformatics (2009). doi:10.1093/bioinformatics/btp105 62. Collis, C. M. & Hall, R. M. Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob. Agents Chemother. 39, 155–162 (1995). 63. Szekeres, S., Dauti, M., Wilde, C., Mazel, D. & Rowe-Magnus, D. A. Chromosomal toxin- antitoxin loci can diminish large-scale genome reductions in the absence of selection. Mol. Microbiol. 63, 1588–1605 (2007). 64. Bissonnette, L., Champetier, S., Buisson, J. P. & Roy, P. H. Characterization of the nonenzymatic chloramphenicol resistance (cmlA) gene of the In4 integron of Tn1696: similarity of the product to transmembrane transport proteins. J. Bacteriol. 173, 4493–4502 (1991). 65. da Fonseca, É. L. & Vicente, A. C. P. Functional characterization of a Cassette-specific promoter in the class 1 integron-associated qnrVC1 gene. Antimicrob. Agents Chemother. 56, 3392–3394 (2012). 66. Biskri, L. & Mazel, D. Erythromycin esterase gene ere(A) is located in a functional gene cassette in an unusual class 2 integron. Antimicrob. Agents Chemother. 47, 3326–3331 (2003). 67. Qi, Q., Rajabal, V., Ghaly, T. M., Tetu, S. G. & Gillings, M. R. Identification of integrons and gene cassette-associated recombination sites in bacteriophage genomes. Front. Microbiol. 14, 1091391 (2023). 68. Cury, J., Jové, T., Touchon, M., Néron, B. & Rocha, E. P. Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res. 44, 4539–4550 (2016). 69. Ghaly, T. M. et al. Discovery of integrons in Archaea: Platforms for cross-domain gene transfer. Sci. Adv. 8, 1–11 (2022). 70. Rowe-Magnus, D. A. et al. The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc. Natl. Acad. Sci. U. S. A. 98, 652– 657 (2001). 71. Boucher, Y., Labbate, M., Koenig, J. E. & Stokes, H. W. Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol. 15, 301–309 (2007). 72. Mazel, D., Dychinco, B., Webb, V. A. & Davies, J. A distinctive class of integron in the Vibrio cholerae genome. Science 280, 605–608 (1998). 73. Escudero, J. A., Mazel, D. & Escudero, J. A. Genomic Plasticity of Vibrio cholerae. Int. Microbiol. 20, 138–148 (2017). 74. Arakawa, Y. et al. A novel integron-like element carrying the metallo-beta-lactamase gene blaIMP. Antimicrob. Agents Chemother. 39, 1612–1615 (1995). 75. Collis, C. M., Kim, M.-J., Partridge, S. R., Stokes, H. W. & Hall, R. M. Characterization of the class 3 integron and the site-specific recombination system it determines. J. Bacteriol. 184, 3017–3026 (2002). Bibliography 145 76. Sundström, L., Roy, P. H. & Sköld, O. Site-specific insertion of three structural gene cassettes in transposon Tn7. J. Bacteriol. 173, 3025–3028 (1991). 77. Hochhut, B. et al. Molecular analysis of antibiotic resistance gene clusters in vibrio cholerae O139 and O1 SXT constins. Antimicrob. Agents Chemother. 45, 2991–3000 (2001). 78. Sørum, H., Roberts, M. C. & Crosa, J. H. Identification and cloning of a tetracycline resistance gene from the fish pathogen Vibrio salmonicida. Antimicrob. Agents Chemother. 36, 611–615 (1992). 79. Ghaly, T. M., Chow, L., Asher, A. J., Waldron, L. S. & Gillings, M. R. Evolution of class 1 integrons: Mobilization and dispersal via food-borne bacteria. PLoS One 12, 1–11 (2017). 80. Martinez-Freijo, P. et al. Class I integrons in Gram-negative isolates from different European hospitals and association with decreased susceptibility to multiple antibiotic compounds. J. Antimicrob. Chemother. 42, 689–696 (1998). 81. Zhu, Y.-G. et al. Microbial mass movements. Science 357, 1099–1100 (2017). 82. Halaji, M. et al. The Global Prevalence of Class 1 Integron and Associated Antibiotic Resistance in Escherichia coli from Patients with Urinary Tract Infections, a Systematic Review and Meta-Analysis. Microb. Drug Resist. 26, 1208–1218 (2020). 83. Néron, B. et al. IntegronFinder 2.0: Identification and Analysis of Integrons across Bacteria, with a Focus on Antibiotic Resistance in Klebsiella. Microorganisms 10, (2022). 84. Jové, T., Da Re, S., Denis, F., Mazel, D. & Ploy, M. C. Inverse correlation between promoter strength and excision activity in class 1 integrons. PLoS Genet. 6, (2010). 85. Papagiannitsis, C. C., Tzouvelekis, L. S. & Miriagou, V. Relative strengths of the class 1 integron promoter hybrid 2 and the combinations of strong and hybrid 1 with an active P2 promoter. Antimicrob. Agents Chemother. 53, 277–280 (2009). 86. Lévesque, C., Brassard, S., Lapointe, J. & Roy, P. H. Diversity and relative strength of tandem promoters for the antibiotic-resistance genes of several integron. Gene 142, 49–54 (1994). 87. Rowe-Magnus, D. A. et al. The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc. Natl. Acad. Sci. U. S. A. 98, 652– 657 (2001). 88. Collis, C. M., Kim, M.-J., Stokes, H. W. & Hall, R. M. Integron-encoded IntI integrases preferentially recognize the adjacent cognate attI site in recombination with a 59-be site. Mol. Microbiol. 46, 1415–1427 (2002). 89. Gravel, A., Fournier, B. & Roy, P. H. DNA complexes obtained with the integron integrase IntI1 at the attI1 site. Nucleic Acids Res. 26, 4347–4355 (1998). 90. Collis, C. M., Kim, M. J., Stokes, H. W. & Hall, R. M. Binding of the purified integron DNA integrase Intl1 to integron- and cassette-associated recombination sites. Mol. Microbiol. 29, 477–490 (1998). 91. Stokes, H. W., O’Gorman, D. B., Recchia, G. D., Parsekhian, M. & Hall, R. M. Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol. Microbiol. 26, 731–745 (1997). 92. Cambray, G., Guerout, A. M. & Mazel, D. Integrons. Annu. Rev. Genet. 44, 141–166 (2010). Bibliography 146 93. Hall, R. M., Brookes, D. E. & Stokes, H. W. Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Mol. Microbiol. 5, 1941–1959 (1991). 94. Francia, M. V, Zabala, J. C., de la Cruz, F. & García Lobo, J. M. The IntI1 integron integrase preferentially binds single-stranded DNA of the attC site. J. Bacteriol. 181, 6844–6849 (1999). 95. Bouvier, M., Demarre, G. & Mazel, D. Integron cassette insertion: A recombination process involving a folded single strand substrate. EMBO J. 24, 4356–4367 (2005). 96. Bouvier, M., Ducos-Galand, M., Loot, C., Bikard, D. & Mazel, D. Structural features of single-stranded integron cassette attC sites and their role in strand selection. PLoS Genet. 5, e1000632 (2009). 97. MacDonald, D., Demarre, G., Bouvier, M., Mazel, D. & Gopaul, D. N. Structural basis for broad DNA-specificity in integron recombination. Nature 440, 1157–1162 (2006). 98. Loot, C., Bikard, D., Rachlin, A. & Mazel, D. Cellular pathways controlling integron cassette site folding. EMBO J. 29, 2623–2634 (2010). 99. Nunes-Düby, S. E., Kwon, H. J., Tirumalai, R. S., Ellenberger, T. & Landy, A. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res. 26, 391–406 (1998). 100. Boyd, E. F., Almagro-Moreno, S. & Parent, M. A. Genomic islands are dynamic, ancient integrative elements in bacterial evolution. Trends Microbiol. 17, 47–53 (2009). 101. Grindley, N. D. F., Whiteson, K. L. & Rice, P. A. Mechanisms of site-specific recombination. Annu. Rev. Biochem. 75, 567–605 (2006). 102. Messier, N. & Roy, P. H. Integron integrases possess a unique additional domain necessary for activity. J. Bacteriol. 183, 6699–6706 (2001). 103. Demarre, G., Frumerie, C., Gopaul, D. N. & Mazel, D. Identification of key structural determinants of the IntI1 integron integrase that influence attC × attI1 recombination efficiency. Nucleic Acids Res. 35, 6475–6489 (2007). 104. Loot, C., Ducos-Galand, M., Escudero, J. A., Bouvier, M. & Mazel, D. Replicative resolution of integron cassette insertion. Nucleic Acids Res. 40, 8361–8370 (2012). 105. Collis, C. M. & Hall, R. M. Site-specific deletion and rearrangement of integron insert genes catalyzed by the integron DNA integrase. J. Bacteriol. 174, 1574–1585 (1992). 106. Elsaied, H. et al. Marine integrons containing novel integrase genes, attachment sites, attI, and associated gene cassettes in polluted sediments from Suez and Tokyo Bays. ISME J. 5, 1162–1177 (2011). 107. Hipólito, A. et al. The expression of aminoglycoside resistance genes in integron cassettes is not controlled by riboswitches. Nucleic Acids Res. 50, 8566–8579 (2022). 108. Partridge, S. R., Tsafnat, G., Coiera, E. & Iredell, J. R. Gene cassettes and cassette arrays in mobile resistance integrons: Review article. FEMS Microbiol. Rev. 33, 757–784 (2009). 109. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, (2009). 110. Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163– 175 (2008). Bibliography 147 111. DelaFuente, J., Rodriguez-Beltran, J. & San Millan, A. Methods to Study Fitness and Compensatory Adaptation in Plasmid-Carrying Bacteria. Methods Mol. Biol. 2075, 371– 382 (2020). 112. Brugiroux, S. et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat. Microbiol. 2, 16215 (2016). 113. Ubeda, C. et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med. 209, 1445–1456 (2012). 114. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480– 484 (2009). 115. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. (2013). doi:10.48550/arxiv.1303.3997. 116. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). 117. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014). 118. Demarre, G. et al. A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPalpha) conjugative machineries and their cognate Escherichia coli host strains. Res. Microbiol. 156, 245–255 (2005). 119. Biskri, L., Bouvier, M., Guérout, A. M., Boisnard, S. & Mazel, D. Comparative study of class 1 integron and Vibrio cholerae superintegron integrase activities. J. Bacteriol. 187, 1740– 1750 (2005). 120. Ding, Y. & Lawrence, C. E. A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 31, 7280–7301 (2003). 121. Jia, X. et al. Riboswitch control of aminoglycoside antibiotic resistance. Cell 152, 68–81 (2013). 122. Hipólito, A., García-Pastor, L., Vergara, E., Jové, T. & Escudero, J. A. Profile and resistance levels of 136 integron resistance genes. npj Antimicrob. Resist. 1, 13 (2023). 123. Shao, B. et al. Single-cell measurement of plasmid copy number and promoter activity. Nat. Commun. 12, (2021). 124. Vinué, L., Jové, T., Torres, C. & Ploy, M. C. Diversity of class 1 integron gene cassette Pc promoter variants in clinical Escherichia coli strains and description of a new P2 promoter variant. Int. J. Antimicrob. Agents (2011). doi:10.1016/j.ijantimicag.2011.07.007 125. Cambray, G. et al. Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons. Mob. DNA 2, 6 (2011). 126. Hernando-Amado, S., Coque, T. M., Baquero, F. & Martínez, J. L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 4, 1432–1442 (2019). 127. Kotra, L. P., Haddad, J. & Mobashery, S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob. Agents Chemother. 44, 3249–3256 (2000). 128. Tolmasky, M. S. R. and M. E. Aminoglycoside Modifying Enzymes. Drug Resist Updat. 13, 151–171 (2010). Bibliography 148 129. Doi, Y. & Arakawa, Y. 16S ribosomal RNA methylation: Emerging resistance mechanism against aminoglycosides. Clin. Infect. Dis. 45, 88–94 (2007). 130. Tietze, E. & Brevet, J. Nucleotide sequence of the streptothricin-acetyl-transferase gene sat-2. Nucleic Acids Res. 18, 1283 (1990). 131. Webb, H. E., Angulo, F. J., Granier, S. A., Scott, H. M. & Loneragan, G. H. Illustrative examples of probable transfer of resistance determinants from food animals to humans: Streptothricins, glycopeptides, and colistin. F1000Research 6, 1805 (2017). 132. Bush, K. & Jacoby, G. A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54, 969–976 (2010). 133. Georgopapadakou, N. H. & Liu, F. Y. Penicillin-binding proteins in bacteria. Antimicrob. Agents Chemother. 18, 148–157 (1980). 134. Ambler, R. P. The structure of beta-lactamases. Philos. Trans. R. Soc. London. Ser. B, Biol. Sci. 289, 321–331 (1980). 135. Bush, K., Jacoby, G. A. & Medeiros, A. A. A functional classification scheme for β- lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39, 1211–1233 (1995). 136. Poirel, L., Brinas, L., Verlinde, A., Ide, L. & Nordmann, P. BEL-1, a novel clavulanic acid- inhibited extended-spectrum beta-lactamase, and the class 1 integron In120 in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49, 3743–3748 (2005). 137. Poirel, L., Le Thomas, I., Naas, T., Karim, A. & Nordmann, P. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum beta-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob. Agents Chemother. 44, 622–632 (2000). 138. Green, J. M. & Matthews, R. G. Folate Biosynthesis, Reduction, and Polyglutamylation and the Interconversion of Folate Derivatives. EcoSal Plus 2, (2007). 139. Thomson, C. J. Trimethoprim and Brodimoprim Resistance of Gram-Positive and Gram- Negative Bacteria. J. Chemother. 5, 458–464 (1993). 140. Kahan, F. M., Kahan, J. S., Cassidy, P. J. & Kropp, H. The mechanism of action of fosfomycin (phosphonomycin). Ann. N. Y. Acad. Sci. 235, 364–386 (1974). 141. Falagas, M. E., Athanasaki, F., Voulgaris, G. L., Triarides, N. A. & Vardakas, K. Z. Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Int. J. Antimicrob. Agents 53, 22–28 (2019). 142. Zurfluh, K., Treier, A., Schmitt, K. & Stephan, R. Mobile fosfomycin resistance genes in Enterobacteriaceae—An increasing threat. Microbiologyopen 9, 1–13 (2020). 143. Castañeda-García, A., Blázquez, J. & Rodríguez-Rojas, A. Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics 2, 217–236 (2013). 144. Kieffer, N., Poirel, L., Descombes, M.-C. & Nordmann, P. Characterization of FosL1, a Plasmid-Encoded Fosfomycin Resistance Protein Identified in Escherichia coli. Antimicrob. Agents Chemother. 64, e02042-19 (2020). 145. Schwarz, S., Kehrenberg, C., Doublet, B. & Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 28, 519–542 (2004). Bibliography 149 146. Campbell, E. A. et al. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell 104, 901–912 (2001). 147. Tribuddharat, C. & Fennewald, M. Integron-mediated rifampin resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 43, 960–962 (1999). 148. Goldstein, B. P. Resistance to rifampicin: A review. J. Antibiot. (Tokyo). 67, 625–630 (2014). 149. Weisblum, B. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577–585 (1995). 150. Pozzi, G., Iannelli, F., Oggioni, M. R., Santagati, M. & Stefani, S. Genetic elements carrying macrolide efflux genes in streptococci. Curr. Drug Targets. Infect. Disord. 4, 203–206 (2004). 151. Firth, A. & Prathapan, P. Azithromycin: The First Broad-spectrum Therapeutic. Eur. J. Med. Chem. 207, 112739 (2020). 152. Buffet-Bataillon, S., Tattevin, P., Bonnaure-Mallet, M. & Jolivet-Gougeon, A. Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review. Int. J. Antimicrob. Agents 39, 381–389 (2012). 153. Paulsen, I. T. et al. The 3’ conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrob. Agents Chemother. 37, 761–768 (1993). 154. Kazama, H., Hamashima, H., Sasatsu, M. & Arai, T. Characterization of the antiseptic- resistance gene qacEΔ1 isolated from clinical and environmental isolates of Vibrio parahaemolyticus and Vibrio cholerae non-O1. FEMS Microbiol. Lett. 174, 379–384 (1999). 155. Slipski, C. J., Jamieson-Datzkiw, T. R., Zhanel, G. G. & Bay, D. C. Characterization of proteobacterial plasmid integron-encoded qac efflux pump sequence diversity and quaternary ammonium compound antiseptic selection in Escherichia coli grown planktonically and as biofilms. Antimicrob. Agents Chemother. 65, (2021). 156. San Millan, A., Escudero, J. A., Gifford, D. R., Mazel, D. & MacLean, R. C. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat. Ecol. Evol. 1, 0010 (2016). 157. Souque, C., Escudero, J. A. & MacLean, R. C. Integron activity accelerates the evolution of antibiotic resistance. Elife 10, 1–47 (2021). 158. Danielewicz, N. et al. In-Depth Characterization of a Re-Engineered Cholera Toxin Manufacturing Process Using Growth-Decoupled Production in Escherichia coli. Toxins (Basel). 14, 1–23 (2022). 159. Rocha, D. J. P., Santos, C. S. & Pacheco, L. G. C. Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 108, 685–693 (2015). 160. Jacquier, H., Zaoui, C., Sanson-Le Pors, M. J., Mazel, D. & Berçot, B. Translation regulation of integrons gene cassette expression by the attC sites. Mol. Microbiol. 72, 1475–1486 (2009). 161. Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010). 162. Rajer, F. & Sandegren, L. The Role of Antibiotic Resistance Genes in the Fitness Cost of Multiresistance Plasmids. MBio 13, 1–14 (2022). Bibliography 150 163. Lacotte, Y., Ploy, M. C. & Raherison, S. Class 1 integrons are low-cost structures in Escherichia coli. ISME J. 11, 1535–1544 (2017). 164. Porse, A., Schou, T. S., Munck, C., Ellabaan, M. M. H. & Sommer, M. O. A. Biochemical mechanisms determine the functional compatibility of heterologous genes. Nat. Commun. 9, 1–11 (2018). 165. Kadonaga, J. T. et al. The role of the β-lactamase signal sequence in the secretion of proteins by Escherichia coli. J. Biol. Chem. 259, 2149–2154 (1984). 166. Weiss, A. S. et al. In vitro interaction network of a synthetic gut bacterial community. ISME J. 16, 1095–1109 (2022). 167. Eberl, C. et al. E. coli enhance colonization resistance against Salmonella Typhimurium by competing for galactitol, a context-dependent limiting carbon source. Cell Host Microbe 29, 1680-1692.e7 (2021). 168. Nonaka, G., Blankschien, M., Herman, C., Gross, C. A. & Rhodius, V. A. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev. 20, 1776–1789 (2006). 169. Zhao, K., Liu, M. & Burgess, R. R. The global transcriptional response of Escherichia coli to induced σ32 protein involves σ32 regulon activation followed by inactivation and degradation of σ32 in vivo. J. Biol. Chem. 280, 17758–17768 (2005). 170. Guisbert, E., Yura, T., Rhodius, V. A. & Gross, C. A. Convergence of Molecular, Modeling, and Systems Approaches for an Understanding of the Escherichia coli Heat Shock Response . Microbiol. Mol. Biol. Rev. 72, 545–554 (2008). 171. Fitzgerald, D. M., Bonocora, R. P. & Wade, J. T. Comprehensive Mapping of the Escherichia coli Flagellar Regulatory Network. PLoS Genet. 10, (2014). 172. Zieliński, M., Park, J., Sleno, B. & Berghuis, A. M. Structural and functional insights into esterase-mediated macrolide resistance. Nat. Commun. 12, 1–9 (2021). 173. Johansson, C., Kamali-Moghaddam, M. & Sundström, L. Integron integrase binds to bulged hairpin DNA. Nucleic Acids Res. 32, 4033–4043 (2004). 174. Nivina, A., Escudero, J. A., Vit, C., Mazel, D. & Loot, C. Efficiency of integron cassette insertion in correct orientation is ensured by the interplay of the three unpaired features of attC recombination sites. Nucleic Acids Res. 44, 7792–7803 (2016). 175. Mukhortava, A. et al. Structural heterogeneity of attC integron recombination sites revealed by optical tweezers. Nucleic Acids Res. (2018). doi:10.1093/nar/gky1258 176. Chen, Z., Yang, H. & Pavletich, N. P. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453, 489–494 (2008). 177. Bouvier, M., Demarre, G. & Mazel, D. Integron cassette insertion: a recombination process involving a folded single strand substrate. EMBO J. 24, 4356–4367 (2005). 178. Nivina, A. et al. Structure-specific DNA recombination sites: Design, validation, and machine learning-based refinement. Sci. Adv. 6, (2020). 179. Hanau-Berçot, B., Podglajen, I., Casin, I. & Collatz, E. An intrinsic control element for translational initiation in class 1 integrons. Mol. Microbiol. 44, 119–130 (2002). Bibliography 151 180. Papagiannitsis, C. C., Tzouvelekis, L. S., Tzelepi, E. & Miriagou, V. attI1-Located Small Open Reading Frames ORF-17 and ORF-11 in a Class 1 Integron Affect Expression of a Gene Cassette Possessing a Canonical Shine-Dalgarno Sequence. Antimicrob. Agents Chemother. 61, (2017). 181. Roth, A. & Breaker, R. R. Integron attI1 sites, not riboswitches, associate with antibiotic resistance genes. Cell 153, 1417 (2013). 182. Foucault, M.-L., Depardieu, F., Courvalin, P. & Grillot-Courvalin, C. Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci. Proc. Natl. Acad. Sci. U. S. A. 107, 16964–16969 (2010). 183. Foucault, M.-L., Courvalin, P. & Grillot-Courvalin, C. Fitness cost of VanA-type vancomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 53, 2354–2359 (2009). 184. Morosini, M. I., Ayala, J. A., Baquero, F., Martínez, J. L. & Blázquez, J. Biological cost of AmpC production for Salmonella enterica serotype Typhimurium. Antimicrob. Agents Chemother. 44, 3137–3143 (2000). 185. Alexieva, Z., Duvall, E. J., Ambulos, N. P. J., Kim, U. J. & Lovett, P. S. Chloramphenicol induction of cat-86 requires ribosome stalling at a specific site in the leader. Proc. Natl. Acad. Sci. U. S. A. 85, 3057–3061 (1988). 186. Weisblum, B., Siddhikol, C., Lai, C. J. & Demohn, V. Erythromycin-inducible resistance in Staphylococcus aureus: requirements for induction. J. Bacteriol. 106, 835–847 (1971). 187. Reilman, E., Mars, R. A. T., van Dijl, J. M. & Denham, E. L. The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism. Nucleic Acids Res. 42, 11393–11407 (2014). 188. Dar, D. et al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352, aad9822 (2016). 189. Evers, S. & Courvalin, P. Regulation of VanB-type vancomycin resistance gene expression by the VanS(B)-VanR(B) two-component regulatory system in Enterococcus faecalis V583. J. Bacteriol. 178, 1302–1309 (1996). 190. Normark, S. Beta-Lactamase induction in gram-negative bacteria is intimately linked to peptidoglycan recycling. Microb. Drug Resist. 1, 111–114 (1995). 191. Da Re, S. et al. The SOS response promotes qnrB quinolone-resistance determinant expression. EMBO Rep. 10, 929–933 (2009). 192. Levin, B. R. Minimizing potential resistance: a population dynamics view. Clin. Infect. Dis. an Off. Publ. Infect. Dis. Soc. Am. 33 Suppl 3, S161-9 (2001). 193. Wang, S. et al. Integron Derived Aminoglycoside-Sensing Riboswitches Control Aminoglycoside Acetyltransferase Resistance Gene Expression. Antimicrob. Agents Chemother. (2019). doi:10.1128/AAC.00236-19 194. Zhang, J. et al. Aminoglycoside riboswitch control of the expression of integron associated aminoglycoside resistance adenyltransferases. Virulence 11, 1432–1442 (2020). 195. Tan, C. et al. The inoculum effect and band-pass bacterial response to periodic antibiotic treatment. Mol. Syst. Biol. 8, 617 (2012). Bibliography 152 196. Weber, G. G., Kortmann, J., Narberhaus, F. & Klose, K. E. RNA thermometer controls temperature-dependent virulence factor expression in Vibrio cholerae. Proc. Natl. Acad. Sci. U. S. A. 111, 14241–14246 (2014). 197. González-Zorn, B. et al. Genetic basis for dissemination of armA. J. Antimicrob. Chemother. 56, 583–585 (2005). 198. Souque, C., Escudero, J. A. & MacLean, R. C. Integron activity accelerates the evolution of antibiotic resistance. Elife 10, (2021). 199. Basra, P. et al. Fitness Tradeoffs of Antibiotic Resistance in Extraintestinal Pathogenic Escherichia coli. Genome Biol. Evol. 10, 667–679 (2018). 200. Brockhurst, M. A. & Harrison, E. Ecological and evolutionary solutions to the plasmid paradox. Trends Microbiol. 30, 534–543 (2022). 201. Loftie-Eaton, W. et al. Compensatory mutations improve general permissiveness to antibiotic resistance plasmids. Nat. Ecol. Evol. 1, 1354–1363 (2017). 202. Dantas, G. & Sommer, M. O. A. Context matters - the complex interplay between resistome genotypes and resistance phenotypes. Curr. Opin. Microbiol. 15, 577–582 (2012). 203. Ghaly, T. M., Tetu, S. G. & Gillings, M. R. Predicting the taxonomic and environmental sources of integron gene cassettes using structural and sequence homology of attC sites. Commun. Biol. 4, (2021). 204. Grieb, M. S. et al. Dynamic stepwise opening of integron attC DNA hairpins by SSB prevents toxicity and ensures functionality. Nucleic Acids Res. 45, 10555–10563 (2017). ANNEX Supplementary Material Scan me on Spotify Supplementary Material 155 8 Supplementary Material Supplementary Table S1. Strains and plasmids used in this study. All strains constructed for this work were built in E. coli backgrounds otherwise stated. Strains corresponding to the OMM12 are numbered following DSM (German collection of microorganisms and cell cultures) classification. Strain Genetic background Plasmid ARC cloned Source A072 MG1655 - - Lab collection A093 DH5a - - Lab collection A249 MG1655 pMBA empty vector - This study C381 DH5a pMBA empty vector - This study A223 MG1655 pMBAdfrA1 dfrA1 This study A224 MG1655 pMBAdfrA5 dfrA5 This study A225 MG1655 pMBAdfrA6 dfrA6 This study A226 MG1655 pMBAdfrA7 dfrA7 This study A241 MG1655 pMBAdfrA12 dfrA12 This study A227 MG1655 pMBAdfrA14 dfrA14 This study A228 MG1655 pMBAdfrA15 dfrA15 This study A229 MG1655 pMBAdfrA16 dfrA16 This study A230 MG1655 pMBAdfrA17 dfrA17 This study A231 MG1655 pMBAdfrA21 dfrA21 This study A500 MG1655 pMBAdfrA22 dfrA22 This study A244 MG1655 pMBAdfrA22.2 dfrA22.2 This study A232 MG1655 pMBAdfrA25 dfrA25 This study A233 MG1655 pMBAdfrA27 dfrA27 This study A613 MG1655 pMBAdfrA29 dfrA29 This study A248 MG1655 pMBAdfrA30 dfrA30 This study A234 MG1655 pMBAdfrA31 dfrA31 This study A235 MG1655 pMBAdfrA34 dfrA34 This study A242 MG1655 pMBAdfrA35 dfrA35 This study A236 MG1655 pMBAdfrB1 dfrB1 This study A245 MG1655 pMBAdfrB2 dfrB2 This study A246 MG1655 pMBAdfrB3 dfrB3 This study A237 MG1655 pMBAdfrB4 dfrB4 This study A238 MG1655 pMBAdfrB5 dfrB5 This study A239 MG1655 pMBAdfrB6 dfrB6 This study A240 MG1655 pMBAdfrB7 dfrB7 This study A247 MG1655 pMBAdfrB8 dfrB8 This study A243 MG1655 pMBAdfrB9 dfrB9 This study A390 MG1655 pMBAblaBEL-1 blaBEL-1 This study A380 MG1655 pMBAblaGES-1 blaGES-1 This study A387 MG1655 pMBAblaIMP-2 blaIMP-2 This study A383 MG1655 pMBAblaIMP-31 blaIMP-31 This study A441 MG1655 pMBAblaOXA-1 blaOXA-1 This study A373 MG1655 pMBAblaOXA-2 blaOXA-2 This study A381 MG1655 pMBAblaOXA-5 blaOXA-5 This study A384 MG1655 pMBA blaOXA-9 blaOXA-9 This study A374 MG1655 pMBAblaOXA-10 blaOXA-10 This study A385 MG1655 pMBAblaOXA-20 blaOXA-20 This study Supplementary Material 156 A382 MG1655 pMBAblaOXA-21 blaOXA-21 This study A395 MG1655 pMBAblaOXA-46 blaOXA-46 This study A375 MG1655 pMBAblaOXA-118 blaOXA-118 This study A391 MG1655 pMBAblaOXA-129 blaOXA-129 This study A376 MG1655 pMBAblaOXA-198 blaOXA-198 This study A803 MG1655 pMBAblaPBL-1 blaPBL-1 This study A388 MG1655 pMBAblaVIM-1 blaVIM-1 This study A396 MG1655 pMBAblaVIM-2 blaVIM-2 This study A389 MG1655 pMBAblaVIM-7 blaVIM-7 This study A327 MG1655 pMBAaacA2 aacA2 This study A266 MG1655 pMBAaacA3 aacA3 This study A328 MG1655 pMBAaacA4 aacA4 This study A267 MG1655 pMBAaacA7 aacA7 This study A268 MG1655 pMBAaacA8 aacA8 This study A263 MG1655 pMBAaacA16 aacA16 This study A543 MG1655 pMBAaacA17 aacA17 This study A264 MG1655 pMBAaacA27 aacA27 This study A256 MG1655 pMBAaacA28 aacA28 This study A257 MG1655 pMBAaacA29 aacA29 This study A270 MG1655 pMBAaacA30 aacA30 This study B657 MG1655 pMBAaacA31 aacA31 This study A272 MG1655 pMBAaacA34 aacA34 This study A329 MG1655 pMBAaacA35 aacA35 This study A258 MG1655 pMBAaacA37 aacA37 This study A603 MG1655 pMBAaacA38 aacA38 This study A273 MG1655 pMBAaacA42 aacA42 This study C117 MG1655 pMBAaacA43 aacA43 This study A265 MG1655 pMBAaacA45 aacA45 This study A274 MG1655 pMBAaacA47 aacA47 This study A259 MG1655 pMBAaacA48 aacA48 This study B656 MG1655 pMBAaacA49 aacA49 This study A260 MG1655 pMBAaacA50 aacA50 This study A261 MG1655 pMBAaacA51 aacA51 This study A326 MG1655 pMBAaacA52 aacA52 This study B655 MG1655 pMBAaacA54 aacA54 This study A262 MG1655 pMBAaacA56 aacA56 This study A303 MG1655 pMBAaacA59 aacA59 This study A302 MG1655 pMBAaacA61 aacA61 This study A566 MG1655 pMBAaacA64 aacA64 This study A331 MG1655 pMBAaacAX aacAX This study A308 MG1655 pMBAaacC1 aacC1 This study A304 MG1655 pMBAaacC2 aacC2 This study B625 MG1655 pMBAaacC3 aacC3 This study A320 MG1655 pMBAaacC4 aacC4 This study A305 MG1655 pMBAaacC5 aacC5 This study A306 MG1655 pMBAaacC6 aacC6 This study A332 MG1655 pMBAaacC11 aacC11 This study A309 MG1655 pMBAaacC13 aacC13 This study A311 MG1655 pMBAaadA1 aadA1 This study A333 MG1655 pMBAaadA2 aadA2 This study A319 MG1655 pMBAaadA4 aadA4 This study A313 MG1655 pMBAaadA5 aadA5 This study A321 MG1655 pMBAaadA6 aadA6 This study A397 MG1655 pMBAaadA7 aadA7 This study Supplementary Material 157 A315 MG1655 pMBAaadA10 aadA10 This study A312 MG1655 pMBAaadA11 aadA11 This study A322 MG1655 pMBAaadA13 aadA13 This study A316 MG1655 pMBAaadA16 aadA16 This study A318 MG1655 pMBAaadA24 aadA24 This study A604 MG1655 pMBAaadA28 aadA28 This study A314 MG1655 pMBAaadA29 aadA29 This study A398 MG1655 pMBAaadA34 aadA34 This study A292 MG1655 pMBAaadB aadB This study A422 MG1655 pMBAaphA15 aphA15 This study C116 MG1655 pMBAaphA16 aphA16 This study A293 MG1655 pMBAsat2 sat2 This study A368 MG1655 pMBAarr2 arr2 This study A334 MG1655 pMBAarr5 arr5 This study A363 MG1655 pMBAarr6 arr6 This study A440 MG1655 pMBAarr7 arr7 This study A364 MG1655 pMBAarr8b arr8b This study A335 MG1655 pMBAcatB2 catB2 This study A336 MG1655 pMBAcatB3 catB3 This study A365 MG1655 pMBAcatB5 catB5 This study A625 MG1655 pMBAcatB6 catB6 This study A393 MG1655 pMBAcatB10 catB10 This study A338 MG1655 pMBAereA2 ereA2 This study A423 MG1655 pMBAereA3 ereA3 This study A657 MG1655 pMBAfosC2 fosC2 This study A339 MG1655 pMBAfosE fosE This study A624 MG1655 pMBAfosF fosF This study A354 MG1655 pMBAfosG fosG This study A355 MG1655 pMBAfosH fosH This study A356 MG1655 pMBAfosI fosI This study A626 MG1655 pMBAfosK fosK This study A621 MG1655 pMBAfosL fosL This study A622 MG1655 pMBAfosM fosM This study A627 MG1655 pMBAfosN fosN This study A337 MG1655 pMBAsmr1 smr1 This study A359 MG1655 pMBAsmr2 smr2 This study A366 MG1655 pMBAsmr3 smr3 This study A367 MG1655 pMBAqacE qacE This study B091 MG1655 pMBAqacEDsul1 qacEDsul1 This study C382 DH5a pMBAqacEDsul1 qacEDsul1 This study A323 MG1655 pMBAqacF qacF This study A357 MG1655 pMBAqacG qacG This study A324 MG1655 pMBAqacH qacH This study A623 MG1655 pMBAqacK qacK This study A325 MG1655 pMBAqacL qacL This study A358 MG1655 pMBAqacM qacM This study A086 MG1655 R388dfrA5-aadB-blaVEB-1 dfrA5-aadB-blaVEB-1 Souque et al, 2021 A078 MG1655 R388aadB-dfrA5-blaVEB-1 aadB-dfrA5-blaVEB-1 Souque et al, 2021 A487 MG1655 pMBAdfrB4-attCdfrA12 dfrB4-attCdfrA12 This study A471 MG1655 pMBAdfrB4-attCdfrA21 dfrB4-attCdfrA21 This study A483 MG1655 pMBAdfrA21 DattC dfrA21 DattC This study A482 MG1655 pMBAdfrA12 DattC dfrA12 DattC This study A480 MG1655 DPcS pMBA - This study Supplementary Material 158 A497 MG1655 DPcS pMBAdfrA15 dfrA15 This study A485 MG1655 DPcS pMBAdfrB4 dfrB4 This study C457 MG1655 DPcS pMBAereA3 ereA3 This study A696 MG1655 pMBA DmetGFP KO - This study A744 MG1655 pMBAaacA59 DmetGFP KO aacA59 This study A745 MG1655 pMBAaacA8 DmetGFP KO aacA8 This study A746 MG1655 pMBAaadB DmetGFP KO aadB This study A747 MG1655 pMBAaacC2 DmetGFP KO aacC2 This study A748 MG1655 pMBAaacA28 DmetGFP KO aacA28 This study A749 MG1655 pMBAaacA52 DmetGFP KO aacA52 This study A750 MG1655 pMBAaacA30 DmetGFP KO aacA30 This study A751 MG1655 pMBAaadA24 DmetGFP KO aadA24 This study A752 MG1655 pMBAaadA13 DmetGFP KO aadA13 This study A753 MG1655 pMBAaacC13 DmetGFP KO aacC13 This study A754 MG1655 pMBAdfrA35 DmetGFP KO dfrA35 This study A755 MG1655 pMBAdfrB4 DmetGFP KO dfrB4 This study A756 MG1655 pMBAdfrA22.2 DmetGFP KO dfrA22.2 This study A757 MG1655 pMBAdfrA16 DmetGFP KO dfrA16 This study A758 MG1655 pMBAdfrA14 DmetGFP KO dfrA14 This study A759 MG1655 pMBAdfrA34 DmetGFP KO dfrA34 This study B878 MG1655 pMBA DGFP - This study B880 MG1655 pMBAereA2 DGFP ereA2 This study B881 MG1655 pMBAdfrA31 DGFP dfrA31 This study B882 MG1655 pMBAdfrA21 DGFP dfrA21 This study B883 MG1655 pMBAaacA7 DGFP aacA7 This study B886 MG1655 pMBAblaOXA-10 DGFP blaOXA-10 This study 26074 YL2 - - Brugiroux et al, 2016 28989 YL27 - - Brugiroux et al, 2016 26085 I48 - - Brugiroux et al, 2016 26109 YL45 - - Brugiroux et al, 2016 26127 YL44 - - Brugiroux et al, 2016 32036 KB1 - - Brugiroux et al, 2016 32035 I49 - - Brugiroux et al, 2016 26114 YL32 - - Brugiroux et al, 2016 26115 YL58 - - Brugiroux et al, 2016 26117 YL31 - - Brugiroux et al, 2016 26090 KB18 - - Brugiroux et al, 2016 26113 I46 - - Brugiroux et al, 2016 B966 MG1655 pMBADmet ereA2 Dmet ereA2 This study B965 MG1655 pMBA cat. mut. ereA2 cat. mut. ereA2 This study C271 MG1655 pMBADmet ereA3 Dmet ereA3 This study B951 MG1655 pMBA cat. mut. ereA3 cat. mut. ereA3 This study A123 b2163 pSW23T::attCaadA7 - Demarre et al, 2005 A785 Top10 pSU38D::attI / p3938 - Lab collection A122 b2163 pSW23T::attI - Demarre et al, 2005 B963 DH5a p3938 - This study B964 DH5a pMBAaadA7 / p3938 aadA7 This study B965 DH5a pMBAaadA7 / p3938 Dint1 aadA7 This study B967 DH5a pMBAaacA2 / p3938 aacA2 This study B968 DH5a pMBAaacA3 / p3938 aacA3 This study B969 DH5a pMBAaacA4 / p3938 aacA4 This study Supplementary Material 159 B970 DH5a pMBAaacA7 / p3938 aacA7 This study B971 DH5a pMBAaacA8 / p3938 aacA8 This study B972 DH5a pMBAaacA16 / p3938 aacA16 This study B973 DH5a pMBAaacA17 / p3938 aacA17 This study B974 DH5a pMBAaacA27 / p3938 aacA27 This study B975 DH5a pMBAaacA28 / p3938 aacA28 This study B976 DH5a pMBAaacA29 / p3938 aacA29 This study B977 DH5a pMBAaacA30 / p3938 aacA30 This study B978 DH5a pMBAaacA31 / p3938 aacA31 This study B979 DH5a pMBAaacA34 / p3938 aacA34 This study B980 DH5a pMBAaacA35 / p3938 aacA35 This study B981 DH5a pMBAaacA37 / p3938 aacA37 This study B982 DH5a pMBAaacA38 / p3938 aacA38 This study B983 DH5a pMBAaacA42 / p3938 aacA42 This study B984 DH5a pMBAaacA43 / p3938 aacA43 This study B985 DH5a pMBAaacA45 / p3938 aacA45 This study B986 DH5a pMBAaacA47 / p3938 aacA47 This study B987 DH5a pMBAaacA48 / p3938 aacA48 This study B988 DH5a pMBAaacA49 / p3938 aacA49 This study B989 DH5a pMBAaacA50 / p3938 aacA50 This study B990 DH5a pMBAaacA51 / p3938 aacA51 This study B991 DH5a pMBAaacA52 / p3938 aacA52 This study B992 DH5a pMBAaacA54 / p3938 aacA54 This study B993 DH5a pMBAarr8b / p3938 arr8b This study B994 DH5a pMBAaacA56 / p3938 aacA56 This study B995 DH5a pMBAaacA59 / p3938 aacA59 This study B996 DH5a pMBAaacA61 / p3938 aacA61 This study B997 DH5a pMBAaacA64 / p3938 aacA64 This study B998 DH5a pMBAaacAX / p3938 aacAX This study B999 DH5a pMBAaacC1 / p3938 aacC1 This study C001 DH5a pMBAaacC2 / p3938 aacC2 This study C002 DH5a pMBAaacC3 / p3938 aacC3 This study C003 DH5a pMBAaacC4 / p3938 aacC4 This study C004 DH5a pMBAaacC5 / p3938 aacC5 This study C005 DH5a pMBAaacC6 / p3938 aacC6 This study C006 DH5a pMBAaacC11 / p3938 aacC11 This study C007 DH5a pMBAaacC13 / p3938 aacC13 This study C009 DH5a pMBAaadA1 / p3938 aadA1 This study C010 DH5a pMBAaadA2 / p3938 aadA2 This study C011 DH5a pMBAaadA4 / p3938 aadA4 This study C012 DH5a pMBAaadA5 / p3938 aadA5 This study C013 DH5a pMBAaadA6 / p3938 aadA6 This study C015 DH5a pMBAaadA10 / p3938 aadA10 This study C016 DH5a pMBAaadA11 / p3938 aadA11 This study C017 DH5a pMBAaadA13 / p3938 aadA13 This study C018 DH5a pMBAaadA16 / p3938 aadA16 This study C019 DH5a pMBAaadA24 / p3938 aadA24 This study C020 DH5a pMBAaadA28 / p3938 aadA28 This study C021 DH5a pMBAaadA29 / p3938 aadA29 This study C022 DH5a pMBAaadA34 / p3938 aadA34 This study C023 DH5a pMBAaadB / p3938 aadB This study Supplementary Material 160 C024 DH5a pMBAaphA15 / p3938 aphA15 This study C025 DH5a pMBAaphA16 / p3938 aphA16 This study C026 DH5a pMBAsat2 / p3938 sat2 This study C027 DH5a pMBAdfrA1 / p3938 dfrA1 This study C028 DH5a pMBAdfrA5 / p3938 dfrA5 This study C029 DH5a pMBAdfrA6 / p3938 dfrA6 This study C030 DH5a pMBAdfrA7 / p3938 dfrA7 This study C031 DH5a pMBAdfrA12 / p3938 dfrA12 This study C032 DH5a pMBAdfrA14 / p3938 dfrA14 This study C033 DH5a pMBAdfrA15 / p3938 dfrA15 This study C034 DH5a pMBAdfrA16 / p3938 dfrA16 This study C035 DH5a pMBAdfrA17 / p3938 dfrA17 This study C036 DH5a pMBAdfrA21 / p3938 dfrA21 This study C037 DH5a pMBAdfrA22 / p3938 dfrA22 This study C038 DH5a pMBAdfrA25 / p3938 dfrA25 This study C039 DH5a pMBAdfrA27 / p3938 dfrA27 This study C040 DH5a pMBAdfrA29 / p3938 dfrA29 This study C041 DH5a pMBAdfrA30 / p3938 dfrA30 This study C042 DH5a pMBAdfrA31 / p3938 dfrA31 This study C043 DH5a pMBAdfrA34 / p3938 dfrA34 This study C044 DH5a pMBAdfrA35 / p3938 dfrA35 This study C045 DH5a pMBAdfrB1 / p3938 dfrB1 This study C046 DH5a pMBAdfrB2 / p3938 dfrB2 This study C047 DH5a pMBAdfrB3 / p3938 dfrB3 This study C048 DH5a pMBAdfrB4 / p3938 dfrB4 This study C049 DH5a pMBAdfrB5 / p3938 dfrB5 This study C050 DH5a pMBAdfrB6 / p3938 dfrB6 This study C051 DH5a pMBAdfrB7 / p3938 dfrB7 This study C052 DH5a pMBAdfrB8 / p3938 dfrB8 This study C053 DH5a pMBAdfrB9 / p3938 dfrB9 This study C054 DH5a pMBAblaBEL-1 / p3938 blaBEL-1 This study C055 DH5a pMBAblaGES-1 / p3938 blaGES-1 This study C056 DH5a pMBAblaIMP-2 / p3938 blaIMP-2 This study C057 DH5a pMBAblaIMP-31 / p3938 blaIMP-31 This study C058 DH5a pMBAblaOXA-1 / p3938 blaOXA-1 This study C059 DH5a pMBAblaOXA-2 / p3938 blaOXA-2 This study C060 DH5a pMBAblaOXA-5 / p3938 blaOXA-5 This study C061 DH5a pMBAblaOXA-9 / p3938 blaOXA-9 This study C062 DH5a pMBAblaOXA-10 / p3938 blaOXA-10 This study C063 DH5a pMBAblaOXA-20 / p3938 blaOXA-20 This study C064 DH5a pMBAblaOXA-21 / p3938 blaOXA-21 This study C065 DH5a pMBAblaOXA-46 / p3938 blaOXA-46 This study C066 DH5a pMBAblaOXA-118 / p3938 blaOXA-118 This study C067 DH5a pMBAblaOXA-129 / p3938 blaOXA-129 This study C068 DH5a pMBAblaOXA-198 / p3938 blaOXA-198 This study C069 DH5a pMBAblaPBL-1 / p3938 blaPBL-1 This study C070 DH5a pMBAblaVIM-1 / p3938 blaVIM-1 This study C071 DH5a pMBAblaVIM-2 / p3938 blaVIM-2 This study C072 DH5a pMBAblaVIM-7 / p3938 blaVIM-7 This study C073 DH5a pMBAarr2 / p3938 arr2 This study C074 DH5a pMBAarr5 / p3938 arr5 This study Supplementary Material 161 C075 DH5a pMBAarr6 / p3938 arr6 This study C076 DH5a pMBAarr7 / p3938 arr7 This study C077 DH5a pMBAcatB2 / p3938 catB2 This study C078 DH5a pMBAcatB3 / p3938 catB3 This study C079 DH5a pMBAcatB5 / p3938 catB5 This study C080 DH5a pMBAcatB6 / p3938 catB6 This study C081 DH5a pMBAcatB10 / p3938 catB10 This study C082 DH5a pMBAereA2 / p3938 ereA2 This study C083 DH5a pMBAereA3 / p3938 ereA3 This study C084 DH5a pMBAsmr1 / p3938 smr1 This study C085 DH5a pMBAsmr2 / p3938 smr2 This study C086 DH5a pMBAsmr3 / p3938 smr3 This study C087 DH5a pMBAfosC2 / p3938 fosC2 This study C088 DH5a pMBAfosE / p3938 fosE This study C089 DH5a pMBAfosF / p3938 fosF This study C090 DH5a pMBAfosG / p3938 fosG This study C091 DH5a pMBAfosH / p3938 fosH This study C092 DH5a pMBAfosI / p3938 fosI This study C093 DH5a pMBAfosK / p3938 fosK This study C094 DH5a pMBAfosL / p3938 fosL This study C095 DH5a pMBAfosM / p3938 fosM This study C096 DH5a pMBAfosN / p3938 fosN This study C097 DH5a pMBAqacE / p3938 qacE This study C098 DH5a pMBAqacF / p3938 qacF This study C099 DH5a pMBAqacG / p3938 qacG This study C100 DH5a pMBAqacH / p3938 qacH This study C101 DH5a pMBAqacK / p3938 qacK This study C102 DH5a pMBAqacL/ p3938 qacL This study C103 DH5a pMBAqacM / p3938 qacM This study C104 DH5a pMBAqacEDsul1 / p3938 qacEDsul1 This study A798 MG1655 pMBA5´- aacA1 - This study A439 MG1655 pMBA5´- aacA2 - This study A551 MG1655 pMBA5´- aacA3 - This study A438 MG1655 pMBA5´- aacA4 - This study A615 MG1655 pMBA5´- aacA5 - This study A424 MG1655 pMBA5´- aacA7 - This study A560 MG1655 pMBA5´- aacA8 - This study A605 MG1655 pMBA5´- aacA16 - This study A610 MG1655 pMBA5´- aacA17 - This study A425 MG1655 pMBA5´- aacA27 - This study A426 MG1655 pMBA5´- aacA28 - This study A612 MG1655 pMBA5´- aacA29 - This study A427 MG1655 pMBA5´- aacA30 - This study A428 MG1655 pMBA5´- aacA31 - This study A802 MG1655 pMBA5´- aacA32 - This study A429 MG1655 pMBA5´- aacA34 - This study A430 MG1655 pMBA5´- aacA35 - This study A437 MG1655 pMBA5´- aacA37 - This study A567 MG1655 pMBA5´- aacA38 - This study A565 MG1655 pMBA5´- aacA39 - This study Supplementary Material 162 A564 MG1655 pMBA5´- aacA40 - This study A502 MG1655 pMBA5´- aacA42 - This study A507 MG1655 pMBA5´- aacA43 - This study A801 MG1655 pMBA5´- aacA44 - This study A535 MG1655 pMBA5´- aacA45 - This study A808 MG1655 pMBA5´- aacA46 - This study A508 MG1655 pMBA5´- aacA47 - This study A509 MG1655 pMBA5´- aacA48 - This study A510 MG1655 pMBA5´- aacA49 - This study A534 MG1655 pMBA5´- aacA50 - This study A511 MG1655 pMBA5´- aacA51 - This study A540 MG1655 pMBA5´- aacA52 - This study A361 MG1655 pMBA5´- aacA54 - This study A512 MG1655 pMBA5´- aacA56 - This study A513 MG1655 pMBA5´- aacA59 - This study A473 MG1655 pMBA5´- aacA61 - This study A800 MG1655 pMBA5´- aacA64 - This study A549 MG1655 pMBA5´- aacAX - This study A514 MG1655 pMBA5´- aacC1 - This study A542 MG1655 pMBA5´- aacC2 - This study A537 MG1655 pMBA5´- aacC3 - This study A799 MG1655 pMBA5´- aacC4 - This study A541 MG1655 pMBA5´- aacC5 - This study A533 MG1655 pMBA5´- aacC6 - This study A539 MG1655 pMBA5´- aacC11 - This study A606 MG1655 pMBA5´- aacC13 - This study A531 MG1655 pMBA5´- aadA1 - This study A607 MG1655 pMBA5´- aadA2 - This study A550 MG1655 pMBA5´- aadA4 - This study A530 MG1655 pMBA5´- aadA5 - This study A553 MG1655 pMBA5´- aadA6 - This study A609 MG1655 pMBA5´- aadA7 - This study A796 MG1655 pMBA5´- aadA9 - This study A608 MG1655 pMBA5´- aadA10 - This study A554 MG1655 pMBA5´- aadA11 - This study A558 MG1655 pMBA5´- aadA13 - This study A555 MG1655 pMBA5´- aadA16 - This study A557 MG1655 pMBA5´- aadA24 - This study A797 MG1655 pMBA5´- aadA28 - This study A556 MG1655 pMBA5´- aadA29 - This study A559 MG1655 pMBA5´- aadA34 - This study A532 MG1655 pMBA5´- aadB - This study A538 MG1655 pMBA5´- aphA15 - This study A552 MG1655 pMBA5´- aphA16 - This study A563 MG1655 pMBA5´- dfrA5 - This study A561 MG1655 pMBA5´- fosG - This study A562 MG1655 pMBA5´- blaOXA-9 - This study A611 MG1655 pMBATm - This study A601 MG1655 pBGT - San Millán et al, 2016 B536 MG1655 pMBA5´- aacA43alt - This study Supplementary Material 163 B537 MG1655 pMBA5´- aacA47alt - This study B538 MG1655 pMBA5´- aacAXalt - This study B539 MG1655 pMBA5´- aadA9alt - This study B540 MG1655 pMBA5´- aacA4alt - This study A617 MG1655 pMBA5´- aacA1alt - This study B628 MG1655 pMBA5´- aacC5alt - This study B771 A605 pBAD::armA - This study B772 A606 pBAD::armA - This study B773 A607 pBAD::armA - This study B774 A608 pBAD::armA - This study B775 A609 pBAD::armA - This study B776 A610 pBAD::armA - This study B777 A611 pBAD::armA - This study B778 A612 pBAD::armA - This study B779 A615 pBAD::armA - This study B780 A796 pBAD::armA - This study B781 A797 pBAD::armA - This study B782 A799 pBAD::armA - This study B783 A801 pBAD::armA - This study B784 A802 pBAD::armA - This study Supplementary Material 164 Supplementary Table S2. Primers and probes used in this study. Primer/Probe Sequence (5´à 3´) Description int R bb CTTTGTTTTAGGGCGACTGC pMBA linearisation gfp F bb TTAGGCGTCGACGCTGCA gBlock F GCAGTCGCCCTAAAACAAAG ARC amplification gBlock R GCTGCAGCGTCGACGCCTAA int F AACGCAATTACAGAAATGCCTCGACTTCGC pMBA sequencing gfp R AAAGCGCTGTCTAGACTATT gfp 2.0 R CTCGATTCTATTAACAAGGG gfp RT F GTTGGCCATGGAACAGGTAG gfp qPCR gfp RT R AGTGGAGAGGGTGAAGGTGA rpoA RT F TTGAGCAGGATTTCCAGGAT rpoA qPCR rpoA RT R CCGAGGTTGAGATTGATGGT rssA RT F CAATTGAACATCCTGCAACG rssA qPCR rssA RT R AGAGGTTGGTCGCATATTGG DPcS F ACGAACCCAGGTAATGCAAGTAGCGTATGC pMBA PcS deletion DPcS R ACTTGCATTACCTGGGTTCGTGCCTTCATC DattC gfp F GTCGACGCTGCAGCGATT pMBA attC deletion dfrA21 DattC R AATCGCTGCAGCGTCGACTTAGCCGTTACGACGCGCAT pMBAdfrA21 attC deletion dfrA12 DattC R GCAATCGCTGCAGCGTCGACTTAGCCGTTTCGACGCGCAT pMBAdfrA12 attC deletion B4 cassette R CTTGTTAGCCTGTGGACGGTGCCGCATGAT pMBAdfrB4 attC change (to dfrA21 or dfrA12) bb A21B4 F ACCGTCCACAGGCTAACAAGTCCGTCAACG bb dfrA12 F ATCATGCGGCACCGTCCACAGGCTAACCATTCCGTCAACG Dmet gfp F GTAAATATAGAGTAAATGAGAAGAACTTTT pMBA gfp KO and Dmet Dmet gfp R ATTTACTCTATATTTACCTCCTTTATATTG Dgfp F TGCAATATAAAATTGTCGGCACGTAAGAGG pMBA gfp deletion Dgfp R GCCGACAATTTTATATTGCAATCGCTGCAG IsoI46 Exonucl.2 F CGGATCGTAAAGCTCTGTTGTAAG I46 qPCR (Brugiroux et al, 2016) IsoI46 Exonucl.3 R GCTACCGTCACTCCCATAGCA Probe3 IsoI46 FAM-AAGAACGGCTCATAGAGG-BHQ1 IsoI49 Exonucl. F GCACTGGCTCAACAGATTGATG I49 qPCR (Brugiroux et al, 2016) IsoI49 Exonucl. R CCGCCACTCACTGGTGATC Probe IsoI49 HEX-CTTGCACCTGATTGACGA-BHQ1 YL58 Exonucl. F GAAGAGCAAGTCTGATGTGAAAGG YL58 qPCR (Brugiroux et al, 2016) YL58 Exonucl. R CGGCACTCTAGAAAAACAGTTTCC Probe YL58 FAM-TAACCCCAGGACTGCAT-BHQ1 YL27 Exonucl.2 F TCAAGTCAGCGGTAAAAATTCG YL27 qPCR (Brugiroux et al, 2016) YL27 Exonucl.2 R CCCACTCAAGAACATCAGTTTCAA Probe2 YL27 HEX-CAACCCCGTCGTGCC-BHQ1 YL31 Exonucl.2 F AGGCGGGATTGCAAGTCA YL31 qPCR (Brugiroux et al, 2016) YL31 Exonucl.3 R CCAGCACTCAAGAACTACAGTTTCA Probe2 YL31 FAM-CAACCTCCAGCCTGC-BHQ1 YL32 Exonucl.2 F AATACCGCATAAGCGCACAGT YL32 qPCR (Brugiroux et al, 2016) YL32 Exonucl.2 R CCATCTCACACCACCAAAGTTTT Probe2 YL32 HEX-CGCATGGCAGTGTGT-BHQ1 KB1 Exonucl. F CTTCTTTCCTCCCGAGTGCTT KB1 qPCR (Brugiroux et al, 2016) KB1 Exonucl. R CCCCTCTGATGGGTAGGTTACC Probe KB1 FAM-CACTCAATTGGAAAGAGGAG-BHQ1 YL2 Exonucl. F GGGTGAGTAATGCGTGACCAA YL2 qPCR (Brugiroux et al, 2016) YL2 Exonucl. R CGGAGCATCCGGTATTACCA Probe2 YL2 HEX-CGGAATAGCTCCTGGAAA-BHQ1 Supplementary Material 165 KB18 Exonucl.2 F TGGCAAGTCAGTAGTGAAATCCA KB18 qPCR (Brugiroux et al, 2016) KB18 Exonucl.2 R TCACTCAAGCTCGACAGTTTCAA Probe2 KB18 FAM-CTTAACCCATGAACTGC-BHQ1 YL44 Exonucl. F CGGGATAGCCCTGGGAAA YL44 qPCR (Brugiroux et al, 2016) YL44 Exonucl. R GCGCATTGCTGCTTTAATCTTT Probe YL44 HEX-TGGGATTAATACCGCATAGTA-BHQ1 YL45 Exonucl. F AGACGGCCTTCGGGTTGTA YL45 qPCR (Brugiroux et al, 2016) YL45 Exonucl. R CGTCATCGTCTATCGGTATTATCAA Probe YL44 FAM-ACCACTTTTGTAGAGAACGA-BHQ1 IsoI48 Exonucl. F GGCAGCATGGGAGTTTGCT I48 qPCR (Brugiroux et al, 2016) IsoI48 Exonucl. R TTATCGGCAGGTTGGATACGT Probe IsoI48 HEX-CAAACTTCCGATGGCGAC-BHQ1 E. coli Exonucl. F GGACCTTCGGGCCTCTTG E. coli qPCR (Brugiroux et al, 2016) E. coli Exonucl. R CCTTTACCCCACCTACTAGCTAATCC Probe E. coli FAM-ATCGGATGTGCCCAGAT-BHQ1 Dmet ereA2 F AAAAATAGTAGTGGAGAACGACCAGAACAC ereA2 Dmet in pMBA Dmet ereA2 R TCCACTACTATTTTTTATCCTTTTGCGTTTATTGCT Dmet ereA3 F AAAAATAGTAGTGGAGAACTACCAGAACACTT ereA3 Dmet in pMBA Dmet ereA3 R CTCCACTACTATTTTTTAGCCTTTGCGCTCAT mut ereA2 F2 GCGGGTGCTCCCTTTGTCGCGGAGTTC ereA2 cat. mut. mut ereA2 R2 GGGAGCACCCGCGCCAATGCCGACAAT mut ereA3 F2 GCGGGCGCTCCCTTTGTCGCGGAGTTT ereA3 cat. mut. mut ereA3 R2 GGGAGCGCCCGCGCCAAGGCCGAC check conj p2714 F GGAATTCGGCTTGTTATGAC Integrase-dependent recombination checking check conj gfp2.0 R CTCGATTCTATTAACAAGGG ribo GFP F ATGAGTAAAGGAGAAGAACTTTT pMBA5´UTR generation aacA1 GFP R AGTTCTTCTCCTTTACTCATTAGCGGCGTCGCCCTAAC pMBA5´UTR generation aacA2 GFP R GTTCTTCTCCTTTACTCATGACGCCTAACTTTGTTTTAGG pMBA5´UTR generation aacA3 GFP R AAGTTCTTCTCCTTTACTCATGAAATGGTCGCTCTGTGCT pMBA5´UTR generation aacA4 GFP R AGTTCTTCTCCTTTACTCATTGTGACGGAATCGTTGCTG pMBA5´UTR generation aacA5 GFP R AAGTTCTTCTCCTTTACTCATGCTGAAGTGTCTCCGTGCT pMBA5´UTR generation aacA7 GFP R AAAAGTTCTTCTCCTTTACTCATTGGTGCCTAACTTTG pMBA5´UTR generation aacA8 GFP R AAAAGTTCTTCTCCTTTACTCATGAGGACGGAGTTTGTGC pMBA5´UTR generation aacA16 GFP R AAAAGTTCTTCTCCTTTACTCATATAGGTAATGCTAGAAC pMBA5´UTR generation aacA17 GFP R AAAAGTTCTTCTCCTTTACTCATATAGGTAATACTAGAAC pMBA5´UTR generation aacA27 GFP R AAAAGTTCTTCTCCTTTACTCATGAGATGTTGATTCCGTG pMBA5´UTR generation aacA28 GFP R AAAAGTTCTTCTCCTTTACTCATAAAACCTCTTCGCGCGC pMBA5´UTR generation aacA29 GFP R AAAAGTTCTTCTCCTTTACTCATAGCCGTCTAACTTTG pMBA5´UTR generation aacA30 GFP R AAAAGTTCTTCTCCTTTACTCATTTAAGGTCTCCGAGTAG pMBA5´UTR generation aacA31 GFP R AAAAGTTCTTCTCCTTTACTCATGAGAACGGTCTTTGTGC pMBA5´UTR generation aacA32 GFP R AAAAGTTCTTCTCCTTTACTCATGGGACGGTCCTTTTGTG pMBA5´UTR generation aacA34 GFP R AAAAGTTCTTCTCCTTTACTCATAGCCTGGGCCTTCTAAC pMBA5´UTR generation aacA35 GFP R AAAAGTTCTTCTCCTTTACTCATAAGAAGGTGGCCCTGTG pMBA5´UTR generation aacA37GFP R AAAAGTTCTTCTCCTTTACTCATAGCCGCGGTTAACTTTG pMBA5´UTR generation aacA38 GFP R AAAGTTCTTCTCCTTTACTCATGGTGTGACGGTGGTTATG pMBA5´UTR generation aacA39 GFP R AAAAGTTCTTCTCCTTTACTCATAATACCTCTTTGCGCG pMBA5´UTR generation aacA40 GFP R AAGTTCTTCTCCTTTACTCATGCGGAGTCTGGACTGTGCT pMBA5´UTR generation aacA42 GFP R AAAAGTTCTTCTCCTTTACTCATTCAAAGTCTCCGAGTAG pMBA5´UTR generation aacA43 GFP R AAAAGTTCTTCTCCTTTACTCATTTGTCCTCGGCGCGAA pMBA5´UTR generation aacA44 GFP R AAAAGTTCTTCTCCTTTACTCATTTAATCACCAATTGTGCTCAGTC pMBA5´UTR generation aacA45 GFP R AAAAGTTCTTCTCCTTTACTCATTGGCTGAGCCTTTTAAC pMBA5´UTR generation aacA46 GFP R AAAAGTTCTTCTCCTTTACTCATAAGATCCTCTTTCTTCACGC pMBA5´UTR generation aacA47 GFP R AAAAGTTCTTCTCCTTTACTCATAACTTTGTTTTAGGGCG pMBA5´UTR generation Supplementary Material 166 aacA48 GFP R AAAAGTTCTTCTCCTTTACTCATGCTCGGTGCAGGTTTAG pMBA5´UTR generation aacA49 GFP R AAAAGTTCTTCTCCTTTACTCATTGAAACTCTCCTCTGCG pMBA5´UTR generation aacA50 GFP R AAAGTTCTTCTCCTTTACTCATGAGAATTGTCTTTGTGC pMBA5´UTR generation aacA51 GFP R AAAAGTTCTTCTCCTTTACTCATACTGGGACGGTTCCTTG pMBA5´UTR generation aacA52 GFP R AAAAGTTCTTCTCCTTTACTCATCTTGTGCTGCCTAACTT pMBA5´UTR generation aacA54 GFP R AAAGTTCTTCTCCTTTACTCATAAGGCGTTGATTTTGTGC pMBA5´UTR generation aacA56 GFP R AAAAGTTCTTCTCCTTTACTCATTCTTACTCCTGCGCGAA pMBA5´UTR generation aacA59 GFP R AAAAGTTCTTCTCCTTTACTCATGGGATGCGGCTTCTGT pMBA5´UTR generation aacA61 GFP R AAAAGTTCTTCTCCTTTACTCATAAGCGGTGGCCCTGTGC pMBA5´UTR generation aacA64 GFP R AAAAGTTCTTCTCCTTTACTCATTTTATTCCTAGCGCCGA pMBA5´UTR generation aacAX GFP R AAAAGTTCTTCTCCTTTACTCATTTGGTAGATGGCTTCTC pMBA5´UTR generation aacC1C4 GFPR AAAAGTTCTTCTCCTTTACTCATACTTGAGCCACCTAACT pMBA5´UTR generation aacC2 GFP R AAAAGTTCTTCTCCTTTACTCATTGAGCCACCTAACTTTG pMBA5´UTR generation aacC3 GFP R AAAAGTTCTTCTCCTTTACTCATCTTAGCTGCTGCTGCCT pMBA5´UTR generation aacC5 GFP R AAAAGTTCTTCTCCTTTACTCATCGCAACATCGTTTCCAG pMBA5´UTR generation aacC6 GFP R AAAAGTTCTTCTCCTTTACTCATTGAGCCACCTAACTTTG pMBA5´UTR generation aacC11 GFP R AAAAGTTCTTCTCCTTTACTCATACGTGAGCCACCTAAC pMBA5´UTR generation aacC13 GFP R AAAAGTTCTTCTCCTTTACTCATTCATCGGCTCCTAATGC pMBA5´UTR generation aadA1 GFP R TTCTTCTCCTTTACTCATGATGTTTAACTTTGTTTTAGGGC pMBA5´UTR generation aadA4 GFP R AAAAGTTCTTCTCCTTTACTCATGAAGATGCCTAACTTTG pMBA5´UTR generation aadA5 GFP R AAAAGTTCTTCTCCTTTACTCATGATGCCTAACTTTG pMBA5´UTR generation aadA9 GFP R AAGTTCTTCTCCTTTACTCATGTCTAACTTTGTTTTAGGGCG pMBA5´UTR generation aadB GFP R AAAAGTTCTTCTCCTTTACTCATGCGGCCTAACTTTGTTT pMBA5´UTR generation aphA15 GFP R AAAAGTTCTTCTCCTTTACTCATAGCGGTCTAACTTTGTT pMBA5´UTR generation aphA16 GFP R AAAAGTTCTTCTCCTTTACTCATTTTCTCTTTCCTGCGCG pMBA5´UTR generation dfrA5 GFP R GTTCTTCTCCTTTACTCATTAATGATACTTTCACAATTTTGGTTCC pMBA5´UTR generation fosG GFP R AGTTCTTCTC CTTTACTCAT TCCTCGGAGCACAAATCTAC pMBA5´UTR generation blaOXA-9 GFP R AGTTCTTCTCCTTTACTCATTGCTCCGCTGTGCGCTTAAT pMBA5´UTR generation Tm F AGTCGCCCTAAAACAAAGTTTCGATTTTAAGATAACTTTACGTG pMBA5´UTR generation Tm R AAAAGTTCTTCTCCTTTACTCATTGCGTTCTACTCTGAAG pMBA5´UTR generation aacA1 alt R CTCTTTGTATTCGCGCCGCAATAGCGGCGTCGCCC pMBA5´UTR generation aacA43 alt R GTTCTTCTCCTTTACTCATCAATTGTCCTCGGCGC pMBA5´UTR generation aacA4 alt R TCTTCTCCTTTACTCATGATGCTGTACTTTGTGATGC pMBA5´UTR generation aadA9 alt R TCTCCTTTACTCATCATGTCTAACTTTGTTTTAGGGC pMBA5´UTR generation aacA47alt R GTTCTTCTCCTTTACTCATAGGTATGGTGGTTCTGTG pMBA5´UTR generation aacAX alt R TTCTTCTCCTTTACTCATTACCAAGCAATACAATTGGTAG pMBA5´UTR generation aacC5 alt R TTCTCCTTTACTCATTCGTCTGCTCCTGATGCC pMBA5´UTR generation aadA2 6 7 10 11 13 16 24 28 29 34 GFP R CTAAAACAAAGTTAGACATCATGAGTAAAGGAGAAGAACT pMBA5´UTR generation Supplementary Material 167 Supplementary Table S3. Antibiotic discs used in this study. Reference Antibiotic (Ab.) Ab. content (mg) CT0026B Kanamycin (K) 30 CT1897B Streptomycin (S) 300 CT0024B Gentamicin (CN) 10 CT0056B Tobramycin (TOB) 10 CT0107B Amikacin (AK) 30 CT0545B Apramycin (APR) 15 CT0033B Neomycin (N) 30 CT0003B Ampicillin (AMP) 10 CT0623B Ciprofloxacin (CIP) 1 CT0152B Penicillin G (P) 1 iu 68042 Amoxycillin (AMO) 20 66178 Amoxycillin Clavulanic Acid (AMC) 20/10 CT0149B Cefaclor (CEC) 30 CT0166B Cefotaxime (CTX) 30 CT0119B Cefoxitin (FOX) 30 CT0412B Ceftazidime (CAZ) 30 CT0455B Imipenem (IPM) 10 CT0774B Meropenem (MEM) 10 CT1761B Ertapenem (ETP) 10 CT0264B Aztreonam (ATM) 30 CT0052B Trimethoprim-Sulfamethoxazole 1:19 (SXT) 25 CT0998B Blank dics (-) - Supplementary Material 168 Supplementary Table S4. Antimicrobial compounds used in this study. Reference Trader Antimicrobial T7883-5G Sigma Aldrich Trimethoprim K4000-5G Sigma Aldrich Kanamycin sulfate S6501-25G Sigma Aldrich Streptomycin sulfate salt G1914-5G Sigma Aldrich Gentamicin sulfate PHR1079-1G Sigma Aldrich Tobramycin A1774-1G Sigma Aldrich Amikacin A2024-1G Sigma Aldrich Apramycin sulfate salt A8523-5G Sigma Aldrich Amoxicillin C6895-1G Sigma Aldrich Cefaclor CDS020667-50MG Sigma Aldrich Ceftazidime 901967-H MSD INVANZ (Ertapenem) PZ0038-25MG Sigma Aldrich Aztreonam P5396-1G Sigma Aldrich Fosfomycin disodium salt E5389-1G Sigma Aldrich Erythromycin R3501-1G Sigma Aldrich Rifampicin C0378-25G Sigma Aldrich Chloramphenicol B6295-100G Sigma Aldrich Benzalkonium chloride 282227-1G Sigma Aldrich Chlorhexidine H6269-100G Sigma Aldrich CTAB (Hexadecyltrimethylammonium bromide) S7507-10G Sigma Aldrich Sulfamethoxazole Ant-Zn-1G InvivoGen Zeocin 0242.3-1G Roth Vancomycin hydrochloride S7796-1G Sigma Aldrich Sisomicin sulfate salt N6386-5G Sigma Aldrich Neomycin trisulfate salt hidrate 17850-56-F Sigma Aldrich Ciprofloxacin T3383-25G Sigma Aldrich Tetracycline hydrochloride Supplementary Material 169 Supplementary Table S5. Antimicrobial resistance cassettes (ARCs) sequences. In silico predicted main ORFs of each antimicrobial gene are shown in blue. ARCs described in E. coli in the data bases are underlined. ARC Sequence (5´ à 3´) dfrA1 TTAACCTCTGAGGAAGAATTGTGAAACTATCACTAATGGTAGCTATATCGAAGAATGGAGTTATCGGGAATGGCCCTGATATTCCATG GAGTGCCAAAGGTGAACAGCTCCTGTTTAAAGCTATTACCTATAACCAATGGCTGTTGGTTGGACGCAAGACTTTTGAATCAATGGG AGCATTACCCAACCGAAAGTATGCGGTCGTAACACGTTCAAGTTTTACATCTGACAATGAGAACGTATTGATCTTTCCATCAATTAAA GATGCTTTAACCAACCTAAAGAAAATAACGGATCATGTCATTGTTTCAGGTGGTGGGGAGATATACAAAAGCCTGATCGATCAAGTA GATACACTACATATATCTACAATAGACATCGAGCCGGAAGGTGATGTTTACTTTCCTGAAATCCCCAGCAATTTTAGGCCAGTTTTTA CCCAAGACTTCGCCTCTAACATAAATTATAGTTACCAAATCTGGCAAAAGGGTTAACAAGTGGCAGCAACGGATTCGCAAACCTGTC ACGCCTTTTGTGCCAAAAGCCGCGCCAGGTTTGCGATCCGCTGTGCCAGGCG dfrA5 TTAACCCGGAACCAAAATTGTGAAAGTATCATTAATGGCTGCAAAAGCGAAAAACGGAGTGATTGGTTGCGGTCCACACATACCCTG GTCCGCGAAAGGAGAGCAGCTACTCTTTAAAGCCTTGACGTACAACCAGTGGCTTTTGGTGGGCCGCAAGACGTTCGAATCTATGG GAGCACTCCCTAATAGGAAATACGCGGTCGTTACTCGCTCAGCCTGGACGGCCGATAATGACAACGTAATAGTATTCCCGTCGATC GAAGAGGCCATGTACGGGCTGGCTGAACTCACCGATCACGTTATAGTGTCTGGTGGCGGGGAGATTTACAGAGAAACATTGCCCAT GGCCTCTACGCTCCATATATCGACGATTGATATTGAGCCGGAAGGAGATGTTTTCTTTCCGAATATTCCCAATACCTTCGAAGTTGTT TTTGAGCAACACTTTAGCTCAAACATTAACTATTGCTATCAAATTTGGCAAAAGGGTTAACAAAGCTATGCAATTGACGGTAAAAAGCT TCGTTCGCTTCGCTTGCTACGCTTCTTACCGCAATTGATAACGGCG dfrA6 TTAGCCCTCAGGAGGAAAAATGAAAATATCTCTTATGGCAGCTGTTTCCGAGAATGGAGTAATTGGCTCTGGATTGGATATACCTTG GCATGTACAAGGCGAGCAGCTCCTATTCAAAGCCATGACTTACAATCAATGGCTTCTAGTTGGTCGTAAAACCTTCGACTCAATGGG TAAACTTCCGAATAGAAAATATGCAGTGGTTACTCGTTCTAAAATTATCTCGAATGACCCTGATGTTGTGTATTTCGCAAGTGTTGAAT CGGCATTAGCTTACCTAAACAATGCGACAGCACATATCTTTGTTTCTGGTGGTGGTGAAATATATAAAGCTTTAATCGATCAAGCAGA TGTTATCCATCTTTCAGTGATTCACAAGCATATCTCTGGCGATGTGTTTTTTCCTCCAGTTCCACAGGGCTTCAAGCAAACATTTGAG CAAAGTTTCAGTTCAAATATTGATTACACGTACCAAATTTGGGCAAAGGGCTAACAATCTGTTTAAGAGTGATTCGCAACGCGTGGAA TTTTTACTATGCGTTGCGTTTAGTGTTTAAGGTGGTATGCGGAGGCTTCGGTATTGCGTTGCTCACACCTTAACAGGGCG dfrA7 TTAGCCATTACGGGGGTTGAATTGAAAATTTCATTGATTTCTGCAACGTCAGAAAATGGCGTAATCGGTAATGGCCCTGATATCCCAT GGTCAGCAAAAGGTGAGCAGTTACTCTTTAAAGCGCTCACATATAATCAGTGGCTCCTTGTTGGAAGGAAAACATTTGACTCTATGG GTGTTCTTCCAAATCGAAAATATGCAGTAGTGTCGAGGAAAGGAATTTCAAGCTCAAATGAAAATGTATTAGTCTTTCCTTCAATAGAA ATCGCTTTGCAAGAACTATCGAAAATTACAGATCATTTATATGTCTCTGGTGGCGGTCAAATCTACAATAGTCTTATTGAAAAAGCAGA TATAATTCATTTGTCTACTGTTCACGTTGAGGTTGAAGGTGATATCAATTTTCCTAAAATTCCAGAGAATTTCAATTTGGTTTTTGAGCA GTTTTTTTTGTCTAATATAAATTACACATATCAGATTTGGAAAAAAGGCTAACAAGTCGTTCCAGCACCAGTCGCTGCGCTCCTTGGA CAGTTTTTTAAGTCGCGGTTTTATGGTTTTGCTGCGCAAAAGTATTCCATAAAACCACAACTTAAAAACCGCCGCTGAACTCGGCG dfrA12 TTAGCCATATGAACTCGGAATCAGTACGCATTTATCTCGTTGCTGCGATGGGAGCCAATCGGGTTATTGGCAATGGTCCTAATATCC CCTGGAAAATTCCGGGTGAGCAGAAGATTTTTCGCAGACTCACTGAGGGAAAAGTCGTTGTCATGGGGCGAAAGACCTTTGAGTCT ATCGGCAAGCCTCTACCGAACCGTCACACATTGGTAATCTCACGCCAAGCTAACTACCGCGCCACTGGCTGCGTAGTTGTTTCAAC GCTGTCGCACGCTATCGCTTTGGCATCCGAACTCGGCAATGAACTCTACGTCGCGGGCGGAGCTGAGATATACACTCTGGCACTAC CTCACGCCCACGGCGTGTTTCTATCTGAGGTACATCAAACCTTCGAGGGTGACGCCTTCTTCCCAATGCTCAACGAAACAGAATTCG AGCTTGTCTCAACCGAAACCATTCAAGCTGTAATTCCGTACACCCACTCCGTTTATGCGCGTCGAAACGGCTAACCATTCCGTCAAC GGGACGCCAAAATGCTGCGCATTTTGGTTCCCTCCGCTGCGCTCCGGCTCTCGTTACGTCCAACG dfrA14 TTAACCCAGGATGAGAACCTTGAAAGTATCATTGATAGCTGCGAAAGCGAAAAACGGCGTGATTGGTTGCGGTCCAGACATACCGT GGTCCGCGAAAGGGGAGCAGCTACTTTTTAAAGCATTGACCTACAATCAGTGTCTTCTGGTGGGTCGCAAGACGTTTGAATCTATGG GCGCACTCCCCAATAGGAAATACGCGGTCGTTACCCGCTCAGGTTGGACATCAAATGATGACAATGTAGTTGTATTTCAGTCAATCG AAGAGGCCATGGACAGGCTAGCTGAATTCACCGGTCACGTTATAGTGTCTGGTGGCGGAGAAATTTACCGAGAAACATTACCCATG GCCTCTACGCTCCACTTATCGACGATCGACATCGAGCCAGAGGGGGATGTTTTCTTCCCGAGTATTCCAAATACCTTCGAAGTTGTT TTTGAGCAACACTTTACTTCAAACATTAACTATTGCTATCAAATTTGGAAAAAGGGTTAACAAAGCTATGCAATCGACGGCAAAAAGCT TCGTTCGCTTCGCGCACTACGCTTTTTCCGCGATTGATAGCGACG dfrA15 TTAACCCCTAAGGAAGTATCGTGAAACTATCACTAATGGCAGCAATTTCGAAGAATGGAGTTATCGGAAATGGCCCAGATATTCCAT GGAGTGCCAAAGGGGAACAATTACTCTTCAAAGCGATTACCTATAATCAGTGGCTTTTGGTAGGCCGAAAGACTTTCGAGTCAATGG GGGCTTTACCCAACCGAAAATATGCCGTTGTAACTCGTTCAAGCTTCACTTCCAGTGATGAGAATGTATTGGTATTTCCATCTATCGA TGAAGCGCTAAATCATCTGAAGACGATAACGGATCATGTGATTGTGTCTGGTGGTGGTGAAATATACAAAAGCCTGATCGATAAAGT TGATACTTTACATATTTCAACAATCGACATTGAGCCAGAAGGTGATGTCTATTTTCCAGAAATCCCCAGTAGTTTTAGGCCAGTTTTTA GCCAAGACTTCGTGTCTAACATAAATTATAGTTACCAAATCTGGCAAAAGGGTTAACAAGTGGCAGCAACTGACCGCCAAAAGTGTC ACTTGTTTTGCCAAAAAGCCGGCAAAACAAGCGCCAATTTTGTCGGCAGCTGTGCCAGGCG dfrA16 TTAACTCGAGGGAGAAATCGTGAAGTTATCACTAATGGCTGCCAAGTCGAAGAACGGTATTATCGGTAATGGACCAGATATTCCATG GAGCGCCAAAGGCGAGCAACTTCTATTTAAGGCAATTACATATAATCAATGGCTTTTAGTTGGACGCAAAACTTTTGAGTCAATGGGC GCTCTCCCAAATCGAAAGTATGCAGTTGTAACTCGCTCTAATTTTTCTACGAATGATGAGGGTGTAATGGTTTTCTCCTCAATTCAGG ATGCCTTAATAAATTTAGAGGAAATCACGGATCATGTTATCGTTTCTGGTGGTGGTGAAATATACAAAAGCTTGATTTCCAAAGTAGAT ACTTTGCATATTTCAACAGTCGACATCGAGCGAGATGGAGACATAGTTTTTCCTGAAATCCCAGATACATTCAAGTTGGTATTTGAGC AAGATTTCGAGTCTAACATTAACTATTGTTATCAAATCTGGCAAAAGAGTTAACAAGCGCCTGCAATCTGACCTCCGGTTACTGTCAC CTTTTTTTGCGGTGGAGCTGCAAAAAAGGCGCCATTAACCTCCGGCAGTTGAGGCGGGCG dfrA17 TTAGCCATTAAGGGAGTTAAATTGAAAATATCATTGATTTCTGCAGTGTCAGAAAATGGCGTAATCGGTAGTGGTCCTGATATCCCGT GGTCAGTAAAAGGTGAGCAACTACTCTTTAAAGCGCTCACATATAATCAATGGCTCCTTGTCGGAAGAAAAACATTTGACTCTATGGG TGTTCTTCCAAATCGCAAATATGCAGTAGTGTCAAAGAACGGAATTTCAAGCTCAAATGAAAACGTCCTAGTTTTTCCTTCAATAGAAA ATGCTTTGAAAGAGCTATCAAAAGTTACAGATCATGTATATGTCTCTGGCGGGGGTCAAATCTATAATAGCCTTATTGAAAAAGCAGA TATAATTCATTTGTCTACTGTTCACGTTGAAGTCGAAGGTGATATCAAATTCCCTATAATGCCTGAGAATTTCAATTTGGTTTTTGAAC AGTTTTTTATGTCTAATATAAATTATACATACCAGATTTGGAAAAAAGGCTAACAATGCGTTGCAGCACCAGTCGCTTCGCTCCTTGG ACAGCTTTTAAGTCGCGTCTTTGTGGTTTTGCTGCGCAAAAGTATTCCACAAAGCCGCAACTTAAAAGCTGCCGCTGAACTTAACG dfrA21 TTAGCCGTATGAACCCGGAATCGGTCCGCATTTATCTGGTCGCTGCCATGGGTGCCAATCGGGTTATTGGCAATGGTCCCGATATC CCCTGGAAAATCCCAGGTGAGCAGAAGATTTTTCGCAGGCTCACCGAGAGCAAAGTGGTCGTTATGGGCCGCAAGACATTTGAGTC CATAGGCAAGCCCTTACCAAACCGCCACACAGTGGTGCTCTCGCGCCAAGCTCGTTATAGCGCTCCTGGTTGTGCAGTTGTTTCAA CGCTGTCACAGGCTATCGCCATCGCAGCCGAACACGGCAAAGAACTCTACGTAGCCGGCGGAGCCGAGGTATATGCGCTGGCGCT ACCGCATGCCAACGGCGTCTTTCTATCTGAGGTACATCAAACCTTTGAGGGTGACGCCTTCTTCCCAGTGCTTAACGCAGCAGAATT CGAGGTTGTCTCATCCGAAACCATTCAAGGCACAATCACGTACACGCACTCCGTCTATGCGCGTCGTAACGGCTAACAAGTCCGTC AACGGGACACCCAAATGCTGCGCATTTGGGTTCCCTTGGCTGCGCCTCGGCGCCCGTTACGTCCAACG dfrA22 TTAGCCGTATGAACCCGGAATTGGTCCGCATTTATCTGGTCGCTGCCATGGGTGCCAATCGGGTTATTGGCAATGGCCCCGATATT CCCTGGAAAATCCCGGGTGAGCAAAAGATCTTTCGCAGGCTCACCGAGGGCAAAGTGGTCGTTATGGGCCGCAAGACGTTTGAGT CCATAGGCAAGCCCTTACCAAACCGCCGCACAGTGGTGCTCTCGCGCCAAGCCAGTTATAGCGCTGCTGGTTGTGCAGTTGTTTCA ACGCTGTCGCAGGCTATTGCCATCGCAGCCGAACACGGCAAAGAGCTCTACGTGGCCGGCGGAGCCGAGGTATATGCACTGGCAC TACCTCGTGCCGACGGCGTCTTTCTATATGAGGTACATCAAACCTTCGAGGGTGACGCCTTCTTCCCTGTGCTCGACGAAGCAGAAT Supplementary Material 170 TCGAGGTTGTCTCAGCCGAAACCGTTCAAGCCACAATCACGTACACGCACTCCGTCTATGCACGTCGTAACGGCTAACAAGTCCGT CAACGGGACACCCAAATGCTGCGCATTTGGGGTCCCTCGGCTGCGCCTCGGTGCCCGTTACGTCCAACG dfrA25 TTAACCCAGGACGAGTACCTTGAAAGTATCATTGATGGCTGCAAGAGCGAAAAATGGCGTAATCGGTTGCGGTCCTGACATTCCTTG GTCTGCCAAAGGGGAACAGCTTCTTTTCAAAGCACTGACCTATAACCAATGGCTTTTGGTAGGGCGCAAAACATTTGAGTCTATGGG GCCGCTGCCCAATAGGAAATACGCGGTTGTTACCCGCTCAAACTGGACAGCGGCTAATGAAAACGTAGTGGTTTTCCCGTCGATTG ACGAAGCGATGGGTAGATTAGGCGAGATCACTGACCATGTCATCGTCGCCGGTGGTGGAGAAATCTACCATGAAACGATACCCATG GCCTCTACTCTGCATGTGTCGACAATCGACGTTGAGCCAGAGGGAGACGTTTTCTTTCCGAACATTCCTGGGAAGTTTGATGTCGTT TTTGAGCAACAATTTACATCAAACATTAACTATTGCTATCAAATCTGGCAAAAGGGTTAACAAAGCTATGCAATTGACGGCAAAAAGC TTCGTTCGCTTCACTCACTACGCAATTTGCCGCACTTGATAGCGGCG dfrA27 TTAACCCAAAGGAGTATCGTGAAAATATCACTAATGGCTGCAAAAGCAAGAAATGGGGTTATTGGCTGCGGCTCGGATATCCCGTGG AACGCTAAAGGTGAGCAGCTGCTTTTTAAAGCAATAACTTACAATCAATGGCTCTTAGTCGGCCGTAAAACATTTGAGGCAATGGGG GCTCTCCCAAATAGAAAGTATGCAGTTGTCAGCCGCTCAGGATCGGTAGCTACTAACGATGATGTGGTTGTGTTTCCATCTATAGAA GCAGCAATGAGGGAGCTAAAGACTCTTACGAACCATGTTGTTGTTTCTGGTGGTGGAGAGATCTACAAGAGTCTGATCGCCCATGC CGACACGCTACATATCTCGACAATAGATTCCGAGCCAGAGGGCAATGTTTTCTTTCCGGAAATCCCCAAAGAGTTCAATGTGGTGTT CGAGCAGGAATTTCATTCAAATATAAATTATCGCTATCAAATCTGGCAAAGGGGTTAACCATCCAAGCCATCGGACACATTTTGCTTC GCTGCGCTCAAAACGCAAAATGTGCCGCTGCTTAGCGGCG dfrA29 TTAACCATTACGGGAATTTAATTGAAAATTTCTTTAATCGCAGCTCAGTCAGAAAACGGTGTTATTGGTAATGGCCCAGATATTCCATG GTCAGCAAAAGGGGAGCAGTTACTTTTCAAAGCGCTAACATATAATCAGTGGCTTCTTGTCGGAAGAAAAACATTTGAGTCAATGGG TATTCTTCCTAATCGAAAGTATGCTGTTCTTTCAAAAAATGGAATTTCACACCTTCCTGAAAACGTACTAGTTTTTTCGTCTATAGAAAA TGCATTATATGAACTGGCTAAGGTAACAGACCATTTATATATTTCTGGCGGTGGTCAAATATATAATAGTCTTATTGAAAGTGCTGATA CCATCCACTTATCTATCATCCACAAAGAGGTAGAAGGTGAAGTAAGGTTTCCCAAAATACCTCCTAATTACAAGTTGGTATTTGAGCA ATATTATTCTTCAAATATTAATTACACTTATCAAATTTGGCAAAAAGGTTAACAAGTCGCTCAAGCACCAGTCGCTTCGCTCCTTGGAC AGTTTTTAAGTCGCAGTTTTGTGGTTTTGCTGCGCAAAAAGTTTCCACAAAACCACAACTTAAAAACTGCCGCTTAGCTCGGCG dfrA30 TTAACCCGGGACCAAAATTGTGAAAGTATCATTAATGGCTGCAAGAGCGAGAAACGGAGTGATCGGTTGCGGTCCACACATACCCT GGTCCGCGAAAGGAGAGCAGCTACTCTTTAAAGCCCTGACGTACAACCAGTGGCTTTTGGTTGGCCGCAAGACGTTCGAATCAATG GGGGCGCTCCCCAACAGGAAATACGCGGTCGTTACTCGCTCAGCCTGGACGGCCAATAATGACAACGTAGTAGTATTCCCGTCGAT CGAAGAGGCCATGGGCGGTCTAGCTAAACTCAACGGTCACGTTATAGTGTCTGGTGGCGGGGAGATTTACAGAGAAACGTTGCCCA TGGCCTCTACGCTCCATGTATCGACGATCGACATTGAGCCAGAAGGGGATGTTTTCTTCCCGAATATTCCCAACTTCTTCGAAGTTG TTTTTGAGCAACATTTTAGTTCAAACATTAACTATTGCTATCAAATTTGGAAAAAGGGTTAACAAAGCTATGCAATTGACGGCAAAAAG CTTCGTTCGCCGCGCTCACTACGCTTTTTACCGCAATTGATAGCGGCG dfrA31 TTAGCCCTCAGGAGGAAAAATGAAAATATCCATTATGGCAGCAGTTTCTGAGAATGGAGTAATTGGCTCTGGATTGGATATACCTTG GCATGTACAAGGTGAGCAGCTCCTGTTCAAAGCTATGACTTACAATCATTGGCTTTTAGTCGGTCGTAAAACTTTCGACTCAATGGGT AAACTTCCCAATAGGAAATATGCTGTGGTTACTCGCTCAGAAATGGTCTCGAATGATCCAGATGTTATTTATTTCACCAGCATTGAAT CGGCATTATCTTACTTAGACAATACGACAACACATGTCTTTGTTTCTGGTGGTGGTGAAATTTACAAAGCATTAATCGAACAAGCAGA TGTTATCCATCTTTCAGTGATTCATAAGCACATCTCTGGCGACGTGTTTTTCCCTTCAGTTCCACAGAGTTTCAAACAAACATTTGAGC AAAGTTTCAGTTCAAATATTGATTACACGTACCAAATTTGGGCAAAGGGCTAACAAACTGTTTAAGAGGGATTCACAACGCGTGGCAT TTTTACTATGCGTTGGTTTTAGTGGTTAAGGCGGTATGCGGAAGCTTCGGTATTGCGTTGCTCACCCCTTAACAGGGCG dfrA32 TTAGCCATATCGGGAGTTAAATTGAAAATTTCATTGATTTCTGCAGTGTCAGAAAATGGCGTAATCGGTAGTGGTCCTGATATTCCGT GGTCAGCAAAAGGTGAGCAGCTAATCTTTAAGGCGCTCACATACAATCAGTGGCTTCTTGTTGGAAGGAAAACATTTGACTCTATGG GAGTTCTTCCAAATCGCAAATATGCAGTAGTGTCAAAGAATGGAATTTCAGGGTCAAATGAAAACGTCTTGGTTTTTCCTTCAATAGA AAATGCTTTGCAAGAACTATCTAAAATTACAGATCATGTATATATTTCGGGTGGGGGGCAAATCTATGAAAGCCTTATTGAAAAAGCA GATATAATTCATCTATCTACTATTCATGTTGAGGTTGAAGGTGATATTAAATTCCCTATATTACCTGAAGGTTTCAACTTGGTTTTTGAA CAGTTTTTTGTGTCTAATATAAATTATACATATCAAATTTGGAAAAAAGGCTAACAAGTCGTTGCAGCACCAGTCGCTCCGCTCCTTG GACAGTTTTTAAGTTGTGGTTTTATGGTTTTGCTGCGCAAAAATATTCCATAAAACCACAACTTAAAAACTGCCGCTGAACTCGGCG dfrA34 TTAACCCAGGACCAAAACCTTGAAAGTATCATTAATGGCTGCAAGAGCGAAAAACGGAGTGATCGGTTGTGGTCCAGACATACCCTG GTCCGCGAAAGGAGAGCAGCTACTTTTCAAAGCCTTGACGTACAATCAGTGGCTTTTGGTGGGCCGCAAGACGTTCGAATCTATCG GGGCGCTCCCTAATAGGAAGTACGCGGTCGTTACCCGCTCAGACTGGACAATGGATCGTGACGATGTAGTAGTATTCCGGTCAATC GAAGAGGCGATGGACGGGCTAGCTAAACACACCAGTCACGTTATAGTGTCTGGTGGTGGGGAGATTTACAGAGAAACCTTGCCGAT AGCCTCTACCCTCCACGTATCGACAATCGACATTGAGCCAGAGGGAGACGTTTTCTTCCCGAATATTCCGAATACCTTCGACGTTGT TTTTGAGCAACACTTTACTTCAAATATTAATTACTGCTATCAAATTTGGCAAAAAGGGTTAACAAAGCTATGCAATTGACGGCAAAAAG CTTCGTTCGCTTCACTCACTACGCCTTTTGCCGCAATTGATAGCGGCG dfrA35 TTAACTAGGAGAAATCGTTAAACTATCACTAATGGCAGCAATATCGAAGAATGGAGTCATCGGAAATGGCCCAGATATTCCATGGAG TGCCAAAGGGGAACAATTACTGTTTAAGGCGATTACCTATAATCAATGGCTTTTGGTAGGTCGAAAGACTTTCGAATCTATGGGAGCT TTACCCAATCGAAAGTATGCCGTTGTAACTCGTTCAAGCTTCACATCAAATGAAGAGAATGTATTGGTATTTCCATCTATCGAAGATG CGCTAAACCAATTAGAGAAAATAACGGATCATGTGATTGTGTCTGGTGGTGGTGAAATATACAAAAGCCTAATATCTAAAGTAGATAC ATTACATATCTCTACCATTGATATTGAGCCTGAAGGTGATGTTGTTTTTCCTAAAATTCCAGATTCATTTAAGTTAGTATTTAGCCAGG AATTCGAGTCTAACATTAATTATTGTTACCAAATCTGGCAGATGGGTTAACAAGGGCCTGCAATCTGACCTCCGGCCACTGTCACCTT TTGTGCAAAAAGCCGCACAAAAGGCGCCATTGGCCTCCGGCAGTTGAGGCGGGCG dfrB1 TTGGGCGTGACCAATGCAGCGTGTCGTCGGGCCACATAGAACACCTAGAAGTTCACAAGAAAGGTCGGAAATGGAACGAAGTAGCA ATGAAGTCAGTAATCCAGTTGCTGGCAATTTTGTATTCCCATCGAACGCCACGTTTGGTATGGGAGATCGCGTGCGCAAGAAATCCG GCGCCGCCTGGCAAGGTCAGATTGTCGGGTGGTACTGCACAAATTTGACCCCCGAAGGCTACGCCGTCGAGTCTGAGGCTCACCC AGGCTCAGTACAGATTTATCCTGTTGCGGCGCTTGAACGCATCAACTGAGTTCAAGGTTGAAGTGCGCCGCTCAACGGTCAAACCG GGCATCACCGACTACAGCCCAACTTGTCGCTCCAGCGGACGGCTTCGCCGCCCGCTGAGCTAATTCG dfrB2 TTAGGCAGCCGTTGTGCTGGTGCTTTCTGATAGTTGTTGTGGGGTAGGCAGTCAGAGTTCGATTTGCTTGTCGCCATAATAGATTCA CAAGAAGGATTCGACATGGGTCAAAGTAGCGATGAAGCCAACGCTCCCGTTGCAGGGCAGTTTGCGCTTCCCCTGAGTGCCACCTT TGGCTTAGGGGATCGCGTACGCAAGAAATCTGGTGCCGCTTGGCAGGGTCAAGTCGTCGGTTGGTATTGCACAAAACTCACTCCTG AAGGCTATGCGGTCGAGTCCGAATCCCACCCAGGCTCAGTGCAAATTTATCCTGTGGCTGCACTTGAACGTGTGGCCTAACAATTC GCTCCAGCGGACGGCTTCGCCGCCCGCTGAGCTTCATCG dfrB3 TTGGGCTTCACCGACGCAGCGTTGTCGGGCTAGCAAGCATCTCAAGAAATTCACAAGAAAGGTCAGATATGGACCAACACAACAAT GGAGTCAGTACTCTAGTTGCTGGCCAGTTTGCGCTCCCATCGCACGCCACGTTTGGCCTGGGAGATCGCGTGCGCAAGAAATCTG GCGCCGCTTGGCAGGGTCAAGTTGTCGGGTGGTACTGCACAAAACTGACCCCTGAAGGCTATGCCGTCGAGTCCGAGTCTCACCC CGGTTCAGTACAGATTTACCCTGTGGCTGCGCTTGAACGCGTGGCCTGAATTCACGGTTGAGTGCACCGCTCAGCGCTCAAGCCGT GCAGTACCGCCCACAGCCCAACTGGTCGCTCCAGCGGACGGCTTCGCCGCCCGCTGAGCTAGAGCG dfrB4 TTGGGCTTCACCAGAGTATCAAGTTGCCGAGCTGGCGATAACCTAAAACATTAAAAAGAGGTTTGAAATGAATGAAGGAAAAAATGA GGTCAGTACTTCAGCTGCTGGCCGGTTCGCATTCCCATCAAACGCCACGTTTGCCTTGGGGGATCGCGTACGCAAGAAGTCTGGC GCTGCTTGGCAGGGGCGCATTGTCGGGTGGTACTGCACAACACTTACCCCTGAAGGCTACGCCGTCGAGTCCGAATCTCACCCAG GCTCAGTCCAGATTTATCCCATGACTGCGCTTGAACGGGTGGCCTGAAGTCACGGTTGAAATGCACCGCCTGACGGCCAAATCATG CGGCACCGTCCACAGCCCAACTAGTCGCTCCAGCGGATGGCTTCGCCGCCCGCTGAGCTAATTCG dfrB5 TTGGGCGTGACGATTGCAGCGTGTTGTCGGGCTACGCAGCAACCCTAGAAATTCAAAAGAAGGGTCATAAATGGACCAAGGCAGAA GTGAAGTCAGTAATCCAGTTGCTGGCCAGTTTGCGTTCCCTTCAAACGCCGCGTTCGGAATGGGAGATCGCGTGCGCAAGAAATCT GGCGCCGCTTGGCAAGGCCAGATTGTCGGGTGGTACTGCACAAAATTGACCCCTGAAGGGTACGCTGTCGAGTCTGAGGCTCACC CTGGCTCGGTACAGATTTATCCTGTTGCGGCACTGGAACGCATCAACTGAGTTCAAGATTGAAGTGCTCCACTCAACGGCCATACC GTGCATCACCGCCCACGGCCCAACTTGTCGCTCCAGCGGACGGCTTCGCCGCCCACTGAGCTAATTCG dfrB6 TTGGGCGTGACCACAGCTGCGTGTTGTCCGGCTACATAGCACCCCTAAAATTCACAAGAAAGGTCAGAAATGGACCAAGGTAGCAA TGAAGTCATTAATCCAGTCGCTGGCCAGTTTGCGTCCCCATCGAACGCCACGTTTGGTATGGGAGATCGCGTGCGCAAGAAATCTG Supplementary Material 171 GCGCCGCCTGGCAAGGTCAGATTGTCGGGTGGTACAGCACAAAGTTGACCCCTGAAGGCTACGCTGTCGAGTCTGAGGCTCACCC TGGCTCGGTGCAGATTTATCCTGTTGCCGCGCTTGAACGCGTCAACTGAGTTCAAGGTTGAAGTGCGCCACTCAAGGGCCAAACCG TGCATCACCGCCAAAGGCCCAACTTGTCGCTCCAGCGGACGGCTTCGCCGCCCGCTGAGCTAATTCG dfrB7 TTAGGCCCCGCAGGGGAGAGTCGGCGCTTTGAACTTCTTAGCCTGCGCAGAAAGTTGTAGTTCCCACGCCTAGCGCCGCAGTTCCT GGCAGCTCACCGCGGATGCAACCAACGCTCACCCAGTCAAATGGTAGATATGGATCACCAGATCCCCTCAAGGCATCCACAAGAAA GGTTAGGTATGGATCAAAGTAGTAAGGAAGTCAGTTCTCCAGCTACTGACCAGTTTGCGCTCCCATTCCGCGCCACGTTTGGCCTG GGAGATCGCGTACGCAAGAAATCTGGCGCCGCTTGGCAGGGTCAAGTTGTCGGCTGGTACAGCACAAAACTAACCCCAGAAGGCT ATGCCGTCGAGTCCGAGTCTCATCCGGGCTCTGTACAAATCTATCCTGTTGCCGCGCTTGAACGCGTGGCCTAACCCTTCCATCGA GAGGACGTCACAAGGGCTACGCCCTTGCGCCGCCTCTCATGTCAAACG dfrB8 TTGGGCATGACCACCGCAGCGTGTTGTCGGGCGATATTGCACCCCTAGAAATTCACAAGAGAGGTCAGAAATGGACCAAGGTAGCA ATGAAGTCGGTAATCCAGTTGCGGGCCAGTTTTCGTTCCCATCGAACGCCGCGTTTAGTATGGGAGATCGCGTGCGCAAGAAATCG GGCGCCGCTTGGCAAGGTCAGATTGTCGGGTGGTACTGCACAAAGTTGACCCCTGAAGGCTACGCTGTCGAGTCTGAGGCTCACC CTGGCTCGGTACAGATTTATCCTGTTGCGGCGCTTGAACGCATCAACGGAGTTCAAGGTTGAAGTGCGCCACTCAACGGCCAAACC GTGCATCACCGCCCACGGCCCAACCTGTCGCTCCAGCGGACGGCTTCGCCGTCCGCTGAGCTAATTCG dfrB9 TTAGGCCCCGCAATGCGAACCTCTCGTGGTGCCAGACGATTTCGCGCATCCCGTCAGGAATTGAACAGTCGCCGGTGCCTGAATTC AATCTCCCTACGACATTCAACGAGGCTGCCTGCCCACCACGCAGACCCCAGTGGATCATGGGCGAAAGACTTCAAGGTCATCGACC AATCACGTAGTAAATGGACCAGTCGAAGGTCGCAAGACGATCACAAGAAAGGTTATGTATGAATCAAAGTAGCAATTGCATCAGCAC TCCAGTTGTTGGACAGTTTGCGCTGCCATTTCAACCCACGTTCGGCCTGGGAGATCGCGTACGCAAGAAGTCTGGCGCCGCTTGGC AAGGTAAAGTTGTCGGCTGGTACTGCACAAAATTAACCCCTGAAGGCTACGCGGTCGAGTCCGAAGCTCATCCAGGCTCAGTGCAG ATTTATCCTGTGGCTGCGCTTGAACGCGTGGCCTAACCCCTCAGTCGAGGCGACAAATTGCAGCAAGCTGCAATTTGCGCCTCACC TCGAACG blaBEL-1 TTAGACGTAAGCCTATAATCTCTAGTATTTTGAAAATCGAGATCAAGATGAAACTGCTGCTCTACCCGTTATTGCTGTTCCTTGTCATT CCAGCCTTTGCCCAGGCGGACTTTGAACATGCCATTTCAGATCTTGAGGCGCACAATCAAGCCAAGATCGGAGTGGCCCTAGTTAG TGAAAATGGCAACCTGATTCAAGGGTATCGTGCGAATGAAAGGTTCGCGATGTGCTCAACTTTCAAGTTGCCGTTGGCCGCTCTTGT TCTGAGTCGCATTGACGCTGGGGAAGAGAATCCTGAGCGCAAGCTTCATTACGATTCCGCGTTCCTTGAAGAGTACGCCCCAGCCG CAAAACGGTATGTGGCAACTGGATATATGACTGTAACTGAGGCAATTCAATCCGCCCTCCAACTCAGCGACAATGCCGCAGCTAACC TGCTGTTAAAAGAGGTTGGCGGCCCACCTTTATTGACAAAGTATTTCCGTAGCCTGGGTGATAAAGTAAGTCGCCTTGATCGTATTG AACCGACTTTGAACACCAATACGCCCGGCGATGAAAGAGATACAACAACGCCCATGTCCATGGCACAGACTGTGTCAAAGCTGATTT TTGGAGACACGTTGACATATAAATCCAAGGGGCAGCTAAGGCGATTACTCATCGGCAATCAGACCGGGGACAAAACCATTCGAGCT GGCTTGCCTGATTCATGGGTAACGGGTGACAAGACAGGCTCGTGTGCGAATGGCGGCCGTAACGATGTGGCGTTTTTTATAACCAC TGCCGGAAAAAAATATGTTCTTTCTGTATATACCAATGCACCTGAATTGCAAGGCGAGGAAAGGGCGTTATTAATTGCTTCTGTAGCA AAGTTAGCACGTCAATATGTTGTTCACTGAATCCGCATACGTCTAACAATTCGCCTAAGCCGGACGCTCGCATGGCTCGCGCCGCTT GGCT blaBIM-1 TTAGAAAGGAATAAAAATGAGAATATCGTTAGCTTTATGCTTGCTTAGTATTTTAAATTTTGCTGTTGCAGAAGAGGTATTGCCAGAAA TAAAAGTTGAAAAGCTAGAAGAAGGAATCTATCTTCACACATCTTATCTAGAGTATCAGGGAAATATTTATGAAAAACATGGGTTGGT AGTTATTGATGATCGTAAGGCATATATAATTGATACGCCAGTTTTGGCTATAGATACTGAGCGGCTAGTAAAGTGGTTTGAAGAGCGT AACTTTACTATAGGGGCTAGTTTCTCAACACATTTTCATAGTGACAGTTCCGGCGGCATAGAATGGCTAAATAAAAATTCTATTCCTAC ATATGCATCTGAATTAACAAATGAACTTCTAAAAAAAGACGGCAAGGCGCAAGCTAAAAACTCTTTTAATGCAGTTAGTTTTTGGCTA GTTAAAAACAAAATTGAAGTTTTTTATCCGGGGCCAGGGCATACACAGGATAACGAGGTCGTGTGGATACCTAGTAAGAAAATATTAT TCGGTGGTTGTTTTGTTAAGCCAGACGGTCTTGGGTATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAATTCTGCTAGAAAGTTAAT GTCTAAATATAGCAACGCAAAACTGGTTATTCCAAGCCATAGTGAAATAGGAAATGCATCACTCTTGAAGCGTACATGGGAGCAGGC TGTTAAAGGGCTAAATGACAGTAAAAAAACATCACAGCTCAGCAAATAAATTTCTAACAAGTCGCTCAAGCACCAGTCGCTACGCTCC TTGGACAGTTTTTAAGTCGCAGTTTTGTGGTTTTGCTGCGCAAAAGTATTCCACAAAACCACAACTTAAAAACTGCCGCTTAGCTCGG CG blaCARB-1 TTAGCCATATTATGGAGCCTCATGCTTTTATATAAAATGTGTGACAATCAAAATTATGGGGTTACTTACATGAAGTTTTTATTGGCATTT TCGCTTTTAATACCATCCGTGGTTTTTGCAAGTAGTTCAAAGTTTCAGCAAGTTGAACAAGACGTTAAGGCAATTGAAGTTTCTCTTTC TGCTCGTATAGGTGTTTCCGTTCTTGATACTCAAAATGGAGAATATTGGGATTACAATGGCAATCAGCGCTTCCCGTTAACAAGTACT TTTAAAACAATAGCTTGCGCTAAATTACTATATGATGCTGAGCAAGGAAAAGTTAATCCCAATAGTACAGTCGAGATTAAGAAAGCAG ATCTTGTGACCTATTCCCCTGTAATAGAAAAGCAAGTAGGGCAGGCAATCACACTCGATGATGCGTGCTTCGCAACTATGACTACAA GTGATAATACTGCGGCAAATATCATCCTAAGTGCTGTAGGTGGCCCCAAAGGCGTTACTGATTTTTTAAGACAAATTGGGGACAAAG AGACTCGTCTAGACCGTATTGAGCCTGATTTAAATGAAGGTAAGCTCGGTGATTTGAGGGATACGACAACTCCTAAGGCAATAGCCA GTACTTTGAATAAATTTTTATTTGGTTCCGCGCTATCTGAAATGAACCAGAAAAAATTAGAGTCTTGGATGGTGAACAATCAAGTCACT GGTAATTTACTACGTTCAGTATTGCCGGCGGGATGGAACATTGCGGATCGCTCAGGTGCTGGCGGATTTGGTGCTCGGAGTATTAC AGCAGTTGTGTGGAGTGAGCATCAAGCCCCAATTATTGTGAGCATCTATCTAGCTCAAACACAGGCTTCAATGGAAGAGCGAAATGA TGCGATTGTTAAAATTGGTCATTCAATTTTTGACGTTTATACATCACAGTCGCGCTGATAAGGCTAACAAGGCCATCAAGTTGACGGC TTTTCCGTCGCTTGTTTTGTGGTTTAACGCTACGCTACCACAAAACAATCAACTCCAAAGCCGCAACTTATGGCGGCG blaCARB-4 TTAGCCTTATTTGAATACTTCACACTCTGATATAAGATGTAAGCCAATCAAAATGATGAGGTTATTACATGAAGCTTTTACTGGTATTTT CGCTTTTAATACCGTCTATGGTGTTTGCAAATAGTTCAAAGTTTCAACAGGTTGAACAAGATGCTAAGGTAATTGAAGCATCTCTTTCT GCGCATATAGGGATTTCTGTTCTTGATACTCAAACTGGAGAGTATTGGGATTACAATGGCAATCAGCGTTTTCCTTTGACAAGTACTT TTAAAACAATAGCTTGTGCTAAATTATTATATGATGCTGAGCAAGGGGAAATAAACCCTAAGAGTACAATTGAGATCAAAAAAGCAGA TCTTGTGACCTATTCTCCCGTAATAGAAAAGCAAGTAGGACAAGCAATAACGCTCGATGATGCGTGTTTTGCAACTATGACGACAAG TGATAATGCAGCAGCAAATATCATCCTAAATGCCCTAGGAGGTCCTGAAAGCGTGACGGATTTTCTAAGACAAATCGGAGATAAAGA AACCCGTCTAGACCGTATTGAACCTGAATTAAATGAAGGCAAGCTTGGTGATTTGAGGGATACGACAACTCCTAATGCAATAGTGAA TACTTTAAATGAATTATTATTTGGTTCCACATTGTCTCAAGATGGCCAGAAAAAATTAGAGTATTGGATGGTGAATAATCAAGTCACTG GTAATTTATTGCGGTCAGTATTGCCAGAGGGATGGAATATTGCGGATCGTTCAGGTGCTGGCGGATTTGGTGCTCGGAGTATTACA GCCGTTGTTTGGAGTGAAGCTCAATCCCCAATCATAGTTAGTATCTATCTAGCGCAAACAGAGGCTTCAATAGCAGATCGAAATGAT GCAATTGTTAAAATTGGTCGTTCAATTTTTGAAGTTTATTCATCACAATCGCGTTGATAAGGCTAACAAAGCATTTAAGAGGGACAGC CAACGCGTGGCACTTTTATTATGCGTTGGTTTTTGTGGTTACGGTGTTATGCGGTAAGTTGGTAGTAGCGTTGGCTGCCCCTTAATG CGGCG blaDIM-1 TTAGAGGGAAAAATCGAATGAGAACACATTTTACAGCGTTATTACTTCTATTCAGCTTGTCTTCGCTTGCTAACGACGAGGTACCTGA GCTAAGAATCGAGAAAGTAAAAGAGAACATCTTTTTGCACACATCATACAGTCGTGTGAATGGGTTTGGTTTGGTCAGTTCAAACGG CCTTGTTGTCATAGATAAGGGTAATGCTTTCATTGTTGATACACCTTGGTCAGACCGAGATACAGAAACGCTCGTACATTGGATTCGT AAAAATGGTTATGAGCTACTGGGGAGTGTTTCTACTCATTGGCATGAGGATAGAACCGCAGGAATTAAATGGCTTAATGACCAATCA ATTTCTACGTATGCCACGACTTCAACCAACCATCTCTTGAAAGAAAATAAAAAAGAGCCAGCGAAATACACCTTGAAAGGAAATGAGT CCACATTGGTTGACGGCCTTATCGAAGTATTTTATCCAGGAGGTGGTCATACAATAGACAACGTAGTGGTGTGGTTGCCAAAGTCGA AAATCTTATTTGGCGGCTGTTTTGTGCGTAGCCTTGATTCCGAGGGGTTAGGCTACACTGGTGAAGCCCATATTGATCAATGGTCCC GATCAGCTCAGAATGCTCTGTCTAGGTACTCAGAAGCCCAGATAGTAATTCCTGGCCATGGGAAAATCGGGGATATAGCGCTGTTAA AACACACCAAAAGTCTGGCTGAGACAGCCTCTAACAAATCAATCCAGCCGAACGCTAACGCGTCGGCTGATTGAGGCG blaGES-1 TTAGACGGGCGTACAAAGATAATTTCCATCTCAAGGGATCACCATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTC TGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCG TCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGC GCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCGAATGGTCTC CTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGC TACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGA CCGGAAAGAGCCGGAGATGGGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCT AAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGA Supplementary Material 172 CACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGGCCGGAACGACATTGGTTTT TTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGC CTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAGTTGACGCCCGTCTAACAATTCGTTCAAGCCGACGTTGC TTCGTGGCGGCGCTTGCGTGCTACGCTAAGCTTCGCACGCCGCTTGCCACTGCGCACCGCGGCTTAACTCAGGCG blaGIM-1 TTAGAAGGATGATTTCCAAATGAAAAATGTATTAGTGTTTTTAATATTACTTGTAGCGTTGCCAGCTTTAGCTCAGGGTCATAAACCGC TAGAAGTTATAAAAATTGAAGATGGAGTATATCTTCATACCTCCTTTAAGAATATTGAAGGCTATGGGTTAGTTGATTCGAATGGGTTG GTAGTTCTGGATAATAATCAAGCCTATATTATCGACACACCTTGGTCTGAAGAAGACACGAAGTTGTTATTATCCTGGGCGACTGACA GGGGATACCAGGTTATGGCTAGCATCTCAACTCATTCTCATGAAGATCGCACTGCTGGTATCAAGTTGCTAAATTCAAAGTCAATTCC TACATACACATCAGAGTTAACTAAAAAGCTTCTTGCCCGTGAAGGAAAGCCGGTTCCTACCCACTACTTTAAAGACGACGAATTCACA CTGGGAAATGGGCTTATAGAGCTCTACTATCCAGGTGCTGGGCATACAGAGGATAATATTGTTGCTTGGTTACCCAAAAGCAAAATA CTATTTGGTGGCTGCCTCGTGAGGAGTCATGAGTGGGAAGGCTTAGGTTACGTAGGCGACGCCTCAATTAGCTCTTGGGCTGACTC AATTAAAAATATTGTATCGAAAAAATATCCCATTCAAATGGTCGTTCCGGGGCATGGCAAAGTTGGAAGTTCAGATATATTAGATCAC ACCATTGATCTTGCTGAATCAGCTTCTAACAAATTAATGCAACCGACCGCTGAAGCGTCGGCTGATTAAGGCG blaIMP-1 TTAGAAAAGGAAAAGTATGAGCAAGTTATCTGTATTCTTTATATTTTTGTTTTGCAGCATTGCTACCGCAGCAGAGTCTTTGCCAGATT TAAAAATTGAAAAGCTTGATGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGGTGGGGCGTTGTTCCTAAACATGGTTT GGTGGTTCTTGTAAATGCTGAGGCTTACCTAATTGACACTCCATTTACGGCTAAAGATACTGAAAAGTTAGTCACTTGGTTTGTGGAG CGTGGCTATAAAATAAAAGGCAGCATTTCCTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCGATCTATC CCCACGTATGCATCTGAATTAACAAATGAACTGCTTAAAAAAGACGGTAAGGTTCAAGCCACAAATTCATTTAGCGGAGTTAACTATT GGCTAGTTAAAAATAAAATTGAAGTTTTTTATCCAGGCCCGGGACACACTCCAGATAACGTAGTGGTTTGGTTGCCTGAAAGGAAAAT ATTATTCGGTGGTTGTTTTATTAAACCGTACGGTTTAGGCAATTTGGGTGACGCAAATATAGAAGCTTGGCCAAAGTCCGCCAAATTA TTAAAGTCCAAATATGGTAAGGCAAAACTGGTTGTTCCAAGTCACAGTGAAGTTGGAGACGCATCACTCTTGAAACTTACATTAGAGC AGGCGGTTAAAGGGTTAAACGAAAGTAAAAAACCATCAAAACCAAGCAACTAAATTTCTAACAAGTCGTTGCAGCACGCCACTACGT GGCTGGACAGTTTGTAAGTTGCGCTTTTGTGGTTTGCTTCGCAAAGTATTCCACAACGCGCAACTTACAAACTGCCGCTGAACTTAG CG blaIMP-2 TTAGAAAAGGGCAAGTATGAAGAAATTATTTGTTTTATGTGTATGCTTCCTTTGTAGCATTACTGCCGCGGGAGCGCGTTTGCCTGAT TTAAAAATCGAGAAGCTTGAAGAAGGTGTTTATGTTCATACATCGTTCGAAGAAGTTAACGGTTGGGGTGTTGTTTCTAAACACGGTT TGGTGGTTCTTGTAAACACTGACGCCTATCTGATTGACACTCCATTTACTGCTACAGATACTGAAAAGTTAGTCAATTGGTTTGTGGA GCGCGGCTATAAAATCAAAGGCACTATTTCCTCACATTTCCATAGCGACAGCACAGGGGGAATAGAGTGGCTTAATTCTCAATCTAT TCCCACGTATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTGCAAGCTAAAAACTCATTTAGCGGAGTTAGTTAT TGGCTAGTTAAAAATAAAATTGAAGTTTTTTATCCCGGCCCGGGGCACACTCAAGATAACGTAGTGGTTTGGTTACCTGAAAAGAAAA TTTTATTCGGTGGTTGTTTTGTTAAACCGGACGGTCTTGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCCAAAAT ATTAATGTCTAAATATGTTAAAGCAAAACTGGTTGTTTCAAGTCATAGTGAAATTGGGGACGCATCACTCTTGAAACGTACATGGGAA CAGGCTGTTAAAGGGCTAAATGAAAGTAAAAAACCATCACAGCCAAGTAACTAAATTTCTAACAAGGCGGTGAAACTCATTCCGCTTC GCTTCACTGGACGCCGCAAGCGGCGCCGTTTACCTTCGCG blaIMP-4 TTAGAAAAGGGAAAGTATGAGCAAGTTATCTGTATTCTTTATATTTTTGTTTTGTAGCATTGCTACCGCAGCAGAGCCTTTGCCAGATT TAAAAATTGAAAAACTTGATGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGGTGGGGCGTTGTTCCTAAACATGGTTT GGTTGTTCTTGTAGATGCTGAAGCTTATCTAATTGACACTCCATTTACGGCTAAAGATACTGAAAAGTTAGTCACTTGGTTTGTGGAA CGTGGCTATAAAATAAAAGGCAGTATTTCCTCTCATTTTCATAGTGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCAATCCATCC CCACGTATGCGTCTGAATTAACTAATGAGCTGCTTAAAAAAGACGGTAAGGTTCAAGCTAAAAATTCATTTGGCGGGGTTAACTATTG GCTAGTTAAAAATAAAATTGAAGTTTTTTATCCAGGCCCAGGACACACTCCAGATAACCTAGTAGTTTGGCTGCCTGAAAGGAAAATA TTATTCGGTGGTTGTTTTATTAAACCGTACGGTCTAGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCTAAATTAT TAATATCCAAATATGGTAAGGCAAAACTGGTTGTTCCAAGTCACAGTGAAGCTGGAGACGCATCACTCTTGAAACTTACATTAGAGCA GGCGGTTAAAGGGTTAAACGAAAGTAAAAAACCATCAAAACTAAGCAACTAAATTTCTAACAAGTCGTTGCAGCATCGTGCGCTGCG CGCACTGGACAGTTTTTAAGTCGCGGTTTTATGGTTTTGCTTCGCAAAAATATTCCATAAAACCACAACTTAAAAACTGCCGCTGAAC TCGGCG blaIMP-5 TTAGAAAAGGGAAAGTATGAGCAAGTTATTTGTATTCTTTATGTTTTTGTTTTGTAGCATTACTGCCGCAGCAGAGTCTTTGCCAGATT TAAAAATTGAGAAGCTTGACGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGTTGGGGTGTTGTTCCTAAACACGGCTT GGTGGTTCTTGTAAATACTGAGGCCTATCTGATTGACACTCCATTTACGGCTAAAGATACTGAAAAGTTAGTCACTTGGTTTGTGGAA CGCGGCTATAAAATAAAAGGCAGTATTTCCTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCAATCTATCC CCACGTATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAAGTACAAGCTAAAAATTCATTTAGCGGAGCTAGCTATTG GCTAGTTAAGAAAAAGATTGAAGTTTTTTATCCTGGTCCAGGGCACACTCCAGATAACGTAGTGGTTTGGCTACCTGAAAATAGAGTT TTGTTCGGTGGTTGTTTTGTTAAACCGTACGGTCTAGGTAATTTGGGTGACGCAAATGTAGAAGCTTGGCCAAAGTCCGCCAAATTA TTAATGTCCAAATATGGTAAGGCAAAACTGGTAGTTCCAAGTCACAGTGAAGTTGGAGACGCATCACTCTTGAAACGTACGTTAGAA CAGGCGGTTAAAGGGTTAAACGAAAGTAAAAAACCATCAAAACCAAGTAACTAAATTTCTAACAAGTCGTTGCAGCACCGTTCCGCTT CGCTGCACTGGACAGTTTTTAAGTTGCAGTTTTATGGTTTGCTGCGCAAATATTTCCATAAAACCACAACTTAAAAACTGCCGCTGAA CTCGGCG blaIMP-9 TTAGAAAAAGGGAAAGTATGAGCAAGTTATTTGTATTCTTTATGTTTTTGTTTTGTAGCATTACTGCCGCAGGAGAGTCTTTGCCAGAT TTAAAAATTGAGAAGCTTGACGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGTTGGGGTGTTATTCCTAAACACGGCT TGGTGGTTCTTGTAAATACTGATGCCTATCTGATAGACACTCCATTTACTGCTAAAGATACTGAAAATTTAGTTAATTGGTTTGTTGAG CGCGGCTATAGAATAAAAGGCAGTATTTCCTCACATTTCCATAGCGACAGCACGGGTGGAATAGAGTGGCTTAATTCTCAATCTATC CCCACGTATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTACAAGCTAAATATTCATTTAGCGGAGTTAGCTATT GGCTAGTTAAGAAAAAGATTGAAGTTTTTTATCCTGGTCCAGGGCACGCTCCAGATAACGTAGTGGTTTGGCTGCCTGAAAATAGAG TTTTGTTCGGTGGTTGTTTTGTTAAACCCTACGGTCTAGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAATCCGCCAAATT ATTAATGTCAAAATATAGTAAGGCAAAACTGGTTGTACCAAGTCATAGTGACATAGGAGATTCGTCGCTCTTGAAGCTTACATGGGAG CAGACGGTAAAAGGATTCAATGAAAGCAAAAAAAGTACCACTGCACATTAACCAAATTTCTAACAAGTCGCTCAAGCATCGCACCTTC GGTGCTGGACAGTTTTTAAGTCGCGCTTTTGTGGTTTTGCTACGCAAAAGGTTTCCACAAAATCACAACTTAAAAACTGCCGCTTAGC TCGGCG blaIMP-11 TTAGAAAGGAGTAAGTATGAAAAAACTATTTGTTTTATGTATATTTTTGTTTTGTAGCATTACTGCCGCAGGAGCGTCTTTGCCTGATT TAAAAATTGAGAAGCTTGAAGAGGGTGTTTATGTTCATACATCGTTTGAAGAAGTTAACGGCTGGGGTGTTGTTTCTAAACACGGTTT GGTGGTTCTTGTAAATACTGACGCCTATCTGATTGACACTCCATTTACTGCTAAAGATACTGAAAAGTTAGTCAATTGGTTTGTGGAG CGCGGCTATAAAATCAAAGGCAGTATTTCCTCACATTTCCATAGCGACAGCACGGGTGGAATAGAGTGGCTTAATTCTCAATCTATTC CCACGTATGCATCTGTATTAACAAATGAACTTCTCAAAAAAGACGGTAAGGTGCAAGCTAAAAACTCATTTAGCGGAGTTAGCTATTG GCTAGTTAAAAATAAAATTGAAGTTTTTTATCCAGGCCCAGGGCACACTCAAGATAACGTAGTGGTTTGGCTACCTAAAAATAAAATC TTATTTGGTGGTTGTTTTGTTAAACCATATGGTCTTGGTAATCTAGATGACGCAAATGTTGAAGCATGGCCACATTCGGCTGAAAAAT TAATATCTAAGTATGGTAATGCAAAACTGGTTGTTCCAAGCCATAGTGACATAGGAGATGCGTCGCTCTTGAAGCTTACGTGGGAAC AGGCGGTAAAAGGGCTTAATGAAAGCAAAAAAAGTAACACTGTTCATTAACCAAATTTCTAACAAGTCGCTGAAGCATCGCACCTTC GGTGCTGGACAGTTTTTAAGTCGCGCTTTTGTGGTTTTGCTACGCAAAAGGTTTCCACAAAATCACAACTTAAAAACTGCCGCTTAGC TCGGCG blaIMP-12 TTAGAAAAGGGAAAGTATGAAGAAATTATTTGTTTTATGCATTTTTTTGTTTTTAAGTATTACTGCCTCAGGTGAGGTTTTGCCTGATTT GAAAATTGAGAAGCTTGAAGAGGGTGTTTATCTTCATACATCTTTTGAAGAGGTTAGCGGTTGGGGTGTTGTTACTAAACATGGTTTG GTAGTTCTTGTAAATAATGACGCCTATCTAATTGACACTCCATTTACAAATAAAGATACTGAAAAATTAGTTGCTTGGTTTGTAGGGCG CGGCTTTACAATAAAGGGAAGTGTTTCCTCACATTTTCATAGCGACAGTACGGGTGGAATAGAGTGGCTTAATTCTCAATCTATTCCC ACGTATGCATCTGAGTTAACAAATGAACTTCTGAAAAAGAACGGTAAGGTGCAAGCTACAAATTCATTTAGCGGGGTTAGTTATTGGC TAGTTAAAAATAAAATTGAAATTTTTTATCCCGGCCCAGGACATACTCAAGATAACGTAGTGGTTTGGCTACCTGAAAACAAAATTTTA TTCGGTGGTTGTTTTGTTAAACCGGACGGTCTTGGTAATTTGGATGACGCAAATTTAAAAGCTTGGCCAAAGTCCGCAAAAATATTAA TGTCTAAATATGGTAAAGCAAAGTTAGTTGTTTCAGGTCATAGTGAAATTGGGAACGCATCACTCTTGAAACTTACTTGGGAGCAGGC Supplementary Material 173 TGTTAAAGGGCTAAAAGAAAGTAAAAAACCATTACTGCCAAGTAACTAATTTTCTAACAAGTCGTTGCAGCACCGTTCCTTCGCTCCA CTGGACAGTTTTTAAGTCGCGGTTTTATGGTTTGTGCGCAAAAGTATTTCATAAAACCACAACTTAAAAACTGCCGCTGAACTCGGCG blaIMP-13 TTAGAAAAGGAAAGGTATGAAGAAATTATTTGTTTTATGTGTATGCTTCTTTTGTAGCATTACTGCCGCAGGAGCGGCTTTACCTGATT TAAAAATCGAGAAGCTTGAAGAAGGTGTTTTTGTTCATACATCGTTCGAAGAGGTTAACGGTTGGGGGGTTGTTACTAAACACGGTTT AGTGGTGCTTGTAAACACAGACGCCTATCTAATTGACACTCCATTTACTGCTACAGACACTGAAAAATTAGTCAATTGGTTTGTGGAG CGCGGCTATGAAATCAAAGGCACTATTTCATCACATTTCCATAGCGACAGCACAGGAGGAATAGAGTGGCTTAATTCTCAATCTATTC CCACGTATGCATCTGAATTAACAAATGAACTTTTGAAAAAATCCGGTAAGGTACAAGCTAAATATTCATTTAGCGAAGTTAGCTATTGG CTAGTTAAAAATAAAATTGAAGTTTTCTACCCTGGCCCAGGTCACACTCAAGATAACCTAGTGGTTTGGTTGCCTGAAAGTAAAATTTT ATTCGGTGGTTGCTTTATTAAACCTCACGGTCTTGGCAATTTAGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCCAAAATATTA ATGTCTAAATATGGCAAAGCAAAGCTTGTTGTTTCAAGTCATAGTGAAAAAGGGGACGCATCACTAATGAAACGTACATGGGAACAA GCCCTTAAAGGGCTTAAAGAAAGTAAAAAAACATCATCACCAAGTAACTAAATTTCTAACAAGTCGTTGCAGCACCGCGCACTTCGTG CGCTGGACAGTTTTTAAGTCGCGGCTTTATGGTTTTGCTGCGCAAAAGTATTCCATAAAACCACAACTTAAAAACTGCCGCTGAACTC GGCG blaIMP-14 TTAGAAAAGGATAAGTATGAAAAAATTATTTGTTTTATGTGTATTCTTCTTCTGCAACATTGCAGTTGCAGAAGAATCTTTGCCTGATTT AAAAATTGAGAAGCTTGAAGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAAAGGTTGGAGTGTGGTCACTAAACACGGTTTG GTGGTTCTTGTGAAAAATGACGCCTATCTGATTGATACTCCAATTACTGCTAAAGATACTGAAAAATTAGTCAATTGGTTTGTTGAGC GGGGCTATAAAATCAAAGGCAGTATTTCAACACATTTCCATGGTGACAGTACGGCTGGAATAGAGTGGCTTAATTCTCAATCTATCCC CACATATGCTTCTGAATTAACAAATGAACTTCTTAAAAAAGACAATAAGGTACAAGCTAAACACTCTTTTAATGGGGTTAGTTATTCAC TAATTAAAAACAAAATTGAAGTTTTTTATCCAGGCCCAGGGCACACTCAAGATAACGTAGTGGTTTGGTTACCTGAAAAGAAAATTTTA TTCGGTGGTTGCTTTGTTAAACCGGACGGTCTTGGCTATTTGGGGGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCTAAAATATTA ATGTCTAAATATGGTAAAGCAAAACTAGTTGTGTCGAGTCATAGTGATATTGGAGATGTATCACTCTTGAAACGTACATGGGAGCAGG CTGTTAAAGGGCTGAATGAAAGTAAAAAATCATCACAGCCAAGCGACTAAATTTCTAACAAGGCGCTTCAGCACCGCGCACTTCGTG CGCTCGACAGTTCGTAAGCCGCTTTTTTGTGGTTTTGCTACGCAAAAGGTTTCCACAAAAAATCAACTTACAAACTGCGGCTGAGCTT AACG blaIMP-15 TTAGAAAAGGTAAAGTATGAACAAGTTATCTGTATTCTTTATGTTTATGTTTTGTAGCATTACTGCCGCAGGAGAGTCTTTGCCAGATT TAAAAATTGAGAAGCTTGACGAAGGTGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGTTGGGGTGTTGTTCCTAAACACGGCTT GGTGGTTCTTGTAAATACTGAGGCCTATCTGATTGACACTCCATTTACGGCAAAAGATACTGAAAAGTTAGTCACTTGGTTTGTGGAG CGCGGCTATAAAATAAAAGGCAGTATTTCCTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCAATCTATCC CCACGTATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTACAAGCTAAAAATTCATTTAGCGGAGGTAGCTATTG GCTAGTTAATAATAAGATTGAAGTTTTTTATCCTGGTCCAGGGCACACTCCAGATAACGTAGTGGTTTGGCTACCTGAAAATAGAGTT TTGTTCGGTGGTTGTTTTGTTAAACCGTACGGTCTTGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCCAAAATAT TAATGTCTAAATATGGTAAAGCAAAGTTGGTTGTTTCAAGTCATAGTGAAACTGGGAACGCATCACTCTTGAAACTTACTTGGGAGCA GGCTGTTAAAGGGCTAAAAGAAAGTAAAAAACCATCACTGCCAAGTAACTAATTTTCTAACAAGTCGTTGCAGCACCGCTCCGGCAC TTCGTGCCTGCGCTGGACAGTTTTTAAGTCGCAGTTTTATGGTTTTGCTGCGCAAAAGTATTCCATAAAACCACAACTTAAAAACTGC CGCTGAACTCAGCG blaIMP-16 TTAGAAAAGGGCGAGTATGAAAAAATTATTTGTTTTATGTATCTTTTTGTTTTGTAGCATTACTGCCGCAGGAGAGTCTTTGCCTGATT TAAAAATTGAGAAGCTTGAAGACGGTGTTTATGTTCATACATCGTTTGAAGAAGTTAACGGTTGGGGTGTTGTTACTAAACACGGTTT GGTGTTTCTTGTAAACACAGACGCCTATCTGATTGACACTCCATTTGCTGCTAAAGACACTGAAAAGTTAGTAAATTGGTTTGTGGAG CGCGGTTATAAAATAAAAGGCAGTATTTCCTCACATTTTCATAGCGACAGCTCGGGTGGAATAGAATGGCTTAACTCTCAATCTATTC CCACGTATGCATCTGAATTAACAAACGAACTTCTTAAAAAGAACGGTAAGGTGCAAGCTAAAAACTCATTTAGCGGAGTTAGTTATTG GCTACTTAAAAATAAAATTGAAATTTTTTATCCGGGCCCTGGGCACACTCAAGATAACGTAGTGGTTTGGTTGCCTGAAAAGAAAATT TTATTTGGTGGGTGTTTTGTTAAACCGTACGGTCTTGGAAATCTCGATGATGCAAATGTTGAAGCGTGGCCACATTCTGCTGAAATAT TAATGTCTAGGTATGGTAATGCAAAACTGGTTGTTCCAAGCCATAGTGACGTCGGAGATGCGTCGCTCTTGAAGCTTACATGGGAGC AGGCTGTTAAAGGGCTAAAAGAAAGTAAAAAACCATCACAGCCAAGTAACTAATTTTCTAACAAGTCGCTCAAGCATCGCGCACTTC GTGCGCTGGACAGTTTTTAAGTCGCAGTTTTGTGGTTTTGCTGCGCAAAAGTATTCCACAAAACTACAACTTAAAAACTGCCGCTTAG CTCGGCG blaIMP-18 TTAGAAAAGGGTAAGTATGAAAAAATTATTTGTTTTATGTGTATTCTTCCTTTGCAACATTGCTGCTGCAGATGATTCTTTGCCTGATTT AAAAATTGAGAAGCTTGAAAAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAAAGGTTGGGGTGTAGTCACAAAACACGGTTTA GTGGTTCTTGTAAAGAATGATGCTTATCTGATAGATACTCCAATTACCGCTAAAGATACTGAAAAATTAGTTAATTGGTTTATTGAGCA CGGCTATAGAATCAAAGGCAGTATTTCCACACATTTCCATGGCGACAGTACGGCTGGAATAGAGTGGCTTAATTCTCAATCTATCTC CACGTATGCCTCTGAATTAACAAATGAACTTCTAAAAAAAGACAATAAGGTGCAAGCTACAAATTCTTTTAGTGGAGTTAGTTATTCAC TTATCAAAAACAAAATTGAAGTTTTCTATCCAGGTCCAGGACACACTCAAGATAACGTAGTGGTTTGGTTACCTGAAAAGAAAATTTTA TTCGGTGGTTGCTTTGTTAAACCGGACGGTCTTGGAAATTTAGGGGATGCAAATTTAGAAGCTTGGCCAAAGTCCGCTAAAATATTAA TGTCTAAATATGGTAAAGCAAAACTGGTTGTTTCAAGTCATAGTGAAATTGGAAACGCATCACTCTTGCAGCGCACATGGGAGCAGG CTGTTAAAGGGTTAAATGAAAGTAAAAAACCGTTACAGCCAAGTAGCTAAATTTCTAACAAGTCGTTGCAGCATCGTTCCGCTTTGCT CCACTGGACGGGTTTTAAGTCGCATTTTTTGTGGCTCGCTGGCGCTCACTTTATCACAAAAATACAACTTAAAACCCGCCGCTGAAC TCGGCG blaIMP-22 TTAGAAAAGGGGAAAGTATGAAGAAATTATTTGTTTTATGTGTGTTTTTGTTTTGTAGCATTACTGCCGCAGGAGAGTCTTTGCCCGA TTTAAAAATTGAAAAGCTTGAAGAAGGTGTTTATGTTCATACATCGTTTGAAGAAGTTAATGGTTGGGGCGTTGTTTCTAAACACGGTT TGGTTATTCTTGTGAATACTGACGCCTATCTGATTGACACTCCATTCACGGCTAAAGATACTGAAAAGTTAGTCACCTGGTTTGTGGA GCGCGGCTATAAAATCAAAGGTAGCATTTCCTCACATTTCCATAGCGACAGCACGGGTGGAATAGAGTGGCTTAATTCTCAATCAAT TCCCACGTATGCATCTGAATTAACAAATGACCTTCTTAAACAAAACGGTAAGGTACAAGCTAAAAACTCATTTAGCGGAGTTAGTTATT GGTTAGTTAAAAATAAAATTGAAGTTTTCTATCCCGGCCCCGGGCACACTCAAGATAACGTAGTGGTTTGGTTGCCTGAAAAGAAAAT TTTATTTGGTGGGTGCTTTGTTAAACCGTACGGTCTTGGAAATCTCGATGACGCAAATGTTGTAGCATGGCCACATTCTGCTGAAATA TTAATGTCTAGGTATGGTAATGCAAAACTGGTTGTTCCAAGCCATAGTGACATCGGAGATGCGTCGCTCTTGAAGCTTACATGGGAG CAGGCTGTTAAAGGGCTAAAAGAAAGTAAAAAACCATCAGAGCCAAGTAACTAATTTCTAACAAGTCGCTTAAGCATCAGTCGCTAC GCTCCTTGGACAGCTTTTAAGTCGCAGTTTTGTGGTTTTGCTGCGCAAAAGTATTCCACAAAACCGCAACTTAAAAACTGCCGCTTAG CTCGGCG blaIMP-31 TTAGAAAATGGTGCGTATGAAAAAAATATTTGTGTTATTTGTATTTTTGTTTTGCAGTATTACTGCCGCCGGAGAGTCTTTGCCTGATA TAAAAATTGAGAAACTTGACGAAGATGTTTATGTTCATACTTCTTTTGAAAAGATAACCGGCTGGGGTGTTATTACTAAACACGGCTT GGTGGTTCTTGTAAATACTGATGCCTATATAATTGACACTCCATTTACAGCTAAAGATACTGAAAAATTAGTCCGCTGGTTTGTGGGG CGTGGTTATAAAATCAAAGGCAGTATTTCCTCACATTTTCATAGCGATAGCGCAGGTGGAATTGAGTGGCTTAATTCTCAATCTATCC CCACATATGCATCTAAATTAACAAATGAGCTTCTTAAAAAGAACGGTAATGCGCAAGCCGAAAACTCATTTAGTGGCGTTAGCTATTG GCTAGTTAAACATAAAATTGAAGTTTTCTATCCAGGACCAGGGCACACTCAGGATAATGTAGTGGTTTGGTTGCCTGAAAAGAAAATT TTATTTGGCGGTTGTTTTATTAAGCCGGACGGTCTTGGTTATTTGGGAGACGCAAATCTAGAAGCATGGCCTAAGTCCGCAGAAACA TTAATGTCTAAGTATGGTAATGCAAAACTGGTTGTTTCGAGTCATAGTGAAATTGGGGGCGCATCACTATTGAAGCGCACTTGGGAG CAGGCTGTTAAGGGGCTAAAAGAAAGTAAAAACCATCACAGCCCCAAATAACTAATTTTCTAACAAGTCTCTCAAGCGGGACTGCCC CAACCGGCGCTGCTTTCAGCATAGCGCCGGTTGCGTACGTTTCGCGCTGCGCGCTCCACTCAGCCCCTTAGCTCTGCG blaOXA-1 TTGGGCGAACCCGGAGCCTCATTAATTGTTAGCCGTTAAAATTAAGCCCTTTACCAAACCAATACTTATTATGAAAAACACAATACATA TCAACTTCGCTATTTTTTTAATAATTGCAAATATTATCTACAGCAGCGCCAGTGCATCAACAGATATCTCTACTGTTGCATCTCCATTAT TTGAAGGAACTGAAGGTTGTTTTTTACTTTACGATGCATCCACAAACGCTGAAATTGCTCAATTCAATAAAGCAAAGTGTGCAACGCA AATGGCACCAGATTCAACTTTCAAGATCGCATTATCACTTATGGCATTTGATGCGGAAATAATAGATCAGAAAACCATATTCAAATGG GATAAAACCCCCAAAGGAATGGAGATCTGGAACAGCAATCATACACCAAAGACGTGGATGCAATTTTCTGTTGTTTGGGTTTCGCAA GAAATAACCCAAAAAATTGGATTAAATAAAATCAAGAATTATCTCAAAGATTTTGATTATGGAAATCAAGACTTCTCTGGAGATAAAGA AAGAAACAACGGATTAACAGAAGCATGGCTCGAAAGTAGCTTAAAAATTTCACCAGAAGAACAAATTCAATTCCTGCGTAAAATTATT AATCACAATCTCCCAGTTAAAAACTCAGCCATAGAAAACACCATAGAGAACATGTATCTACAAGATCTGGATAATAGTACAAAACTGT Supplementary Material 174 ATGGGAAAACTGGTGCAGGATTCACAGCAAATAGAACCTTACAAAACGGATGGTTTGAAGGGTTTATTATAAGCAAATCAGGACATA AATATGTTTTTGTGTCCGCACTTACAGGAAACTTGGGGTCGAATTTAACATCAAGCATAAAAGCCAAGAAAAATGCGATCACCATTCT AAACACACTAAATTTATAAAAAATCTAATGGCAAAATCGCCCAACCCTTCAATCAAGTCGGGACGGCCAAAAGCAAGCTTTTGGCTCC CCTCGCTGGCGCTCGGCGCCCCTTATTTCAAACG blaOXA-2 TTGGGCATTAAGGAAAAGTTAATGGCAATCCGAATCTTCGCGATACTTTTCTCCATTTTTTCTCTTGCCACTTTCGCGCATGCGCAAG AAGGCACGCTAGAACGTTCTGACTGGAGGAAGTTTTTCAGCGAATTTCAAGCCAAAGGCACGATAGTTGTGGCAGACGAACGCCAA GCGGATCGTGCCATGTTGGTTTTTGATCCTGTGCGATCGAAGAAACGCTACTCGCCTGCATCGACATTCAAGATACCTCATACACTT TTTGCACTTGATGCAGGCGCTGTTCGTGATGAGTTCCAGATTTTTCGATGGGACGGCGTTAACAGGGGCTTTGCAGGCCACAATCA AGACCAAGATTTGCGATCAGCAATGCGGAATTCTACTGTTTGGGTGTATGAGCTATTTGCAAAGGAAATTGGTGATGACAAAGCTCG GCGCTATTTGAAGAAAATCGACTATGGCAACGCCGATCCTTCGACAAGTAATGGCGATTACTGGATAGAAGGCAGCCTTGCAATCTC GGCGCAGGAGCAAATTGCATTTCTCAGGAAGCTCTATCGTAACGAGCTGCCCTTTCGGGTAGAACATCAGCGCTTGGTCAAGGATC TCATGATTGTGGAAGCCGGTCGCAACTGGATACTGCGTGCAAAGACGGGCTGGGAAGGCCGTATGGGTTGGTGGGTAGGATGGGT TGAGTGGCCGACTGGCTCCGTATTCTTCGCACTGAATATTGATACGCCAAACAGAATGGATGATCTTTTCAAGAGGGAGGCAATCGT GCGGGCAATCCTTCGCTCTATTGAAGCGTTACCGCCCAACCCGGCAGTCAACTCGGACGCTGCGCGATAAAACCGCGCAGCGCCG GTTACTTCAACG blaOXA-5 TTAGCCACCAAGGTACCATGAAAACCATAGCCGCATATTTAGTTCTAGTTTTTTATGCAAGCACCGCGCTCTCAGAGTCTATTTCTGA AAATTTGGCGTGGAATAAAGAATTTTCTAGTGAATCCGTACATGGCGTTTTTGTACTTTGTAAAAGTAGTAGCAATTCCTGTACTACAA ATAATGCGGCACGTGCATCTACAGCCTATATTCCAGCATCAACATTCAAAATTCCTAATGCTCTAATAGGTCTTGAAACCGGCGCCAT AAAAGATGAACGGCAGGTTTTCAAATGGGACGGCAAGCCCAGAGCCATGAAGCAATGGGAAAAAGACTTAAAGCTAAGGGGCGCTA TACAGGTTTCTGCTGTTCCGGTATTTCAACAAATTGCCAGAGAAGTTGGCGAAATAAGAATGCAAAAATACCTTAACCTGTTTTCATA CGGCAACGCCAATATAGGGGGAGGCATTGACAAATTCTGGCTAGAAGGTCAGCTTAGAATCTCAGCATTCAATCAAGTTAAATTTTT AGAGTCGCTCTACCTGAATAATTTGCCAGCATCAAAAGCAAACCAACTAATAGTAAAAGAGGCAATAGTTACAGAAGCAACTCCAGA ATATATAGTTCATTCAAAAACTGGGTATTCCGGTGTTGGCACAGAATCAAGTCCTGGTGTCGCTTGGTGGGTTGGTTGGGTAGAGAA AGGAACTGAGGTTTACTTTTTTGCTTTTAACATGGACATAGACAATGAGAGTAAATTGCCGTCAAGAAAATCCATTTCAACGAAAATCA TGGCAAGTGAAGGCATCATCATTGGTGGCTAACAAGGCGCTCAAGGCTCGGTTCGCCACTGGACGTCTCCAATCGGCGCATCGTTC GCATTTTACGCGCCGCTTGTAGCCGCCCCTTAGCTTTGCG blaOXA-9 TTATGCACCTATTAAGCGCACAGCGGAGCAATGAAGGATACCTTGATGAAAAAAATTTTGCTGCTGCATATGTTGGTGTTCGTTTCCG CCACTCTCCCAATCAGTTCCGTGGCTTCTGATGAGGTTGAAACGCTTAAATGCACCATCATCGCAGACGCCATTACCGGAAATACCT TATATGAGACCGGAGAATGTGCCCGTCGTGTGTCTCCGTGCTCGTCTTTTAAACTTCCATTGGCAATCATGGGGTTTGATAGTGGAA TCTTGCAGTCGCCAAAATCACCTACGTGGGAATTGAAGCCGGAATACAACCCGTCTCCGAGAGATCGCACATACAAACAAGTCTATC CGGCGCTATGGCAAAGCGACTCTGTTGTCTGGTTCTCGCAGCAATTAACAAGCCGTCTGGGAGTTGATCGGTTCACGGAATACGTA AAGAAATTTGAGTACGGTAATCAAGATGTTTCCGGTGACTCGGGGAAGCATAACGGCTTGACCCAGTCATGGCTGATGTCGTCGCT CACCATATCTCCCAAGGAGCAAATTCAGTTTCTTCTACGCTTTGTCGCGCATAAGCTGCCTGTATCCGAAGCGGCTTATGACATGGC GTATGCCACAATCCCGCAGTACCAGGCAGCCGAAGGATGGGCTGTACATGGAAAAAGCGGCAGCGGCTGGCTTCGGGACAATAAC GGCAAGATAAATGAAAGTCGTCCGCAGGGCTGGTTCGTGGGCTGGGCTGAAAAAAACGGACGGCAAGTTGTTTTCGCCCGATTGG AAATAGGAAAGGAAAAGTCCGATATTCCCGGCGGGTCTAAAGCACGAGAGGATATTCTCGTGGAATTACCCGTGTTGATGGGTAAC AAATGATATGTGGCGTCATCGAGAGCAGATGCATAACCCTGCGCTCGAGCGGACCTCGCGCATAAAGCCGCGCGAGTCCGCTCAC CTTGAACG blaOXA-10 TTAGCCACCAAGAAGGTGCCATGAAAACATTTGCCGCATATGTAATTATCGCGTGTCTTTCGAGTACGGCATTAGCTGGTTCAATTAC AGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTCTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGC TACCAATGACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGT GTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAGCAATGGGAAAGAGACTTGACCTTAAGAGG GGCAATACAAGTTTCAGCTGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTT TCCTATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAAGGCCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAG TTTCTAGAGTCTCTATATTTAAATAAATTGTCAGCATCTAAAGAAAACCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGGCAC CTGAATATCTAGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGGTGGGTTG AGAAGGAGACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAGTAAGTTGCCGCTAAGAAAATCCATTCCCACCAA AATCATGGAAAGTGAGGGCATCATTGGTGGCTAACAAGTCGCTCAAGGTCGCTCCCTGCGGTCGCTGGACAGTCCCAGTCGGCGC ATGCTTCGCATTTTATGCGCCGCCTGTGCCTGCCCCTTAGCTCCAACG blaOXA-20 TTAGGCACCAAAGGAGGCTCCTTGATAATCCGATTTCTAGCACTGCTTTTCTCAGCTGTTGTACTTGTCTCTCTTGGTCATGCACAAG AAAAAACGCATGAGAGCTCTAATTGGGGGAAATACTTTAGTGATTTCAACGCTAAAGGTACAATAGTTGTAGTAGATGAACGCACAAA CGGTAATTCCACATCGGTTTATAATGAATCCCGGGCTCAGCAGCGCTATTCGCCTGCGTCCACATTCAAGATTCCGCATACCCTTTT TGCGCTGGATGCAGGGGCGGTTCGCGATGAGTTTCATGTTTTTCGATGGGACGGCGCTAAAAGAAGCTTTGCAGGTCACAATCAAG ACCAAAACCTACGATCGGCAATGCGCAATTCTACCGTTTGGGTCTATCAACTATTCGCAAAAGAAATAGGCGAAAACAAAGCACGAA GCTACCTAGAAAAATTAAACTACGGCAATGCAGACCCCTCGACCAAGAGCGGTGACTACTGGATAGATGGAAATCTTGCAATTTCAG CAAATGAACAAATTTCCATCCTAAAGAAGCTTTATCGAAATGAGCTTCCTTTTAGGGTAGAGCACCAACGCTTGGTTAAAGACTTGAT GATTGTCGAAGCCAAACGCGATTGGATACTACGTGCCAAAACAGGCTGGGATGGTCAAATGGGTTGGTGGGTCGGTTGGGTAGAG TGGCCTACAGGCCCAGTATTTTTTGCGTTAAATATCGACACGCCAAACAGGATGGAAGACCTTCATAAACGAGAGGCAATTGCGCGT GCTATTCTTCAATCCGTCAATGCTTTGCCACCCAACTAGCAGCCCAAACCCCCTGTTGTGCCTAACAAGGCGCTCAAGTCGGACAGC CCAAACCGGCGCATGCTTCGCATTATGCGCGCCGGTTCGGTACGTTGCGCGCTTCGCGCTCCACTCTGCCGCTTAGCTTGGCG blaOXA-21 TTGGGCGTCAAGGAAAACTTAATGGCAATCCGAATCTTCGCAATACTTTTCTCCACTTTTGTTTTTGGCACGTTCGCGCATGCACAAG AAGGCATGCGCGAACGTTCTGACTGGCGGAAGTTTTTCAGCGAATTTCAAGCCAAAGGCACGATAGTTGTGGCAGACGAACGCCAA ACAGATCGTGTCATATTGGTTTTTGATCAGGTGCGGTCAGAGAAACGCTACTCGCCGGCCTCGACATTCAAGATTCCACATACACTT TTTGCACTTGACGCAGGCGCTGCACGTGATGAGTTTCAAGTTTTCCGATGGGACGGCATCAAAAGAAGCTTTGCAGCTCACAACCAA GACCAAGACTTGCGATCAGCAATGCGGAATTCTACTGTCTGGATTTATGAGCTATTTGCAAAAGAGATCGGTGAAGACAAGGCTCGA CGCTATTTGAAGCAAATCGACTATGGCAACGCCGATCCTTCGACAAGTAATGGCGATTACTGGATAGATGGCAATCTTGCTATCGCG GCACAAGAACAGATTGCATTTCTCAGGAAGCTCTATCATAACGAGTTGCCCTTTCGGGTAGAACATCAGCGCTTGGTCAAGGACCTC ATGATTGTGGAAGCCGGTCGCAACTGGATACTGCGCGCAAAGACGGGCTGGGAAGGCCGCATGGGTTGGTGGGTAGGATGGGTT GAGTGGCCGACTGGCCCCGTATTCTTCGCACTGAATATTGATACGCCAAACAGGATGGATGACCTTTTCAAAAGGGAGGCAATAGT GCGGGCAATCCTTCGCTCTATCGAAGCGTTGCCGCCCAACCCGGCAGTCAACTCGGACGCAGCGCGATAAAGCCGCGCAGCGCC GGTTACTTCTACG blaOXA-46 TTGGGCATCAAAGGAAATTTAATGGCAATCCGATTCTTCACCATACTGCTATCCACCTTCTTTCTTACCTCATTCGTGTATGCGCAAG AACATGTGGTAATCCGTTCGGACTGGAAAAAGTTCTTCAGCGACCTCCAGGCCGAAGGTGCAATCGTTATTGCAGACGAACGTCAA GCGAAGCATACTTTATCGGTTTTTGATCAAGAGCGAGCGGCAAAGCGTTACTCGCCAGCTTCAACCTTCAAGATACCCCACACACTT TTTGCACTTGATGCAGACGCCGTTCGTGATGAGTTCCAGGTTTTTCGATGGGACGGCGTTAACCGAAGCTTTGCAGGTCACAATCAA GACCAAGATTTGCGATCAGCGATGCGAAATTCTACGGTTTGGGTTTATGAGCTGTTTGCAAAAGATATCGGAGAGGACAAAGCAAGA CGTTATTTAAAGCAAATTGATTATGGCAACGTCGATCCTTCGACAATCAAGGGCGATTACTGGATAGATGGAAATCTTAAAATCTCAG CGCACGAACAGATTTTGTTTCTCAGAAAACTCTATCGAAATCAGTTACCATTTAAGGTGGAGCACCAGCGCTTGGTGAAAGATCTCAT GATTACGGAAGCCGGGCGCAGTTGGATACTACGCGCAAAGACCGGCTGGGAAGGCAGGTTTGGCTGGTGGGTAGGGTGGATTGA ATGGCCAACAGGCCCCGTATTCTTTGCGCTGAATATTGATACGCCAAACAGAACGGACGATCTTTTCAAAAGAGAGGCCATCGCAC GGGCAATCCTTCGTTCTATTGACGCATTGCCACCCAACTAACCAATCCAGCCGACGCCTTCGACGCGGCTGATTTCAAACG blaOXA-53 TTGGGCATCAAGGAAAAATTAATGGCAATCCAAATCTTCGCAATACTTTTCTCCACTTTTGTTCTTGCCACTTTTGCACATGCGCAAGA TGGCACGCTGGAACGTTCTGACTGGGGGAAATTTTTCAGCGATTTTCAGGCCAAAGGTACGATAGTTGTGGCAGACGAACGCCAAG CGGATCATGCGATATTGGTTTTTGATCAAGCACGGTCAATGAAACGCTACTCGCCTGCGTCGACATTCAAGATTCCACATACACTTTT TGCACTTGATGCAGGCGCCGTTCGCGATGAGTTTCAGATTTTCCGCTGGGACGGCGTCAAAAGGAGCTTTGCAGGTCACAATAAAG ACCAAGATTTGCGATCAGCAATGCGAAATTCTACTGTCTGGGTTTATGAGCTATTTGCAAAGGAAATCGGTGATGGCAAGGCTCGAC Supplementary Material 175 GCTATTTGAAGCAAATCGGCTATGGCAACGCCGATCCTTCGACAAGTCATGGCGATTACTGGATAGAAGGCAGCCTTGCAATCTCA GCACAGGAACAGATCGCGTTTCTCAGAAAGCTCTATCAAAACGATCTGCCCTTTAGGGTGGAACATCAGCGCTTGGTCAAGGATCT GATGATTGTGGAAGCGGGACGCAACTGGATTCTGCGCGCGAAGACGGGCTGGGAAGGCAGCATGGGTTGGTGGGTGGGGTGGGT TGAATGGCCAACCGGTCCCGTATTCTTTGCCTTGAATATCGATACGCCAAACAGAATGGACGATCTTTTCAAGAGGGAAGCAATAGC GCGAGCGATACTTCTCTCTATCGAAGCGTTGCCGCCCAACCCGGCAGTCCACTCGGACGCTGCGCGATGAGGCAGCGCAGCGCC GGTAACTTCTACG blaOXA-118 TTGGGCGTCAAAGGAAACTTAATGGCAATCCGATTCCTCACCATACTGCTATCTACTTTTTTTCTTACCTCATTCGTGCATGCGCAAG AACACGTGCTAGAGCGTTCTGACTGGAAGAAGTTCTTCAGCGACCTCCGGGCCGAAGGTGCAATCGTTATTTCAGACGAACGTCAA GCGGAGCATGCTTTATTGGTTTTTGGTCAAGAGCGAGCAGCAAAGCGTTACTCGCCTGCTTCAACCTTCAAGCTTCCACACACACTT TTTGCACTCGATGCAGACGCCGTTCGTGATGAGTTCCAGGTTTTTCGATGGGACGGCGTTAAACGGAGCTTTGCGGGCCATAATCA AGACCAAGACTTGCGATCAGCGATGCGAAATTCTGCGGTCTGGGTTTATGAGCTATTTGCAAAAGAGATCGGAAAGGACAAAGCAA GACACTATTTAAAGCAAATTGATTATGGCAACGCCGACCCTTCGACAATCAAGGGCGATTACTGGATAGATGGCAATCTTGAAATCT CAGCGCACGAACAGATTTCGTTTCTCAGAAAACTCTATCGAAATCAGCTGCCATTTCAGGTGGAACATCAGCGCTTGGTCAAAGATC TCATGATTACGGAAGCCGGGCGCAACTGGATACTACGCGCAAAGACCGGCTGGGAAGGCAGGTTTGGCTGGTGGGTAGGGTGGG TGGAGTGGCCAACCGGTCCCGTATTCTTCGCGCTGAATATTGATACGCCAAACAGAACGGATGATCTTTTCAAAAGAGAGGCAATCG CGCGGGCAATCCTTCGCTCTATCGACGCATTGCCGCCCAACTAATCAATCCAGCGGACGCCTTCGGCGCCGCTGATTTCAACG blaOXA-129 TTAGCCACCAAGGTACCATGAAAACCATAGCCGCATATTTAGTTCTAGTATTTTTTGCAGGCACTGCACTTTCAGAGTCTATTTCTGA AAATTTAGCTTGGAATAAAGAATTTTCCAGTGAATCAGTGCATGGTGTTTTTGTACTTTGTAAAAGCAGTAGTAATTCCTGTACAACAA ATAATGCAACACGTGCATCTACGGCCTATATTCCAGCATCAACATTCAAAATTCCCAATGCTCTCATAGGCCTTGAAACCGGCGCCAT AAAAGATGCGCGGCAGGTTTTCAAATGGGACGGCAAGCCCAGAGCCATGAAGCAATGGGAAAAAGACTTAACGCTAAGGGGCGCT ATACAAGTTTCTGCTGTTCCGGTATTTCAACAAATTGCCAGAGACATTGGCAAAAAAAGAATGCAAAAATACCTTAACCTTTTTTCATA TGGCAACGCCAATATAGGCGGAGGCATTGACAAATTTTGGCTAGAAGGTCAGCTTAGAATCTCAGCAGTCAATCAAGTTAAATTTTTA GAGTCGCTTTACCTAAATAATTTGCCAGCATCTAAAGCAAACCAACTTATAGTAAAAGAGGCAATAGTTACAGAAGCAACTCCAGAAT ATATAGTGCATTCAAAAACCGGGTATTCCGGTGTGGGCACAGAATCAAATCCTGGTGTCGCTTGGTGGGTTGGTTGGGTAGAAAAA GGAACTGAGGTTTACTTTTTTGCATTTAACATGGACATAGACAATGAGAGTAAGTTGCCGTCAAGAAAATCCATTCCAACGAAAATCA TGGCAAGTGAAGGTATCATCATTGGTGGCTAACAAGGCGCTCAAGGCCGTGGCTGCGCCACTGGACGTCTCCAATCGGCGCATGC TTCGCATTTTGCGCGCCGCTTGTAGCCGCCCCTTAGCTTTGCG blaOXA-198 TTATGCATAAACACATGAGTAAGCTCTTCATCGCTTTTTTAGCCTTTCTGCTGTCGGTGCCAGCAGCCGCTGAAGACCAGACACTTG CCGAGCTCTTTGCCCAACAAGGCATTGACGGGACTATAGTGATTTCGTCGCTACACAACGGAAAGACATTTATCCACAACGATCCCC GCGCAAAACAGAGATTCTCGACAGCATCCACGTTCAAGATACTGAACACGCTGATCTCGCTCGAAGAAAAAGCCATCTCTGGAAAAG ACGATGTGCTGAAATGGGACGGGCATATTTACGATTTTCCAGATTGGAATCGTGACCAGACGCTAGAAAGTGCGTTCAAGGTTTCCT GTGTCTGGTGTTATCAGGCGCTTGCACGCCAGGTCGGCGCGGAGAAGTATCGAAATTATTTACGCAAGTCAGTTTACGGAGAATTA CGCGAGCCTTTTGAGGAAACAACATTCTGGCTTGATGGTTCACTTCAAATCAGCGCAATTGAACAAGTGAATTTCCTCAAGAAAGTTC ATCTGCGCACTCTCCCATTCAGTGCATCGTCCTACGAAACGCTACGACAAATCATGCTTATCGAGCAAACGCCGGCTTTTACGCTGC GGGCCAAGACAGGCTGGGCAACAAGAGTAAAGCCGCAAGTTGGCTGGTATGTGGGCCATGTCGAAACTCCAACGGATGTATGGTT CTTTGCCACGAATATTGAAGTCCGTGACGAAAAAGACTTGCCCTTACGTCAGAAGCTAACGCGAAAAGCATTACAAGCAAAGGGGAT CATCGAATAATGCATAACATGGCGCTCAAGCGGGACGCGGCAAAATGCCGCCGCGCCCCTTAGCTCTACG blaPBL-1 TTAGGCCGCACAATCAGCACATCATGTGACCTTATGTTTTCTTGAAACAAACATATGCACGTCATATCGCGGTGTTCATAGACAATCA TTAAAGGAAGGAGATAGGAATGGTTACAAGGCGAGATTTTTTGATTGCTTCAGCGGCAACGGCCGCTCTTCTAACTTTGCCAGCTAC TGCAAAAGTTCCCTCGCGTCGCTTTGACGCATCAGCGAAGCTTCAGTCGCTTGAAGCGGGACAGGCGCGCCTTGGTGTTTGCTTCC TCGATACGGTTACTGGTGAAGTCAGCGGTAACCGTATCGAGGAGCGCTTTGCAATGTGCTCGACGGTCAAGCTGGCAATAGTTGCC GCCTGCTTGCGCGAGGCAGATAAGGCGCGCTTGAATCTCGAGGAGATACTGACCTATTCAGAGGCGGATCTTCTTCCTTGGGCGC CAGTGACGCGCAAGAATCTCGCCAAAGGCGGTCTGAGTATTTCCGCTCTGGCGCAAGCGGCTCAAGAAATGAGCGATGGTGTTGC CGCTAACCTTTTAATCAAACGCCTAGGCGGTCCTGCCGCCGTCACCGCGAAGTTCCGAGAAATGGGCGATTCGGTGACCCGCCTTG ATCGTTATGAGCCAGACTTAGGGTTAGTTCTTTCAGCCGATGTTCGCGACACCACCACGCCCCTTGCTTATGCGCAACTTGTCCGTC GAATCACGACTGGCCGTGTTTTGTCGCACGGATCGCGGGAACAACTTTTAGAGTGGATGCGAAATACAGTCACAGGCGCCAGTCGG CTGCGAGCCGGCCTCCCCACTGAATGGCGTACTGGGAACAAGACAGGGACTGGGCGCGACGAAGGGACGACCAACAAGTGCAAT GACGTCGCTATTACTTTTCCGCCAAGCAAGAACCCAATCATCATTGCAGCCTATTTCGACAGCGGCGAATACACAGAAAAGGTAGAG GCGAGGCATGAGGCTGTCCTCGCTGAAGTGGGAAAGATTGCTGCCGAATGGGGCGAGAGTTAGTGTGCGAACTACACAATCACTTT ATTTAAAAAATTAGAATCTAGGTAGGTACTTACGTCTTTTGAAGAATTTCTAATTTTTGTCATGAAAAAGGGATTAAAAAAAAGAAGCCT AACAAATCGCTCAAGCACCGCACACTTCGTGTGCGGGACAGTTTTTAAGTCGCAGTTTTGTGGTTTTGCTGCGCAAAATTATTCCAC AAAACCGCAACTTAAAAACTGCCGCTTAGCTCGGCG blaSIM-1 TTAGAGGTAGTTAAAAATGAGAACTTTATTGATTTTATGTTTATTCGGCACTTTAAATACCGCGTTTGCGGAAGAAGCCCAGCCAGAT TTAAAAATTGAAAAAATAGAAGAAGGGATCTATCTTCATACATCTTTTCAAGAGTACAAGGGATTCGGCATCGTTAAAAAACAAGGCTT AGTAGTTCTTGACAATCACAAGGCATATCTCATCGACACTCCAGCTTCCGCAGGAGATACTGAAAAGCTAGTAAACTGGCTCGAAAA AAATGATTTCACTGTCAATGGAAGCATTTCAACACATTTCCACGACGACAGTACTGCTGGGATAGAGTGGCTTAATACAAAGTCCATC CCCACATATGCATCTAAATTGACAAATGAATTGCTAAATAAAAATGGCAAAACTCAAGCCAAGCACTCTTTTGATAAAGAGAGCTTTTG GTTGGTCAAAAATAAAATTGAAATTTTTTATCCAGGCCCAGGACACACTCAAGATAACGAAGTTGTCTGGATACCTAATAAAAAAATC CTATTCGGGGGCTGTTTTATAAAACCGAATGGCCTTGGCAATCTAAGTGACGCAAATTTGGAAGCTTGGCCAGGCTCCGCAAAAAAA ATGATATCAAAATACAGTAAGGCAAAACTTGTTATCCCAAGCCACAGTGAAATCGGAGACGCATCACTATTGAAACTCACATGGGAA CAGGCCATTAAAGGTTTAAATGAAAGCAAATCAAAACCGCCGCTCATTAATTAACCCCCCCAAGGTCATTACGAAAACTCTGAGTGC CTCTAACAATGCGCTAAACACCGCTCGCTTCGCTCACTGGACTCGCAAAAGCTGCGCTTTTGCTCGCCTGTTAGCTTAATCG blaTMB-1 TTAGAGGAATAATGGAATGCGACCATTTTTATTTTTAATAATTTTTATCAGTCATTTCGCTTTTGCCAACGAAGAAATACCCGGATTGG AAGTTGAGGAAATTGACAACGGCGTTTTTTTGCACAAGTCATACAGCCGGGTGGAAGGCTGGGGCCTGGTAAGTTCAAACGGACTT GTTGTCATCAGCGGCGGAAAAGCATTCATTATTGACACTCCATGGTCGGAATCAGATACAGAAAAGCTTGTAGATTGGATACGATCA AAAAAGTATGAGCTGGCGGGAAGCATTTCTACACATTCACACGAAGACAAGACTGCCGGTATAAAATGGCTAAACGGCAAATCCATT ACTACATATGCCTCAGCGCTGACTAATGAAATTCTAAAAAGAGAGGGTAAGGAGCAGGCAAGGAGCTCATTCAAAGGTAATGAATTT TCGCTGATGGACGGTTTTCTAGAAGTCTATTATCCCGGAGGCGGCCATACTATTGATAACTTAGTGGTATGGATCCCTAGTTCAAAAA TATTGTATGGCGGCTGTTTCATACGTAGCTTGGAATCCAGTGGGCTAGGTTACACTGGTGAAGCTAAAATTGATCAGTGGCCACAAT CCGCTAGAAATACAATTTCGAAGTATCCTGAAGCTAAGATTGTGGTGCCTGGTCATGGAAAAATTGGCGATTTCGAGTTGTTAAAACA TACCAAGGTCCTTGCAGAAAAGGCCTCTAACAAGGCCAATCACGGCGACCGCTGACGCGGCGCGTGTTGGCATAG blaVEB-1 TTAGCGGTAATTTAACCAGATAGGAGTACAGACATATGAAAATCGTAAAAAGGATATTATTAGTATTGTTAAGTTTATTTTTTACAATTG TGTATTCAAATGCTCAAACTGACAACTTAACTTTGAAAATTGAGAATGTTTTAAAGGCAAAAAATGCCAGAATAGGAGTAGCAATATTC AACAGCAATGAGAAGGATACTTTGAAGATTAATAACGACTTCCATTTCCCGATGCAAAGCGTTATGAAATTTCCGATTGCTTTAGCCG TTTTGTCTGAGATAGATAAAGGGAATCTTTCTTTTGAACAAAAAATAGAGATTACCCCTCAAGACCTTTTGCCTAAAACGTGGAGTCC GATTAAAGAGGAATTCCCTAATGGAACAACTTTGACGATTGAACAAATACTAAATTATACAGTATCAGAGAGCGACAATATTGGTTGT GATATTTTGCTAAAATTAATCGGAGGAACTGATTCTGTTCAAAAATTCTTGAATGCTAATCATTTCACTGATATTTCAATCAAAGCAAAC GAAGAACAAATGCACAAGGATTGGAATACCCAATATCAAAATTGGGCAACCCCAACAGCGATGAACAAACTGTTAATAGATACTTATA ATAATAAGAACCAATTACTTTCTAAAAAAAGTTATGATTTTATTTGGAAAATTATGAGAGAAACAACAACAGGAAGTAACCGATTAAAA GGACAATTACCAAAGAATACAATTGTTGCTCATAAAACAGGGACTTCCGGAATAAATAATGGAATTGCAGCAGCCACTAATGATGTTG GGGTAATTACTTTACCGAATGGACAATTAATTTTTATAAGCGTATTTGTTGCAGAGTCCAAAGAAACTTCGGAAATTAATGAAAAGATT ATTTCAGACATTGCAAAAATAACGTGGAATTACTATTTGAATAAATAAAAAACTACCGCTAACACTGGCTCATAGGCAATGGCGGGTT GAAGTGCAATTTGCAAAGTCGGTAGCCCGCCCGAGCGTTTTCTCGGTTTGACAGGAAAGGCTCACGCAAACCGCCACTGCCCATAG CCCAAACCG blaVIM-1 TTATGCCGCACCCACCCCTATGGAGTCTTGATGTTAAAAGTTATTAGTAGTTTATTGGTCTACATGACCGCGTCTGTCATGGCTGTCG CAAGTCCGTTAGCCCATTCCGGGGAGCCGAGTGGTGAGTATCCGACAGTCAACGAAATTCCGGTCGGAGAGGTCCGACTTTACCA Supplementary Material 176 GATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCGGTCTACCCGTCCAATGGTCTCATTGTCCGTGATG GTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAAAAGCAAATTGGACTT CCCGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGT ACGCATCACCGTCGACACGCCGGCTAGCCGAGGCAGAGGGGAACGAGATTCCCACGCATTCTCTAGAAGGACTCTCATCGAGCGG GGACGCAGTGCGCTTCGGTCCAGTAGAGCTCTTCTATCCTGGTGCTGCGCATTCGACCGACAATCTGGTTGTATACGTCCCGTCAG CGAACGTGCTATACGGTGGTTGTGCCGTTCATGAGTTGTCAAGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATG GCCCACCTCCGTTGAGCGGATTCAAAAACACTACCCGGAAGCAGAGGTCGTCATTCCCGGGCACGGTCTACCGGGCGGTCTAGAC TTGCTCCAGCACACAGCGAACGTTGTCAAAGCACACAAAAATCGCTCAGTCGCCGAGTAGCAGATGCGGCATAACAAATCGTTGGA GCGGGACTTTTGCTACGCAGGCTGCGCCTACTCCGCAAAAGCCCCTCAACTCAGGCG blaVIM-2 TTATGCCGCACTCACCCCCATGGAGTTTTGATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATCATGGCTATTG CGAGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAG ATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGT GATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCC TGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTAC GCATCACCGTCGACACGCCGGCTAGCCGAGGTAGAGGGGAACGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGG ACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAGTTGTGTACGTCCCGTCTGCG AGTGTGCTCTATGGTGGTTGTGCGATTTATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCC CACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTG CTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAGCAGGCAGATGCGGCATAACATGAAGTTGC AGCCGACCATCACTCCGCTGCGCTCCGTTCTGGCGGCTGAACTTCGGCG blaVIM-7 TTATCGCAGTCGGCCCCCGAGGAGTATTGATGTTTCAAATTCGCAGCTTTCTGGTTGGTATCAGTGCATTCGTCATGGCCGTACTTG GATCAGCAGCATATTCCGCACAGCCTGGCGGTGAATATCCGACAGTAGATGACATACCGGTAGGGGAAGTTCGGCTGTACAAGATT GGCGATGGCGTTTGGTCGCATATCGCAACTCAGAAACTCGGTGACACGGTGTACTCGTCTAATGGACTTATCGTCCGCGATGCTGA TGAGTTGCTTCTTATTGATACAGCGTGGGGGGCGAAGAACACGGTAGCCCTTCTCGCGGAGATTGAAAAGCAAATTGGACTTCCAG TAACGCGCTCAATTTCTACGCACTTCCATGACGATCGAGTCGGTGGAGTTGATGTCCTCCGGGCGGCTGGAGTGGCAACGTACACC TCACCCTTGACACGCCAGCTGGCCGAAGCGGCGGGAAACGAGGTGCCTGCGCACTCTCTAAAAGCGCTCTCCTCTAGTGGAGATG TGGTGCGCTTCGGTCCCGTAGAGGTTTTCTATCCTGGTGCTGCGCATTCGGGCGACAATCTTGTGGTATACGTGCCGGCCGTGCGC GTACTGTTTGGTGGCTGTGCAGTTCATGAGGCGTCACGCGAATCCGCGGGTAATGTTGCCGATGCCAATTTGGCAGAATGGCCTGC TACCATTAAACGAATTCAACAGCGGTATCCGGAAGCAGAGGTCGTCATCCCCGGCCACGGTCTACCGGGCGGTCTGGAATTGCTCC AACACACAACTAACGTTGTCAAAACGCACAAAGTACGCCCGGTGGCCGAGTAACAAATGCGGCATAACAACGCCAAGGAGGGGGA CGCATTTTCCACTACGCCCTTCGGGCTTCCCTCCAAAAGCGCCCCTCATGGCGGGCG blaVIM-13 TTATGCCGCACCCACCCCTATGGAGTTTTGATGTTAAAAGTTATTAGTAGTTTATTGTTCTACATGACCGCCTCTCTAATGGCTGTAG CTAGTCCGTTAGCCCATTCCGGGGAGTCGAGAGGTGAGTATCCGACAGTCAGCGAAATTCCGGTCGGAGAAGTTCGGCTGTACCA GATTGACGATGGTGTTTGGTCGCATATCGCAACGCATACGTTTGATGGCGTGGTGTACCCGTCCAATGGTCTCATTGTCCGTGATG GCGATGAGTTGCTTTTGATTGATACAGCTTGGGGTACGAAAAACACAGTGGCCCTTCTCGCGGAGATTGAGAAGCAAATTGGACTTC CCGTAACGCGTTCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGAGTTGATGCCCTTAGGGCGGCTGGAGTGGCGACGTA CGCATCGCCCTCGACACGCCGTCTAGCCGAGGCAGAGGGGAACGAGGTTCCCACACACTCTCTAGAAGGGCTCTCATCGAGTGGG GACGCAGTGCGTTTCGGTCCAGTAGAGCTCTTCTATCCTGGTGCTGCGCATTCGACCGACAATCTGGTTGTATACGTCCCGTCAGC GAACGTGCTATACGGTGGTTGTGCCGTTCTGGAATTGTCACGCACATCCGCGGGAAACGTGGCCGATGCCGACCTGGCTGAATGG CCCGGTTCCGTTGAGCGGATTCAACAACATTACCCAGAAGCAGAGGTGGTCATTCCCGGGCACGGTCTACCGGGCGGTCTAGACT TGCTCCAGCACACAGCGAACGTTGTCAAAGCACACACAAATCGCTCAGTCGCCGAGTAGCAGATGCGGCATAACAAATCGCTGCAG TTGACCGCCCAACCCGCTGTCGCGGCTTGGGTTCCCTCCGCGCTTCGCGCTCCGGCGGCAACTGAGCTCAGGCG aacA1 AAC(6´)-Ia TTAGGGCGACGCCGCTATTGCGGCGCGAATACAAAGAGGAAGAGATGAATTATCAAATTGTGAATATTGCGGAATGCAGCAATTATC AGTTAGAAGCAGCAAATATACTAACAGAAGCGTTCAATGATCTTGGTAACAATTCATGGCCAGATATGACGAGTGCAACAAAAGAAG TAAAAGAATGTATTGAGAGTCCAAACCTTTGTTTCGGTCTGCTAATAAATAACTCCTTAGTTGGCTGGATAGGCTTAAGGCCAATGTA CAAGGAAACCTGGGAATTGCATCCATTGGTTGTCAGACCAGATTATCAAAATAAAGGTATTGGCAAGATCCTGCTTAAGGAATTAGAA AACAGAGCTAGAGAGCAAGGTATTATTGGAATCGCTTTAGGAACAGATGATGAATACTATAGAACAAGTCTCTCTTTAATAACTATAA CAGAAGATAATATATTTGATTCAATAAAAAATATTAAAAATATTAATAAACATCCATATGAGTTTTATCAGAAGAATGGTTATTATATTGT TGGAATAATTCCAAATGCCAATGGTAAAAACAAACCAGATATTTGGATGTGGAAAAGTTTAATCAAAGAGTAAAACAATGGAACAGAT TAATAACATAGAACTTGTAGATCCATCTATCTACCCAACAGATGAAATCTTAAAAAGAATACTTGGAAAATCGTTTAGTGTATATTTAAA ATTACTACGACTCTATGAAAATTATAGTTTAATACCAGAGTGGAAGTATTATAAAGATGGAAAAGCTTGGTTATGTAAAGTTATAAAGG GAAAGAAAACGATTGTTTGGATGTCTGCATGGAAGAACTACATAAAAGCTACTATATATCTTCCAGAAAAACATATTAACGGTGTATTA GTATTAGATATTCATGAGATTACAAAGAAAGCATTTATAGAGACAAATAATATTGGAAGATCAAGGCCTTGCATGTTTGAATTAAAAGA AGAAAATATATTAGAAGATTTCATAAAGGTAATGCAGTTCAAAATGACATTAAAATGATCAACCGAAATTTGCCCTAACAAATGCTTCA ACCTGACAATTCCTGTTGTCATGGTTTGTGCTGTCGCTTTGCTCAGCACAAACCACGCCAAGCCCTTCGGGCCGGAATTGCAGGTTA AGCAAATG aacA2 AAC(6´)-Id TTAGGCGTCATGATCGAAGCGTGTCACTCCGTCGAATGCCCTGGCTGGCTGCAACTTCGTTTTCTCCTCTGGCCGCAAGATAGCGC CGACGAACACCTTGCTGAAATGGCAATCTTCGTGGCTGAGCCAAATCGGTTCGCGCAGTTCATCGCTTACGACGAAGCGAACAAAC CACTAGGCTTCGTTGAGGCTGCGCTCCGATCTGACTACGTAAACGGAACCAATTCGTCCCCAGTAGCGTTTCTTGAAGGGGTCTAT GTCTTACCGGAAGCACGGCGTCGCGGCATCGCTCATGCCTTGGTCGGTGCAGTCGAGATATGGGCTCGTAATCGGGCCTGTACCG AGTTCGCATCCGATGCATCAACTGACAACCCGGAAAGCCATAGATTTCACCAGTCACTTGGGTTCAAAGAAACCGAGCGTGTCGTGT ACTTCAGGAAGATGCTTGCGCCAGAATGACGCCTAACCCTTCCATCGAGGGGATGCCCAAAAGGCTGCGCCTTCTGTGCACCCCTC ATGTCAAACG aacA3 AAC(6´)-IIa TTAGGCAGCACAGAGCGACCATTTCATGTCCGCGAGCACCCCCCCCATAACTCTTCGCCTCATGACCGAGCGCGACCTGCCGATG CTCCATGATTGGCTCAACCGGCCGCACATCGTTGAGTGGTGGGGTGGTGACGAAGAGCGACCGACTCTTGATGAAGTGCTGGAAC ACTACCTGCCCAGAGCGATGGCGGAAGAGTCCGTAACACCGTACATCGCAATGCTGGGCGAGGAACCGATCGGCTATGCTCAGTC GTACGTCGCGCTCGGAAGCGGTGATGGCTGGTGGGAAGATGAAACTGATCCAGGAGTGCGAGGAATAGACCAGTCTCTGGCTGAC CCGACACAGTTGAACAAAGGCCTAGGAACAAGGCTTGTCCGCGCTCTCGTTGAACTACTGTTCTCGGACCCCACCGTGACGAAGAT TCAGACCGACCCGACTCCGAACAACCATCGAGCCATACGCTGCTATGAGAAGGCAGGATTCGTGCGGGAGAAGATCATCACCACG CCTGACGGGCCGGCGGTTTACATGGTTCAAACACGACAAGCCTTCGAGAGAAAGCGCGGTGTTGCCTAACAACTCATTCAAGCCGA CGCCGCTTCGCGGCGCGGCTTAATTCAGGTG aacA4 AAC(6´)-Ib TTAGGCATCACAAAGTACAGCATCGTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCT CTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGT ACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTAC GTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAATAGACCAGTTACTGGCGAATGCAT CACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAA ACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAG ATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAGTGATGCCTAACCCTTCCATCGAGGGGGACG TCCAAGGGCTGGCGCCCTTGGCCGCCCCTCATGTCAAACG aacA5 AAC(6´)-IIb TTAGGCAGCACGGAGACACTTCAGCATGCATCCCGGCGTTGTTACTCTGCGTCCGATGACCGAAGACGACATCGGTATGCTTCACG AATGGTTGAATCGGCCGCACATTGTCGAATGGTGGGGTGGTGAGCGGCCCTCGCTCGAAGAGGTGAAAGAGGACTATCGGCCCAG CGCGTTGGCCGAAGAAGGAGTGACGCCGTACATCGGTTTGCTTGACGGAACTCCATTCGCGTTCGCACAGTCGTACGTTGCGCTC GGGTCGGGTGGTGGATGGTGGGAGGAAGAGACCGATCCTGGTGTCCGCGGAATCGATCAATCAATCGCCGATTCCGGGCTTCTCG GAAGAGGTTACGGCACTCGGCTGGTGCAGGCGCTTGTTGATTTGCTGTTCGCCGACCCGCAGGTATCCAAGGTTCAGACGGACCC CTCCCCGAACAACATGCGCGCGATACGCTGCTATGAGAAGGCAGGCTTCCGGAAGGTCAAGGTCGTTTCAACACCGGATGGGCCG Supplementary Material 177 GCCATGTACATGTTGCACGAGCGTCCGTTGGTGAACGGTTTGCGCAGTGCGGCCTAACTTTTCGCTCCAACGGACGCTTGACCCGT CGGCCCGGCCGCTGCCGCAGCCGGACCGCCGCGTCAACCGCCGCTGACCTCCGGAG aacA7 AAC(6´)-Il TTAGGCACCAATGGATAGTTCGCCGCTCGTCAGGCCTGTTGAAACTACCGATTCGGCCAGTTGGCTAAGCATGCGCTGTGAGCTGT GGCCAGATGGCACATGTCAAGAGCACCAGTCAGAGATCGCAGAATTTCTGTCCGGAAAAGTCGCCCGGCCTGCTGCTGTCCTCATT GCTGTAGCACCCGACGGAGAAGCACTAGGGTTTGCCGAGCTTTCGATCCGCCCGTATGCGGAGGAGTGCTACTCCGGCAACGTTG CGTTCTTGGAGGGTTGGTACGTTGTGCCAAGTGCGCGGCGTCAGGGCGTAGGTGTAGCTCTGGTAAAAGCCGCCGAGCATTGGGC TCGTGGTCGCGGATGCACCGAATTCGCCTCCGACACTCAACTTACCAACAGCGCAAGCACCTCGGCGCACCTGGCGGCTGGATTC ACGGAGGTTGCTCAAGTACGCTGCTTCCGGAAACCGTTGTGAGGGGCGCCGCGTTGGTGCCTAACAATTCGTTCAAGCCGAACTTG CTTCGTTACACCAAAGCCATGGCAGAATGAGCTTGCCATGGCTTTGGCTCCACTACGCAAGTCGGCTTAACTCAGGCG aacA8 TTAGGCAGCACAAACTCCGTCCTCATGACATCCAGCATTAGTTTCGTCAAGCTGCGCCTCATGACCGAGCAAGACCTTCCGATGCTC CATGAGTGGCTAAACCGGCCTCACATCGTTGAGTGGTGGGGCGGAGAAGAAGCACGTCCAACACTTGCTGAAGTGCAGGAGCAAT ACCTGCCAAGCGCCTTGGCGAGAGAGTCCGTCACTCCCTACATCGCAATGCTGGATGAAGAACCGATTGGGTACGCTCAGTCGTAC GTTGCACTCGGAAGCGGTGGCGGATGGTGGGAAGACGAAACGGATCCAGGAGTACGCGGAATTGACCAGTCCCTGGCAAATCCAT CGCAGCTGGGAAAGGGGCTAGGAACCAAGCTTGTTCGCGCGCTCGTTGAGATGCTGTTCAAAGACGCTAAGGTAACCAATATCCAA ACGGACCCGTCGCCGAACAACTTGCGCGCAATCCGGTGCTACGAGAAGGCGGGGTTTGTGACGCAAAGAACCATAACCACCCCAG ACGGGCCGGCTGTGTACATGGTTCAAACACGTCAGGCGTTCGAGCAGGCGCGCAGTGCTGCCTAACCCTTCCATCGAGAGGGACG TCCAAGAGCTATCGCTCTTGGCCGCCCCTCATGTCAAACG aacA16 AAC(6´)-Ip TTGGGCTGATTGATTTGTTTGTTCTAGCATTACCTATCTGGAGTTTGTTTTGAACTATTCAATATGCGATATAGCTGAATCAAATGAAT TAATCCTTGAAGCAGCAAAGATGCTTAAGAAAAGCTTTCTTGATGCTGGAAATGAATCATGGGGAGATATTAAAAATGCTATTGAAGA AGTTGAAGAATGTATAGAACATCCAAATATATGCTTGGGAATATGTCTGGATGATAAACTGATTGGATGGACCGGATTAAGGCCGAT GTACGATAAGACCTGGGAACTTCATCCCATGGTTATAAAAACTGAATATCAAGGCAAGGGTTTTGGGAAAGTACTACTAAGAGAACT AGAGACGAGAGCGAAGAGTAGGGGAATTATCGGAATAGCTCTTGGAACTGATGACGAATATCAGAAAACTAGTTTGTCTATGATTGA TATAAACGAACGAAATATCTTCGATGAAATCGGGAATATAAAGAACGTTAATAATCATCCATATGAGTTTTATAAGAAATGTGGTTATA TGATCGTTGGAATAATCCCTAATGCTAATGGAAAAAGAAAACCAGATATATGGATGTGGCAGATATTAGCTAGGAAGAACAGCCCAA CAATCGCTTCAACCTGACTCAGGGCGCCGTCACGATTTCTGCTAGTTATCCTGGGACGCAGAAATCGCGCCAACGCCCTTCGCAGG TTAAGCGAAGTG aacA17 AAC(6´)-Iq TTGGGCTGATTGATTTGTTTGTTCTAGTATTACCTATCTGGAGTTTGTTTTGGACTATTCAATATGCGATATAGCGGAATCAAATGAAT TAATCCTTGAAGCAGCAAAAATACTTAGGAAAAGCTTTCTTGATGCTGGAAATGAATCATGGGTAGATATCAAAAAGGCTATTGAAGA AGTTGAGGATTGTATAGAACACCCAAATCTATGCTTGGGAATATGTCTGGATGATAAACTGATTGGCTGGACCGGATTAAGGCCGAT GTACGATAAGACCTGGGAACTTCATCCCATGGTTATAAAAACTGAGTATCAATGCAGGGGTATTGGGAAAGTCTTAATAAAAGAACTA GAGAAGAGAGCGAAGGGTAGGGGAATTATCGGAATAGCTCTTGGAACTGATGATGAATATCAGAAAACTAGTTTGTCTATGATTGAT ATAAACGAACGAAACATCTTCGATGAAATCGGGAACATAAAGAACGTTACTAATCATCCATATGAGTTTTATAAGAAATGTGGTTATAT GATCGTTGGAATAATCCCTAATGCTAATGGAAAAAGAAAACCAGATATTTGGATGTGGAAAGATATTAGCTAGGAAGAACAGCCCAA CAACCGCTTCAACCTGACTCAGGGCGCTGTCACGATTTCTGCAGGTAATTCTGGACGCAGAAATCGCGCCAACGCCCTTCGCAGGT TAAGCGAAGTG aacA27 AAC(6´)-IIc TTAGGCCCGCACGGAATCAACATCTCATGTCCGCCAACAATGCCGCAATAGTTCTACGAGTCATGGCCGAGAACGATCTGCCAATG CTCCATGCTTGGCTGAACCGCCCCCACATAGTCGAGTGGTGGGGCGGCGAGGATGAACGCCCAACTCTTGACGAAGTCTTAGAAC ACTATTCGCCCGAAGTTCTGGCAAAGCAAGCTGTAGTGCCTTACATCGCAATGCTAGATGACGAACCCATCGGCTACGCCCAATCCT ACATCGCACTTGGAAGTGGCGATGGATGGTGGGAAGACGAAACTGATCCAGGGGTCCGCGGGATTGACCAGTCTTTGGCTAATCC ATCACAGTTAAACAAGGGGTTGGGTACAAAGCTCGTACGCTCGCTCGTTGAACTCCTGTTTAGCGACCCGGCCGTAACGAAAATCC AAACCGATCCATCTCCTAGCAACCATCGCGCCATTCGCTGCTACGAGAAGGCCGGGTTCGTTCAAGAAAAAAACATCCTCACACCT GACGGCCCTGCGGTGTACATGGTCCAAACACGCCAGGCGTTCGAAAGCCTGCGCACTGTTCAAAGCTTCAAAATCAAGGGGAAGT GGTCATGAATGGCTGCACCATCTCTACCAACTGGTATCTCGGCGTGTTCTCATCTGCCTTCGCATCTGTCGTCAGCCTAACCGGGC GTTCAACCGGACATCAACGTGCTGCGCACGTTGATGTCGGTTAACTGGGGCG aacA28 AAC(6')-Iae TTAGCCGGACGCTGCGCGCGAAGAGGTTTTATGAAATACAACATTGTTAATATTAAAGATTCTGAAAAGTATATAACGCAAGCTGCAG AAATTCTATTTGATGTATTTTCACACATAAATTTCGATTCTTGGCCGTCACTCCAAAAGGCTACAGAAACTGTAATAGAATGTATTAGC GCCGAAAACATTTGTATTGGCATTTTAATAAACGATGAATTGTGTGGTTGGGTTGGATTAAGAGAAATGTATAAAAAAACTTGGGAAC TACATCCAATGGTTATTAAGAAAAAACATCAAAATAAGGGATTTGGTAAAATACTAATTTTTGAAACAGAAAAGAAAGCGAAAGAAAGA AATTTAGAAGGAATTGTACTTGGAACAGACGATGAAACATTTAGAACTACATTATCAATGTCAGAATTAAATAATGAAAATATATTCCA TGAAATTAAAAATATAAAAAATCTAAAAAATCATCCATTTGAATTTTATGAAAAATGTGGTTACAGTATTATTGGTGTGATTCCTAATGC AAATGGGAAAAATAAACCTGATATATTAATGTGGAAAAATATAATGTAAAAAAATTTCGGCTAACAACTGCTTCAACTTGATAATTGCT TGAGCAATTACAAGTTAAGCAAATG aacA29 AAC(6´)-29 TTAGACGGCTTTGAGCGTTTCGATCTTACCTGTGAAAGAACAAGACGCTGCCGACTGGCTAGCGCTGCGGAATCTTCTTTGGCTCG CGGATGATCACGCCTCGGAGATTGAGCAGTACTTCTCTGGTGGACTTGAGGAGCCTGTAGAAGTGCTCATCGCACGTGATGCTACC GGCGCGGCTGTTGGGCATGTCGAACTCTCGATAAGACATGACTTGGAAGAACTCCAAGGAATCAAGACCGGCTACATCGAAGGCCT TTATGTGGCCCCAAGCCATCGATCAACAGACCTTGTGAAGCGTTTCTTGCGTGAGTCCGAGAAGTGGGCCCTAGAACAAGGGTGCA GCGCATTTGCCTCAGACAGAAGTGATCGGGTCATCACGCACCGCAAGTTCGCAGGCAGCGCCGTCTAACAACTCGTTCAAGCCGAA CCCGCTTCGCTCCGGCAACGGCGTGGCAGGTTAAGCTTGCCACGCCGCCGCCTCCACTATGCGGGTCGGCTTAACTCAGGCG aacA30 AAC(6')-I30 TTAGGCTGGCGCGCTTCGCGCGGAAGACTTTATGGCTACTCGGAGACCTTAAATGGCATATGCGTTCTGCGAAATTGGAGAATCAA ATGAATATATTATTCAGGCAGCTAGAATCTTAACGAAATCATTCCTTGATATTGGAAATGATTCCTGGCCTGATATGAAAAGTGCCAC CAAAGAAGTTGAAGAATGTATTGAGAAGCCAAACATATGTCTTGGAATACATGAAAACGAAAAACTACTTGGATGGATTGGTCTTAGG CCCATGTACAAATTAACATGGGAATTACATCCCTTGGTAATAAGTACGCAATATCAGAATAAAGGTATTGGAAGACTTCTAATAAATGA ATTGGAAAAACAAGCAAAGCAAAATGGAATAATCGGAATAGTATTGGGAACTGACGATGAATACTTTAAGACTTCATTATCAGATGTG GATCTTTCCGGGAAAAATATACTTGATGAGATAAGGAATATTAAAAATATAAGGAATCATCCGTACGAATTCTATCAACGATGTGGTTA TTCCATTGTCGGAGTAATACCCGATGCAAATGGCAAAAGAAAGCCAGATATTTGGATGTGGAAGAAGATTAGTGATTAGGGCAAAAA CGACAGCCTAACAATCGCTTTCACCTCGACAACCCGGCCTGTCACGCAATCTGCTAGTTTGATCCATGAGGCAGATTGCGCGCCAG GCTCGGGTTGCGGGTGAAGCGTATG aacA31 AAC(6´)-31 TTAGGCAGCACAAAGACCGTTCTCATGACCACTACCATTAGCTTCGTCACGCTGCGCCTCATGACCGAGCACGACCTTCCGATGCT CCATGACTGGCTAAATCGGCCTCACATCGTTGAGTGGTGGGGCGGAGAAGAAACACGTCCAACACTTGCTGAAGTGCTGGAGCAAT ACCTACCAAGCGCCCTGGCGAAAGAGTCCGTCACTCCCTACATCGCAATGCTGGATGAAGAACCGATTGGGTACGCTCAGTCGTAC ATTGCACTCGGAAGCGGTGACGGATGGTGGGAAGACGAAACCGATCCAGGAGTACGCGGAATAGACCAGTCTCTGGCGAATCCAT CGCAGCTGGGCAAGGGCTTGGGAACCAAGCTCGTTTGCGCGCTCGTTGAGATGCTGTTCAAAGACGCTGAGGTAACCAAGATCCA AACGGACCCGTCGCCGAACAACTTACGCGCAATCCGGTGCTACGAGAAGGCGGGTTTTGTGGCGCAAAGAACCATAAACACCCCA GATGGACCGGCCGTATACATGGTTCAAACACGTCAGGCGTTCGAGCAGGCGCGCAGTGCTGTCTAACCCTTCCATCGAGGGGGAC GTCCAAGGGCTATCGTCCTTGGCCGCCCCTCATGTCAAACG aacA32 AAC(6´)-32 TTAGGCAGCACAAAAGGACCGTCCCATGTCCCCGAGCAAAACACCCGTTACCTTGCGCCTCATGACCGAGCGCGACCTACCGATG CTGCATGCATGGCTGAACCGGCCGCACATTGTCGAGTGGTGGGGTGGAGAAGAAGAACGCCCGACTCTTCATGAAGTGGTCAAAC ACTACCTGCCGAGGGTTTTGGCAGAAGAAGCCGTCACACCATACATCGCGATGTTGGGCGACGAACCCATCGGCTACGCTCAGTCA TACGTCGCACTCGGAAGCGGTGATGGATGGTGGGAGGATGAAACCGACCCAGGCGTACGAGGGATAGACCAATTCCTGTCGAACC ATACACAGTTGAACCAGGGCCTAGGTACAAAGCTCGTCCAGGCACTCGTTGAACTGCTGTTCTCAGATCCTACCGTGACGAAGATC CAAACCGACCCGGCGCCAAACAACCATCGAGCGATTCGCTGCTACGAGAAAGCTGGCTTTGTTCAGCAAAACGTCATCACCACACC AGACGGCCCAGCCGTCTACATGGTTCAAACCAGGCAGGCCTTCGAGCGTGTGCGCAGTGCTGCCTAACCCCTCGCTCAAGCGGAG CGCCAACGGCAGGCCACCAGGCCCGGGCCGGTGGTACGCTGTACATTTTCACCGGCCCGGGCCTGGCGTCCTGCCGTTGGCGCC CGCTTAGCTCGAACG aacA34 TTAGAAGGCCCAGGCTATGCAGTACTCCATTCGCTCGGTTCGTGTTTCGGATACATCTGATTGGTTACGCCTTCGCAATCTCCTGTG GGAAGGGGATGACCACGAAACCGAGATCGCCCAGTTTTTCGCCGGAGCCCTGGCCGAGCCCAACGAAGTGCTGGTAGCCCATGAT Supplementary Material 178 GATGCGGGGGCCGTTGTTGGGCATGTCGAGTTATCCATCCGCGAGGATGTCGCAGGGCTGGAAGGCATCAGAGCGGGCTATATCG AAGGCCTGTACATCGAGGAGGCCCATCGCTCGTCCAGCGTCGCGACGCAGTTACTACGGCACTCCGAGCAATGGGCCCAAAGTCA GGGATGCCGGGCGTTTGCATCGGATCGAGAGGATCGCCTGATCATCCATAAGCGGTTTTCTGTGAGTCCGCTTTCTAACCCTTCATT CCAGCGGACCGCCTTCGGCGGCCGCTGAATTTGAACG aacA35 TTAGGCAGCACAGGGCCACCTTCTTATGCCCTCCCACGATCATCCTGTCACCTTGCGGCTTATGACGGAGCAAGACCTGCCTATGC TCCATGAATGGCTGAATCGGCCGCACATAGTCGAGTGGTGGGGCGGTGAAGAGCAACGTCCGACACTGGCGGATGTACTGGAACA CTACAGGCCCAGAATCTTGGCGCACGAGTCGGTCACTCCATACATCGCCATGCTGGGCGAAGAACCAATCGGATATGCGCAGTCGT ACGTCGCGCTCGGAAGCGGCGATGGATGGTGGGAAGAGGAAACCGACCCAGGAGTACGAGGAATCGATCAGTCGTTGGCGAATC CTACGCAGTTGAACATGGGCCTGGGAACAGAGCTTGTGCGAGCGCTGGTTGATCGGTTGTTCTCCGACCCAACGGTGACAAAGATC CAGACTGATCCGGCCCCAAACAATCGCCGCGCGATCCGCTGCTACGAGAAGGCGGGCTTTGTGCAGGAGAGAGTCATCACGACAC CCGACGGGCAGGCCGTCTACATGACCCAATCTAGGCAAGCCTACGAGCGTGCGCGCGGTGCTGCCTAACCCCTCGCTCAACCCCC GACTCGCTACGGCAGGCGTCGTAAGCCCGGTCCGCGCCAGCCGTAACATCATCGCGTACCGGGCTTACGACACCTGCCTCCGCTC GCGGGGTTAGCTCGAACG aacA37 TTAACCGCGGCTATGAAGTACTCTTTAAATCCAATCCGTCCCGAAGAATCACACGATTGGCTGCGCCTTCGAGATCTGCTTTGGGAA GCTGATGACCATGCGATAGAAATTGCGAGATTCTTTACTGGCGAGCTAGAGGAAACGGTTGAAGTACTGATCGCACGCGACCTCGA AGGACGTGCGGTAGGGCACGTTGAGCTTTCCATCCGTGAAGACATAGATGGTCTGAATGGCGTCAAGACCGGATACATCGAGGGG TTGTACGTTGATGTATTGCATCGCTCAAGCGGTCTGGTCAGGCAGTTTCTGAGAGCATCGGAACAATGGGCAAAAGATCAAGGCTG TAGCGCATTCGCATCTGATCGGCAAGACCGAGTAATCATCCACAGGCGGTTCTCCGGTGGCTCCGCCTAACAATTCATTCAAGCCG ACGCCGCTTCGCGGCGCGGCTTAATTCACGCG aacA38 TTAGGCAGCACATAACCACCGTCACACCATGCCTACCAAAGCGATCGCTGTCACCTTACGCGCCATGACCGAGGATGATCTTCCGA TGCTGTACGACTGGCTCAACCGACCCCACATCGTTGAATGGTGGGGAGGCGAGGGGCAGCGTCCCACCCTCTCAGACGTGGTGGA GCACTACCGGCCACGAGTCTTGGCAGAAGAGCGCGTCACGCCGTACATCGCCATGCTTGGCAATGAACCAATCGGCTATGCGCAG TCGTACATTGCTCTCGGGAGTGGCGAAGGTTGGTGGCAGGACGAAACTGACCCTGGAGTTCGCGGCATCGATCAATCGCTTGCCA ATCCCCTCCAGTTGAACAAAGGTCTCGGAACGGAGCTTGTGCGATCACTCGTCGAACTGTTGTTCTTGGATCCCGAGGTAACCAAG ATTCAGACTGATCCGGCTCCTACTAACCATCGTGCAATCAGGTGCTACGAAAAAGCAGGGTTTGTGGTGCAGAACACAATCACTACC CCCGATGGTCCGGCCGTCTATATGGTTCAAACTCGTCACGACTTCGAGCGAGCGCGCTGTGCTGCCTAACTGTTTGGTCAAGCTGA ACGCCAAAAGCTGCGCTTTTGGTGCCCTCACTCCGCTTCGCTCCTTGCGGCGCAGCTTACCGCGGGCG aacA39 AAC(6')-Iai TTAGCCGGACGCTTCGCGCAAAGAGGTATTATGAAATACACTATTATTGATATTAAAGATTCAGAAACGTACATTACTCAAGCTGCAG AAATATTATTTGATGTATTTTCAGAAATAAGCCCAGAATCATGGCCAACACTCCAAAAAGCAAAAGAAGATGTTATTGAATGTATAGAA GGTGAAAACATTTGCATTGGCATTATAATAAATAAAGAATTAATTGGATGGATTGGATTAAGAGAAATGTATAAAAAAACATGGGAATT ACATCCTATGGTTATCAAGAAAACACATCATAATATGGGATTTGGAAAAATACTAATTAATGAAATAGAAAAAAAAGCAAGAGAAAGAA ATTTAGAAGGTATTGTACTTGGAACAGATGATGAAACATATAGAACTTCATTATCAATGATTGAATTAAATAATGAAAATATTTTGCAAG AAATAAAGAATATTAGAAATTTAGAAAATCATCCTTATGAATTTTATAAAAAATGTGGATATTGTATTATTGGTGTAATTCCAAACGCAA ATGGGAAGAATAAGCCAGATATATTAATGTGGAAAAATATTATGGAAGAAAATTGCGGCTAACAACTGCTTCAACCTGACTCACCTAT TGGCATGGTTTATGCTTTCGCTTCGCTTGGCATAAACCATGCCAATGTACGGTTCGCAGGTTAAGCAAATG aacA40 TTAGGCAGCACAGTCCAGACTCCGCATGCCCTCCACTGCCCCTGAAGTCACCCAGCGACTCATGGTCAAGCGCGACCTGGTAATG CTTCACGAATGGCTCAATCGCCCTCACATCGTTGAGTGGTGGGGAGGCGAAGAAGCCCGCCCGACGCTGCAAGAAGTGCAATCGC ACTACCTACCTCGCGTGTTGGCCGAAGAGGCGGTCACGCCGTATATCGCGATGCTCGGGAGTGAGCCAATTGGGTACGCGCAGTC TTACGTTGCATTGGGAAGTGGCGATGGGTGGTGGGAGGATGAAACAGACCCGGGTGTGCGCGGAATAGATCAGTCGCTGGCCAAT CCAGAACAACTGGGCAAGGGCCTCGGGACCAGGCTTGTTTGTACCTTGGTCAAGACACTGTTCAACGATCCATCCGTGACCAAGAT TCAAACCGACCCGGCGCCAAACAACGTCCGCGCGATCCGCTGCTACGAGAAGGCTGGCTTCAGACAACAGAAGGTCATCACCACG CCGGACGGCCCGGCCGTCTACATGGTTCAAACCCGCGCCTCTTTCGAGGCAGCGCGCGGTGCTGCCTAACCCCTCGCCCAAGGC GCCGACGCGCTACGGCAAGCAGCGTAAGCCTAGTCCGCGGCCTATACCGCATCATCCCGCACTAGGCTTACGCTGCTCGCCTCCG CGCGCAGCTTAGCTCGAACG aacA42 TTAGGCTGACGCGCTTCGCGCGGAAGACTTTATGGCTACTCGGAGACTTTGAATGGCGTATGAGTTCTGCGAAATAGGTGAATCAA ACGAATATATTATTCTGGCGGCTAGAATCTTAACGAAATCATTCCTAGATATCGGTAATAATTCCTGGCCTGACATGAAAAGTGCTAC TAAAGAAGTTGAAGAATGCATTGAGAAGCCAAACATATGTCTTGGAATACATGAAAATGAAAAATTGCTTGGATGGATTGGCCTTAGG CCCATGTACAAATTAACATGGGAATTACATCCCTTGGTAATAAGTACTCAATATCAGAATAAAGGTATTGGAAGACTTTTAATAAATGA ATTAGAAAAAAAAGCAAAGCAAATTGGAATAATTGGAATAGTATTGGGAACTGACGATGAATACTTTAAAACTTCATTATCAGCTGTTG ATCTTTACGGCGAAAATATTCTTGATGAGATAAGGACTATTAAAAACATAAAAAATCATCCGTACGAATTCTATCAAAAATGTGGGTAT TCCATTGTCGGAGTAATACCCGATGCAAATGGAAAAAGGAAGCCAGATATTTGGATGTGGAAGAAGATAAATGATTAGGGTAAAAAT GACAGCCTAACAATCGCTTTCACCTCGACAACCCGGCCTGTCACGCAATCTGCTAGTTTAATCCTTGTGGAAGATTGCGCGCCAGG CTCGGGTTGCGGGTGAAGCGTATG aacA43 TTAGCCAGACGCTTCGCGCCGAGGACAATTGATGATTTATAACATAATTAACATTGCTGATTCTGAAAAGAACAAGGAAGACGCTGC ACGAATTCTATATTCTGCATTTCGCGGAAAGGGAAAAGATGCTTGGCCTACATTAGATTCAGCTCGTGAAGAAATAGCAGAGTGCAT AGCAAGTCCTAATATTTGCTTGGGCATAACCTTAGATGATCGCTTAGTAGGGTGGGGCGGACTTCGTCCCATGTATGAAACCACATG GGAATTGCATCCCTTAGTAATAGATCCTGATTATCAAGGTAATGGATTAGGAAGACTGCTCCTATCAAAGATTGAGAGCACTGCAACC ACAAATAGAATAATTGGTATAATGCTTGGAACAGATGATGAGACATTGAGTACAAGTCTTTCAATGACTGATATAGATGAGTCTAATAT TTTCCAAGAGATAAAAAATATAATTAATATAAAGAATCATCCATTTGAATTTTATAAAAAATGCGGGTACATCATTGTCGGTATAGTACC TAACGCAAATGGGTATAGAAAACCTGACATTTGGATGTGGAAGAATCTAGAAAAGAAAAGTGGCTAACAATCGCTTCAAGCGGATAA AACGGCGTGTCACGGTTCTTGCTTACGCAAGAACACGCGCCACACTCGTTTTACCGCTTAAGCGTATG aacA44 TTAGGCAGCACAAGACCACCTGTTCATGCCCGCGAACGAAAACACCGTAACCCTACGTCTGATGACTGAGCACAATTGGTGATTAAA TGAACATTGACAACAGAACCGTAACCCTACGTCTGATGACTGAGCACGACCTCTCGATGCTCCATGAGTGGCTGAACCGGCCACAC ATAGTTGAATGGTGGGGCGGTGAGGACGAACGTCCAACACTGGACGAGGTATATGAACACTACCTGCCAAGAGTTCTGGCGCAGG AATCGGTCACCCCGTACATCGCCATGCTCGGCAACGAACCGATTGGCTACGCGCAGTCGTACGTAGCGCTCGGTAGCGGTGACGG ATGGTGGGAAGAGGAAACTGACCCAGGGGTGCGAGGAATCGATCAGTCGCTGGCCAACCCAACGAAACTGAACAAAGGCCTCGGA ACGAAGCTTGTACGCGCGCTGGCTGATCTGCTGTTCTCAGATGCGTCAGTGACAAAGATCCAGACCGACCCGGCTCCGGGTAACC ATAGAGCTATTCGTTGCTACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTT CAAACACGCCAGGCATTCGAGCGAACACGCAGTGATGCCTAACCCTTCCATCGAGGGGGACGTCCAAGGGCTGGCGCCCTTGGCC GCCCCTCATGTCAAACG aacA45 TTAAAAGGCTCAGCCAATGCTGTACCTCATCCACCCGGTCAGTAGTTCGGACTCGCTCGATTGGCTTCGCCTTCGAAACCGGCTCT GGACTGGACACGACCACGCGGAAGAAATTGCTGAATTCTTCAACGGAAATTTGGTGGAGCTGGACGAGGTATTGATCGCACATGAC GACACGGGCATGGCCGTAGCTCATGTTGAGTTGTCAATCCGACAAGACATTGTTGGACTGGAGGGAGTCCGAACAGGTTACATCGA AGGGCTCTATATCGATGAATTTCATCGCTCGTCCGGCATCGCACTCCAACTCTTGCGGGCGTCCGAGCTTTGGGCTCTGGATCACG GGTGCCAAGCATTCGCTTCTGACCGCGAAGATCGCATCATCGTTCACAAGCGGTTTCCTGGAACTCCGCCTTCTAACATTTCAGTCG ACCGGACCGCCTGCGGCGTCCGGTCACCTTCACGTTGGGCATTAAGGAAAAGTTAATGGCAATCCGAATCTTCGCGATACTTTTCT CCATTTTTTCTCTTGCCACTTTCGCGCATGCGCAAGAAGGCACGCTAG aacA46 AAC(6')-Iaj TTAGGGCGACGCCGCATTCGCGGCGCGTGAAGAAAGAGGATCTTATGGAATATTCAATTATCAATATAGTAGAGCAAAACAATTATC AGATCGATGCTGCAAGAATTCTTACAAATACTTTTCTTGATATAGGTAATAAAACTTGGCCAACTATTCAAAGCGCAATCGATGAAGTC GAAGAGTGTATTGATCTGCCCAATATATGTATAGGTTTAATTCATAACAATCAATTAATTGGATGGGTCGGATTACGTCCGATGTATG ATAAAACGTGGGAATTGCACCCATTAGTTGTAAGAACTGACTATCAAAGTAAGGGGATCGGTAGTGTATTACTTGCTGAAGTTGAAAA AAGGGCAAGAGAAGTTGGAATAATTGGAATAATATTAGGAACTGATGATGAATATAACAAAACAAGTCTTTCTGAAATAACTATAGAT GAAAATAATATATTCGATGCAATACAAAATATTAAGAATATACATAATCATCCATATGAGTTTTACCAAAAAAATGGATATATGATTGTT GGAATAATTCCAAATGCAAATGGACTAAGAAAACCCGATATTTGGATGTGGAAAAGTCTACTCAATTGAATGGAAACAATAATAACTA TAGATAAGCTGTAAAAAATACTTTGACGAAATAACTTCGGTTGAAGTTATTATAGAAAAGAATATTAAAAAGAAAATTGTAAAAGAAATA ATTTTTTATCAAAAAATATCATTGATTCTTCTGGAAGAAACAGAAAAAGAAATGATTTACTTTGGTAATAATCTACTTAATACACAATAG Supplementary Material 179 TTTTATTCAAAAATAATGTTCATTAGGTTATAGGAAATTTGCCCTAACAACTGTTTCAACCTGACATTGCTATTGTCACACTTTTTGCTT TCGCTTCGCGGCAAAAAGTGCGCCAATTGACGCAATGCAGGTTAAACAAATG aacA47 TTATGCATCACAGAACCACCATACCTATGTCCGCGATCGACACCCCCGTTACCTTGCGCCTCATGACCGAGCAAGATCTTCCGATGC TCCATGACTGGCTGAACCGACCCCACATATTCGAGTGGTGGGGCGGTGAAGAGGAACGCCCGACTCTTGATGAAGTGCTGGAACA CTACCTGCCAAGAGTTCTGGCAGAAGAGTCCGTCACGCCGTACATCGCAATGCTGGGCGAGGAGCCGATCGGCTACGCCCAGTCT TACGTCGCACTCGGCAGCGGTGATGGATGGTGGGAAGACGAAACTGACCCAGGAGTGAGGGGAATTGACCAGTCTCTGGCTAATC CGACACAGTTGAGCAAGGGTCTGGGAACAAAGCTTGTCCGTGCGCTCGTTGAGCGGTTGTTCTTGGACTCCACTGTGACGAAGATC CAAACCGACCCAACTCCGAACAACCATCGGGCGATCCGTTGCTACGAGAAGGCGGGGTTTGTACGGCAGAAGATAATCACCACGC CTGATGGCCCAGCCGTCTACATGGTTCAAACACGTCAGTCATTCGAGAACGCGCGTAGTACTGCCTAACCAGCCAATGGAGCCGAT GCGGTGACGTATTGCGAGGTTTTAGTTCGGTGGCCCGCGCGGCTCATCGGCAACG aacA48 AAC(6')-Iag TTAGGTCCCACTAAACCTGCACCGAGCATGGCGAACACTCCGGTTGGAAACGTCGTGCCATGCAAGACGCCAGATCACCCTGGCT GGCTTGAGTTGCGCCTGCAGCTGTGGCCAGATGGCTCAACCGAGGAGTTCCTTCCCGAGATGGCTGCGGCCTGCGCTGAACCCGA CCGCTTCGGCCAGTTTTTGTTCCTGTCGCCGGGCGGCTTGGCGGAGGGCCTGGTCGAGGTGGCGCTTCGCACGGACTACGTCAAC GGCACCGAAAGCTCGCCAGTCGCCTTTCTCGAAGGCGTCTTCGTGGTGCCAGCGAGTCGAGGCCTTGGCATCGCCAGAGCGCTG GTGGCTGCGGCGGAAGGCTGGGCTAGAGATCGTGGCTGCACTGAGTTCGCCTCGGACGCCGAGGTCAGCAACGTTGGTAGTCAC GCCATGCACGCCGCTCTTGGTTTCGTCGAAACTGAGCGCGTCGTGTTCTTCCGTAAGGTCGTGGCACCGTGAGACCTAACCCCTCC ATAGAGCGGACAGCCAAAAGCTGGCCGCTCATGTCGAACG aacA49 TTAGCTTGACGCTTCGCGCAGAGGAGAGTTTCAATGAATATACAAATTTTGAACCTAGCAGAATGTACCGAATTTCAAGAGAGTGCA GCAAGAGTCCTATTAGATGGATTTAGAGAGGTTGGCAAGATTGCATGGGCTACCTATGAAGAAGCTATGGTCGAAGTACAGGAATGT ACTGAGATTCCTAATATAGCAATATGTGCTGTCGATAATAATAAAGTCGTTGGTTGGGTTGGAATTCGTCCAATGTACGATTACGTTT GGGAACTACATCCAATGATAGTAACCAAGAAATACCAAAAAAAAGGAATAGGGACCAAACTACTTAAGGAAATTGAACAGATTGCGA AAGAGAAAGGTTTACTAGGACTGGCTCTTGGAACTGATGATGAAACTGATAGTACAAGTCTATCGAAATGCGATTTTTCCCGAGATAA TATATTGATCGAGATAGCGAATATCAAATCATCTATGTCGCACCCCTATGCGTTCTATGAAAAGAACGGATACTTTATTGTAGGAGTG ATTCCGAATGCGAATGGAAAAAGAAAACCAGACATTTGGATGTGGAAAGAACTTGAAAGCTAACATCTAGTTCAACTTGACTTATTTA GCCGTCACGGGTTCTTGCTTTCGCAACAACCGCGGCCAGCCAAAACGCAAGTTAATATAGGCG aacA50 TTAGACAGCACAAAGACAATTCTCATGATCAACAGCATTAGCCTCGTTACGCTGCGCCTCATGACCGAGCAAGACCTACCGATGCTC CACGACTGGCTAAACCGGCCGCACATCGTTGAGTGGTGGGGTGGAGAAGAGGCACGGCCATCACTCGCTGAGGTACACGAGCAAT ACCTACCAAGTGTTCTGGCGAAAGAGTCGGTTACTCCATACATCGCAATGCTGAATCAAGAGCCGATCGGGTACGCTCAGTCATAC GTTGCCCTCGGAAGCGGTGACGGATGGTGGGAAGACGAAACCGATCCAGGGGTGCGTGGAATCGACCAGTTCCTCGCGAGTCCA CTACAACTTGGAAAAGGCCTTGGAACCAAGCTCGTTCGCGCGCTGGTAGAGACGCTGTTCAAAGATCCCGAGGTAACCAAGATCCA AACGGACCCGTCGCCGAGTAACCTACGCGCGATCCGCTGCTATGAGAAGGCGGGGTTCGTGAGACAAAAGACAGTAGCCACGCCA GATGGGCCAGCTGTGTACATGGTTCAAACACGCCACGAGTTCGGGCGGGCGCGCAGTGCTGCCTAACCCTTCCATCGAGAGGACA TGCCCCGGCAAGCCGGGTCATGCCTCTCATGTCAAACG aacA51 TTAGGCCACAAGGAACCGTCCCAGTATGAGCCCCGGCGTTGTCACCTTGCGGAGCATGACCGAAGAGGATCTCGGTATGCTTCAC GACTGGTTGAACCGGCCCCACATCGTCGAATGGTGGGGTGGCGAGCGTCCTTCGCTTGAGGAGGTGCAAGAGCACTATCACCCTT GTGCCCTTGCAGAAGCCAACGTGACTCCGTACGTCGGGATGCTCGATGGGCGGCCTTTTGCATATGCACAGTCGTATGTCGCCCTG GGATCGGGAGATGGGTGGTGGCAGGACGAAACCGATCCGGGCATACGTGGTATCGACCAGTCAATTGGCGAGTCCGCGCTTCTAG GGCAAGGTTACGGTACGTTGCTGGTACGCGCGCTCGTTGATCTGCTCTTCGCCGACCCGCGCGTATCGAAAGTTCAGACAGATCCT TCTCCCCGGAACTTGCGCGCCATACGATGCTATGAGAAGGCTGGCTTCCGCAGGATCAAGACCATTGAGACACCTGATGGACCAGC GATATACATGTTGCACGAGCGCCCATAGCCAGGGAATCCGCACGGTGTGGCCTAACAGATCGCTGCAACGGACAGTTGACCGAGC CGCTCGCGCGCTACCGCACGCGATCGTCCGCGTCAACTGCCGCTGAGCTCCGGAG aacA52 TTAGGCAGCACAAGATGACCGCGAACGAAAACACCGTAACCCTGCGCCTGATGACTGAGCACGACCTCCCCATGCTCCATGAATGG CTGAACCGGCCACACATAGTTGAATGGTGGGGCGGTGAGGAAGAACGTCCAACACTGGACGAGGTATATGACCACTACCTGCCAA CAGTTCTGGCGCAGGAATCAGTCACCCCGTACATCGCCATGCTAGGCAACGAACCGATTGGCTACGCGCAGTCGTATGTCGCGCTT GGCAGCGGTGACGGGTGGTGGGAAGAGGAAACCGACCCAGGCGTGCGAGGAATCGATCAGTCGCTGGCCAACCCAACGAAACTG AACAAAGGCCTCGGGACCAAGCTTGTACGCGCGCTGGCTGATCTGCTGTTCTCAGATGCGTCAGTGACAAAGATCCAGACCGACCC GGCTCCGGGTAACCATAGAGCTATCCGTTGCTACGAGAAGGCAGGCTTTTTGCAGGAAAAGGTCATCACCACACCTGACGGGCCG GCTGTCTACATGGTTCAGTCAAGGCAAACATACGAGCGTGCGCGCGGTGCTGCCTAACCCCTCGTTCAAGCGGACCGCCAACGGC GTGGCGCCTTGGCGGCCGCTTAACTCGAACG aacA54 TTAGGCCGCACAAAATCAACGCCTTATGTACACCAAGAATGCCGCAATAGTTCTGCGCCTCATGACTGAGAGCGATCTGCCAATGCT CCATGCGTGGCTGAACCGGCCCCACATAGTCGAGTGGTGGGGAGGAGAAGATAAACGCCCCACACTTGGCGAAGTTTTAGAACAT TATTCGCCCCGAGTTCTCGCAGAGCAAGCAGTAGTACCCTACATCGCAATGCTAGATGATGAACCCATTGGCTACGCGCAGTCCTA CACCGCCCTTGGAAGTGGCGATGGATGGTGGGAAGACGAAACTGATCCAGGGGTCCGTGGCATTGACCAGTCATTGGCCAATCCG TCGCAGCTAAACAAGGGCCTTGGAACAACGCTCGTACGCTCACTGGTTGAACTCCTGTTCAGTGATCCGGCCGTGTCGAAGATCCA AACTGATCCTTCTCCTAACAACCATCGCGCTATCCGCTGTTACGAAAAAGCCGGGTTCGCACAAGACAAAATCATCCTGACGCCTGA CGGCCCTGCGGTGTATATGGTTCAAACACGCCAAGCGTTCGAAAGCCAGCGCAATGCTGCCTAAAATTGAGGTCAAGGCGGCTCG CGTTCATGAAGAGCCTCATCATCACTCTATCCATTCGCATCTCGGCGTGTTTTCCTACGCCTTGGCATCTGTCCCTAGCCTAACTGG GCGCTCAACTGGACATCAACGTGCTGCGCACGTTGCTGCCAGTTAACTGGGGCG aacA56 TTAGCCGGACGCTTCGCGCAGGAGTAAGAATGGAATACAAAATAGTAGATATTGCACTTGATAGTAAGCTGGTGAAAGTTGCAGCAG AGATTTTGTTTTATACTTTTTCTGAAATTAATAATGAATCTTGGCCAACAATTAACTCTGCCACTGAGGAAGTGAAAGAATGTATAGAA GATAAGAATATTTGTATTGGAGTTTTGGTAGAAGACAAGCTGGTAGGTTGGATTGGATTACGTCCAATGTATGAAAATACTTGGGAAT TACATCCAATGGTGGTTTTATCAAAATGGCAAGGCAAAGGATTAGGGAAAATATTAATATTTGAATTAGAAAAAAGAGCAAAAGAACA AGGAATAAACGGAATTGTTTTAGGAACTGACGATGAGACATTTCGAACATCTTTATCTATGAAAGAATTGGATAAAAATGATCTATTTG AAGAAATAAAAAACATTAAAAATATTAATCATCATCCGTATGAGTTTTATCAGAAATGTGGATATAAAATTATTGGAGTAATCCCAGATG CTAATGGTAAGAATAAACCGGATATTTGGATGTGGAAGAAAATAATGTAGGAAGAACGGCTAACAACGGTTTCAACCTGACTTGCCC TTTGTCACGGTTTGTGCATGACGCTTCGCGGCTGCGCCGCTTCGCTTCTTCATGCACAAACCGCGCCAATCCGCTTCGCGGAACGG GCTGCGCAGGTTAAACCAATG aacA59 TTAGGCAGCACAGAAGCCGCATCCCATGCCCGCGAGCACATCCGTTGTGACCCTGCGCCTGATGACCGAGCACGACCTGCCAATG CTCCACGAATGGCTGAACCGGCCGCACATCGTCGAGTGGTGGGGCGGCGAGGAAGAGCGCCCCAGTCTTGACGAAGTCCGCGAG CACTATCTTCCGAGAGTCTTGGCTGAAGAGGCGGTTACGCCGTACATCGCAATGCTGGACGGCGAGGCAATTGGCTACGCCCAGT CTTACGTCGCACTGGGAAGCGGCGATGGGTGGTGGGAAGACGAAACTGATCCGGGAGTACGAGGGATTGACCAGTCGCTGGCCA ACCCCACACAGTTGAGCCGGGGCCTCGGAACGCAGCTTGTCCGTGCGCTCGTAGAGATGCTGTTCTCCAACCCCGCCGTGACTAA AATTCAGACCGATCCCGATCCCAAGAACCTACGTGCAATCCGGTGCTATGAGAAGGCAGGGTTTGTACAGCAGAAGGTCATCACCA CGCCCGATGGCCCCGCCGTCTACATGGTTCAAACGCGCAACGCGTTCGAGAGTTCGCGCAGTGCTGCCTAACACCTCGTTCAACC CCCGACCCGCTACGGCAGGCACTGTAAGCCTGGCCCGAGGTACTCCGTACATTGTCTCGGTCCAGGCTTACAGTGCCCGCCTCCG CGGTCGGGGTTAACTCGAACG aacA61 TTAGGCAGCACAGGGCCACCGCTTATGTCCTCCAGCGAATCCAAAGTCACGTTGCGCCTCATGACCGAGCACGACCTGCCAATGCT CCACGACTGGCTAAACCGGCCTCACATCGTTGAATGGTGGGGCGGTGAGGATGAGCGCCCTACTCTCGACGAAGTACTCGAGCAC TACCTGCCACGAGTAATGGCGGAGGAATCAGTAACTCCATACATTGCCATGCTGGGCGATGAACCGATCGGCTACGCACAGTCTTA CGTCGCACTCGGGAGCGGTGATGGATGGTGGGAAGACGAGACCGACGCAGGGGTACGAGGAATTGACCAATCTCTAGCCAATCCA GCGCAGTTGAGCAAGGGCCTGGGAACACTCCTGGTCCGAACGCTCGTTGAAACCTTGTTCGCGGATCCGGCCGTCACGAAGATCC AAACCGATCCGTCTCCAAACAACTACCGCGCAATCCGCTGCTACGAGAAGGCAGGGTTTGCACAGCAGGGCGTCATCACCACGCC TGACGGGCCGGCGGTCTACATGGTTCAAACACGGCAAGCGTTCGAGCGCGCGCGCGGTGCTGCCTAACAACTCGCTCAACCGGA CCCGCTACGGCAGGCCGGTTAGCTCGAACG aacA64 TTAGCCGGACGCCTTCGGCGCTAGGAATAAAATGGAATATTCAATTGTTAATATTGGCTTAAACGATAATTATATTACCCAAGCAGCT GTTGTTTTATATAATGTATTTAATAATCTTGAAAACCAATCATGGCCAACTATTGATTCTGCCAAAATGGAAGTAAATGAATGCTTAGAA Supplementary Material 180 AATAATAACATCTGTATTGGAATGTTGATAGATAATAAAATAGTCGGTTGGGTAGGCCTAAGGCCAATGTATGAAAAAACTTGGGAAT TACATCCATTAGTTGTCATTGATGATTATCAAAATATGGGTGTTGGTAAAATATTAATGAATGAAATAGAAAAAAGGGCAAAAGAAAAG GGAATTATAGGGGTTGTACTTGGAACTGATGATGAGAAATATAAAACATCGTTATCAAAAGTTGATTTAAATAATAAGAATATATTCAC TGAAATAGAAAATATTAAAAATATTAATCATCATCCATTCGAGTTTTATCAAAAATGTGGATATTTTATTGTTGGTGTAATACCAAATGC AAATGGAAAAAATAAGCCAGATATATGGATGTGGAAAGAAATACAATAAGAAAGTTCGGCTAACAACTGCTTCAACCTGAGTCGCCTA TTGTCATGATTTTTGCTGCTCGCTTCGCTCGTTCACGCAAAAATCACGCCAATTTACGGCTCCCAGGTTAAGCAAATG aacAX TTATGCATACAAATCATCACCGTGATTTACTCTTACCGGAAAGCTGAAGAAACAGATAGAGAAGCCATCTACCAATTGTATTGCTTGG TAATGCGCGGCTTCATTTCTGAAATTTGGGGTTGGGATGAACAGTGGCAAGGAAACGATTTTTCTGCTCACTTTGATACCAAAGGCA TTACGTTGGTACACCAAAAACACGAGTTGGTTGGGTATTCCCATGTCGAGAATCGAGGGGCCAGTGTCATAAGAATGATCGTTGTTC ATCCTCATCACCAGCGGAAGGGTATCGGGAGAAAACTGCTTGAGTCTGTTATTGCGTCTGGCAATGAGCAATCCAAGGGCATCGGA TTGGAGGTATTCAAAATCAATGATGAGGCAAAGAAATTCTATGAAAGATTTGGCTTTAATGTTGAAGGTGAAAACCCCACCAGTTACG TCATGGCACATGCATAACCCGGCGCTCAACCTCGCTCCCTTCGGTCGCTGGACTCCGGGCGATAAGGCCGCCCGGAGCCGGTTAG CTCTACG aacC1 AAC(3)-Ia TTAGGTGGCTCAAGTATGGGCATCATTCGCACATGTAGGCTCGGCCCTGACCAAGTCAAATCCATGAGGGCTGCTCTTGATCTTTTC GGTCGTGAGTTCGGAGACGTAGCCACCTACTCCCAACATCAGCCGGACTCCGATTACCTCGGGAACTTGCTCCGTAGTAAGACATT CATCGCGCTTGCTGCCTTCGACCAAGAAGCGGTTGTTGGCGCTCTCGCGGCTTACGTTCTGCCAAAGTTTGAGCAGGCGCGTAGTG AGATCTATATCTATGATCTCGCAGTCTCCGGCGAGCACCGGAGGCAAGGCATTGCCACCGCGCTCATCAATCTCCTCAAGCATGAG GCCAACGCGCTTGGTGCTTATGTGATCTACGTGCAAGCAGATTACGGTGACGATCCCGCAGTGGCTCTCTATACAAAGTTGGGCAT ACGGGAAGAAGTGATGCACTTTGATATCGACCCAAGTACCGCCACCTAACAATTCGTTCAAGCCGAGATCGCTTCGCGGCCGCGGA GTTGTTCGGAAAAATTGTCACAACGCCGCGGCCGCAAAGCGCTCCGGCTTAACTCAGGCG aacC2 AAC(3)-Ib TTAGGTGGCTCAATGAGCATCATTGCAACCGTCAAGATCGGCCCTGACGAAATTTCAGCCATGAGGGCTGTGCTCGATCTCTTCGG CAAAGAGTTTGAGGACATTCCAACCTACTCTGATCGCCAGCCGACCAATGAGTATCTTGCCAATCTTCTGCACAGCGAGACGTTCAT CGCGCTCGCTGCTTTTGACCGCGGAACAGCAATAGGTGGGCTCGCCGCCTACGTTCTACCCAAGTTCGAGCAAGCGCGAAGCGAG ATCTACATTTATGACTTGGCAGTCGCTTCCAGCCATCGAAGGCTAGGAGTCGCAACTGCCCTGATTAGCCACCTGAAGCGTGTGGC GGTTGAACTTGGCGCGTATGTAATCTATGTGCAAGCAGACTACGGTGACGATCCGGCAGTCGCTCTCTACACAAAGCTTGGAGTTC GGGAAGACGTCATGCACTTCGACATTGATCCAAGAACCGCCACCTAACAATTCGTTCAAGCCGAGACCGCTTCGCGGCTCGGCTTA GTGCGGTAACGTGTACCACACCGCCGTGCCGCGCAGCGGTCCGGCTTAACTCAGGCG aacC3 AAC(3)-Ic TTAGGCAGCAGCAGCTAAGATGATCTCTACTCAAACCAAGATTACCCGCCTCAACTCTCAAGACGTTGGTGTAATGCGGGCAATGCT AGGCATGTTCGGCGAGGCTTTTGAGGACGCTGAGAACTATTGCCGCGCTCAACCAAGCGACAGTTACCTACAAGACTTACTGTGTG GCTCTGGCTTCATCGCAATCGCTGCGTTACAGGGGCAAGAGGTCATCGGTGGGCTCGCCGCGTATGTGCTCCCAAAGTTTGAACAA CAGCGCAAAGAAATCTATATCTACGACTTAGGCGTGCAGGGAGCCTATCGCCGACGAGGCATCGCCACAGCCTTGATCAATGAACT CCAGCGTATCGCACATGATATTGGCGCTTATGTAATTTTTGTCCAGGCTGACTATGGGGACGATCCTGCGGTAGCGCTCTACACAAA ACTCGGTATCCGGGAGGACGTGATGCACTTTGACATAGAACCTCAACCTGCTGCCTAACAAGTCGTTCAAGCCGACGCTGCTTCGT GGCAGCAACTGCGTGCATACGCTACGCTAGCACGCGTTGCCGGCACTACCGCAGCGCGGCTTAACTCAAGTG aacC4 TTAGGTGGCTCACGTATGGGCATCATTCGCACATGTAGGCTCGGCCCTGACCAAGTCCAATCCATGCGGGCTGCTCTTGATCTTTTC GGTCGTGAGTTCGGAGACGTAGCCACCTACTCCCAACATCAGCCGGACTCCGATTACCTCGGGAACTTGCTCCGTAGTAGGACATT CATCGCGCTTGCTGCCTTCGAGCAAGAAGCGGTTGTTGGCGCTCTCGCGGCTTACGTTCTGCCCAAGTTTGAGCAGGCGCGTAGT GAGATCTATATCTATGATCTCGCAGTCTCCGGCGAGCACCGCCGGCAGGGCATTGCCACCGCGCTCATCAATCTCCTCAAGCATGA GGCCAACGCGCTTGGTGCTTACGTGATCTACGTGCAAGCGGATTACGGTGACGATCCCGCAGTGGCTCTCTATACAAAGTTGGGCA TACGGGAAGACGTGATGCACTTTGATATCGACCCAAGTTCCGCCACCTAACAATTCGTTCAAGCCGAGATCGCTTCGCGGCCGCGG AGTTGTTCGGTAAATTGTCAAAACGCCGCGGCCGCAAAGCGCTCCGGCTTAACTCAGGCG aacC5 AAC(3)-Id TTAGGCATCAGGAGCAGACGAGTGTCAGTCGAAATCATCCATCTCACTGGAAACGATGTTGCGTTGTTGCAGTCAATAAATGCCATG TTCGGCGAGGCATTCAACGACCAAGATAGTTATGCCCGCAACAAGCCGTCATCAAGCTATCTTCAAAAACTGCTTAGCACTTCTAGT TTTATTGCGTTGGCTGCGGTTGACGAGCAAAAAGTCATTGGCGCTATCGCCGCGTATGAGTTGCAAAAATTCGAGCAGCAAAGAAG CGAGATTTATATCTACGATCTCGCTGTAGCGGCAACCCGCCGCAGAGAAGGCATAGCTACAGCTCTAATTAAAAAACTCAAGGCTAT AGGCGCAGCGCGTGGAGCTTATGTGATTTACGTCCAAGCTGATAAAGGCGTAGAAGACCAACCAGCCATAGAGCTCTATAAAAAAC TAGGAACCATCGAAGACGTATTTCATTTCGACATTGCGGTTGAGCAGAGTAAAAATCATGCCTAACAAGGCACTCCAGCCGACGGCT TTGCCTTCGCTGCGCTACGGCAAATCCGCGGCTGAGTTTGGGCG aacC6 AAC(3)-If TTAGGTGGCTCAATGAGCATCACTGCTACCATCAGGATTGGTCCTGATGAGATTCCGGCCATGCGGGCTGTGCTCGACCTGTTCGG CAGAGAGTTTGAGGACATGTCCGCCTACTCGGATCGCCAGCCGACAAATGATTACTTGGCCAAGCTTCTCCGCAGCGAGACGTTCA TCGCGCTAGCCGCATTTGACCAAGGAACAGCAATAGGTGGGCTCGCTGCCTACGTTTTGCCCAAGTTCGAGCAAGCGCGTAGTGA GATCTACATTTATGACTTAGCAGTCGCATCCAGCTATCGACGGCAAGGAATCGCAACTTCCCTGATTAGCCACCTGAAGCGTGAGGC AATCAAGATTGGGGCATATGTGATCTATGTGCAAGCAGACTACGGAGACGACCCCGCGGTGGCTCTCTACACCAAGCTTGGTGTTC GGGAAGATGTCATGCACTTTGACATTGATCCAGGAACCGCCACCTAACAATTCGTTCAAGCCGAACTTGCTTCGTTACACCAGCGCC GTGGCAGGTTAAGCTTGCCACGTCGCCGGCTACACTTCGCAAGTCGGCTTAACTCAGGCG aacC11 TTAGGTGGCTCACGTATGGGCATCATTCGCACATGTAGGCTCGGTCCGGACCAAGTGCAATCCATGCGGGCTGCTCTTGATCTCTT CGGTCGTGAGTTCGGAGACGTAGCCAGCTACTCCCAACATCAGCCGGACTCCGATTACCTCGCGAAATTGCTCCACAGCAGGACAT TCATCGCGCTTGCCGCGTTCGACCAAGAATCGGTTGTTGGCGCTCTTGCCGCCTACGTTTTGCCAAAGTTTGAGCAAGCACGTAGC GAGATCTACATCTATGATCTCGCAGTCTCCGGCGAGCACCGGCGGCAAGGCATAGCCACCGCGCTCATCAATCTCCTCAAGCAAGA GGCCAATGCGCTTGGTGCTTACGTGATCTATGTGCAAGCTGACTACGGTGACGATCCCGCAGTGGCCCTCTACACAAAGTTGGGCA TACGGGAAGACGTCATGCACTTTGATATCGACCCAAGTACCGCCACCTAACAATTCGTTCAAGCCGAACCTGCTTCGTGGCCCGGC TAATGTGCTAGCGTGTAGCACAAAGCCGTGCCACTACGCAGGTCGGCTTAACTCAGGCG aacC13 TTAGGCATTAGGAGCCGATGAATGTCAGTCAAGATTATTCAACTCACTGAAAAAGATGTTGGCTTAATGCAGTCTATAAATGCCATGT TCGGTGAGGCATTCGATGATAAAGAGCATTATTCCAGCAACAAGCCGACCTCAAGCTATCTTAAAAAACTGCTTGGCAGTTCAAGTTT TATTGCGTTGGCTGCGGTTCACGAGGAAAAAGTCATAGGCGCTATAGCTGCGTATGAGTTGCAAAAATTTGAGCAGCAAAGAAGCG AAATCTACATCTACGACCTCGCTGTAGCGGCAACCCACCGCAGAGCAGGCGTAGCTACAGCACTAATTCACAAATTGAAGGCGATA GGCGCCGAGCGCGGCGCTTATGTCATATACGTCCAAGCCGATAAAGGCGTAGAAGACCAACCGGCCATAGAGCTTTATAAAAAACT GGGAACCATCGAAGACGTATTCCACTTCGATATTGCAGTTGAGGATAATAAAAATGCCTAACAAGGCGTTGCACCGGAAAAATTTGC CTTCGCTTCGCTACGGCAATTTTTCAGGTGAACTTGGGCG aadA1 ANT(3’’)-1 TTAAACATCATGAGGGAAGCGGTGATCGCCGAAGTATCGACTCAACTATCAGAGGTAGTTGGCGTCATCGAGCGCCATCTCGAACC GACGTTGCTGGCCGTACATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCACACAGTGATATTGATTTGCTGGTTACGGTGA CCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAAACTTCGGCTTCCCCTGGAGAGAGCGAGATTCTC CGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTCCGTGGCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATG GCAGCGCAATGACATTCTTGCAGGTATCTTCGAGCCAGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACA TAGCGTTGCCTTGGTAGGTCCAGCGGCGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCT TAACGCTATGGAACTCGCCGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAGTA ACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCGTCATACTTGAAG CTAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAGAATTTGTCCACTACGTGAAAGGC GAGATCACCAAGGTAGTCGGCAAATAATGTCTAACAATTCGTTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAACTCAAGCG aadA2 TTAGACATCATGAGGGTAGCGGTGACCATCGAAATTTCGAACCAACTATCAGAGGTGCTAAGCGTCATTGAGCGCCATCTGGAATCA ACGTTGCTGGCCGTGCATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCATACAGCGATATTGATTTGTTGGTTACTGTGGC CGTAAAGCTTGATGAAACGACGCGGCGAGCATTGCTCAATGACCTTATGGAGGCTTCGGCTTTCCCTGGCGAGAGCGAGACGCTC CGCGCTATAGAAGTCACCCTTGTCGTGCATGACGACATCATCCCGTGGCGTTATCCGGCTAAGCGCGAGCTGCAATTTGGAGAATG GCAGCGCAATGACATTCTTGCGGGTATCTTCGAGCCAGCCATGATCGACATTGATCTAGCTATCCTGCTTACAAAAGCAAGAGAACA TAGCGTTGCCTTGGTAGGTCCGGCAGCGGAGGAATTCTTTGACCCGGTTCCTGAACAGGATCTATTCGAGGCGCTGAGGGAAACCT TGAAGCTATGGAACTCGCAGCCCGACTGGGCCGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAATA Supplementary Material 181 ACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATAAAACGCCTACCTGCCCAGTATCAGCCCGTCTTACTTGAAGC TAAGCAAGCTTATCTGGGACAAAAAGAAGATCACTTGGCCTCACGCGCAGATCACTTGGAAGAATTTATTCGCTTTGTGAAAGGCGA GATCATCAAGTCAGTTGGTAAATGATGTCTAACAATTCGTTCAAGCCGACCGCGCTACGCGCGGCGGCTTAACTCCGGCG aadA4 TTAGGCATCTTCATGGGTGAATTCTTTCCTGCACAAATTTCCGAGCAGCTATCCCACGCTCGCGGGGTGATCGAGCGCCATCTAGCT GCAACGCTGGACACAATCCACCTGTTCGGATCTGCGCTCGATGGAGGGTTGAAGCCGGACAGCAACATCGACTTGCTCGTGACCG TCAGCGCCGCACCTAACGATTCGCTCCGGCAGGCACTAATGCTCGACCTGCTAAAAGTCTCATCACCGCCAGGCAATGGCGGACC ATGGCGACCGCTGGAGGTGACTGTTGTCGCTCGAAGCGAAGTAGTGCCCTGGCGCTATCCGGCGCGACGTGGGCTTCAGTTCGGT GAGTGGCTCCGCCACGACATCCTCTCCGGAACGTTCGAGCCTGCCGTTCTGGATCACGATCTTGCGATTTTGCTGACCAAGGCGAG GCAACACAGCCTTGCACTGCTAGGTCCATCCGCAGTCACGTTCTTCGAGCCGGTGCCGAACGAGCATTTTTCCAAGGCGCTTTTCG ACACGATTGCCCAGTGGAATTCAGAGTCGGATTGGAAGGGTGACGAGCGGAACGTCGTTCTTGCTCTTGCTCGCATTTGGTACAGT GCTTCAACGGGTCTCATTGCTCCTAAGGACGTTGCTGCCGCATGGGTATCGGAGCGTTTGCCTGCCGAGCATCGGCCCATCATTTG CAAGGCACGCGCGGCGTACCTGGGTAGCGAGGACGACGACCTAGCAATGCGCGTCGAAGAGACGGCTGCGTTCGTTCGATATGC CAAAGCAACGATTGAGAGAATCTTGCGTTGAGCACGACGTGCGAAAGTGCATCGACCGGCGCCCAGGCACTTGATGCCTAACTCC GCGTTGAAGTGGAGGCTGCGCCCGCCGCTCAACTATGCG aadA5 TTAGGCATCATGGGTGAATTTTTCCCTGCACAAGTTTTCAAGCAGCTGTCCCACGCTCGCGCGGTGATCGAGCGCCATCTGGCTGC GACACTGGACACAATCCACCTGTTCGGATCTGCGATCGATGGAGGGCTGAAGCCGGACAGCGACATAGACTTGCTCGTGACCGTC AGCGCCGCACCTAACGATTCGCTCCGGCAGGCGCTAATGCTCGATTTGCTGAAAGTCTCATCACCGCCAGGCGATGGCGGAACAT GGCGACCGCTGGAGCTAACTGTTGTCGCTCGAAGCGAAGTAGTGCCTTGGCGCTATCCGGCGCGGCGTGAGCTTCAGTTCGGTGA GTGGCTCCGCCACGACATCCTTTCCGGAACGTTCGAGCCTGCCGTTCTGGATCACGATCTTGCGATTTTGCTGACCAAGGCGAGGC AACACAGCCTTGCGCTTCTAGGCCCATCCGCAGCCACGTTTTTCGAGCCGGTGCCGAAGGAGCATTTCTCCAAGGCGCTTTTCGAC ACTATTGCCCAGTGGAATGCAGAGTCGGATTGGAAGGGTGACGAGCGGAACGTCGTTCTTGCTCTTGCTCGCATTTGGTACAGCGC TTCAACTGGTCTCATTGCTCCTAAGGACGTTGCTGCCGCATGGGTATCGGAGCGTTTGCCTGCCGAGCATCGGCCCCTCATCTGCA AGGCACGCGCGGCGTACCTGGGTAGCGAGGACGACGACCTAGCAATGCGCGTCGAAGAGACGGCCGCGTTCGTTCGATATGCCA AAGCAACGATTGAGAGAATCTTGCGTTGAGCGGCATGTGCGAAAAGTGCATCGACCCGCGCCGAGGGCATCTGATGCCTAACTCG GCGTTCAAGCGGACGGGCTGCGCCCGCCGCTCAACTATGCG aadA6 TTAGACATCATGAGTAACGCAGTACCCGCCGAGATTTCGGTACAGCTATCACTGGCTCTCAACGCCATCGAGCGTCATCTGGAATCA ACGTTGCTGGCCGTGCATTTGTACGGCTCTGCACTGGACGGTGGCCTGAAGCCATACAGTGATATTGATTTGCTGGTTACTGTGGC TGCACGGCTCGATGAGACTGTCCGACAAGCCCTGGTCGTAGATCTCTTGGAAATTTCTGCCTCCCCTGGCCAAAGTGAAGCTCTCC GCGCCTTGGAAGTTACCATCGTCGTGCATGGTGATGTTGTCCCTTGGCGTTATCCGGCCAGACGGGAACTGCAATTCGGGGAGTG GCAGCGTAAGGACATTCTTGCGGGCATCTTCGAGCCCGCCACAACCGATGTTGATCTGGCTATTCTGCTAACTAAAGTAAGGCAGC ATAGCCTTGCATTGGCAGGTTCGGCCGCAGAGGATTTCTTTAACCCAGTTCCGGAAGGCGATCTATTCAAGGCATTGAGCGACACT CTGAAACTATGGAATTCGCAGCCGGATTGGGAAGGCGATGAGCGGAATGTAGTGCTTACCTTGTCTCGCATTTGGTACAGCGCAGC AACCGGCAAGATCGCACCGAAGGATATCGTTGCCAACTGGGCAATGGAGCGTCTGCCAGATCAACATAAGCCCGTACTGCTTGAAG CCCGGCAGGCTTATCTTGGACAAGGAGAAGATTGCTTGGCCTCACGCGCGGATCAGTTGGCGGCGTTCGTTCACTTCGTGAAACAT GAAGCCACTAAATTGCTTAGTGCCATGCCAGTGATGTCTAACAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAG GCG aadA7 TTAGACATCATGAGTGAAAAAGTGCCCGCCGAGATTTCGGTGCAACTATCACAAGCACTCAACGTCATCGGGCGCCACTTGGAGTC GACGTTGCTGGCCGTGCATTTGTACGGCTCCGCACTGGATGGCGGATTGAAACCGTACAGTGATATTGATTTGCTGGTGACTGTAG CTGCACCGCTCAATGATGCCGTGCGGCAAGCCCTGCTCGTCGATCTCTTGGAGGTTTCAGCTTCCCCTGGCCAAAACAAGGCACTC CGCGCCTTGGAAGTGACCATCGTCGTGCACAGTGACATCGTACCTTGGCGTTATCCGGCCAGGCGGGAACTGCAGTTCGGAGAGT GGCAGCGCAAAGACATCCTTGCGGGCATCTTCGAGCCCGCCACAACCGATTCTGACTTGGCGATTCTGCTAACAAAGGCAAAGCAA CATAGCGTCGTCTTGGCAGGTTCAGCAGCGAAGGATCTCTTCAGCTCAGTCCCAGAAAGCGATCTATTCAAGGCACTGGCCGATAC TCTGAAGCTATGGAACTCGCCGCCAGATTGGGCGGGCGATGAGCGGAATGTAGTGCTTACTTTGTCTCGTATCTGGTACACCGCAG CAACCGGCAAGATCGCGCCAAAGGATGTTGCTGCCACTTGGGCAATGGCACGCTTGCCAGCTCAACATCAGCCCATCCTGTTGAAT GCCAAGCGGGCTTATCTTGGGCAAGAAGAAGATTATTTGCCCGCTCGTGCGGATCAGGTGGCGGCGCTCATTAAATTCGTGAAGTA TGAAGCAGTTAAACTGCTTGGTGCCAGCCAATGATGTCTAACAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAG CG aadA9 TTAGACATGATGAGCAACTCTATACACACCGGAATCTCAAGACAGCTTTCACAGGCACGCGATGTAATTAAACGCCATTTGGCATCA ACGCTGAAAGCCATACACTTGTATGGTTCTGCAATTGATGGTGGCCTCAAACCATATAGCGACATTGATCTGCTGGTTACCGTGGAT GCACGCTTGGATGAAGCTACCAGACGCTCCCTGATGCTCGATTTCTTGAATATCTCGGCACCACCATGCGAAAGCTCAATACTCCG GCCGCTAGAGGTAACTGTTGTTGCATGCAACGAAGTAGTGCCTTGGCGTTATCCGGCACGACGAGAACTGCAGTTCGGGGAGTGG CTGCGGGAGGATATTCTTGAAGGTGTCTTCGAGCCAGCCGCCTTGGACGCCGACCTTGCAATTCTAATAACGAAAGCTAGGCAACA CAGCATCGCTTTAGTAGGTCCAGTGGCTCAAAAAGTCTTCATGCCGGTGCCAGAGCATGACTTTCTCCAGGTGCTTTCCGATACCCT TAAGCTGTGGAATACTCATGAGGATTGGGAAAATGAGGAGCGGAACATCGTACTCACGTTAGCTCGGATCTGGTATAGCACTGAAA CTGGAGGAATCGTCCCCAAGGATGTGGCCGCCGAATGGGTTTTAGAGCGCTTGCCAGCTGAGCATAAGCCAATACTGGTTGAGGC GCGGCAAGCCTATCTTGGGCTTTGCAAGGATAGTCTTGCTTTGCGTGCAGATGAGACTTCGGCGTTCATTGGCTATGCAAAGTCTG CGGTCGCTGATTTGCTCGAAAAGCGAAAATCTCAAACTTCGCATATTTGCGATGGCGCCAAGAACGTCTAACGTCTAACTATTCATTT AAGCCGAAGCCGCTTCGCGGCTCGGCTTAATTCAGGCG aadA10 TTAGACATCATGATAAACACAGTGCCCGCCGAGATTTCGGTACAGTTATCACAGGCACTCAACGTCATCGAGCATCATCTGGGATCG ACGTTGCTGGCCATGCATTTGTATGGCTCTGCACTCGACGGTGGCCTGAAGCCATACAGTGATATTGATTTGCTGGTTACTGTGACC GCACGGCTCGATGAGAGTGTGCGGCAAGCTCTGTTCGTCGATCTCTTGGGGGTTTCCGTTTTCCCTGGTCAAAGCAGAGTTCTCCG CGCCTTGGAAGTTACCATTGTCGTGCACAGTGACATCGTTCCTTGGCGCTATCCGGACAGACGGGAACTGCAATTCGGGGAGTGGC AGCGCAAAGACATTCTTGCGGGCATCTTCGAGCCTGCGACAACCGATGTTGATCTAGCCATTCTGCTAACAAAAGCAAGGCAACATA GCCTTGCCTTGGCCGGTTCGGCTGGGGAAGATTTCTTCAACCCAGTCCCGGAAAGCGATCTATTCAAGGCACTGGCCGACACCCTG AAACTATGGAACTCACAGCCGGATTGGATAGGTGACGAGCGGAATGTAGTGCTTACTTTGTCTCGTATTTGGTACAGCGCAGCAACC GGCAAGATCGCGCCGAAGGATGTTGCCGCCAACTGGGTAATGGAGCGTTTGCCAGTTCAACATCAGCCCGTGCTGCTTGAAGCCC GGCAGGCTTATCTTGGACAAGGAGAAGATTGCTTGGCTTCGCTCACGGATCAGTTAGAGGCGTTTGTTCACTTCGTGAAGCATGAA GCCACTAAACTGCTTGGTGCCACGCCAATGATGTCTAACAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAGGCG aadA11 TTAGACATCATGAGGGAAGCGGTGACCGCCGAAATTTCAACACAACTATCAGAGGTGTTTAGCGTCATCGAGCGCCATCTGGAGCC GACGTTGCTTGCCGTGCATTTGTACGGCTCCGCAGTGGATGGCGGCTTGAAGCCATACAGCGATATTGATTTGCTGGTTACTGTGA CCGCAAGGCTTAATGAAGCAACACGGCAAGCTTTGCTCAACGACCTTTTGGAGGCTTCGGCTTTCCCTGGCGAGAGCGAGACTCTC CGCGCTATAGAAGTCACCTTTGTCGTGCACGACGACATCATCCCGTGGCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATG GCAGCGTAATGACATTCTTGCGGGTATCTCCGAGCCAGCCGCGATCGACGTTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAAC ATAGCGTTGCCTTGGTAGGTCCAGCTGCGGAGGAACTCTTTGATCCCGTTCCTGAACAGGATCTATTCGAGGCACTGAATGAAACCT TGAAGCTATGGAACTCGCAGCCCGACTGGGCCGGCGATGAGCGAAATGTAGTGCTCACGTTGTCCCGCATTTGGTACACCGAAGTA ACCGGAAAAATCGTGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTACCTGCCCAGCATCAGCCCGTCTTACTTGAAG CTAGACAGGCTTATCTTGGACAAAAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAGAATTTGTTCACTTCGTGAAAGGC GAGATCACTAAGGTAGTCGGCAAATGATGTCTAACAATTCGTTCAAGCCGATTCCGCTTCGCGGCACGGCTTAACTCAGGCG aadA13 TTAGACATCATGAGGGACTCAGTGACCGCCGAAATTTCGACGCAACTATCCAAGGTGCTTAGTGTTATCGAGCACCATCTGGAACCG ACGTTGCTTGCCGTACATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCATACAGTGATATTGATTTGCTGGTTACTGTGACC GCAAGGCTTGATGACACAACGCGGCGAGCTTTGTTCAACGATCTTTTGGAGGTTTCGGCTTTCCCAGGCGAGAGTGAGATTCTCCG CGCTATAGAAGTCACCATTGTCGTGCACGAAGACATTATGCCGTGGCGTTATCCAGCCAAGCGCGAACTGCAATTTGGAGAATGGC AGCGCAATGACATTCTTGCGGGTATCTTCGAGCCAGCCACGATCGACATCGATCTGGCTATCTTGCTAACGAAAGCGAGAGAACAT AGCGTGGCTTTGGTAGGTCCGGCGGCGGAGGAACTCTTTGATCCAGTTCCTGAACAAGATCTAATCAAGGCGCTGAATGAAACCTT GAAGCTATGGAACTCGCAGCCCGACTGGGCCGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAGCA ACTGGTAAAATCGCGCCGAAGGATGTCGCTGCCAACTGGGCAATGGAACATCTACCTGCCCAGCATCAGTCTGTCTTGCTTGAAGC Supplementary Material 182 TAGACAGGCTTATCTTGGGCAAGAGGAAGATCGCTCGGTCTTGCGCGCAGATAAGTTGGAAGAATTTATTCACTTCATGAAAAGCGA GATCACCAAGGTGCTCGGCAATGATGTCTAACAATGCGTTCAAGCCGATGCCGCTTCGCGGCACGACTTAACTTCGGCG aadA16 TTAGACATCATGAGCAACGCAGTGCCCGCCGAGATTTCGGTACAGCTATCACAGGCACTCAACGTCATCGAGCATCATCTGGGATC GACGTTGCTGGCCGTGCATTTGTACGGCTCTGCACTCGACGGTGGCCTGAAGCCATGCAGTGATATTGATTTGCTGGTTACTGTGA CTGCACAGCTCGATGAGACTGTGCGGCAGGCTCTGTTCGTAGATTTCCTGGAAGTTTCCGCTTCTCCCGGCCAAAGTGAAGCTCTC CGTGCCTTGGAAGTTACCATCGTCGTGTACGGCGATGTTGTTCCTTGGCGTTATCCAGCCAGACGGGAACTGCAATTCGGGGAGTG GCAGCGCAAGGACATTCTTGCGGGCATCTTCGAGCCCGCGACAACCGATGTTGATCTGGCTATTCTGCTAACTAAAGCAAGGCAAC ACAGCCTTGCCTTGGCAGGTTCGGCCGCGGAAGATTTCTTCAACTCAGTCCCGGAAAGCGATCTATTCAAAGCACTGGCCGACACC TTGAAACTATGGAACTCACAACCGGATTGGGCAGGCGACGAGCGGAATGTAGTGCTTACTTTGTCTCGCATTTGGTACAGCGCAGC AACCGGCAAGATCGCGCCGAAGGATGTAGCTGCCAACTGGGTAATGGAACGCCTGCCCGTCCAACATCAGCCCGTGCTGCTTGAA GCCCAGCAGGCTTACCTTGGACAAGGGATGGATTGCTTGGCCTCACGCGCTGATCAGTTGACTGCGTTCATTTACTTTGTGAAGCA CGAAGCCGCCAGTCTGCTCGGCTCCACGCCAATGATGTCTAACAGTTCATTCAAGCCGACGCCGCTTCGCGGCGCAGCTTAATTCA GGCG aadA24 TTAGACATCATGAGGGACGCAGTGATCGCCGAAATTTCGACACAACTGTTAGAGGTGCTTAGTGTCATTGAGCGCCATCTGGAGCC GACGTTGCTGGCCGTGCATTTGTACGGCTCCGCAGTGAATGGCGGCCTGAAGCCATACAGCGATATTGATTTGCTGGTTACTGTGA CTGTAAGGCTTAATGAAACAACGCGGCGAGCTTTGCTCAACGACCTTCTGGAGGTTTCGACTTTCCCCGGCGAGAGTGAGGCTCTC CGCGCTATAGAAGTCACCATTGTCGTGCACGACGACATCATTCCGTGGCGTTATCCAGCTAAGCGAGAACTGCAATTTGGAGAATG GCAGCGCAATGACATTCTTGCGGGTATCTTCGAGCCAGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAAC ATAGCGTTGCCTTGGTAGGTCCAGCGGCGGAGGAACTCTTTGATCCGGTCCCTGAACAGGATCTATTCGAGGCACTAAATGAAACC TTGAAGCTATGGAACTCGCAGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTTGTCTCGTATTTGGTACAGCGCAGT AACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTACCGGCCCAGTATCAGCCCGTCTTGCTTGAA GCTAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTTGCACGCTGATCAGTTGGAAGAATTTGTTCACTACGTGAAAGGC GAGAGCACCAAGGTAGTCGGCAAATGATGTCTAACAATTCGTTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAACTCGAGCG aadA28 TTAGACATCATGAGGGACTCAGTGACCGCCGAAATTTCGACGCAACTATCCAAGGTGCTTAGTGTTATCGAGCACCATCTGGAACCG ACGTTGCTTGCCGTACATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCATACAGTGATATTGATTTGCTGGTTACTGTGACC GCAAGGCTTGATGACACAACGCGGCGAGCTTTGTTCAACGATCTTTTGGAGGTTTCGGCTTTCCCAGGCGAGAGTGAGATTCTCCG CGCTATAGAAGTCACCATTGTCGTGCACGAAGACATTATGCCGTGGCGTTATCCAGCCAAGCGCGAACTGCAATTTGGAGAATGGC AGCGCAATGACATTCTTGCGGGTATCTCCGAGCCAGCCATGATCGACGTTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATA GCGTTGCCTTGGTAGGTCCAGCTGCGGAGGAACTCTTTGATCCCGTTCCTGAACAGGATCTATTCGAGGCACTGAATGAAACCTTG AAGCTATGGAACTCGCAGCCCGACTGGGCCGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAATAAC CGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATAAAACGCCTACCTGCCCAGTATCAGCCCGTCTTACTTGAAGCTA AGCAAGCTTATCTGGGACAAAAAGAAGATCACTTGGCCTCACGCGCAGATCACTTGGAAGAATTTATTCGCTTTGTGAAAGGCGAGA TCATCAAGTCAGTTGGTAAATGATGTCTAACAATTCGTTCAAGCCGACCGCGCTACGCGCGGCGGCTTAACTCCGGCG aadA29 TTAGACATCATGAGTAACGCAGTACCCGCCGAGATTTCAGTACAGCTATCACAGGCACTCAACGTCATCAAGCGTCATCTGGAATCA ACGTTGCTGGCCGTGCATTTGTACGGCTCCGCACTGGACGGCGGCCTGAAACCATACAGTGATATTGATTTGCTGGTTACTGTGGA CACACGGCTCGATGAGACCGTAAGGCAAGCTCTGTTCGTCGATCTGTTGGAGATTTCGGCTTTCCCTGGCCAAAGCAAAGTGCTCC GCGCCTTGGAAGTCACCATCGTCGTGTACAGCGACGTCGTCCCCTGGCGTTATCCGGCCAGACGGGAACTACAGTTCGGAGAGTG GCAGCGCAAAGACATTCTTGCGGGTATCTTCGAGTCCGCCACAAATGATGTCGATCTGGCGATCCTACTAACAAAAGCAAGGCAAC ATAACATCGCATTGGTGGGTTCGGCTGCGGAGGATTTCTTCAACCCAGTTCCGGAAAGCGATCTATTCAAGGCACTGGCCGGCACC CTGAAACTATGGAACTCGCAGCCGGATTGGGAAGGTGACGAGCGTAATGTAGTGCTTACTTTGTCTCGTATTTGGTACAGCGCAGC AACTGGTAAGATCGCGTCCAAGGATGTCGCTTCTAACTGGGCAATGGAGCGTCTGCCAGCTCAACATCAGCTTGTGCTATTTGAAG CCCGGCAGGCTTATCTTGGAGATGGAGGAGATTGCTTGGCTTCGCGCGCAGATCAGTTGACGGCGTTCGTTCACTTTGTGAAGTAT GAAGCCGGCAGACTCCTTGGCTCCACACCAATGATGTCTAACAGTACATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAA GCG aadA34 TTAGACATCATGAGTAACGCAGTACCCGCCGAGATTTCGGTACAGCTATCACTGGCTCTCAACGCCATCGAGCGTCATCTGGAATCA ACGTTGCTGGCCGTGCATTTGTACGGCTCTGCACTGGACGGTGGCCTGAAGCCATACAGTGATATTGATTTGCTGGTTACTGTGGC TGCACGGCTCGATGAGACTGTCCGACAAGCCTTGGTCGTAGATCTCTTGGAAATTTCTGCCTCCCCTGGCCAAAGTGAAGCTCTCC GCGCCTTGGAAGTTACCATCGTCGTGCATGGTGATGTTGTCCCTTGGCGTTATCCGGCCAGACGGGAACTGCAATTTGGAGAATGG CAGCGCAATGACATTCTTGCAGGTATCTTCGAGCCAGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACAT AGCGTTGCCTTGGTAGGTCCAGCGGCGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCTT AACGCTATGGAACTCGCCGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAGTAA CCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCGTCATACTTGAAGC TAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTCCCGCGCAGATCAGTTGGAAGAATTTGTTCACTACGTGAAAGGCG AGATCACCAAGGTAGTCGGCAAATAATGTCTAACAATTCGTTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAACTCAAGCG aadB ANT(2‘’)-Ia TTAGGCCGCATGGACACAACGCAGGTCACATTGATACACAAAATTCTAGCTGCGGCAGATGAGCGAAATCTGCCGCTCTGGATCGG TGGGGGCTGGGCGATCGATGCACGGCTAGGGCGTGTAACACGCAAGCACGATGATATTGATCTGACGTTTCCCGGCGAGAGGCGC GGCGAGCTCGAGGCAATAGTTGAAATGCTCGGCGGGCGCGTCATGGAGGAGTTGGACTATGGATTCTTAGCGGAGATCGGGGATG AGTTACTTGACTGCGAACCTGCTTGGTGGGCAGACGAAGCGTATGAAATCGCGGAGGCTCCGCAGGGCTCGTGCCCAGAGGCGG CTGAGGGCGTCATCGCCGGGCGGCCAGTCCGTTGTAACAGCTGGGAGGCGATCATCTGGGATTACTTTTACTATGCCGATGAAGTA CCACCAGTGGACTGGCCTACAAAGCACATAGAGTCCTACAGGCTCGCATGCACCTCACTCGGGGCGGAAAAGGTTGAGGTCTTGC GTGCCGCTTTCAGGTCGCGATATGCGGCCTAACAATTCGTCCAAGCCGACGCCGCTTCGCGGCGCGGCTTAACTCAGGTG aphA15 APH(3’)-XV TTAGACCGCTATGACAGTCGCCCTCGACGAAGTATCTGAACTAAAGAATTTGCTTTCACCCTTGTTGGATGAATGCACTTTTGAAGAA GTTGAGTATGGTCAGTCAGATGCTCGAGTGATTCGAGTTCTATTTCCTGATCGCAATACCGCGTATCTAAAGTACGCCTCCGGATCT TCTGCTCAAGAAATTCTTCAAGAGCATCAGCGCACTAGATGGCTCAGAACACGAGCTCTCGTACCGGAAGTGATCTCATATGTCTCG ACTTCAACTGTCACCATCCTGTTGACAAAAGCATTGATTGGCCACAATGCCGCTGACGCCGCAGATGCAGATCCAGTTATTGTTGTT GCAGAGATGGCACGAGCGTTACGCGACCTCCATTCGATCTCGCCTGACGATTGCCCATTCGACGAAAGGCTCCACCTGCGACTGAA GCTGGCTTCGGGCCGTTTGGAAGCCGGGTTAGTTGATGAGGAGGACTTTGATCACGCAAGGCAAGGCATGCTGGCGCGGGATGTT TACGAGCAACTTTTTATACAAATGCCTGGAGCGGAGCAGCTGGTAGTCACACATGGCGACGCCTGTCCCGAGAACTTCATCTTCCAA GGTAATGCCTTCGTCGGCTTCATAGACTGCGGTCGGGTCGGGCTTGCCGATAAGTATCAAGACCTGGCGCTTGCATCGAGAAACAT TGACGCGGTATTTGGACCAGAACTCACTAACCAGTTCTTCATCGAGTATGGAGAGCCAAATCCGAACATAGCTAAGATTGAGTACTA CCGGATCTTGGATGAGTTCTTCTAAGCGCGGTCTAACAATTCGTTCAAGCCGAGATCGCTTCGCGGCCGCGGAGTTGTTCTGTAAAT TGTCACAACGCCGCGGCCGCAAAGCGCTCCGGCTTAACTCAGGCG aphA16 TTAGCTTGACGCTCCGCGCAGGAAAGAGAAAATGGATAAACTTCCAAATTTCATATTTGAAAACTATAGTGACTTAAAAATTGAACGA GATACTGAGGGTTGGTCTCCGGCTGAGGTATATAGTGTTACAACCAAGAAAAAAAGGTGGTTTCTAAAAAGAAGTCATACGAGATAC AATAAAACTACATATAATGTAAGAAGAGAGAAAGAAATTATTGAATGGGCCTATCCAAAGTTTAGAGTACCACAAATAATACATTATGA AGAAGCAAAAGAATATAATTCATTACTAATGAATCACATTGGCGGCTCTAGCCTTGAAATGCTTGGTCCATCAATTACTTTAGAGAAAT ATATCGATTACTATGTACAATCCTTAAAATTAATGCAGTCCATTAACATCGAAAACTGTCCATACAATAATTGTATAAAGAATAGAATAA TCGAATTAGAATATTTATTAGAGAATGATCTAGCAGATATTAATTCAAATAACTGGGAAGAAGATACGCGTGAGCATTTCAGAAACGG TAAAGACTTATTTAATTATATAGTAAATAATAAGCCAAATGAAGACTTAGTTTTCTCACATGGAGATATGACAAACTCTAACATATTTAT TGAAAACGAAGAAGTTGGATTTATAGATCTCGGTCGATGTGGATTAGCTGATAAGTGGGTTGATATTGCATTTTGTGTTAGAGATATA AGAGAAATAAGTAATGAAAATAAATGGATAAAGATGTTATTTGATAAATTAGAAATAGTACCCAATTGGGATAAAATGAGATACTACAT TTTGTTAGATGAGCTGTTCTAAGAATAAGCTAACAACCGCTTCAACCTGGCAACGCTACTGTCACGGTTTATGCTACTCGCTTCGCTC GCTTACGCATAAACCGCGCCAGTTTACGCGTTGCAGGTTAAGCGAATG sat2 TTAGGCGTCATATGAAGATTTCGGTGATCCCTGAGCAGGTGGCGGAAACATTGGATGCTGAGAACCATTTCATTGTTCGTGAAGTGT TCGATGTGCACCTATCCGACCAAGGCTTTGAACTATCTACCAGAAGTGTGAGCCCCTACCGGAAGGATTACATCTCGGATGATGACT CTGATGAAGACTCTGCTTGCTATGGCGCATTCATCGACCAAGAGCTTGTCGGGAAGATTGAACTCAACTCAACATGGAACGATCTAG Supplementary Material 183 CCTCTATCGAACACATTGTTGTGTCGCACACGCACCGAGGCAAAGGAGTCGCGCACAGTCTCATCGAATTTGCGAAAAAGTGGGCA CTAAGCAGACAGCTCCTTGGCATACGATTAGAGACACAAACGAACAATGTACCTGCCTGCAATTTGTACGCAAAATGTGGCTTTACT CTCGGCGGCATTGACCTGTTCACGTATAAAACTAGACCTCAAGTCTCGAACGAAACAGCGATGTACTGGTACTGGTTCTCGGGAGC ACAGGATGACGCCTAACAATTCATTCAAGCCGACACCGCTTCGCGGCGCGGCTTAATTCAGGAG arr2 TTATGCAGCCAAATCCCAACAATTAAGGGTCTTAAAATGGTAAAAGATTGGATTCCCATCTCTCATGATAATTACAAGCAGGTGCAAG GACCGTTCTATCATGGAACCAAAGCCAATTTGGCGATTGGTGACTTGCTAACCACAGGGTTCATCTCTCATTTCGAGGACGGTCGTA TTCTTAAGCACATCTACTTTTCAGCCTTGATGGAGCCAGCAGTTTGGGGAGCTGAACTTGCTATGTCACTGTCTGGCCTCGAGGGTC GCGGCTACATATACATAGTTGAGCCAACAGGACCGTTCGAAGACGATCCGAATCTTACGAACAAAAAATTTCCCGGTAATCCAACAC AGTCCTATAGAACCTGCGAACCCTTGAGAATTGTTGGCGTTGTTGAAGACTGGGAGGGGCATCCTGTTGAATTAATAAGGGGAATGT TGGATTCGTTAGAGGACTTAAAGCGCCGTGGTTTACACGTCATTGAAGACTAGTCCTTTGCATAACAAAGCCATCAAACCGGACGCC AGAGATTCCGCGCCTGTTGCGCATGGCTTCGCCATTTTATGCGCAATAGGCGCGCCACCCTGTCGCCGTTTATGGCGGCG arr5 TTAGGCAACAAACCAATCTCTTTCGCTACATGGAACAAACGATGACGGTAGACTGGATCCCCATTTCGCACGACAACTACCATCAAG TGCGTGGCCCGTTTTATCACGGAACAAAAGCCGAACTCGCCATTGGCGACTTAATTTCAACCGGATTTATTTCTCACTTTGAGCGGG ACAGAGCACTAAAGCATGTGTACTTTTCCGCGCTGATGGAGCCAGCAATCTGGGGGGCCGAGCTCGCTGTAGCACTCTCTGGCTCT GACGGGCCAGGCCATATTTACATCATTGAGCCAACCGGCCCGTTTGAAGACGACCCCAATCTCACAAACAAACGATTCCCTGGCAA TCCAACACAGTCCTATCGCACATGCCACCCACTTAAAATTGTTGGCATACTGCGGGAGTGGGAGCGCCATTCTCCTGAAGCATTGAA GACCATGCTAGATTCTCTGGCAGACCTCAAGCGACGCGGCTTGGCCATCATTGAAGAATGAAATTGTTGCCTAACAATTCATTCAAG CCGACGCCGCTTCGCGGCGCGGCTTAATTCAGGCG arr6 TTAGGCAGCAACCCCATTCTCGCCCCATGGAACCTAAGAAATGTCGAGTGACTGGACTCCCATCTCACATGAGAATTGCCAGCAGG TGCGTGGGCCGTTCTATCACGGCACCAAAGCCCATCTATCGATTGGCGACTTGATAACAACTGGGCATCTCTCCCACTTTGAAGATG GACGCGCTCTTAAACACGTCTACTTTTCAGCTTTGATGGAGCCTGCCATTTGGGGGGCGGAACTTGCAATGTCGTTGTCACGCCTA GATGGCCGTGGCTACATATACATCGTCGAACCAACTGGACCGTTTGAGGACGACCCGAATCTTACGAACAAAAGATTTCCTGGAAAT CCAACAAAGTCCTATCGCACGTGCGATCCGCTACGAATTGTCGGGTCAGTCGAAGACTGGCAAGGGCATCCCGCTGATGTGCTGCA ACAGATGTTGGAGTCTTTAGAGGACCTAAAGCGCCGTGGTCTTGCCATCATCGAGGATTAGAACTGCTGCCTAACAATTCATTCAAG CCGACGCCCCTTCGGGGCGCGGCTTAATTCAGGCG arr7 TTAGGCAGCAAACCACCTTCCTCGCTAGACGGAACCAACGAATGCCGAATGACTGGATTCCCACCTCGCACGAAAACTGCTCGCTC GTGCCGGGGCCGTTCTACCACGGCACCAAAGCAAAACTCGCAATAGGTGACTTGCTTTCGCCTGGACACCCGTCTCACTTTGAGCA AGGCCGTAGGCTCAAACACATCTATTTTGCCGCACTGATGGAGCCAGCCATCTGGGGTGCTGAGCTTGCAATGTCATTGTCACGCC AAGAGGGGCGCGGTTACATTTACATTGTTGAACCGCTCGGGCCGTTTGAGGACGACCCAAACCTTACAAACAAAAAATTTCCGGGC AATCCAACCAAGTCCTACCGCACCAGTGAGTCGCTACGGATTGTGGAGGTAGTAGAGGACTGGCAAGGCCACTCACCGGATGTGC TGCAGGGCATGTTGGCATCACTGGAGGATCTTCAGCGTCGCGGCCTCGCAATCATTGAGGACTAGAAATTGCTGCCTAACAATTCG TTCAAGCCGAACTTGCTTCGTTCCACCAAAGCCATGGCAGATTAAGCTTGCCATGGCTTTGGCTCCACTACGCAAGTCGGCTTAACT CAGGCG arr8b TTAGGCTGCCAAACCTTTTTCCAACCTTCGGAGTGAAGAATGATGAAAGATTGGGTTCCAATCACGCATGCAAATTGTAAAGATATGC AGGGACCGTTTTATCATGGTACCAAAGCTAAATTATCGGTAGGTGAACTCCTAACAACTGGGTTCAACACTCATTTTGAAGAGGGTC GCACACTCAAACACGTTTATTTTTCAGCTATGCTTGAGCCAGCAATTTGGGGCGCTGAACTTGCTGTTTCACTGTCAGGTCTAGATG GCCGGGGATACATATACTTAGTTGAACCAACTGGACCTTTTGAGGATGACCCTAATCTTACCAATAAGAAATTTCCAGGGAATCCAAC AATGTCCTATCGAACTTCCGAACCCCTCCAGATTGTTGGGCTCGTTGAAGAGTGGGAGGGACACTCTGCTGAAGCCCTGAAAACGA TGCTGGATTCCTTGGAGAATCTAAAGCGCAATGGTCTTCATGTCATATATGATTAAGCGGAGCCTGCCTAACAAATCGTTCCAGCAA CGTGCGCTTCGCGCACTCGACAGTCTGTAAGTCGCCTTTTTGTGGTTTTGCTACGCAAAAGTATTCCACAAAAAACCAACTTACAGA CTGCGGCTGAACTTAGCG catB2 TTAGGCGACGCGTGGAGTCGCTCTAGAATTTTCGGGTACAAATTTTATGACGAATTATTTTGAGAGTCCCTTCAAAGGGAAGCTTCT GACTGAGCAGGTGAAGAATCCGAACATCAAGGTAGGGCGGTATAGCTACTATTCCGGCTATTACCATGGGCACTCGTTTGATGATT GTGCTCGCTACCTTCTACCAGACCGTGATGACGTTGATCAGCTGATTATCGGCAGCTTCTGCTCCATCGGATCAGGCGCAGCTTTTA TTATGGCTGGGAATCAAGGCCACCGATATGATTGGGTCTCTTCTTTCCCTTTCTTCTACATGAACGAGGAGCCCGCGTTTGCAAAAT CAGTCGATGCATTCCAGCGGGCTGGCGACACAGTTATAGGAAGTGATGTGTGGATCGGTTCGGAGGCCATGATCATGCCCGGGAT CAAGATCGGGCATGGAGCGGTGATAGGTAGCCGCGCTTTGGTTGCCAAAGACGTGGAACCCTACACCATAGTGGGGGGAAACCCT GCAAAGTCGATTAGGAAGCGCTTTTCTGAAGAAGAAATTTCTATGCTTTTAGATATGGCTTGGTGGGATTGGCCGCTGGAACAAATC AAGGAAGCAATGCCTTTTCTTTGTTCGTCTGGCATTGCCAGCCTGTATCGTCGCTGGCAAGGCACAAGCGCCTAACAATACGCTACA CACGGACAAATTACTCGCTGCGCTCCTAATTTGCCGGTGAGCGTGGCG catB3 TTAGACGGCAAAGTCACAGACCGCGGGATCTCTTATGACCAACTACTTTGATAGCCCCTTCAAAGGCAAGCTGCTTTCTGAGCAAGT GAAGAACCCCAATATCAAAGTTGGGCGGTACAGCTATTACTCTGGCTACTATCATGGGCACTCATTCGATGACTGCGCACGGTATCT GTTTCCGGACCGTGATGACGTTGATAAGTTGATCATCGGTAGTTTCTGCTCTATCGGGAGTGGGGCTTCCTTTATCATGGCTGGCAA TCAGGGGCATCGGTACGACTGGGCATCATCTTTCCCGTTCTTTTATATGCAGGAAGAACCTGCATTCTCAAGCGCACTCGATGCCTT CCAAAAAGCAGGTAATACTGTCATTGGCAATGACGTTTGGATCGGCTCTGAGGCAATGGTCATGCCCGGAATCAAGATCGGGCACG GTGCGGTGATAGGCAGCCGCTCGTTGGTGACAAAAGATGTGGAGCCTTACGCTATCGTTGGCGGCAATCCCGCTAAGAAGATTAAG AAACGCTTCACCGATGAGGAAATTTCATTGCTTCTGGAGATGGAGTGGTGGAATTGGTCACTGGAGAAGATCAAAGCGGCAATGCC CATGCTGTGCTCGTCTAATATTGTTGGCCTGCACAAGTATTGGCTCGAGTTTGCCGTCTAACAATTCAATCAAGCCGATGCCGCTTC GCGGCACGGCTTATTTCAGGCG catB5 TTAGACGGCAAGAAAAGGTTCCACGAACTCTGATGAAAAACTACTTTGACAGCCCTTTCAAAGGGGAGCTTCTTTCTGAGCAAGTGA AAAATCCAAACATCAAAGTAGGCCGTTATAGCTATTACTCTGGCTACTATCACGGCCACTCATTTGATGAATGCGCGCGATACTTGCA TCCAGATCGTGATGACGTTGATAAATTGATCATTGGCAGCTTTTGTTCTATAGGAAGCGGGGCTTCCTTCATCATGGCTGGCAATCA GGGGCATCGGCATGACTGGGCATCATCCTTCCCCTTCTTCTATATGCAAGAGGAACCTGCTTTCTCAAGCGCACTCGATGCCTTCCA AAGAGCAGGTGATACCGCCATTGGCAATGATGTCTGGATAGGCTCGGAGGCAATGATTATGCCCGGAATCAAAATTGGAGACGGTG CCGTGATAGGTAGTCGCTCGTTGGTGACAAAAGATGTAGTGCCTTATGCCATCATCGGAGGAAGTCCCGCAAAGCAAATTAAGAAG CGCTTCTCCGATGAGGAAATCTCATTGCTCATGGAGATGGAGTGGTGGAACTGGCCACTGGATAAAATTAAGACAGCAATGCCTCT GCTGTGCTCGTCAAATATTTTTGGTCTGCATAAGTATTGGCGCGAGTTTGTCGTCTAACAATTCATTCAAGCCGACGCCGCTTCGCG GCACGGCTTAATTCTGGCG catB6 TTAGACGGCAGAATAAATTTTTGCGATCTCTTATGGAAAATTACTTTGACAGTCCCTTCAAAGGGAAACTACTTTCAGAGCAAGTGAC TAACCGCAACATCAAAGTTGGTCGGTACAGCTACTACTCTGGTTACTATCACGGGCATTCATTTGATGACTGCGCACGATACTTGCT CCCAGACCGTGATGACGTTGACAAACTAATCATCGGCAGCTTTTGCTCCATCGGAAGCGGGGCTTCTTTCATCATGGCGGGCAATC AGGGTCACCGGCATGACTGGGTAACATCTTTCCCTTTCTTCTACATGCAAGAAGAGCCAGCTTTTTCAAGTTCAACGGACGCCTTTC AAAAGGCCGGTGACACCATCGTCGGCAATGATGTCTGGATAGGATCAGAGGCAATGATTATGCCCGGCATCAAGATTGGAGATGGC GCGGTAATAGGCAGCCGATCGTTGGTGACGAGAGATGTAGAACCCTATACCATCATTGGCGGAAACCCTGCAAAGCAAATTAAAAA GCGATTCTCTGACGAGGAGATTTCATTACTCATGGAAATGGAGTGGTGGAACTGGCCGTTAGATAAAATCAAAACAGCTATGCCCCT TCTCTGCTCTTCAGACATTTTTGGTCTGCACAGGCATTGGCGTGGGATTGCCGTCTAACAAGCGCCAGCACCATCGCCTGCGGCGC TGGACTCGCAACAAGTTGCTCGCCCGTGTGGCGGGCG catB10 TTAGACGGCAAGAAATACGCTCCGTGAAAATCCCATGACCAACTATTTTGAAAGTCCATTTAAAGGCAAACTGCTGGCCGACCAGGT AAAGAACCCGAACATCAAAGTCGGACGGTATAGCTATTATTCCGGCTATTACCATGGCCATTCGTTTGACGAGTGCGCTCGCTTTCT CTTGCCAGATCGCGATGACATCGACCAACTGATCGTTGGTAGCTTCTGTTCCATCGGCACGGGCGCCTCCTTCATCATGGCCGGAA ATCAGGGGCACCGTTATGACTGGGCGTCTTCTTTTCCCTTCTTCTACATGAAAGAGGAGCCAGCATTCTCGGGCGCACTTGATGCAT TCCAAAAAGCCGGTGACACAGTCATCGGAAGTGATGTCTGGATAGGCTCTGAGGCCATGATCATGCCCGGCATCAACGTCGGTCAT GGCGCTGTGATTGGAAGCCGCGCTTTGGTCACGAAAGATGTGGAGCCGTACACTATCGTTGGCGGAAATCCCGCCAAACCGATCA AGAAACGCTTCTCCGACGAGGAGATCGCCATGCTTTTGAAAATGAATTGGTGGGATTGGCCAACTGAAAAAATTGAGGAAGCAATGC CTTTGCTATGCTCATCCAACATCGTTGGGCTGCATCGATACTGGCAAGGCTTTGCCGTCTAACAATTTATTCAAGCCGACTCCGCTT CGCGGCGCGGCTTAATTCAGGCG Supplementary Material 184 catB11 TTAGGCAACGGTGTTGTTGCAGATTTTTGGTGTGGAATTATATGAAGAACTATTTTGAGAGCCCGTTTAAGGGAAAACCTCTCGTCGA ACAGGTAAAGAACCCAAATATCAAGGTGGGCCGTTATAGCTATTATTCAGGCTATTACCACGGGCATTCATTTGATGATTGCGCTCG CTACCTCCTGCCTGATCGTGATGACGTTGATAAATTGATAATTGGAAGCTTTTGCTCCATAGGGACGGGTGCATCTTTTATCATGGCT GGAAATCAAGGTCACCGATATGATTGGGTTACATCATTCCCTTTTTTCTATATGAATGAGGAACCGGCATTTTCGGAATCAGTTGATG CTTTCCAGGCGGCAGGTAATACCGTCATAGGAAGCGACGTGNGGATTGGCTCTGAAGCAATGATTATGCCTGGAGTAAAGGTTGGC CATGGAGCGGTAATTGGCAGCCGGGCTTTGGTTACCAAAGATATAGAGCCATACACAATTGTTGGTGGCAACCCTGCAAAAGAGAT AAAGAAGCGCTTTTCAGAACAGGAAATTTCAATGTTGCTAGATATGAAGTGGTGGGATTGGCCGTTGGAGCAAATTAAAGAAGCAAT GCCTCTTTTGTGCTCGTCTGATATTGCAGGCTTGTACCATTTTTGGCAGCGTTCAAGTGCCTAACAAACGGCTGTTGTCGCCCCTTC GGGGCTGGGACGGCCTTTCCGCCGCTTTGCGGCTACAAGTCCGCCCCAAAGCCGGGCG cmlA1 TTGGGCGCACAATAAGGCTCCTTGCAGAGTTGCTTGAAAGTTGTTACGATTCAAATTCAATCATGAGATAGTCAGCAGATGAGCACT TCCAAGAACGCAGACAAGTAAGCCGCAGCAACCTTCATTTTTCGGTTGTTGCGGCGTTCTCATGAATCCTTTTGCTCTACGGGAGCG CCGCCAAATCCTTTGTTCAAGGAGATGGTTTCGTGAGCTCAAAAAACTTTAGTTGGCGGTACTCCCTTGCCGCCACGGTGTTGTTGT TATCACCGTTCGATTTATTGGCATCACTCGGCATGGACATGTACTTGCCAGCAGTGCCGTTTATGCCAAACGCGCTTGGTACGACAG CGAGCACAATTCAGCTTACGCTGACAACGTACTTGGTCATGATTGGTGCCGGTCAGCTCTTGTTTGGACCGCTATCGGACCGACTG GGGCGCCGCCCCGTTCTACTGGGAGGTGGCCTCGCCTACGTTGTGGCGTCAATGGGCCTCGCTCTTACGTCATCGGCTGAAGTCT TTCTGGGGCTTCGGATTCTTCAGGCTTGTGGTGCCTCGGCGTGCCTTGTTTCCACATTTGCAACAGTACGTGACATTTACGCAGGTC GCGAGGAAAGTAATGTCATTTACGGCATACTCGGATCCATGCTGGCCATGGTCCCGGCGGTAGGCCCATTGCTCGGAGCGCTCGT CGACATGTGGCTTGGGTGGCGGGCTATCTTTGCGTTTCTAGGTTTGGGCATGATCGCTGCATCTGCAGCAGCGTGGCGATTCTGGC CTGAAACCCGGGTGCAACGAGTTGCGGGCTTGCAATGGTCGCAGCTGCTACTCCCCGTTAAGTGCCTGAACTTCTGGTTGTACACG TTGTGTTACGCCGCTGGAATGGGTAGCTTCTTCGTCTTTTTCTCCATTGCGCCCGGACTAATGATGGGCAGGCAAGGTGTGTCTCAG CTTGGCTTCAGCCTGCTGTTCGCCACAGTGGCAATTGCCATGGTGTTTACGGCTCGTTTTATGGGGCGTGTGATACCCAAGTGGGG CAGCCCAAGTGTCTTGCGAATGGGAATGGGATGCCTGATAGCTGGAGCAGTATTGCTTGCCATCACCGAAATATGGGCTTTGCAGT CCGTGTTAGGCTTTATTGCTCCAATGTGGCTAGTGGGTATTGGTGTCGCCACAGCGGTATCTGTGGCGCCCAATGGCGCTCTTCGA GGATTCGACCATGTTGCTGGAACGGTCACGGCAGTCTACTTCTGCTTGGGCGGTGTACTGCTAGGAAGCATCGGAACGTTGATCAT TTCGCTGTTGCCGCGCAACACGGCTTGGCCGGTTGTCGTGTACTGTTTGACCCTTGCAACAGTCGTGCTCGGTCTGTCTTGTGTTTC CCGAGTGAAGGGCTCTCGCGGCCAGGGGGAGCATGATGTGGTCGCGCTACAAAGTGCGGAAAGTACATCAAATCCCAATCGTTGA GAGAATGTGGCAAGCTATCGCCCAACAAATCGCTGCAGCCGACCCAAAACCGCTACGCGGTTTCGGTCGGCTGAGCTCAGGCG cmlA2 TTGGGCGAACAAAAAGATTCTTCGCGGAATTGCTTGAGAATTGTTACGATTCAAATTCAGCCATGAGATAGTCAGCAAATGAGCACTT CCAAGAAAGCAGACAAGTAAGCCGCAGCAACCTTCATTTTTCGGTTGTTGCGGCGTTCTCATGAACCCTTTTGCTCTACGGGAGCGC CGCCAAATCCTTCGTTCAAGGAGATGGTTTCGTGCGCTCAAAGAACTGTAATTGGCGGTATTCCCTTGCCGTCACTGTGTTGTTGTT ATCACCTTTCGATTTACTGGCATCACTCGGCATGGACATGTACTTGCCAGCGGTGCCTTTCATGCCACATGCTCTTGGTACGACAGC GGGCACAATTCAGCTTACGCTGACAACGTATTTGGTCATGATAGGGGCCGGTCAGCTTTTGTTTGGGCCACTGTCGGACCGGCTGG GACGTCGTCCCGTGCTACTGGCGGGCGGTGCCGCCTACGTTGCGGCCTCAATCGGCCTCGTCGTCACGTCATCGGCTGGAGTATT TCTGGGTTTTCGGATTCTCCAAGCTTGTGGTGCCTCGGCATGCCTTGTTGCCACATTTGCAACAGTGCGTGATATCTACGCAGGTCG CAAGGAAAGTAACGTCATCTACGGCTTGCTTGGCTCTATGCTTGCTATGGTTCCGGCGATAGGCCCATTGCTGGGAGCGGTCATAG ACACCTGGTTCGGGTGGCGGGCGATCTTTGCGTTCTTGGGATTGGGAATGATCGCTGCATTGACAGCAGCGTGGCGGCTCTGGCC TGAGACCCGGGTGCAGCGACCAGCAGCTTTGCAATGGTCACAACTTCTGCTTCCCATCAAGCACCTTAACTTCTGGTTGTACACAGT GTGTTATGCCGCAGGAATGGGCAGCTTCTTCGTCTTCTTCTCCATAGCGCCCGGATTGATGATGGGTAGGCAAGGCATGTCCCAGT TTGGCTTCAGTCTGTTGTTCGCAACAGTGGCAATTGCGATGATGCTTGCGGCCCGCTTCATGGGGCGCGTAATCGCCAAGTGGGGC AGCCTGAGTGCCTTGCGAATGGGGATGGGCTGCCTGATAGCAGGCGCAGTCTTGCTTGTCATCACCGAGCTATGGATTCCGCAGT CCGTGTTGGGCTTTATTGCCCCAATGTGGCTAGTGGGCGTCGGCGTCGCGACAGCGGTATCCGTTGCACCCAATGGTGCGCTTCG AGGGTTCGACCATATTGCAGGAGCCGTTACGGCAGTCTACTTCTGCTTGGGGGGGCTGCTGCTGGGGAGTGTTGGAACGCTCATC ATTTCGCTGTTGCCGCGCGACACGGCCTGGCCAGTTATCGCGTATTGTTTGGTTCTTGCAACAATCGTGCTTGGACTGTCGTGTGTT TCCCGAGCGAGAGACCTTCGCGGTCACGGGGAGTATGATGCGGTTGCACGCACATAGTGCGGAAAACACACCAAATCCCGATCAC TGGGAATATGGCAAGTTGTCGCCCAACAAATCGCTGCAGCCGACCCAAAACCGCTACGCGGTTTCGGTCGGCTGAGCTCAAGCG ereA1 TTATGCTCTGTGAGCCGGGTTATTGGCGAAGCGAACGTATGACGATTACAGCAATAAACGCAAAGGTAAAAAAATGACATGGAGAAC GACCAGAACACTTTTACAGCCTCAAAAGCTGGACTTCAATGAGTTTGAGATTCTTACTTCCGTAATTGAGGGCGCCCGAATTGTCGG CATTGGCGAGGGCGCTCATTTTGTCGCGGAGTTTTCACTGGCTAGAGCTAGTCTTATCCGCTATTTGGTCGAAAGGCATGAGTTTAA TGCGATTGGTTTGGAATGTGGGGCGATTCAGGCATCCCGGTTATCTGAATGGCTCAACTCAACAGCCGGTGCTCATGAACTTGAGC GATTTTCGGATACCCTGACCTTTTCTGTGTATGGCTCAGTGCTGATCTGGCTGAAATCATATCTCCGCGAATCAGGAAGAAAACTGC AGTTAGTCGGAATCGACTTACCCAACACCCTGAACCCAAGGGACGACCTAGCGCAATTGGCCGAAATTATCCAGCTCATCGATCAC CTCATGAAACCGCACGTTGATATGTTGACTCACTTGTTGGCGTCCATTGATGGCCAGTCGGCGGTTATTTCATCGGCAAAATGGGGG GAGCTAGAAACGGCTCGGCAGGAGAAAGCTATCTCAGGGGTAACCAGATTGAAGCTCCGCTTGGCGTCGCTTGCCCCCGTCCTGA AAAAACACGTCAACAGCGATTTGTTCCGAAAAGCCTCTGATCGAATAGAGTCGATAGAGTATACGTTGGAAACCTTGCGTATAATGA AAACTTTCTTCGATGGTACCTCTCTTGAGGGAGATACTTCCGTACGTGACTCGTATATGGCGGGCGTAGTAGATGGAATGGTTCGAG CGAATCCGGATGTGAAGATAATTCTGCTGGCGCACAACAATCATCTACAAAAAACTCCAGTCTCCTTTTCAGGCGAGCTTACGGCTG TTCCCATGGGGCAGCACCTCGCAGAGAGGGTGAATTACCGTGCGATTGCATTCACCCATCTTGGACCCACCGTGCCGGAAATGCAT TTCCCATCGCCAAAAAGTCCTCTTGGATTCTCTGTTGTGACCACGCCTGCCGATGCAATCCGTGAGGATAGTATGGAACAGTATGTC ATCGACGCCTGTGGTACGGAGAATTCATGTCTGACATTGACAGATGCCCCCATGGAAGCAAAGCGAATGCGGTCTCAAAGCGCCTC TGTAGAAACGAAATTGAGCGAGGCATTTGATGCCATCGTCTGTGTTACAAGCGCCGGCAAGGACAGCCTGGTTGCCCTATAGGAAA CCGGAAATGAAAATGAGGGAGCATAACCTGCGAATCCACCGGACGGTTTTCAACCGCCGGTGATCAGCGCG ereA2 TTATGCTCTGTGAGCCTGGTTATTGGCGAAGCGAAAGTATGACGATTTCAGCAATAAACGCAAAAGGATAAAAAAATGACATGGAGA ACGACCAGAACACTTTTACAGCCTCAAAAGCTGGAGTTCAATGAGTTTGAGATTCTTAATCCCGTAGTTGAGGGCGCCCGAATTGTC GGCATTGGCGAGGGTGCTCACTTTGTCGCGGAGTTCTCACTGGCTAGAGCTAGTCTTATTCGCTATTTTGTCGAGAGGCATGATTTT AATGCGATTGGTTTGGAATGTGGGGCGATTCAGGCATCCCGGCTATCTGAATGGCTCAACTCAACAGCCGGTGCTCATGAACTTGA GCGATTTTCGGATACCCTGACCTTTTCTTTGTATGGCTCAGTGCTGATTTGGGTTAAATCATATCTACGCGAATCAGGAAGAAAACTG CAGTTAGTCGGAATCGATTTACCCAACACCTTGAATCCAAGGGACGACCTAGCGCAATTGGCCGAAATTATCCAGGTCATCGACCAC CTCATGAAACCCCACGTTGATGCGCTGACTCAGTTGTTGACGTCCATTGATGGCCAGTCGGCGGTTATTTCATCGGCAAAATGGGG GGAGTTGGAAACGGCTCAGCAGGAGAAAGCTATCTCAGGGGTAACCAGATTGAAGCTCCGTTTGGCGTCGCTTGCCCCTGTCCTGA AAAATCACGTCAACAGCGATTTTTTCCGAAAAGCCTCTGATCGAATAGAGTCGATAGAGTATACGTTGGAAACCTTGCGTGTAATGAA AGCTTTCTTCGATGGTACCTCTCTTGAGGGAGATACTTCCGTACGTGACTCGTATATGGCGGGCGTGGTGGATGGAATGGTTCGAG CGAATCCGGATGTAAGGATAATTCTGCTGGCGCACAACAATCATTTACAAAAAACTCCAGTTTCCTTTTCAGGCGAGCTTACGGCTG TTCCCATGGGACAGCATCTCGCAGAGAGGGAGGAGGGGGATTACCGTGCGATTGCATTCACCCATCTTGGACTCACCGTGCCGGA AATGCATTTCCCATCGCCCGACAGTCCTCTTGGATTCTCTGTTGTGACCACGCCTGCCGATGCAATCCGTGAGGATAGTGTGGAACA GTATGTCATCGATGCCTGTGGTAAGGAGGATTCATGCCTGACATTGACAGATGACCCCATGGAAGCAAAGCGAATGCGGTCCCAAA GCGCCTCTGTAGAAACGAATTTGAGCGAGGCATTTGATGCCATCGTCTGCGTTCCCAGCGCCGGCAAGGACAGCCTGGTTGCCCTA TAGGAAACCAGAAATGAAATGAAGGAGCATAACCTGCCAATCCACCGGACGGTTTTCAACCGCCGGTGATCAGCGCG ereA3 TTAGAATCACTGAAAACTAAAAATAATTGCACAATCCGGCTCTACAGGTGGCAGAAGAAGTTATGACGGCATTGAATGGTTGAAAAAA TTAAGACAATTCAGGACAATGAAATTATTGGCGAAGCGAACGCATGACAGCAATGAGCGCAAAGGCTAAAAAAATGACATGGAGAAC TACCAGAACACTTTTACAGCCTCAAAAGCTGGACTTCAATGAGTTTGAGATTCTTACTCCCCTGGTTGAGGGCGCCCGAATTGTCGG CCTTGGCGAGGGCGCTCACTTTGTCGCGGAGTTTTCACTGGCTAGAGCTAGTCTTATTCGCTATTTGGTCGAGAGGCATGATTTTAA TGCGATTGGTTTGGAATGTGGGGCGATTCAGGCATCCCGGCTATCTGAATACCTCAACTCAACAGCCGGTGCTCATGAACTTGAGC GATTTTCGGATCCACTGACCTTTTCTTTGTATGGCTCAGTGCTGATTTGGATTAAATCATATCTACGCGAATCAGGAAGAAAACTGCA GTTAGTCGGAATCGATTTACCCAACACCTTGAATCCAAGGGACGACCTGGCACAATTGGCCGAAATTATCAAGGTCATCGATCACCT CATTAAACCGCATGTTGATGAGCTGACTCACTTGTTGGCATCCATTGATGGTCAGTCGGCGGTTATTTCATCGGCAAAATGGGGGGA GATGGAAACGGCTCAGCAGGAGAAAGCTATCTCAGGGGTAACCAGATTGAAGCTACGTTTGGCATCTCTTGCCCCTGTCCTGAAAA Supplementary Material 185 AACATGTCAACAGCGATTTGTTCCGAAAAGCCTCTGATCGAATAGAGTCGATAGAGTATACGTTGGAAACCTTGCGTATAATGAGAA CTTTCTTCGATGGTACCTCTCTTGAGGGAGATACTTCCGTACGTGACTCGTATATGGCGGGCGTAGTGGATAGAATGGTTCGAGCAA ATCCGGATGTGAAGATAATTCTGCTGGCGCACAACAATCATTTACAAAAAACTCCAGTCTCCTTTTCGGGCGAGCTTACGGCTGTTC CCATGGGGCAGCACCTCGCAGAGAGGGAGGAGGAGGATTACCGTGCGATTGCATTCACCCATCTTGGATCCACCGTGCCGGAAAT GCAATTCCCATCGCCCGGCAGTCCTCTTGGATTCTCTGTTGTGACCACGCCTGCCGATGCAATCCGTGAGGATAGTATGGAACAGT ATATCATCGATGCCTGTGGTACGGAGGATTCATGTCTGACATTGACAGATGCCCCCATGAAAGCAAAGCGAATGCGGTCCCAAAGC GCCTCTGTAGAAACGAATTTGAGCGAGGCATTTGATGCCATCGTCTGCGTCCCAAGCGCCGGCAAGGACGGCCTGGTTGACCTATA GTAAACCGGTAGATGAAAATGATGGAGAATAACCTGCCAATCCACCGGACGGTTTTCAACCGCCGGTGATCAGCGCG fosC2 TTATGTTCGCTGAGGAGAGTCAGTGTTACGAGGATTGAATCATATTACTATTGCAGTAAGTGACCTTGAACGTTCCGTGGAGTTCTAT ACGCGTCTATTAGGAATGAAGGCACATGTCCGCTGGGATAGTGGGGCATATCTGAGCTTGGAGGCTACTTGGATTTGCTTGTCTTGT GACGAAGTGCATCCGAGCCAAGATTACTGTCACATCGCGTTTGATGTTTCCGAAGAGAATTTCGAACCAGTTACTAAAAAGCTTCGC GAAGCACATGTCGTTGAATGGAAACAAAATAGAAGCGAAGGACTTTCTTTATACTTGCTCGATCCTGACGGCCATAAATTGGAAATC CATAGCGGTAGCCTACAAAGTCGTTTGGAATCGTTGAAGTCTAAACCCTATCAAGGGTTAGTATGGCTATAAGCAAACATAACAAGT CAATTAACTACGCGCCTGCGGCGCCGGACGTGCTAGCGCACGCCGGTTATTTCGGGCG fosE TTAGCGCCCATGGAAGGTATCAGCCACATCACGCTTATTGTCCGCGACCTCTCGCGCATGACCACCTTCCTTTGCGATGGTCTCGG TGCGCGAGAGGTTTATGACAGTGCTGGCCACAATTACTCGCTTTCCCGCGAGAAATTCTTTGTCCTTGGTGGCGTTTGGTTGGCCG CTATGGAGGGAGTGCCGCCATCTGAGCGCTCCTATCAGCATGTCGCCTTTCGGGTGAGTGAGTCAGATCTTGCCGTATATCAGGCA AGACTTGGGTCGCTGGGCGTGGAGATTCGCCCACCCAGGCCACGCGTGAATGGAGAGGGGCTGTCCCTGTACTTCTATGATTTTG ACAACCATCTGTTTGAGCTGCACACCGGCACATTGGAGCAGCGCCTTGCCAGGTACGGAGCTGGGCGCTAACAATTCATTCAAGCC GAAGCCGCTTCGCGGCTCGGCTTAATTCAGGCG fosF TTACGTTTTCTCAAGGTTCTCTGCATGATTACCGGCATCAATCACATCACATTTTCGGTTCGGGACCTGCGGGCATCGATTGAGTTCT ACCGTGATCTTCTGGGAATGAAGTTGCACGTATTCTGGGACACAGGTGCTTATCTCACTGCAGGCAATACGTGGTTATGTTTGAGTT TGGGGCAGCCCGAACCCGCCAAGGACTACACACACGTCGCTTTCAGTGTCCGCGAAGGGGAGCTCCTGGAGTTGCGAGCTAAACT AAAGCAGGCTGGCGTTGAAGAGTGGAAGCAGAATACCAGTGAGGGTGACTCCATCTATTTACTTGACCCAAATGGGCATCGCCTTG AACTGCATTGCGGAACACTGGCCACTCGCTTAGCTGAGCTGGAAAGCTCGCCTTATAAGGGGCTGGTGTGGAGCTGAAACGTAACA ATCGGCTGTTGTCGCCCCTTCGGGGCTGGGACGGCCTTTTCGCCGCTGCGCGGCTACAAGTCCGCCCCAAAGCCGGGCG fosG TTATGTTTGTTAAGGTAGATTTGTGCTCCGAGGATTGAACCACATCACCATCGCTGTAAGCGATTTAGGCCGTTCTCTCGCCTTTTAT ACTGATATCGTCGGTATGCTCGCTCACGTACGCTGGGATAACGGTGCTTACCTTAGTCTAGGCGGTGTTTGGTTTTGTCTTTCCTGT GACAAGGTGATGCCAAGTAAGGATTATTCTCATATTGCCTTAGATATTTCAGAAGATGACTTTGCATCATTTTTGGAGAAACTGAGGA GAGCCGATGTCACTGAGTGGAAACAAAATTCAAGTGAAGGCTATTCGGTGTATTTCTTAGATCCTGATGGAAATAAACTAGAAGCGC ATAGCGGCTCGTTACAATCTCGTTTAAGTTCTTTAAAAGACAAACCTTATCCGGGCTTAGTATGGCTTTAAACAAACATAACAAGCGC CATCAAAACGCCGCTTCGCGGCTCGACTCGCAACAAGTTGCTCGCGTTTGTGGCGGGCG fosH TTAAAGCTCATCATGGGAATTCTTGGCATTAGTCATCTGACATTCGTGGTCCGCGATGTAGAGCGCACTGCGAGACTGGTCTGCGAA GGACTTGGGGCGGAAGAGGTATACGACAGCAAAGCCAAAAACTTTTCGCTGTCACGAGAGAAGTTTTTTCTCTTGGGCGGCGTATG GCTTGCTTTCATGGAAGGAGTGCCATCGGAGCGGTCCTATCGGCACGTCGCTTTTGAAGTGACCGAAGAGGAAATTGCAAGATATG AGGCTAGCCTTAGAAACCTCGGTGTGGAAGTCAGAGAGCCGCGGCCAAGAGTGGCTGGAGAGGGGCTGTCACTGTATTTCTACGA CTATGACAACAACTTATTCGAGCTACATGCGGGAACACTGGCGCAACGACTTGAAAGGTATACGCAATGAGTTCTAACAATCCGCTC CAGTGGACCGCCTGCGGCGTCCGCTGAGCTATCTCG fosI TTAGCTCCCATGAAAGGCATCAGCCACATCACATTCATCGTCCGCGACCTGAATCGTATGGCCGCACTTCTCTGTGAGGGACTGGG TGCGCGTGAGGTGTATGACAGCTCAAACCAGAACTTCTCGTTGTCCCGCGAAAAGTTCTTTGTGCTTGGTAGTACGTGGCTAGCTG CAATGGAAGGTGAACCGCCCGCCGAGCGTTCATATCAGCATGTTGCCTTTGCGGTGAGTGAGACGGACTTGCCTGCGTATCAAGCC AGACTTGAGGCACTCGGCGTTGAGATTCGGCCACCGCGTAGCCGTGTTGACGGTGAGGGTCTCTCCCTGTACTTCTACGACTTTGA CAATCATTTATTTGAACTTCATTCAGGTACTTTAGAGCAGCGCCTTGTCCGGTATCAGGCGGGGCGCTAACAATTCATTCAAGCTGA CACCGCTTCGCAGCGCAGCTTAACTCAAGCG fosK TTACGTTTTAGGATCAGTCGTATGATCACTGGTATCAATCACATCACCTTTTCCGTCAGGGACTTGAGCTCTTCAATCGAGTTCTATC GTGACTTGCTGGGAATGAGGCTGCACGTGACCTGGGAAGCAGGTGCTTATTTTACAGCGGGTGATACGTGGGTATGTCTGAGCGTC GGGGAACCTAAACCCGCCAACGACTACACGCATGTGGCATTCAGTGTTGGCGAAAGAGAGCTTGTTGAGCTGCACGCTAGGCTAAA AGAAGCCGGGGTTGAGGAGTGGAAGCAGAATACAAGTGAGGGTAACTCCGTGTATCTGCTTGATCCAAACGGCCATCGCATTGAGC TTCACTGCGGAACGTTGGCAACCCGCTTAGCTGAGTTGGAGAAGTCGCCCTATAAAAGGTTGGTCTGGTGCTGAAACGTAACAATC GGCTGTTGCCGCCCCTTCGGGGCTGGGACGGCCTTTCCGCCGCTCCGCGGCTACAAGTCCGCCCCAAAGCCGGGCG fosL TTAGCGCTCACTATGCAGATCGAGGGCATTAGTCACGTAACTTTCGTCGTAAAGGACCTAGAACGTGCATCCCGATTTTTCTGTCAG GGTCTGGGAGCAACGGAGGTATACGACAGCAAGGGCAGCAACTTCTCTCTTTCACGAGAGAAGTTCTTTTTGGTTGGTGGTGTCTG GGTTGCGGCAATGGAGGGCACACCACCCGCCACCGCCTCTTATCAGCACTTGGCGTTCAAGGTGGCGCCCGAAGACTTGCCGCAG TTTGAGGCTCGTCTCCGCGCAATTGGTGTTGCCATCTCACCGCCGCGGGCGCGTGTCCAAGGCGAGGGCTTGTCGCTGTACTTCC ACGACTTCGACAATCACCTCTTCGAGCTCCACACTGGAACGCTTACTGAGCGCCTTCAAGCCTATGCAGCCCCGCGCTAACAAGTC CGTCAACGGGACGCCAAAATGCTGCGCATTTTGGTTCCCTCCGCTGCGCTCCGGCGCCCGTTACGTCCAACG fosM TTAGGCCCACATAAACAAGCGCCCAAGAATATGCCAGTCAGTGGGGTTAGCCATATCACGTTCATGTCGCGCGACTTGGCACGCAC AGCAAGAATATGGACCTATGGATTGGGTGCCACTGAGGTCTACGACTCGGGTGAGACGACGTTCTCACTGTCTCAAGAGAAATTCTT CTTACTTGGGAGCACATGGATTGCGGTCATGCTTGGCGAGCCGGCACCAAGGTCGTATCACCACGTCGCGTTTGAAGTAGACGACA TTGACCTGCCCTCAATTGAGACGAAGCTAAAGGAGCTAGGTGTCGAGTTCATGCCCCCGCGGGCCCGAGTCGATGGAGAAGGCAA ATCGCTTTACTTCTATGACTTCGATGACAACCTGCTCGAGCTCCATGCAGGAACCCTCCAACAGCGACTTGAGCGCTACAAGAAGG GGAAAAATGTCTAGTACGGAACGTCCTATCCTCATGTCGCAGCGCCTAACCGTTTGGTCAAGCCGACGCCCACAAGCCTCGCTTGT GGGTACCCTCCGTGCTACGCACTACGGCGCGGCTTACCGCGAGCG fosN TTACGTTTTTTGAGGGACTGCATGATCACCGGAATAAACCACATTACTTTTTCTGTCAGTGATCTGGACTCATCGATCCAGTTCTATC GTGGTTTCCTGGGCATGAAGCTTCACGTTCTTTGGGACACGGGTGCGTATCTGACAGCCGGTGATACATGGCTTTGCTTGAGTTTG GGAGAGCCCGACCCCGCTAAAGACTATACGCATGTGGCCTTTAGTATCAGTGAAAACGCGCTCTCGGAGCTACGCGCCAAACGGG GCGAGATGGGATTCAAGGAATGGAAGCAAAACACTAGTGAGGGCGAATCGCTGTACCTACTTGATCCCAACGGCCATCGCCTAGAG CTTCACTGTGGCACTTTGGCAACTCGCTTGGCGGAGTTGGAGAACTCACCTTACAAGGGGCTGGTATGGTGCTGAAACGTAACAAT CGGCCGCACTGCGACCGCTTTTCCGCCGCTTCGCGCCTCCAAACCGGCGCGTGAGCCGGGCG foso TTAGCGCTCACGATGCAGATCGAAGGCATTAGTCACGTTACTTTTGTCGTTAAGAGCTTGGCACGTGCTGCCGAATTCTTCTGCCAA GGTCTCGGAGCAACTGAGGTCTACGACAGCGGGGGGCAGAACTTCTCGCTCTCTCGAGAGAAGTTCTTCTTAGTAGGTGGTGTCTG GGTGGCGGCAATGGAGGGCATCCCACCTGCTGCCCGTTCCTATCAACACTTGGCGTTCAAAGTCGCGCCCGAAGACTTGCCAAAG TTTGAGGCTCGTCTCCGCGCAATCGGCGTTGAGATTTCCCCGCCTCGACCGCGGGTCCAAGGAGAGGGGTTGTCGCTGTACTTCC ACGACTTCGACAACCACCTCTTCGAACTCCACACCGGAACGCTGACAGAGCGCCTGAACACCTATGCAGCCCCGCGCTAACAAGTC CGTCAACGGGACGCCAAACTGCTGCGCAGTTTGGTTCCCTCCGCTGCGCTCCGGCGCCCGTTACGTCCAACG lnu(F)1 TTGTGCGTAAGAATAAAACAAAAGCTGCGTATACCTTTCCGCAGAATCAGTGGCTTCAATAAAAGGATGTTTCAATGCTTCAGCAGAA AATGATCGAACGCTTCAAGGAAGCTTGCCATGAGGATGCACGAATAATCGCGGCGCTGATGTTCGGCTCATTTGCTATCGGAGAGG GTGACGAGTTCTCTGATATCGAATTTGCAGTGTTCATCCAGAATAATCATTTTGAAAATTTCGATCAGCGCTCGTGGCTTAATGCTGT AAGTCCGGTTGCAGCTTACTTTCCGGATGACTTCGGCCACCACACCGCGCTTTTTGAAAACGGCATTCGCGGTGAATTCCATTTCAT GCGAAAATCGGACATACCGGTCATTTCCACTTGGCAAGGCTACGGGTGGTTTCCCTCGCTTGAGGAGGCTGTTTTGTTGGACCGAT CAGGAGAGTTGTCAAGGTACGCGAGTGCTCTCGTGGGCAGTCCCCCGAAACGTGAAGGCGCGCCGCTGGTGGAAGGACTTGTATT GAACCTCATCAGCCTGATGCTCTTTGGGGCAAATCTTTTAAATCGGGGAGAGTATGCTCGCGCCTGGGCTTTGCTCAGCAAAGCAC ATGAAAACTTACTCAAGTTGGTTCGCCTCCATGAAGGGGCAACAGACCACTGGCCGACACCTTCACGCGCGCTCGAAAAGGATGTC TCGGAGGACTCGTATAATCGCTACCTGGCATGCACAGGCAGCGCGGAACCAAAAGCACTATGTGTAGCCTATCATGAAACGTGGAA GTGGAGTCTCGAATTGTTCAGGAGTGTGGCTGGACCTCTGAATATCGAGCTTCCGAGAATTGTAATTGCGCAGACAAAAAGGTTGCT AAATGAATCTGCGACGCCGCACAACAAGTAAATCCAGCGGACGCATAAAAGCGCGCCGCTGATTAACGCG Supplementary Material 186 lnu(F)2 TTGTGCTGACGAAAAAAAACAAAAATCTGCGTATACCTTTCCTCATAATCTGTGGCTTCAATAAAAGGATATTTCTATGCTTCAGCTGA AAATGATCGAACTCTTCAAGGAAGGTTGTCATGAGGATGCACGAATAATCGCGGCATTGATGTTCGGCTCATTTGCTATCGGAGAGG GTGACGAGTTCTCTGATATCGAATTCGCAGTGTTCATCCAGGATGACCATTTTGAAAATTTCGATCAGCGCTCGTGGCTTAATGCCG TAAGTCCGGTTGCTGCTTACTTTCCGGACGACTTCGGCCACCACACCGCACTTTTTGAAAACGGCATTCGCGGTGAATTCCATTTCA TGCGAAAATCGGACATACCGGTCATTTCCACTTGGCAAGGCTATGGGTGGTTTCCCTCGCTTGAGGCGGCTGTTTTGTTGGACCGA TCAGGAGAGTTGTCAAGGTACGCAAGCGCTCTCGTGGGCGGTCCCCCGATACGTGAAGGCGCGCCGCTGGTGGAAGGGCTTGTG TTGAACCTCATCAGCCTGATGCTCTTTGGGGCCAATCTTTTAAATCGGGGAGAGTACGCTCGCGCCTGGGCTTTGCTCAGCAAAGC ACATGAAAACCTACTCAAGCTGGTTCGACTCCACGAAGGGGCAACAGACCACTGGCCGACACCTTCACGCGCGCTCGAAAAGGATA TCTCGGAGGACTCGTATAATCGCTATCTGGCATGCACAAGCAGTGCAGAACCAAGAGCACTATGTGCAGCCTATCATCAAACGTGG ACGTGGAGTCTCGAATTGTTCAAGAGCGTGACAGAACCTCTGAATATCGAGCTTCCGAGAACTGTAATTGCGCAGGCAAAAAGGTT GCTCAATGAGTCTGCGACGCCGCACAACAAGTAAATCCAGCGGACGCATAAAAACGCGCCGCTGATTTTGACG smr1 TTAGCCCCCACAATCGGAGATCGTTATGGGTTGGATATATCTCATTCTCGCTGGCGTCTTTGAAGTTGGTTGGCCAGTCGGGCTCAA GATGGCGCAGACACCGGAGACTCGCTGGAGCGGCATCGGAGTGGCGGTTGCATTTATGACTGTGAGTGGGTTTTTACTCTGGCTT GCGCAGCGGCAGATCCCCATTGGCACCGCATACGCGGTGTGGACAGGCATTGGTGCTGCCGGCACCTTTTTCGTAGGCGTGCTGT ACTACGGCGATCCGACTTCGTTCTTTCGGTACATGGGCGTCGCCCTGATAATAGCGGGCGTTATTACCCTCAAGTTGGCTCATTAGA GGTGTGCGCTAACAATTCATTCAAGCCCGACGCCCGCTTCGCGGCGCGGCTTAATTCAGGCG smr2 TTAGCGCCCACGAACGGAGATCACGATGGCCTGGATATACCTGATCCTCGCTGGACTCTTTGAGATTGGCTGGCCCGTCGGACTGA AGATGGCGCAGGTACCGGAAACCCGATGGAGTGGTGTTGGCATTGCGGTCGCGTTTATGGCCGTGAGTGGCTTTCTGCTATGGCT GGCTCAGCGGCACATTCCCATCGGTACTGCCTACGCTGTTTGGACGGGCATCGGTGCGGCTGGCACCTTCCTCGTCGGCGTTCTT TACTACGGAGATCCAACATCAGTTGCGCGGTACTTTGGCGTGGCGCTCATTGTTGCCGGGGTCATCACGCTCAAGCTCGCGCACTG AGGTGTGGGCGCTAACAATTCATTCAAGCCGAAGCCGCTTCGCGGCGCGGCTTAATTCGGGCG smr3 TTAGACGCCCACGGAACGGGAGATCACGAGGGCCTGGATGGACCTGATCCTCGCTGGACTCTTTGAGATTGGCTGGCCCGTCGGA CTGAAGATGGCGCAGGTACCGGAAACCCGATGGAGTGGTGTTGGCATTGCGGTCGCGTTTATGGCCGTGAGTGGCTTTCTGCTAT GGCTGGCTCAAGCGGCAACATTCCCATCGGTACTGCCTAACGCTGTTTGGACGGGCATTCGGTGCGGCTGGCACCTTCCTCGTCG GCGTTCTTTACTACGGAGATCCAACATCAGTTGCGCGGTACTTTGGCGTGGCGCTCATTGTTGCCGGGGTCATCACGCTCAAGCTC GCGCACTGAGGTGTGGGCGCTAACAATTCATTCAAGCCGAAAGCCGCTTCGCGGCGCGGCTTAATTCGGGCG qacE TTAGATGCACTAAGCACATAATTGCTCACAGCCAAACTATCAGGTCAAGTCTGCTTTTATTATTTTTAAGCGTGCATAATAAGCCCTAC ACAAATTGGGAGATATATCATGAAAGGCTGGCTTTTTCTTGTTATCGCAATAGTTGGCGAAGTAATCGCAACATCCGCATTAAAATCT AGCGAGGGCTTTACTAAGCTTGCCCCTTCCGCCGTTGTCATAATCGGTTATGGCATCGCATTTTATTTTCTTTCTCTGGTTCTGAAAT CCATCCCTGTCGGTGTTGCTTATGCAGTCTGGTCGGGACTCGGCGTCGTCATAATTACAGCCATTGCCTGGTTGCTTCATGGGCAA AAGCTTGATGCGTGGGGCTTTGTAGGTATGGGGCTCATAGTTAGTGGTGTAGTAGTTTTAAACTTGCTTTCCAAAGCAAGTGCCCAC TAATAAACTCAGTCATCTAACAAGTCGTTGCAGCACCGCTCCAGCACTTCGTGCCTGCGCTGGACAGTTTTTAAGTCGCGGCTTTAT GGTTTTGCTGCGCAAAAGTATTCCATAAAATCACAACTTAAAAACTGCCGCTGAACTCGGCG qacEDsul1 TTAGATGCACTAAGCACATAATTGCTCACAGCCAAACTATCAGGTCAAGTCTGCTTTTATTATTTTTAAGCGTGCATAATAAGCCCTAC ACAAATTGGGAGATATATCATGAAAGGCTGGCTTTTTCTTGTTATCGCAATAGTTGGCGAAGTAATCGCAACATCCGCATTAAAATCT AGCGAGGGCTTTACTAAGCTTGCCCCTTCCGCCGTTGTCATAATCGGTTATGGCATCGCATTTTATTTTCTTTCTCTGGTTCTGAAAT CCATCCCTGTCGGTGTTGCTTATGCAGTCTGGTCGGGACTCGGCGTCGTCATAATTACAGCCATTGCCTGGTTGCTTCATGGGCAA AAGCTTGATGCGTGGGGCTTTGTAGGTATGGGGCTCATAATTGCTGCCTTTTTGCTCGCCCGATCCCCATCGTGGAAGTCGCTGCG GAGGCCGACGCCATGGTGACGGTGTTCGGCATTCTGAATCTCACCGAGGACTCCTTCTTCGATGAGAGCCGGCGGCTAGACCCCG CCGGCGCTGTCACCGCGGCGATCGAAATGCTGCGAGTCGGATCAGACGTCGTGGATGTCGGACCGGCCGCCAGCCATCCGGACG CGAGGCCTGTATCGCCGGCCGATGAGATCAGACGTATTGCGCCGCTCTTAGACGCCCTGTCCGATCAGATGCACCGTGTTTCAATC GACAGCTTCCAACCGGAAACCCAGCGCTATGCGCTCAAGCGCGGCGTGGGCTACCTGAACGATATCCAAGGATTTCCTGACCCTG CGCTCTATCCCGATATTGCTGAGGCGGACTGCAGGCTGGTGGTTATGCACTCAGCGCAGCGGGATGGCATCGCCACCCGCACCGG TCACCTTCGACCCGAAGACGCGCTCGACGAGATTGTGCGGTTCTTCGAGGCGCGGGTTTCCGCCTTGCGACGGAGCGGGGTCGCT GCCGACCGGCTCATCCTCGATCCGGGGATGGGATTTTTCTTGAGCCCCGCACCGGAAACATCGCTGCACGTGCTGTCGAACCTTCA AAAGCTGAAGTCGGCGTTGGGGCTTCCGCTATTGGTCTCGGTGTCGCGGAAATCCTTCTTGGGCGCCACCGTTGGCCTTCCTGTAA AGGATCTGGGTCCAGCGAGCCTTGCGGCGGAACTTCACGCGATCGGCAATGGCGCTGACTACGTCCGCACCCACGCGCCTGGAG ATCTGCGAAGCGCAATCACCTTCTCGGAAACCCTCGCGAAATTTCGCAGTCGCGACGCCAGAGACCGAGGGTTAGATCATGCCTAG CATTCACCTTCCGGCCGCCCGCTAGCGGACCCTGGTCAGGTTCCGCGAAGGTGGGCGCAGACATGCTGGGCTCGTCAGGATCAAA CTGCACTATGAGGCGGCGGTTCATACCGCGCCAGGGGAGCGAATGGACAGCGAGGAGCCTCCGAACGTTCGGGTCGCCTGCTCG GGTGATATCGACGAGGTTGTGCGGCTGATGCACGACGCTGCGGCGTGGATGTCCGCCAAGGGAACGCCCGCCTGGGACGTCGCG CGGATCGACCGGACATTCGCGGAGACCTTCGTCCTGAGATCCGAGCTCCTAGTCGCGAGTTGCAGCGACGGCATCGTCGGCTGTT GCACCTTGTCGGCCGAGGATCCCGAGTTCTGGCCCGACGCCCTCAAGGGGGAGGCCGCATATCTGCACAAGCTCGCGGTGCGAC GGACACATGCGGGCCGGGGTGTCAGCTCCGCGCTGATCGAGGCTTGCCGCCATGCCGCGCGAACGCAGGGGTGCGCCAAGCTG CGGCTCGACTGCCACCCGAACCTGCGTGGCCTATACGAGCGGCTCGGATTCACCCACGTCGACACTTTCAATCCCGGCTGGGATC CAACCTTCATCGCAGAACGCCTAGAACTCGAAATCTAA qacF TTAGATGCCAGATTTGGCGTTGCGTATCTCACAGAAAATCGATAGCCGCAAGACTGTTTTTGGCAACTCATAGCCACTACAATTTCTC CTTCATACCGTAGAGGAGATTGCGCGTGAAGAACTGGATATTTCTGGCTGTTTCAATCTTTGGCGAGGTCATCGCAACTTCCGCACT GAAGTCTAGCCATGGATTCACTAGGTTAGTTCCTTCCGTTGTAGTTGTGGCTGGCTACGGGCTTGCGTTCTATTTCTTGTCTCTCGC GCTCAAGTCCATTCCGGTCGGTATTGCTTACGCTGTATGGGCTGGGCTTGGCATCGTGCTTGTGGCAGCTATTGCTTGGATTTTCCA TGGCCAAAAACTAGACTTCTGGGCGTTCATTGGCATGGGACTTATCGTCAGTGGCGTCGCCGTTCTAAACCTGCTATCCAAGGTCA GCGCACATTGACCGGGTTGGCATCTAACAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAGGCG qacG TTAGATGCTTTGCTGTGCGCACAAATTTCGGCCAGCAACAAGACTGTTTTTTTTCTTAAATCGAACCTAAAATTTCTTCGCGGAACTC CATGGAGAAATATTTTGAAAAATTGGTTATTTCTGGCTACGGCCATTATTTCTGAGGTCATTGCAACCTCTGCGCTCAAGTCTAGTGA GGGCTTTACTAGGTTAGTACCGTCTTTTATCGTCGTAGCGGGATACGCTGCTGCTTTTTATTTCCTGTCGCTGACACTCAAATCGATT CCTGTTGCAATCGCCTACGCAGTTTGGTCGGGCCTCGGGATCGTCTTGGTCACTGCGATTGCATGGGTTTTGCATGGTCAAAAACT AGATATGTGGGGATTTGTTGGTGTCGGCTTCATTATCAGCGGCGTTGCTGTGCTCAACTTGCTATCTAAGGCAAGTGTTCACTAAAA CGGTCGCATCTAACCATTCCGTCGAGAGGGACCGCCCACAAGCTGCGCTTGCGGGTTCCCTTCGCGGCTTCGCCGCTACGGCGGC CCCTCACGTCAAACG qacH TTAGATGCCAGATTTGGCGTTGCGTATGCTCACAGAAAATCGACAGCCGCAAGACTGTTTTTGGCAACTCATAGCCACCACTATTTAT CCTTCATACCGTAGAGGAGATTGCACGTGAAGAACTGGCTCTTTCTGGCTATTGCAATATTTGGTGAGGTCGTCGCAACTTCCGCAC TGAAGTCCAGCCATGGATTCACCAAGTTAGTTCCTTCTGTTGTAGTTGTGGCTGGCTACGGGCTTGCGTTCTATTTCCTCTCTCTCG CAATCAAGTCCATCCCGGTCGGCATTGCTTATGCTGTTTGGGCTGGCCTCGGCATCGTACTTGTGGCAGCTATCGCTTGGATCTTCC ATGGCCAGAAACTAGACTTGTGGGCGTTCGTTGGCATGGGACTTATCGTTAGTGGCGTCGCCGTTCTAAATCTGCTATCCAAGGTCA GCGCACATTGATCGGGCTGGCATCTAACAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAGGTG qacK TTAGCATGTAATTAACCGGAAAGTTGCGCACGAATAATTTTTTTCTTCAAGACTACAATTTTAAGAGAAAAAGACACATACTCCCTTCG AATCATATTGGAGGCGGATCATGAAAAGCTGGTTATTTCTTACTATTTCGATTCTTGGAGAGGTAGTTGCAACATCTGCATTAAAGTC CAGTGAAGGTTTTACGAAGCTCGTACCATCTTTCATCGTAATTGTTGGCTATGGAATTGCATTTTATTTCCTTTCATTGGTCTTGAAGT CTATTCCTGTAGGGGTGGCCTATGCAGTTTGGTCTGGCCTTGGCGTAGTATTAGTCACTGCTTTTGCATGGGGGCTTTACGGGCAAA AGATTGATGCATGGGGTTTCGTGGGTATTAGTTTAATAGTTTGCGGTGTATTGGTTTTAAATTTGCTTTCTAAGGCAAGCGTTCATTAA GTGGCACTGGCATCTAACAATCGGCAGCAGGCGGACAGCCTACACTACGCGGTTTTGTGTTACTCGCTGCGCTCAAACATTAACAC AAAACCGCTCCGTTACGGCTGCCGCTGTGCCGGGCG qacL TTGGGCGTCTCAATACTGAGGATCACCGCAAATGCACTGGATACTTCTGACCGCAGCGATTATTAGTGAGGTCATCGGCACATCGG CCTTGAAGGCATCGGAAGGTTTCTCGCGTCTATGGCCTTCAGTTATTGTCACCATTGGCTACGCGCTGGCCTTCTACTTCCTCTCAC TCACGCTCAAAACAATTCCAGTTGGGGTGGCCTACGCAATCTGGTCCGGAATTGGCATCGTTCTAATTGCATTGGTTGCGTGGGTTC Supplementary Material 187 TCTATGGGCAAGCTCTTGATCTTCCGGCAATCATAGGCATGTCGCTCATCGTGGCTGGCGTTGTTGTTCTCAATCTGTTTTCCAAGT CCGTCTCTCACTCATGAACCGCCCAACCCATCATTCCACCGGACCTGCGCAAAAAGCCGCGCAGTCCGGTGAATTCAAACG qacM TTAGATGCCAGTGGTAGTTCCCGTAGGCGCACAGCTTTAGAGACAATACAGGCCTGCCGATTTTGAGATACAAGCCACATAATTGGC CGCCCATTATTTTGGAGTGAACTCATGAAAGCTTGGATCTATCTTGCCGTCGCGATAACCGCCGAAGTGGTCGCAACTTCAGCGCTC AAATCGAGTGAAGGATTCACCAAACTTGCCCCGTCTGCCGTAGTTGTCATCAGCTACGGTGTAGCTTTCTATTTTTTGTCGCTCGTCT TGAAGACCGTTCCAGTCGGCGTTGCCTACGCTGTTTGGTCTGGCCTCGGCATCGTGCTGATCGCAGCAGTTGCGTGGCTCTTTCAT GGACAAAAGCTCGACACATGGGCCTTCGTTGGCATGGGACTGATAGTTAGCGGAGTAGCGGTTCTCAACGTACTCTCCAAAACGAG CGCCCACTGATCCGGTGCTGGCATCTAACAGTTCATTCAAGCCGATACCGCTTCGCGGCACGGCTTAACTCATTCG qnrVC1 TTATGTGCTTTCTCTAAAACAAGCCAGATTCACTGAAACTTTCTTCTGGCTGGCCGCATCGGTCGTTTCGAATTAGCCACCTTTAAAA TGCCGTTTTGATGCCTTATTTTGGCTAAAACGGGGTGTTTTAAGTTTCTGTTTTTATTGGTTTTGTTTTTGTTGAGAACTTTCAGGTAAA TGATAGTCTTCAAATCAAATGTTTTTTGGAGCCACAGCATGGAAAAATCAAAGCAATTATATAATCAAGTGAACTTCTCACATCAGGAC TTGCAAGAACATATCTTTAGCAATTGTACTTTTATACATTGTAATTTTAAGCGCTCAAACCTCCGAGATACACAGTTCATTAACTGTACT TTCATAGAGCAGGGGGCATTGGAAGGGTGCGATTTTTCTTATGCTGATCTTCGAGATGCTTCATTTAAAAACTGTCAGCTTTCAATGT CCCATTTTAAGGGGGCAAATTGCTTTGGTATTGAACTGAGAGATTGTGATCTTAAAGGAGCAAATTTTAGTCAAGTTAGTTTTGTAAAT CAGGTTTCGAATAAAATGTACTTTTGTTCTGCATACATAACAGGTTGTAACTTATCCTATGCCAATTTTGAGCAGCAGCTTATTGAAAA ATGTGACCTGTTCGAAAATAGATGGATTGGTGCAAATCTTCGAGGCGCTTCATTTAAAGAATCAGATTTAAGCCGTGGTGTTTTTTCG GAAGACTGCTGGGAACAGTTTAGAGTACAAGGCTGTGATTTAAGCCATTCAGAGCTTTATGGTTTAGATCCTCGAAAGATTGATCTTA CGGGTGTAAAAATATGCTCGTGGCAACAGGAACAGTTACTGGAGCAATTAGGGGTAATCATTGTTCCTGACTAAGCGCAAGATTCGG CTACGCACATAACAAACGCTTTAAGACGGATTCGCAACGTTTGGCGGTTTTAGTTTGAATTGGCTTTTGTATTTACGGTGTAATAATT GAGTGTTGTGGTAGCGTTGCTCACCACTTAAGCGGGCG qnrVC6 TTATGTGCTTTCTCTAAAACTCACCAGGTTCACCAAAACTTTTTTCTAGCTGGCCGCATCGCTTATTTTGAATTAGCACCCTTTAAAAT GCCATTTTGATGCCTTATCTTGGCTAAAACGGGGTGTTTTAAGTGTCTGTTTTTATTGGTTTTGTTTTTGTTGACAACTTTCAGGTAAA TGGTAGTCTTCAAATCAAATGTTTTTTGGAGCTACAGCATGGAAAAATCAAAGCAATTATATAATCAAGTGAACTTCTCACATCAGGAC TTGCAAGAACATATCTTTAGCAATTGTACTTTTATACATTGTAATTTTAAGCGCTCAAACCTTCGAGATACACAGTTCATTAACTGTACT TTCATAGAGCAGGGGGCACTGGAAGGGTGCGATTTTTCTTATGCTGATCTTCGAGATGCTTCATTTAAAGATTGTCAGCTTTCAATGT CCCATTTTAAGGGGGCAAATTGCTTTGGTATTGAACTGAGAGATTGTGATCTTAAAGGGGCAAATTTTAGCCAAGTTAGTTTTGTAAA TCAGGTTTCGAATAAAATGTACTTTTGCTCTGCATACATAACAGGTTGTAACTTATCCTATGCCAATTTTGAGCAGCAGCTTATTGAAA AATGTGACCTGTTCGAAAATAGATGGATTGGTGCAAATCTTCGAGGCGCTTCATTTAAAGAATCAGATTTAAGTCGTGGCGTTTTTTC AGAAGACTGCTGGGAACAGTTTAGAGTACAAGGCTGTGATTTAAGTCATTCAGAGCTTTATGGTTTAGATCCTCGAAAGATTGATCTT ACAGGTGTAAAAATATGCTCGTGGCAACAGGAGCAGTTACTGGAGCAATTAGGGGTAATCATTGTTCCTGACTAAGCGCAAGATTCG GCTACGCACATAACAAAGCGTTTAAGACAGATTCGCAACGCTGGGCATTTTCGGTTTGCTTTGAATTTAGTGTTTACGGCACAATGGT TTAGGTTGGGTGGCATGTTGCTCACTACTTAACGCGGCG sul4 TTAGCTTGACCCTTCGGGCGGAGGAGAAAATGTCATCAATTTATAATAAAACTAAAAGTGGATTTTGTCGGATTTGTGGAAATTGTAA GAAAGACAGCGTTTTTCTTCCAGTTTTGAAATTGGGCGTAAACCCACTTTTAAATGGGGGCCGCGCCTCATCGACATCGACATCCTT TTCTATGACAACATGATCATGAACGACGATATCCTGGCTATTCCTCATCCCTTCGTCGATGAACGTGCTTTTGTCCTGGCACCCCTG GCTGACATTGCGCCCGATTACGAACATCCCCAGACCCAAAAGTCTGTAGCCCAAATGCTGGCTGACGTATCCTCATCCGTAGATGA GGCCACAACGGCCGTTTACCGTTTACCGGATCAACCAAACTTCATGGGCACTTAACCCCCACCCTAACCCTCCCCCTAAAATGGGG AGGGAACATCTCCCTCTCCCGGTGGGAGAGGGCTGGGGAGAGGGTGAAAAAAATTTTCAAGGAACTGCTATTGATGTCAACCACAC TAACCAGCTTCAAATGGGGTGAACGCACCTACATCATGGGCATCCTCAACGTCACTCCAGACAGCTTTTCTGGAGATGGCGTTATGG TTGAAGAAGATGTCATCGCCAAAGCGGTAGCCCAGGCCAAACAATTTGTAGCCGACGGCGCAGACATCATCGACATTGGCGGCGA GAGTACCCGCCCTGGCAGCTCACCTATAAGCGCAGAGGAAGAACTGGCGCGGGTGCTGCCGGTGGTGCAGGCCGTACGCCAGGC TGTGGACGTCGTTATTTCCATCGACAGCTACCGCGCTTCCGTGGCCGAAGCGGCCCTGGCGGCAGGCGCCAGCTGGCTCAACGAC GTCTGGGGGCTGCGCATGGACCCGGACATGGCCGGCCTGGCAGCACAAGCCGGCTGCCCCATCGTCCTTATGCACAACCGCAGC AAACCAAAGAACATAGCGCAAGAAAAAAAGCTGGGCGGGCGCTTCATCGGGGTAAAATACGACGACCTCATCACCGACGTTAAACG TGAATTACAAGAAAGCATCGACATCGCCTTAAAAGCCGGCGTAAAAGAGTCCCAAATTATCCTGGATCCCGGCATCGGCTTCGGTAA AACCGTCGAGCAAAGTTTGCAACTGCTCGACCAGATTAATCAGTTCAAAACAATGGGATTTCCCATCTTAATAGGTCCGTCGCGCAA ATCATTTATTGGCTATACGCTCGATTTGCCGCCAGACCAGCGCATAGAAGGAACGGCGGCCACCGTCGCCATTGGCATTGACCGAG GAGCCGACGTTGTGCGCGTCCATGACGTCAAAGCAATCGTTCGGGTCGCCCGTATGACAGATGCAATCGTGAGACGTTAAAGGATT TCAGTGCTATCAGTCACTAGTGAAATGCGTAAAACGTAATGCGTAAGGTTTATTACGCATTACGCATTACGAATCAAACCACAAACAC ACTGAATTTAGACACATTTTATAGGAGCTGCACATGATCGATTTTGAACTAGACCAGGAACAAAAGATGCTAACCGATGCCATCCGC CGCCTGGCGGAAGAGCGCATACGGAATCTGTAGCAACAAGGCAGGTGGTTCCGTTCTCAGTGCCACCTTCAAGTCAGGGAGTGAA CATGAGGTTCGGCAGCTTCGTTCTCAGTGGCATCAACAAGTCCAGCTTGGTCATCAGCTTTGGCGCCCTGTCATGCTTCGTTTTGCC TCCGGCTTCGCTTTCGCTCCGCAAATTTCGCTGCTTCAAGCTCAGTGTGCTGGCCCATAACAAGGGCAATCAGTTCGCGCCTGGCG GCGCCGGACGCTCCCTGCGGTCGCGCCGCTGTTGCCGTCG Supplementary Material 188 Supplementary Table S6. Transcriptomic analysis of pMBA containing E. coli MG1655. List of the DE genes showing log2fold change > 1 and padj < 0.05 between pMBA and E. coli MG1655. GeneID baseMean log2FoldChange p value padj Gene Product cds-NP_418663.1 10693.8904442378 -1.00187019607166 2.57782169890577e-27 4.89921797618355e-25 mgtA Mg(2(+)) importing P- type ATPase cds-NP_418272.1 52.0910806549008 -1.00896369965551 0.0013172408829078 0.015393387793463 metR DNA-binding transcriptional dual regulator MetR cds-NP_416875.1 58.0916283169775 -1.01102292595806 0.00195839988792302 0.0204979188269277 frc formyl-CoA transferase cds-NP_417970.1 446.083518589937 -1.03686177543811 4.10136574207211e-17 4.23143762703496e-15 mdtE multidrug efflux pump membrane fusion protein MdtE cds-NP_417069.1 2485.94695662744 -1.05087078408895 4.19546189938973e-20 6.05992516747853e-18 nadB L-aspartate oxidase cds-YP_588479.2 35.077037599087 -1.06770199331554 0.00222542526789758 0.0228295756885743 ytjA DUF1328 domain- containing protein YtjA cds-NP_418541.2 1602.55685511277 -1.07446338539299 3.95134934290832e-28 7.92684582068998e-26 adiA arginine decarboxylase degradative cds-NP_416891.1 325.504837731164 -1.09341197235169 2.43850117447425e-10 1.33415571833735e-08 ypeC DUF2502 domain- containing protein YpeC cds-NP_415690.5 47.2068145589444 -1.09763047140475 0.00161439054843321 0.0178230830628353 ymgG PF13436 family protein YmgG cds-NP_417198.1 348.451721402939 -1.09908743444963 1.65503332805913e-10 9.63923443164762e-09 hycH formate hydrogenlyase assembly protein cds-NP_418734.1 7176.63990212688 -1.12856292851041 1.57314349580287e-33 4.73385096945346e-31 fimA type 1 fimbriae major subunit cds-NP_415125.1 144.45237445706 -1.13892334579405 1.48744209145397e-06 4.59072939507717e-05 entC isochorismate synthase EntC cds-NP_415689.2 324.101526267298 -1.16098304545022 6.73110270910539e-12 4.96041058828154e-10 ymgD PF16456 family protein YmgD cds-NP_416314.1 1175.93927497039 -1.18561882458864 1.52777873836164e-13 1.25382023277815e-11 dmlA D-malate/3- isopropylmalate dehydrogenase (decarboxylating) cds-NP_418738.1 62.0951726085809 -1.18730439984642 3.7089408771689e-05 0.000769711810773384 fimF type 1 fimbriae minor subunit FimF cds-NP_417968.1 8185.58602351012 -1.20241857803249 1.26056005252381e-45 7.58647058277244e-43 hdeD acid-resistance membrane protein cds-NP_417966.4 4442.82625144058 -1.25888323493793 6.51195097558539e-47 4.70293099456777e-44 hdeB periplasmic acid stress chaperone HdeB cds-NP_417972.1 257.581871878644 -1.26709496136913 1.25508283680375e-14 1.13302603092458e-12 gadW DNA-binding transcriptional dual regulator GadW cds-NP_417967.1 25596.8816113662 -1.28217624096784 3.11087072230248e-47 2.80833854455856e-44 hdeA periplasmic acid stress chaperone HdeA cds-NP_417969.1 338.312828792651 -1.28635595342299 2.09204908496867e-18 2.36074663931933e-16 gadE DNA-binding transcriptional activator GadE cds-NP_417206.1 74.5310994938313 -1.29991775291447 2.85761324142033e-06 8.25507313181504e-05 hypA hydrogenase 3 nickel incorporation protein HypA cds-NP_414913.1 164.596952343568 -1.3237061134429 2.94541309601167e-11 1.93379757994512e-09 yaiY DUF2755 domain- containing inner membrane protein YaiY cds-NP_418273.1 651.191211072339 -1.38186576369585 5.09007883207692e-21 7.99142376636076e-19 metE cobalamin-independent homocysteine transmethylase cds-NP_417964.1 118.29669531921 -1.40972625795003 2.49676273797498e-11 1.66959449015327e-09 dctR putative DNA-binding transcriptional regulator DctR Supplementary Material 189 cds- YP_001165313.1 25.8551598431996 -1.49550038523296 0.000581866104341478 0.00805026246274743 appX cytochrome bd-II accessory subunit AppX cds-NP_417963.4 1022.68724113612 -1.49706218936849 1.84656019716815e-30 4.44528591464947e-28 slp starvation lipoprotein cds-NP_417204.1 107.9875485457 -1.50463200583777 4.24713280549549e-10 2.16005585361186e-08 hycB formate hydrogenlyase subunit HycB cds-NP_416257.1 109.527698646828 -1.5115087489886 1.12858029666415e-10 6.79217241875705e-09 spy ATP-independent periplasmic chaperone cds-NP_417201.1 926.784117891567 -1.56854320792923 1.9470588036626e-31 5.4083302615582e-29 hycE formate hydrogenlyase subunit HycE cds-NP_417203.1 810.221299353247 -1.57093781469598 5.3907384108418e-21 8.11081516731239e-19 hycC formate hydrogenlyase subunit HycC cds-NP_418503.1 2203.73277275277 -1.5797159321735 2.24742324971757e-35 7.37767759520922e-33 fdhF formate dehydrogenase H cds-NP_417193.1 130.474119832831 -1.59941817702693 3.12299178074508e-15 2.96766403165013e-13 hydN putative electron transport protein HydN cds-NP_417205.1 91.228214770026 -1.61220742865463 4.48785081396124e-08 1.80062547657934e-06 hycA regulator of the transcriptional regulator FhlA cds-NP_417199.1 376.590610965942 -1.61436500829892 2.90749749359649e-19 3.49965781645898e-17 hycG formate hydrogenlyase subunit HycG cds-NP_417948.4 82.8261859132586 -1.648566414595 1.18646622675612e-09 5.86894458194021e-08 yhiM inner membrane protein YhiM cds-NP_417200.1 328.278566676392 -1.74084652611983 1.12322273232036e-28 2.38585722729931e-26 hycF formate hydrogenlyase subunit HycF cds-NP_417202.1 563.722546826826 -1.76741577752852 6.03747766254548e-31 1.55723798853227e-28 hycD formate hydrogenlyase subunit HycD cds-NP_416010.1 1987.91829646751 -1.84324309614455 2.3081259627586e-61 2.77821428384044e-58 gadB glutamate decarboxylase B cds-NP_417974.1 1703.80056588875 -1.85979209664822 4.35785969494246e-63 7.8681156792186e-60 gadA glutamate decarboxylase A cds-NP_416009.1 2133.8135129458 -1.92597354526408 1.35081147518026e-70 4.8777802368759e-67 gadC L-glutamate:4- aminobutyrate antiporter cds-NP_416330.1 575.729018490171 1.00156857457841 1.7495276597497e-15 1.70744442685302e-13 yoaE TerC family inner membrane protein YoaE cds-NP_418773.1 268.860520730953 1.04583165807327 1.08321524415753e-09 5.43262534257339e-08 yjiX PF04328 family protein YjiX cds-NP_416070.1 45.9779416570507 1.07393586870842 0.00176038050631877 0.0189753253979615 cspI cold shock-like protein CspI cds-NP_416051.1 82.150638873981 1.09151841131902 1.24186900854371e-05 0.000300965704016867 ydeE dipeptide exporter cds- YP_009518795.2 38.5599035136036 1.25274652798568 0.00026674359819901 0.00415177212541648 yoaL protein YoaL cds-YP_026180.1 4522.75607665035 1.42493316948833 5.26575900642921e-45 2.71637939603084e-42 srlA sorbitol-specific PTS enzyme IIC2 component cds-NP_418012.1 8648.70501940828 1.45560941318424 0.000121194668920872 0.00215583226341512 cspA cold shock protein CspA cds-NP_417184.1 1096.48071816521 1.49771860820237 1.37521370833922e-37 4.96589670081291e-35 srlB sorbitol-specific PTS enzyme IIA component cds-YP_026181.1 6638.65692040713 1.51989824764217 1.83466243237288e-42 8.28120755412311e-40 srlE sorbitol-specific PTS enzyme IIBC1 component cds-NP_416448.1 18.0548919520912 1.59421555892762 0.00239947938589425 0.0242025700068831 fliF flagellar basal-body MS- ring and collar protein cds-NP_417185.1 13570.2481440378 1.59712847138794 2.69769947622926e-38 1.08237697874043e-35 srlD sorbitol-6-phosphate 2- dehydrogenase cds-NP_417186.1 288.828498583272 1.78289718949831 4.62530731416277e-29 1.04387404446511e-26 gutM DNA-binding transcriptional activator GutM cds-NP_418122.1 31.4981429368301 2.42429808868817 0.00490389169888549 0.0408959651840081 uhpT hexose-6- phosphate:phosphate antiporter Supplementary Material 190 Supplementary Table S7. Transcriptomic analysis of pMBA derivatives. List of the DE genes showing log2fold change > 1 and padj < 0.05 between pMBA derivatives (pMBAdfrA21, pMBAdfrA31, pMBAereA2, and pMBAereA3) and pMBA-containing strain. dfrA21 GeneID baseMean log2FoldChange p value padj Gene Product cds-YP_026181.1 6487.289412203 97 -1.00594242247915 0.003461762326 11366 0.025640023867 6883 srlE sorbitol-specific PTS enzyme IIBC1 component cds-NP_418343.1 42.41973398704 98 -1.00701228025525 0.001202075636 48017 0.012331637994 9259 rhaT rhamnose/lyxose:H(+) symporter cds-NP_418491.1 111.8723506690 21 -1.00852598380315 7.720711109094 45e-05 0.001621349332 90983 actP acetate/glycolate:cation symporter cds-NP_417248.1 93.39193253474 58 -1.00989548664724 0.000230477884 176258 0.003546577786 67777 ygcP putative anti-terminator regulatory protein cds-NP_418773.1 269.3837662167 31 -1.01169318481721 2.216581929471 02e-07 1.648582810044 07e-05 yjiX PF04328 family protein YjiX cds-NP_418652.2 101.9682905693 93 -1.02897837083554 2.561735671019 4e-07 1.829079269107 85e-05 yjfF galactofuranose ABC transporter putative membrane subunit YjtF cds-NP_416051.1 117.8980186518 35 -1.03577429038046 7.858011366212 2e-07 4.315861627288 85e-05 ydeE dipeptide exporter cds-YP_588462.1 23.60618649210 16 -1.04583171946196 0.006649593353 39796 0.041867810002 876 arnE undecaprenyl-phosphate-alpha-L- Ara4N flippase - ArnE subunit cds-NP_416844.1 1948.121368842 86 -1.07471274087035 0.004979156821 01308 0.032978830892 4243 fadI 3-ketoacyl-CoA thiolase FadI cds-NP_418001.1 4577.791058463 04 -1.07727459072197 4.776601980038 47e-07 2.991661240129 36e-05 dppA dipeptide ABC transporter periplasmic binding protein cds-NP_416750.2 44.35833300425 94 -1.08303472620099 0.000253564297 897925 0.003835697218 20166 rhmD L-rhamnonate dehydratase cds-NP_418061.1 321.6017768166 38 -1.10564566663853 9.222508502515 8e-06 0.000316580339 942129 lldR DNA-binding transcriptional dual regulator LldR cds-NP_418753.3 29.74886526843 95 -1.12072416313216 0.002876208581 19867 0.022666809348 5193 yjiK PF06977 family protein YjiK cds-NP_415959.1 27.20740760740 21 -1.13567067360864 0.000998613707 047925 0.010836021076 4775 ydcU putative ABC transporter membrane subunit YdcU cds-NP_418062.1 593.0085830577 56 -1.16523405377076 0.000744736820 647821 0.008632176784 78157 lldD L-lactate dehydrogenase cds-NP_415662.2 21.82104927433 9 -1.23315732989422 0.001234581335 10432 0.012432332406 0108 ymfJ uncharacterized protein YmfJ cds-NP_417186.1 296.4065670410 99 -1.24027268785217 0.002267692120 98597 0.019093539792 2639 gutM DNA-binding transcriptional activator GutM cds-NP_414776.1 32.25585971117 02 -1.24090224552319 0.004660254918 19876 0.031390773694 2822 phoE outer membrane porin PhoE cds-NP_418165.1 533.4896689973 93 -1.35892132253576 0.004850076804 18365 0.032424670769 5423 tnaB tryptophan:H(+) symporter TnaB cds-NP_417999.1 96.30562456776 99 -1.45614484157938 2.188330864593 78e-06 0.000105572178 197295 dppC dipeptide ABC transporter membrane subunit DppC cds-NP_416653.1 642.8599145638 75 -1.71751921264319 0.000157643530 888071 0.002705708679 18469 mglC D-galactose/methyl-galactoside ABC transporter membrane subunit cds-NP_418122.1 27.53761613275 07 -1.78088837723667 0.002668865077 26699 0.021556217931 7718 uhpT hexose-6-phosphate:phosphate antiporter cds-NP_416070.1 45.19894041913 33 -2.31086339396476 3.090336291760 75e-06 0.000141442314 892127 cspI cold shock-like protein CspI cds-NP_417969.1 195.7063024033 97 1.00020304270268 6.862692931598 84e-05 0.001493891083 28097 gadE DNA-binding transcriptional activator GadE cds-NP_416737.1 5317.389905439 69 1.00219005244976 7.470486650228 86e-11 2.666963734131 7e-08 nrdA ribonucleoside-diphosphate reductase 1 subunit alpha Supplementary Material 191 cds-NP_418541.2 912.2971050461 17 1.03495454621567 4.320197599552 36e-07 2.754125969714 63e-05 adiA arginine decarboxylase degradative cds-NP_415125.1 70.23112095305 18 1.04335945990741 0.006750253768 77171 0.042277905183 3597 entC isochorismate synthase EntC cds-NP_416257.1 65.99916141404 83 1.08130300153028 3.334208939173 38e-05 0.000862545356 003549 spy ATP-independent periplasmic chaperone cds-NP_417948.4 48.36933548352 11 1.27521171276928 2.027252072158 99e-06 0.000101933660 529684 yhiM inner membrane protein YhiM cds-NP_417974.1 574.8032304543 31 1.28701701002208 2.894404444490 86e-10 6.888682577888 25e-08 gadA glutamate decarboxylase A cds-NP_416010.1 657.0809259000 64 1.31437149210185 7.524707410036 54e-14 5.372641090766 09e-11 gadB glutamate decarboxylase B cds-NP_416009.1 668.1555314682 67 1.32045472392136 1.112536121562 e-12 4.964692442470 41e-10 gadC L-glutamate:4-aminobutyrate antiporter cds-NP_418663.1 6541.461037171 63 1.33814138151681 4.832162063364 13e-19 1.725081856620 99e-15 mgtA Mg(2(+)) importing P-type ATPase cds-NP_418503.1 930.1156076512 03 1.33855621541903 3.623797049788 55e-14 4.312318489248 37e-11 fdhF formate dehydrogenase H cds-NP_417193.1 61.93734963142 93 1.37095893000914 4.860653032244 02e-07 2.991815745708 82e-05 hydN putative electron transport protein HydN cds-NP_417206.1 35.14432160569 08 1.41367017686409 0.000228653934 850747 0.003533742629 51155 hypA hydrogenase 3 nickel incorporation protein HypA cds-NP_417199.1 153.8249749384 79 1.4262226435346 9.355177060720 31e-10 2.087373881673 22e-07 hycG formate hydrogenlyase subunit HycG cds-NP_417201.1 377.4558417983 58 1.43125977148256 6.091649578102 85e-13 3.545952930736 98e-10 hycE formate hydrogenlyase subunit HycE cds-NP_417200.1 123.7834809112 14 1.45042159518709 1.794943684229 74e-10 4.997430528998 42e-08 hycF formate hydrogenlyase subunit HycF cds-NP_417205.1 37.84374882569 24 1.49359830124189 0.000128431064 428747 0.002327405583 81028 hycA regulator of the transcriptional regulator FhlA cds-NP_417203.1 340.6448002896 95 1.51239248936244 2.467474651518 75e-09 4.636255003116 82e-07 hycC formate hydrogenlyase subunit HycC cds-NP_417204.1 47.86153764001 89 1.61683129301876 8.461304988063 2e-08 7.551714701846 4e-06 hycB formate hydrogenlyase subunit HycB cds-NP_417202.1 235.1334728617 98 1.70587635235084 5.755600084511 95e-14 5.136873075426 92e-11 hycD formate hydrogenlyase subunit HycD dfrA31 GeneID baseMean log2FoldChange p value padj Gene Product cds-NP_416239.1 5106.710118226 48 -1.00295870039945 2.503728767267 39e-09 2.478691479594 72e-08 yniA putative kinase YniA cds-YP_026205.1 245.7794095014 51 -1.00567705075414 5.265061015188 43e-09 4.980747720368 26e-08 tdcE 2-ketobutyrate formate- lyase/pyruvate formate-lyase 4 cds-NP_417343.1 41.71798022171 61 -1.00961934022213 0.000524150598 476133 0.001839496370 74435 xdhB putative xanthine dehydrogenase FAD-binding subunit XdhB cds-NP_418061.1 321.6017768166 38 -1.01127174471326 4.548058705578 29e-05 0.000203159348 474782 lldR DNA-binding transcriptional dual regulator LldR cds-NP_415720.1 568.5762698326 72 -1.01884807812081 1.118592850917 92e-10 1.322736046210 44e-09 ycgV putative autotransporter adhesin YcgV cds-NP_416167.1 682.3945380637 98 -1.03090823774436 5.851961922883 13e-24 2.678688376958 44e-22 nemA N-ethylmaleimide reductase cds-NP_415824.1 149.0952484667 69 -1.03093038147068 2.613851600174 87e-07 1.892022005826 31e-06 pspE thiosulfate sulfurtransferase PspE cds-NP_416513.1 278.5824715477 58 -1.03199797495722 2.524539771561 39e-10 2.850654060354 6e-09 sbmC DNA gyrase inhibitor cds-NP_415568.1 133.6947209564 47 -1.03279106048107 5.481126466200 65e-09 5.162202514738 09e-08 yceK DUF1375 domain-containing lipoprotein YceK cds-NP_416157.1 799.5974516422 7 -1.03283782253956 5.120535844569 27e-21 1.801497610771 19e-19 anmK anhydro-N-acetylmuramic acid kinase Supplementary Material 192 cds-NP_415304.1 257.2011126562 24 -1.0383233775689 2.171230166910 95e-08 1.886311596028 55e-07 moaC cyclic pyranopterin monophosphate synthase cds-NP_416586.1 23.76694159372 34 -1.04085531619093 0.004393151890 62442 0.011988235639 9924 ogrK prophage P2 late control protein OgrK cds-NP_417210.2 186.9453388508 84 -1.04261289809542 2.829028248089 81e-08 2.423173692579 14e-07 hypE carbamoyl dehydratase HypE cds-NP_416686.1 1417.708348456 53 -1.04328560457147 2.663210334269 12e-06 1.585634460557 15e-05 yejG protein YejG cds-NP_417221.1 9012.678720231 33 -1.04384801230758 2.363579754730 58e-22 9.316443533229 72e-21 rpoS RNA polymerase sigma factor RpoS cds-NP_415638.3 85.91778971869 6 -1.04440369198083 3.501456726804 07e-06 2.011565625641 69e-05 cobB protein-lysine deacetylase/desuccinylase/lipoami dase cds-NP_417594.3 221.3297938878 87 -1.04523939241945 1.075977063532 88e-10 1.275887008205 98e-09 garR tartronate semialdehyde reductase cds-NP_416925.2 719.3327943623 89 -1.04600135875511 2.778334060858 85e-07 2.001246716933 35e-06 yfeW penicillin binding protein 4B cds-NP_414704.4 210.2124644616 22 -1.04679818450527 1.332687207850 96e-08 1.196888068316 78e-07 cdaR DNA-binding transcriptional activator CdaR cds-NP_416368.1 6322.777934810 76 -1.0481206654344 8.149608613146 43e-31 6.424608123363 77e-29 pykA pyruvate kinase 2 cds-NP_415037.1 33.66845841882 11 -1.04975133245358 0.001582489708 80105 0.004931668148 14499 allS DNA-binding transcriptional activator AllS cds-NP_415305.1 157.8553979102 35 -1.05501978926979 2.176440604122 75e-07 1.597432353750 09e-06 moaD molybdopterin synthase sulfur carrier subunit cds-NP_415578.3 2906.281938542 92 -1.05814072766965 2.691519564861 97e-09 2.640045803598 48e-08 bssS regulator of biofilm formation cds-NP_414984.1 141.0976264586 26 -1.05897879328065 0.000346950159 495555 0.001268871846 19637 glnK nitrogen regulatory protein PII-2 cds-NP_416673.1 9885.954842215 94 -1.06023256011612 1.881629893969 89e-07 1.393060601500 84e-06 fruK 1-phosphofructokinase cds-NP_415772.1 198.9566705540 61 -1.06024407943794 1.779359721163 47e-07 1.331236262388 91e-06 ompW outer membrane protein W cds-NP_416259.1 187.6958473081 95 -1.06119514746713 8.291273106240 92e-06 4.395593677265 82e-05 astB N-succinylarginine dihydrolase cds-NP_417467.1 1976.068284783 07 -1.06367053364147 1.194317987950 9e-12 1.933160332588 21e-11 hybD hydrogenase 2 maturation protease cds-YP_010051177.1 41.74690598712 22 -1.06375964971374 0.000437892080 70369 0.001563847808 35202 ybgV protein YbgV cds-NP_416631.1 46.48461788895 06 -1.06653663488549 5.188163220268 87e-05 0.000229107996 14818 mlrA DNA-binding transcriptional activator MlrA cds-NP_418739.1 98.71803536105 2 -1.07051479826251 2.860123179477 94e-06 1.686363486847 31e-05 fimG type 1 fimbriae minor subunit FimG cds-NP_418573.1 143.0019959972 67 -1.07356218205448 2.383849776891 99e-09 2.382171009443 48e-08 blc outer membrane lipoprotein Blc cds-NP_414879.3 966.7045638032 1 -1.07471797695453 6.746782319250 03e-16 1.472874478617 81e-14 lacI DNA-binding transcriptional repressor LacI cds-NP_418206.1 5188.551436270 24 -1.08013934194146 0.000638934520 352716 0.002216743482 59292 rbsC ribose ABC transporter membrane subunit cds-NP_416411.1 72.44210636033 13 -1.08015475106273 2.182235586013 68e-05 0.000105445821 676053 otsB trehalose-6-phosphate phosphatase cds-NP_415978.1 23.45216553411 62 -1.08038588756133 0.002428679139 05951 0.007145049823 75697 pptA tautomerase PptA cds-NP_417241.1 261.9041097727 2 -1.08262047047573 1.542524263912 68e-06 9.628336937648 49e-06 cas3 CRISPR-associated endonuclease/helicase Cas3 cds-NP_417533.1 20.07132044517 06 -1.08697741435459 0.003443410257 89049 0.009707680442 27803 ttdA L(+)-tartrate dehydratase subunit alpha cds-NP_416635.1 92.99347007528 95 -1.08948551433167 1.687396994111 96e-06 1.041050580280 38e-05 osmF glycine betaine ABC transporter periplasmic binding protein OsmF Supplementary Material 193 cds-NP_416260.1 256.4657332673 36 -1.08976146235488 4.990172592603 62e-08 4.100997051489 12e-07 astD aldehyde dehydrogenase cds-NP_416014.4 27.10154087823 16 -1.09135566025859 0.004297282631 32095 0.011751751194 8764 ydeM putative anaerobic sulfatase maturation enzyme YdeM cds-NP_417187.1 1217.367136134 24 -1.09367662746772 6.308429105337 91e-10 6.781561288238 25e-09 srlR DNA-binding transcriptional repressor SrlR cds-NP_416313.4 1003.581862203 9 -1.09441282673261 2.541656355231 86e-09 2.498806259635 57e-08 dmlR DNA-binding transcriptional regulator DmlR cds-NP_417003.1 15925.24726083 58 -1.09499589338438 3.120397425758 53e-23 1.289663285578 06e-21 guaB inosine 5'-monophosphate dehydrogenase cds-NP_416724.1 575.0254479405 89 -1.09570999188906 1.777483554017 2e-05 8.798543592385 12e-05 atoC DNA-binding transcriptional activator/ornithine decarboxylase inhibitor AtoC cds-NP_418140.4 5157.213515986 6 -1.09637226524727 6.050211919444 72e-07 4.056023959224 59e-06 yidE putative transport protein YidE cds-NP_415525.2 86.09650577585 67 -1.09962512787296 3.959890767179 21e-07 2.745481269687 61e-06 ymdF stress-induced bacterial acidophilic repeat motifs- containing protein YmdF cds-NP_418609.4 617.8697554591 33 -1.10038160421816 5.460867149682 59e-11 6.757823097732 2e-10 yjfN protease activator YjfN cds-NP_417002.1 23485.00623114 03 -1.11119125973295 2.095637081955 95e-26 1.173832507616 64e-24 guaA GMP synthetase cds-NP_416463.4 38.61272629585 9 -1.11249097960523 0.001767991381 27782 0.005426344131 29032 yodD stress-induced protein cds-NP_416615.1 15.10829345050 99 -1.11445475989012 0.013879225653 2893 0.032354598289 1286 yehE DUF2574 domain-containing protein YehE cds-NP_416799.1 9458.906099748 -1.11632180187817 1.270685147616 61e-20 4.362344091454 76e-19 ackA acetate kinase cds-NP_417381.1 17473.64582219 78 -1.11989376602208 2.444677840040 43e-36 2.738682517118 98e-34 gcvT aminomethyltransferase cds-NP_418207.1 4336.527227901 82 -1.12017581368549 2.894332516772 03e-09 2.813053315958 57e-08 rbsB ribose ABC transporter periplasmic binding protein cds-NP_415176.1 2956.228690133 89 -1.12019602704911 3.866790645402 83e-09 3.707416166099 06e-08 ybeL DUF1451 domain-containing protein YbeL cds-NP_415662.2 21.82104927433 9 -1.12150162358786 0.002356262740 09146 0.006946406152 74885 ymfJ uncharacterized protein YmfJ cds-NP_418361.1 5621.031873293 01 -1.12162787858901 0.000272159935 392732 0.001022581504 82512 glpK glycerol kinase cds-NP_416238.1 71.18474024730 11 -1.12327241334579 3.801922061201 15e-06 2.163740937771 83e-05 ydiZ putative endoribonuclease YdiZ cds-NP_416744.1 3349.722942386 31 -1.12491485215334 0.008354106144 51554 0.020848592783 997 glpA anaerobic glycerol-3-phosphate dehydrogenase subunit A cds-NP_415831.1 45.24715504767 3 -1.12563145998163 0.005124544372 25608 0.013643017756 5317 ycjS D-glucoside 3-dehydrogenase cds-NP_416199.1 32.40192831087 39 -1.1287726079136 0.005818692618 37461 0.015149953808 2084 sufA iron-sulfur cluster insertion protein SufA cds-NP_418614.4 79.12887774616 94 -1.13291458224687 2.251937955501 52e-07 1.647164927245 7e-06 ulaA L-ascorbate specific PTS enzyme IIC component cds-NP_417401.1 51930.68061608 15 -1.13449152783854 4.933502100396 76e-18 1.390855525919 8e-16 pgk phosphoglycerate kinase cds-NP_415303.1 682.8768824721 26 -1.13468893547921 1.246726420151 58e-16 2.900171787205 07e-15 moaB protein MoaB cds-NP_418551.1 35.14754597381 19 -1.13963379409425 0.011186445884 4241 0.026904350355 9285 yjdJ putative N-acetyltransferase YjdJ cds-NP_415261.2 97280.31316131 37 -1.14176259398373 2.360674657021 76e-17 5.911407067612 73e-16 cydA cytochrome bd-I subunit 1 cds-NP_418610.4 3538.733297104 39 -1.14236507132982 1.971011912402 77e-12 3.107628781888 37e-11 bsmA DUF1471 domain-containing putative lipoprotein BsmA cds-NP_418578.1 9352.185496054 68 -1.14248907450796 7.393712811263 59e-11 8.916440633866 6e-10 frdA fumarate reductase flavoprotein subunit Supplementary Material 194 cds-NP_418445.1 278.1955669770 9 -1.14555507718808 1.141393658996 31e-07 8.834386920631 46e-07 pepE peptidase E cds-NP_417248.1 93.39193253474 58 -1.14641464122472 2.670576705711 48e-05 0.000125898616 126398 ygcP putative anti-terminator regulatory protein cds-NP_415319.1 230.3255643065 96 -1.14659764460984 7.784375429166 1e-07 5.137687783249 63e-06 ybiA N-glycosidase YbiA cds-NP_418659.1 436.8717428998 15 -1.14811921236312 1.935804610275 29e-10 2.221218389741 75e-09 nrdD anaerobic ribonucleoside- triphosphate reductase cds-NP_414838.2 38.77872578528 53 -1.14930780730069 0.000161205745 703047 0.000643764408 497067 rclA cupric reductase RclA cds-NP_415827.1 14.96763887057 43 -1.14974758692084 0.016379665299 0111 0.037307776981 2146 ycjO putative ABC transporter membrane subunit YcjO cds-NP_416868.1 17.09430419649 67 -1.15079190584352 0.005964803331 34618 0.015464170390 7069 emrY tripartite efflux pump membrane subunit EmrY cds-NP_418024.1 27.48973014421 93 -1.15477731540663 0.002353768136 61089 0.006943860677 44461 xylG xylose ABC transporter ATP binding subunit cds-YP_009518834.1 1198.562760760 83 -1.15574088041292 6.408044859287 41e-13 1.066122689606 97e-11 yjiT putative uncharacterized protein YjiT cds-NP_416660.1 174.4838897508 16 -1.15605817935643 1.372126186113 92e-06 8.666381564223 99e-06 cirA iron-catecholate outer membrane transporter CirA cds-NP_416332.1 16404.00845694 86 -1.16391876089448 1.158509149028 38e-17 3.121375599628 99e-16 manY mannose-specific PTS enzyme IIC component cds-NP_415915.1 208.1410929115 8 -1.16956176689738 3.666737500026 23e-11 4.645625457622 52e-10 paaJ beta-ketoadipyl-CoA thiolase cds-NP_415902.1 274.2842712606 93 -1.17158835619866 4.145082579544 56e-07 2.869205941645 73e-06 feaR DNA-binding transcriptional activator FeaR cds-NP_414606.1 562.6814189141 34 -1.17542038332598 1.395782208580 61e-10 1.632374962068 03e-09 araC DNA-binding transcriptional dual regulator AraC cds-NP_416333.4 11655.74853020 7 -1.17577420824797 1.633967848014 66e-17 4.190241643974 94e-16 manZ mannose-specific PTS enzyme IID component cds-NP_418562.4 32878.05796910 79 -1.17881921228055 2.073238931288 9e-11 2.766701608306 22e-10 aspA aspartate ammonia-lyase cds-NP_417030.2 937.3342762888 82 -1.19089260007773 1.131092800752 26e-09 1.177276785526 25e-08 csiE stationary phase-inducible protein CsiE cds-NP_414918.4 43.53544829229 31 -1.19305385074958 0.000991207877 859012 0.003273523612 13795 psiF phosphate starvation-inducible protein PsiF cds-NP_417188.4 1510.471576791 31 -1.19340052283404 6.337995215173 74e-12 9.368349177428 68e-11 gutQ D-arabinose 5-phosphate isomerase GutQ cds-NP_416853.1 777.7586469679 42 -1.1959897304615 3.213093783088 57e-14 5.999184313424 59e-13 yfdI serotype-specific glucosyl transferase YfdI cds-NP_416396.1 13.42906539123 89 -1.20270379263497 0.014838636216 9692 0.034203061428 4774 cheY chemotaxis protein CheY cds-NP_416955.1 13.86192615012 66 -1.20380137441467 0.014596709282 7418 0.033748346338 9745 eutQ putative ethanolamine utilization acetate kinase EutQ cds-NP_416262.1 373.0213633040 12 -1.21348637544626 1.030463927692 71e-11 1.433557169996 03e-10 astC succinylornithine transaminase cds-YP_026181.1 6487.289412203 97 -1.21368728498766 0.000419929387 472286 0.001504746971 77569 srlE sorbitol-specific PTS enzyme IIBC1 component cds-NP_417207.1 174.7219722213 33 -1.21374060051732 1.123892642253 88e-11 1.548353067338 12e-10 hypB hydrogenase isoenzymes nickel incorporation protein HypB cds-NP_415274.1 43.46978323178 75 -1.21593666861484 0.000178921994 366161 0.000701354447 529235 ybgS PF13985 family protein YbgS cds-NP_415723.1 3835.079270237 1 -1.21806447511586 5.203080191357 59e-13 8.754747974153 86e-12 ychH stress-induced protein cds-NP_417474.1 4465.605125667 21 -1.21818705674077 4.110379641665 92e-10 4.521417605832 51e-09 gpr L-glyceraldehyde 3-phosphate reductase cds-NP_418550.1 62.28361581397 14 -1.23207127842491 2.582823811753 99e-06 1.544252944752 35e-05 yjdI PF06902 family protein YjdI Supplementary Material 195 cds-NP_417910.1 259.6815993429 53 -1.23701506326424 1.014075942032 79e-06 6.590719519440 61e-06 ugpB sn-glycerol 3-phosphate ABC transporter periplasmic binding protein cds-NP_416331.1 20828.31250518 82 -1.24073332784845 1.240468201100 7e-17 3.321178070494 13e-16 manX mannose-specific PTS enzyme IIAB component cds-NP_416290.1 131.2482778677 45 -1.24447553399045 2.024480282092 12e-10 2.310512750902 46e-09 ydjL putative zinc-binding dehydrogenase YdjL cds-NP_415813.4 168.8135520493 78 -1.24526147023673 2.844810646327 19e-09 2.771249181101 8e-08 puuA glutamate-putrescine ligase cds-NP_415401.1 738.2153891908 81 -1.24767489883394 1.194343072328 35e-16 2.824621366056 54e-15 cspD DNA replication inhibitor CspD cds-NP_416737.1 5317.389905439 69 -1.24792899556057 6.979930766034 45e-16 1.508302805634 96e-14 nrdA ribonucleoside-diphosphate reductase 1 subunit alpha cds-NP_417186.1 296.4065670410 99 -1.24799005581948 0.002091107917 40587 0.006291057529 60904 gutM DNA-binding transcriptional activator GutM cds-NP_418120.2 29.95294747693 87 -1.25301382110682 0.000280181583 290811 0.001047175592 68568 adeQ adenine transporter cds-NP_416813.1 929.3559354179 9 -1.25350242689953 3.522446049985 28e-10 3.925406501253 23e-09 argT lysine/arginine/ornithine ABC transporter periplasmic binding protein cds-NP_418577.1 1955.887975843 96 -1.25857683799387 9.557719088264 88e-14 1.724034328760 32e-12 frdB fumarate reductase iron-sulfur protein cds-NP_416258.1 115.8565405362 35 -1.26496136065647 1.331371487992 84e-05 6.763303609051 92e-05 astE succinylglutamate desuccinylase cds-NP_415541.1 120.4350393545 01 -1.26589109870638 5.193862212538 35e-09 4.935328446155 3e-08 pgaC poly-N-acetyl-D-glucosamine synthase subunit PgaC cds-NP_416129.1 6933.899450041 84 -1.27268584699376 1.818613027994 08e-19 5.692526220713 82e-18 fumA fumarase A cds-NP_417468.1 4861.956797099 08 -1.27314301480207 3.703152649516 6e-25 1.876704860594 31e-23 hybC hydrogenase 2 large subunit cds-NP_417466.1 540.8611092762 32 -1.27360376103198 3.844958812513 81e-17 9.461265702237 75e-16 hybE hydrogenase 2-specific chaperone cds-NP_416800.1 16571.55940307 5 -1.27410365447281 4.533081012342 61e-34 4.706664846229 87e-32 pta phosphate acetyltransferase cds-NP_418546.1 474.5779920442 9 -1.27562123359356 8.981959346139 33e-27 5.098160124868 68e-25 fumB fumarase B cds-NP_417026.1 1788.774338029 92 -1.27626620804831 5.011685133476 03e-11 6.220041869739 79e-10 iscR DNA-binding transcriptional dual regulator IscR cds-NP_417149.1 32.78277097914 28 -1.28053419743938 2.586540674882 2e-05 0.000122545273 249933 gabP 4-aminobutanoate:H(+) symporter cds-NP_416191.1 32424.94133049 93 -1.2837988650999 1.286497579445 86e-29 8.978065894591 83e-28 pykF pyruvate kinase 1 cds-NP_416414.1 81.10592300982 62 -1.29146777571371 1.350482024829 84e-05 6.835911985375 32e-05 araF arabinose ABC transporter periplasmic binding protein cds-YP_588442.1 227.7172345557 34 -1.29223009782238 1.110457763767 09e-07 8.610598725603 83e-07 ybdD PF04328 family protein YbdD cds-NP_415558.1 29.06322715774 62 -1.30237610342337 0.002891831041 70692 0.008317922124 69349 csgD DNA-binding transcriptional dual regulator CsgD cds-NP_415262.1 77375.89612436 68 -1.30569691747638 2.879717857651 74e-22 1.114450810911 22e-20 cydB cytochrome bd-I subunit 2 cds-NP_417680.1 3911.414688394 21 -1.30815748797476 2.047322471174 01e-30 1.556330671390 67e-28 gltD glutamate synthase subunit GltD cds-NP_415799.1 30.53291223852 97 -1.30858280766198 0.000136864605 283961 0.000554888213 994115 osmB osmotically-inducible lipoprotein OsmB cds-NP_416363.1 302.2304095865 41 -1.32029035161484 4.392122926191 64e-16 9.840666998314 63e-15 purT phosphoribosylglycinamide formyltransferase 2 cds-NP_414985.1 1226.598104308 66 -1.3211086921704 3.277324349155 13e-08 2.795905762395 47e-07 amtB ammonium transporter cds-NP_417208.1 18.28745170197 42 -1.3265160775958 0.003424882608 09253 0.009674668389 28329 hypC hydrogenase maturation factor HypC Supplementary Material 196 cds-NP_415263.1 1619.863008047 01 -1.34336007388537 2.508221830655 28e-32 2.266721244944 28e-30 ybgE PF09600 family protein YbgE cds-NP_414859.1 351.1374322143 61 -1.34523977447901 1.370487022033 53e-17 3.604115778895 7e-16 yahK aldehyde reductase NADPH- dependent cds-NP_415916.1 183.3848260917 63 -1.34751793786193 1.254310692538 05e-12 2.022575991717 61e-11 paaK phenylacetate-CoA ligase cds-NP_416032.1 27.25490864909 74 -1.34772282670952 0.002095589737 02926 0.006295642562 12672 lsrD Autoinducer-2 ABC transporter membrane subunit LsrD cds-NP_416598.1 101502.5985032 11 -1.34891990112405 1.399472812531 65e-27 8.510793947067 45e-26 gatZ putative tagatose-1 6-bisphosphate aldolase 2 chaperone cds-NP_415984.1 67.65269911607 06 -1.3512814336931 3.677016188054 13e-08 3.093489706036 84e-07 narY nitrate reductase Z subunit beta cds-NP_416651.1 1611.853427454 92 -1.35332103746303 5.069991386305 17e-05 0.000224355024 235978 preT dihydropyrimidine dehydrogenase (NAD(+)) subunit PreT cds-NP_415894.4 289.5044262935 15 -1.35828806379464 2.017311800864 64e-15 4.251334819940 98e-14 uspF universal stress protein F cds-NP_415580.1 666.8448517005 78 -1.3641434070577 4.880687447728 35e-22 1.871809591439 6e-20 pyrC dihydroorotase cds-NP_416052.1 105.8830039422 92 -1.36484255133529 1.150234487959 26e-07 8.870558360946 65e-07 dgcZ diguanylate cyclase DgcZ cds-NP_417471.1 5770.834001415 15 -1.36613967102646 6.611487919490 4e-19 1.968189096032 91e-17 hybO hydrogenase 2 small subunit cds-NP_416875.1 31.31762786671 39 -1.36724639087724 0.000904364796 998111 0.003024258398 13115 frc formyl-CoA transferase cds-NP_417079.1 3258.397975470 84 -1.36803828741877 6.331765137947 49e-17 1.522843174702 96e-15 patZ peptidyl-lysine N-acetyltransferase cds-NP_415516.1 10.34102724638 83 -1.36861279038725 0.020976668614 4159 0.046124833828 2895 torC cytochrome c menaquinol dehydrogenase TorC cds-YP_010051192.1 40.20926207756 39 -1.37246322781523 8.903113881014 32e-06 4.702302207379 4e-05 pssL protein PssL cds-NP_415924.1 1323.162903397 06 -1.37811478189269 1.965522090434 89e-13 3.415317554377 48e-12 pdxI pyridoxal reductase cds-NP_417147.1 228.3863598956 38 -1.37982405135344 3.340996350548 25e-19 1.015901533163 13e-17 gabD succinate-semialdehyde dehydrogenase (NADP(+)) GabD cds-NP_418003.1 9691.420739557 79 -1.38486616781332 0.000148587380 437904 0.000595608736 840071 yhjX putative transporter YhjX cds-NP_416337.1 8474.210851934 55 -1.40129517409156 4.345944638709 53e-17 1.057182075827 8e-15 cspC transcription antiterminator and regulator of mRNA stability CspC cds-NP_416299.1 23.98909623075 97 -1.40494220360313 0.004469443643 43605 0.012141941027 5094 cdgI putative c-di-GMP binding protein CdgI cds-YP_588444.1 953.9978810912 12 -1.405514757787 1.321761276766 91e-27 8.154692398835 86e-26 cydX cytochrome bd-I accessory subunit CydX cds-NP_417469.1 3475.675228279 18 -1.40690352687789 2.191455664309 59e-17 5.552992120813 06e-16 hybB hydrogenase 2 membrane subunit cds-NP_415707.1 9758.229291316 66 -1.41492042453985 2.967881162556 32e-13 5.074004059840 26e-12 dadA D-amino acid dehydrogenase cds-NP_416590.1 77.93873644515 75 -1.41671593860382 2.417587687247 43e-09 2.404595977713 16e-08 yegS lipid kinase YegS cds-NP_416745.1 2295.934344417 71 -1.41731825513213 0.000407453761 569358 0.001464975222 12902 glpB anaerobic glycerol-3-phosphate dehydrogenase subunit B cds-NP_418688.1 96.20631949386 35 -1.41826867341653 2.298526737532 89e-08 1.984752195066 43e-07 idnD L-idonate 5-dehydrogenase cds-NP_416738.1 2896.020145575 7 -1.4242783917545 1.872891327956 46e-30 1.449617887838 3e-28 nrdB ribonucleoside-diphosphate reductase 1 subunit beta cds-NP_415522.1 4027.639569770 39 -1.4307434486983 3.252814764054 73e-14 6.046826397633 63e-13 agp glucose-1-phosphatase cds-NP_418576.1 835.5496985218 53 -1.43181563761046 4.162048265863 14e-15 8.600892945523 98e-14 frdC fumarate reductase membrane protein FrdC Supplementary Material 197 cds-NP_415234.1 14.89793200718 96 -1.44003453070718 0.008848041702 78604 0.021962748413 2712 ybfD H repeat-associated putative transposase YbfD cds-NP_418496.1 18.62581331652 65 -1.44252089976168 0.001288962196 35656 0.004147476999 1609 nrfC putative menaquinol-cytochrome c reductase 4Fe-4S subunit cds-NP_415375.1 97.48999031012 12 -1.44325104827522 3.057224924422 73e-11 3.980001988766 83e-10 potF putrescine ABC transporter periplasmic binding protein cds-NP_416217.1 719.2297168033 14 -1.44497396625818 3.867528018686 79e-11 4.871025673239 54e-10 ppsA phosphoenolpyruvate synthetase cds-NP_415829.1 70.09575122615 63 -1.44762827406212 1.623770309291 14e-07 1.221270354532 22e-06 ycjQ D-guloside 3-dehydrogenase cds-NP_417345.1 3403.658472650 74 -1.45118768111139 7.270685447145 52e-12 1.049196879610 12e-10 ygeV putative sigma(54)-dependent transcriptional regulator YgeV cds-NP_416413.1 86.63409335729 54 -1.46348362209173 2.262845430745 77e-08 1.959996163945 66e-07 araG arabinose ABC transporter ATP binding subunit cds-NP_417148.1 324.1012712985 72 -1.4641522664664 4.672107014840 68e-33 4.419813236039 28e-31 gabT 4-aminobutyrate aminotransferase GabT cds-YP_009518815.1 111.4622372189 7 -1.46443234187093 3.301778332761 37e-08 2.811134072513 03e-07 yghO putative DNA-binding transcriptional regulator YghO cds-NP_415523.1 131.0234259995 1 -1.46582493108766 4.640238115211 47e-15 9.496871950218 86e-14 yccJ PF13993 family protein YccJ cds-NP_415828.1 10.13023396646 29 -1.46914845071769 0.012747303011 8723 0.030147371623 078 ycjP putative ABC transporter membrane subunit YcjP cds-NP_415116.1 164.0030484256 81 -1.47773649894806 2.002100218899 43e-09 2.010127507512 94e-08 fepA ferric enterobactin outer membrane transporter cds-NP_415960.1 29.94645991301 19 -1.47774370255434 4.846550963143 66e-05 0.000215813467 051282 ydcV putative ABC transporter membrane subunit YdcV cds-NP_418459.1 36770.61368870 36 -1.48136684390103 3.518010850763 15e-11 4.483883889730 16e-10 malK maltose ABC transporter ATP binding subunit cds-NP_416054.1 11.12270346325 59 -1.48670206365164 0.006145400321 58606 0.015903324722 7914 ydeI BOF family protein YdeI cds-NP_415156.1 3991.736497560 06 -1.49179245758419 2.615415504024 48e-11 3.436365370565 49e-10 cspE transcription antiterminator and regulator of RNA stability CspE cds-NP_415130.1 8084.358535077 8 -1.49564518170062 2.919156833312 16e-06 1.716415834172 63e-05 cstA pyruvate transporter CstA cds-YP_026279.1 2634.248765980 45 -1.50429147566416 1.966915450671 48e-23 8.290256508424 23e-22 thiS sulfur carrier protein ThiS cds-NP_418575.1 1717.551958134 4 -1.50784573582593 2.433315802834 69e-11 3.226986097404 13e-10 frdD fumarate reductase membrane protein FrdD cds-NP_416033.1 35.93842467916 5 -1.50949533927872 3.786517172187 77e-06 2.157858581258 81e-05 lsrB Autoinducer-2 ABC transporter periplasmic binding protein cds-NP_414863.1 111.8423928195 96 -1.50955497179511 6.411261652322 86e-13 1.066122689606 97e-11 yahO DUF1471 domain-containing protein YahO cds-NP_416437.1 322.5467629267 07 -1.51549934855063 1.303988381415 05e-23 5.571550190000 85e-22 amyA alpha-amylase cds-NP_417985.1 13427.96758268 61 -1.51820013110674 5.345427721968 44e-12 7.984380986813 91e-11 dctA C4 dicarboxylate/orotate:H(+) symporter cds-NP_417470.1 5696.783358132 18 -1.51841400060919 1.461387538308 15e-21 5.317202350921 19e-20 hybA hydrogenase 2 iron-sulfur protein cds-NP_415419.2 202.0631585022 07 -1.51958486924128 8.302472261290 71e-09 7.683396612242 29e-08 ycaM putative transporter YcaM cds-NP_418418.2 13520.81366144 85 -1.5221907788976 1.772555194838 53e-24 8.478390409469 25e-23 thiG 1-deoxy-D-xylulose 5- phosphate:thiol sulfurtransferase cds-NP_415392.1 408.6096727860 41 -1.52688840588938 6.281711693046 56e-24 2.840941102868 45e-22 poxB pyruvate oxidase cds-NP_418630.1 281.6870948308 53 -1.5317907927259 2.230104379429 48e-17 5.617487777059 93e-16 ytfE iron-sulfur cluster repair protein YtfE cds-NP_418028.1 2005.264886299 17 -1.53307991911338 7.676313249377 82e-16 1.650407348616 23e-14 malS alpha-amylase cds-NP_415979.2 89.56066582432 92 -1.53449842393434 4.216919764672 65e-08 3.512999498671 52e-07 yddH flavin reductase-like protein YddH Supplementary Material 198 cds-NP_415959.1 27.20740760740 21 -1.537468615424 1.216446798108 11e-05 6.236838846005 1e-05 ydcU putative ABC transporter membrane subunit YdcU cds-NP_415160.1 298.7478976414 57 -1.53773231744432 8.232679863368 57e-26 4.4931433562e- 24 tatE twin arginine protein translocation system - TatE protein cds-NP_416746.1 712.1982047490 08 -1.55015984143393 0.001367264602 35582 0.004356620817 53646 glpC anaerobic glycerol-3-phosphate dehydrogenase subunit C cds-NP_416338.1 2871.365985262 08 -1.55221264231728 7.411951879402 79e-20 2.408601461879 21e-18 yobF DUF2527 domain-containing protein YobF cds-NP_416589.2 16.39176500036 06 -1.55404892887271 0.001673780694 6704 0.005159510801 74649 yegR uncharacterized protein YegR cds-NP_418663.1 6541.461037171 63 -1.55508484027996 6.265266292182 29e-25 3.030822568843 18e-23 mgtA Mg(2(+)) importing P-type ATPase cds-NP_416874.1 46.23889790190 51 -1.5553355426768 2.167826646231 69e-06 1.310857675143 23e-05 oxc oxalyl-CoA decarboxylase cds-NP_415524.1 255.0805192065 32 -1.5563381806635 2.037483641168 2e-20 6.883784016232 57e-19 wrbA NAD(P)H:quinone oxidoreductase cds-NP_418719.1 67.64251113343 79 -1.55729245242559 2.366163387738 91e-06 1.424718181273 63e-05 yjhI putative DNA-binding transcriptional regulator YjhI cds-NP_417379.1 17141.37247446 01 -1.55909631328641 2.120751033815 74e-54 5.642523219346 e-52 gcvP glycine decarboxylase cds-NP_415123.1 77.19739867623 04 -1.55988974692558 1.476406860944 9e-07 1.114373050894 05e-06 entS enterobactin exporter EntS cds-NP_414916.1 30.19636187530 97 -1.56174644252491 0.000140175655 499122 0.000566693034 624655 iraP anti-adaptor protein IraP cds-NP_416294.4 4099.762591472 93 -1.56396078475529 8.284286326720 85e-24 3.635691432252 64e-22 yeaD putative aldose 1-epimerase YeaD cds-NP_418420.4 11816.85395489 03 -1.56755780735969 6.621116995636 28e-24 2.936051567752 46e-22 thiF sulfur carrier protein ThiS adenylyltransferase cds-NP_418547.1 424.9625391950 49 -1.57172163639723 1.935371391504 4e-27 1.160405072342 85e-25 dcuB anaerobic C4-dicarboxylate transporter DcuB cds-NP_417380.1 5214.942753379 23 -1.57989703014498 5.195561497345 03e-32 4.423501058839 56e-30 gcvH glycine cleavage system H protein cds-NP_416484.2 1680.865883606 65 -1.582856636032 3.791633209279 86e-11 4.789609071781 71e-10 mtfA Mlc titration factor cds-NP_416743.1 8487.714267261 33 -1.58478910255369 1.574841323343 94e-05 7.850434897679 84e-05 glpT sn-glycerol 3- phosphate:phosphate antiporter cds-NP_418690.4 535.5232606703 39 -1.59269938400571 3.271622762632 55e-24 1.530472318739 21e-22 ahr NADPH-dependent aldehyde reductase Ahr cds-NP_416298.1 366.9796454765 81 -1.59300697708171 4.067828019994 35e-16 9.162298349796 8e-15 yeaH DUF444 domain-containing protein YeaH cds-NP_418651.3 97.51596354806 86 -1.5978239893898 3.790913436088 52e-10 4.202582942038 76e-09 ytfT galactofuranose ABC transporter putative membrane subunit YtfT cds-NP_416652.4 1947.303593847 9 -1.59834518117784 3.424381478831 38e-07 2.417511103712 31e-06 preA dihydropyrimidine dehydrogenase (NAD(+)) subunit PreA cds-NP_415127.1 96.89705054871 56 -1.59961248254003 1.999922358144 9e-05 9.785826986922 83e-05 entB enterobactin synthase component B cds-NP_417454.1 4503.955395193 06 -1.60524581416851 1.965592672827 07e-13 3.415317554377 48e-12 glcC DNA-binding transcriptional dual regulator GlcC cds-NP_417279.2 1159.857676732 36 -1.61342422823291 5.677803157215 64e-15 1.156478853601 29e-13 fucO L-1 2-propanediol oxidoreductase cds-NP_417586.1 450.5274722313 33 -1.61703788321945 8.910442313530 9e-10 9.482938232175 26e-09 tdcC threonine/serine:H(+) symporter cds-NP_417400.1 56193.92104051 45 -1.61951000090575 6.497775298988 6e-47 1.317191878466 4e-44 fbaA fructose-bisphosphate aldolase class II cds-NP_416959.1 382.2317239732 55 -1.61995171930171 1.812911822718 31e-20 6.174052503449 47e-19 talA transaldolase A cds-NP_415050.1 36.61474211646 82 -1.62313706581691 3.724540848040 83e-07 2.594986970558 07e-06 allD ureidoglycolate dehydrogenase cds-NP_416656.1 3310.632448362 97 -1.62364481212583 1.618830851473 64e-07 1.219710253933 32e-06 galS DNA-binding transcriptional dual regulator GalS Supplementary Material 199 cds-NP_415708.1 2699.784343284 16 -1.62475670865603 2.618250774000 89e-15 5.490587953163 45e-14 dadX alanine racemase 2 cds-NP_417904.1 254.1344713643 81 -1.62733229474134 9.415313256038 35e-34 9.543092507370 3e-32 ggt glutathione hydrolase proenzyme cds-NP_415333.1 2819.504070698 06 -1.62905300437556 2.198257323759 08e-32 2.034343788530 95e-30 dps DNA protection during starvation protein cds-NP_418421.1 12476.22008345 07 -1.63203066951253 6.097450864483 86e-27 3.555732647959 97e-25 thiE thiamine phosphate synthase cds-NP_416960.1 920.2591749111 42 -1.63772173599299 5.144107211919 01e-30 3.649744066856 54e-28 tktB transketolase 2 cds-NP_415019.1 283.4075056902 9 -1.63882842033046 1.430948815812 95e-17 3.714359212753 49e-16 ybaT putative transporter YbaT cds-NP_418417.1 16453.22227020 08 -1.64077375700918 2.555852002756 06e-32 2.266721244944 28e-30 thiH 2-iminoacetate synthase cds-NP_416597.1 21891.64529361 7 -1.64956295430051 2.847473568292 47e-42 4.662190377008 09e-40 gatA galactitol-specific PTS enzyme IIA component cds-YP_026272.1 256.4157188948 6 -1.65407839167329 1.863674457415 03e-08 1.635806632003 26e-07 fadA 3-ketoacyl-CoA thiolase cds-NP_417158.4 125.2957507662 29 -1.66008106276208 4.419557212823 89e-15 9.088915485503 05e-14 ygaM DUF883 domain-containing protein YgaM cds-NP_415326.1 183.3177478553 15 -1.67536103899202 3.189277237765 45e-09 3.078628843802 16e-08 fiu iron catecholate outer membrane transporter Fiu cds-NP_416902.1 9.488690515627 95 -1.67780175614881 0.005192918384 10668 0.013816408475 7138 xapA xanthosine phosphorylase cds-NP_416288.1 58.40891750962 84 -1.67964759831768 4.188959718712 13e-08 3.496549318148 53e-07 ydjJ putative zinc-binding dehydrogenase YdjJ cds-NP_418422.1 55115.07136252 65 -1.68267122672189 4.241062903480 14e-28 2.735485572744 69e-26 thiC phosphomethylpyrimidine synthase cds-NP_418491.1 111.8723506690 21 -1.68306898101356 9.597649879527 75e-11 1.144459258743 69e-09 actP acetate/glycolate:cation symporter cds-NP_414576.4 604.3057611172 95 -1.69257831083026 2.953307366539 49e-11 3.856512104097 74e-10 caiF DNA-binding transcriptional activator CaiF cds-NP_416028.3 271.1867049016 04 -1.70133264889363 9.209813078942 89e-18 2.513216299811 53e-16 lsrK autoinducer-2 kinase cds-NP_416843.1 1054.163081251 87 -1.70926589445209 5.255390493542 32e-13 8.807951705121 91e-12 fadJ 3-hydroxyacyl-CoA dehydrogenase FadJ cds-NP_414605.1 80.22599670406 51 -1.72437152147369 3.632501007235 22e-10 4.037482190026 19e-09 araB ribulokinase cds-NP_417378.1 502.5840908925 94 -1.72470084825245 6.862328517714 62e-28 4.296019485281 05e-26 ygfF putative oxidoreductase YgfF cds-NP_414937.2 1423.865739964 02 -1.72590372074541 1.691408993680 97e-45 3.130577428739 08e-43 malZ maltodextrin glucosidase cds-NP_416297.1 1072.966589731 6 -1.73298745581004 6.042953427416 4e-31 4.853745800096 53e-29 yeaG protein kinase YeaG cds-NP_415540.1 45.10788943225 01 -1.73707449041295 5.222476508035 4e-09 4.951466034455 83e-08 pgaD poly-N-acetyl-D-glucosamine synthase subunit PgaD cds-NP_416739.1 422.7478700901 68 -1.74634779841713 9.041586106917 6e-21 3.129270898955 14e-19 yfaE ferredoxin-like diferric-tyrosyl radical cofactor maintenance protein YfaE cds-YP_009518758.1 8.945391040897 38 -1.74673274470853 0.002833758406 25047 0.008172973939 97848 ybfQ inactive transposase YbfQ cds-NP_418754.2 148.6568375173 73 -1.75379024669244 2.311934326666 49e-13 4.000774157975 3e-12 yjiL putative ATPase activator of (R)- hydroxyglutaryl-CoA dehdratase cds-NP_418755.4 468.0353507779 45 -1.75568196019573 9.604503414900 59e-22 3.555336611933 2e-20 yjiM putative dehydratase subunit cds-NP_415947.1 1208.764730867 06 -1.76790873552708 9.364109756141 e-22 3.496755722095 81e-20 tehB tellurite methyltransferase cds-NP_417909.1 18.63615946405 51 -1.7766922530958 0.000187647001 908218 0.000731513999 197148 ugpA sn-glycerol 3-phosphate ABC transporter membrane subunit UgpA Supplementary Material 200 cds-NP_418661.1 6677.817284736 86 -1.7768336268528 2.777381834391 2e-07 2.001246716933 35e-06 treB trehalose-specific PTS enzyme IIBC component cds-NP_416314.1 526.8863972574 59 -1.79364990532732 2.584241774236 35e-21 9.322980705867 93e-20 dmlA D-malate/3-isopropylmalate dehydrogenase (decarboxylating) cds-NP_415706.1 301.9259522365 96 -1.82913004088183 1.970206165525 33e-31 1.612916855123 33e-29 ycgB PF04293 family protein YcgB cds-NP_416596.1 7989.555437547 38 -1.83153347023635 1.184693244629 02e-35 1.293138241637 36e-33 gatB galactitol-specific PTS enzyme IIB component cds-NP_415933.1 14740.81201545 98 -1.83438656445747 2.080213680928 94e-08 1.810934486649 19e-07 aldA aldehyde dehydrogenase A cds-NP_415423.1 58905.98131048 88 -1.83481812309488 1.776804097544 29e-37 2.101070845346 12e-35 pflB pyruvate formate-lyase cds-NP_415690.5 19.84347756703 91 -1.83593733200263 0.000348489336 929973 0.001273406959 06515 ymgG PF13436 family protein YmgG cds-NP_415906.1 12.40186234853 46 -1.84051477934112 0.000312069420 653561 0.001149203740 24413 paaA phenylacetyl-CoA 1 2-epoxidase monooxygenase subunit cds-NP_414864.1 77.21292756987 87 -1.84485256125833 4.952220152662 29e-17 1.197818249425 19e-15 prpR DNA-binding transcriptional dual regulator PrpR cds-NP_414851.1 27.85630913240 53 -1.85609891395123 4.418688398158 e-06 2.481577376115 91e-05 yahC uncharacterized protein YahC cds-NP_416655.1 4110.755856113 97 -1.86814868863919 4.515167140435 93e-16 1.006338561090 88e-14 mglB D-galactose/methyl-galactoside ABC transporter periplasmic binding protein cds-NP_415417.1 50.16134356437 95 -1.88349170548725 5.798040351697 89e-12 8.630160061950 33e-11 ycaC putative hydrolase YcaC cds-NP_416873.1 15.17828521221 03 -1.88384336322819 0.000306376080 224621 0.001130977228 33761 yfdV putative transport protein YfdV cds-NP_417585.2 230.1403874086 64 -1.89682771245858 3.094863269960 46e-11 4.016717359823 69e-10 tdcD propionate kinase cds-NP_417184.1 922.2386446009 12 -1.90678325553418 1.410959129570 16e-17 3.684940499742 44e-16 srlB sorbitol-specific PTS enzyme IIA component cds-NP_418011.1 140.7192179270 07 -1.91585659148442 7.538244774375 e-20 2.431083939735 94e-18 yiaG putative DNA-binding transcriptional regulator YiaG cds-NP_417280.1 101.6026107176 73 -1.92803804117236 2.793969952411 61e-14 5.239616778597 46e-13 fucA L-fuculose-phosphate aldolase cds-NP_416415.1 872.9462849174 84 -1.93423705636296 1.167498134270 45e-08 1.062393338293 14e-07 ftnB putative ferritin-like protein cds-NP_415557.1 7.006415684711 96 -1.93774755284353 0.013895824319 9213 0.032360242959 4667 csgE curli assembly component CsgE cds-NP_417587.1 937.5163131029 54 -1.94049024994121 6.805182703741 38e-07 4.540699493703 3e-06 tdcB catabolic threonine dehydratase cds-NP_415986.1 25.10866010688 66 -1.94989672747216 4.791710010852 21e-06 2.676943506062 71e-05 narU nitrate/nitrite transporter NarU cds-YP_026286.1 217.0143679535 65 -1.95317488544804 1.868890210975 68e-25 9.944832035154 36e-24 ytfR galactofuranose ABC transporter putative ATP binding subunit cds-NP_417193.1 61.93734963142 93 -1.95575406918133 2.536741768091 35e-09 2.498806259635 57e-08 hydN putative electron transport protein HydN cds-NP_416844.1 1948.121368842 86 -1.96755593633448 2.791262806306 21e-07 2.007163136223 91e-06 fadI 3-ketoacyl-CoA thiolase FadI cds-NP_415534.1 5654.354622804 36 -1.97279071882608 5.674047064121 63e-18 1.589106470524 06e-16 putA fused DNA-binding transcriptional repressor/proline dehydrogenase/1-pyrroline-5- carboxylate dehydrogenase PutA cds-NP_415826.1 23.75789389051 74 -1.98444325061853 3.404998173017 43e-05 0.000156028818 326536 ycjN putative ABC transporter periplasmic binding protein YcjN cds-NP_416742.1 3822.886923093 93 -2.0057199727695 3.394946775873 3e-10 3.793251555089 93e-09 glpQ glycerophosphoryl diester phosphodiesterase GlpQ cds-NP_418660.1 3167.705827070 12 -2.01090434892884 2.998509532599 26e-19 9.249750058170 34e-18 treC trehalose-6-phosphate hydrolase cds-NP_416805.1 21.81344926117 78 -2.01176564050043 8.359330207839 89e-07 5.483153882091 59e-06 yfcG disulfide bond oxidoreductase YfcG Supplementary Material 201 cds-NP_417269.1 66.79334860565 83 -2.01441537149656 1.070946630015 2e-08 9.825473715462 69e-08 gudP galactarate/D-glucarate transporter GudP cds-NP_415757.1 174154.2265167 24 -2.02663806061093 1.422255857813 87e-39 1.953078447326 98e-37 adhE fused acetaldehyde-CoA dehydrogenase and iron- dependent alcohol dehydrogenasealdehyde/alcohol dehydrogenase AdhE cds-YP_010051189.1 21.49831337399 85 -2.02911760001772 2.270486099419 56e-05 0.000109090963 038703 yoaM protein YoaM cds-NP_416031.1 62.90744090621 13 -2.03815285222424 8.939185659692 19e-15 1.745601529968 33e-13 lsrC Autoinducer-2 ABC transporter membrane subunit LsrC cds-NP_418541.2 912.2971050461 17 -2.03893761925043 2.760786267847 42e-22 1.078226343323 53e-20 adiA arginine decarboxylase degradative cds-YP_026218.1 30845.38151732 85 -2.086564245994 7.033336056298 82e-39 9.356534872395 03e-37 malP maltodextrin phosphorylase cds-NP_415713.1 16.81751762388 6 -2.10418555494769 6.922073866329 39e-05 0.000299160085 776286 ymgE PF04226 family protein YmgE cds-NP_418023.1 42.48516130789 52 -2.11484183564336 6.808387950152 98e-09 6.369957693143 13e-08 xylF xylose ABC transporter periplasmic binding protein cds-NP_416442.1 40.13785569700 21 -2.13417185890083 2.745919629039 14e-09 2.681050426793 49e-08 yedL putative acetyltransferase YedL cds-NP_414913.1 65.95751657641 42 -2.14343422727279 2.724257106997 32e-12 4.232541060031 97e-11 yaiY DUF2755 domain-containing inner membrane protein YaiY cds-NP_418493.1 1356.873904942 62 -2.16756569756791 2.375422947683 34e-10 2.696580130210 13e-09 acs acetyl-CoA synthetase (AMP- forming) cds-NP_416949.1 6.742384974609 63 -2.1697366266316 0.004172719434 53805 0.011482396013 4638 eutJ putative ethanolamine utilization chaperonin EutJ cds-NP_417198.1 149.5084824214 43 -2.18143053503142 1.269014696895 45e-18 3.751524697697 18e-17 hycH formate hydrogenlyase assembly protein cds-NP_415539.1 568.2235972416 96 -2.18280049900862 1.548991624574 81e-09 1.570013653765 47e-08 phoH ATP-binding protein PhoH cds-NP_416289.1 33.57857141025 41 -2.19448257746658 4.092010327241 12e-10 4.512872529291 57e-09 ydjK putative transporter YdjK cds-NP_416600.4 471.1007428743 54 -2.19548361604289 3.185084075385 77e-40 4.519634302972 41e-38 fbaB fructose-bisphosphate aldolase class I cds-NP_418458.1 24975.49549012 95 -2.20382621177071 1.015572012070 88e-37 1.235225730110 21e-35 malE maltose ABC transporter periplasmic binding protein cds-NP_415997.1 66.22036099466 53 -2.20943601630159 2.022222596028 22e-12 3.176605753244 33e-11 sra ribosome-associated protein Sra cds-NP_416769.1 859.2862178381 8 -2.21058298626689 5.495726667207 e-25 2.689115910609 22e-23 elaB tail-anchored inner membrane protein ElaB cds-NP_418648.1 326.7869946677 71 -2.22106508326753 1.570627733428 1e-29 1.078413267936 04e-27 ytfQ galactofuranose ABC transporter periplasmic binding protein cds-NP_415126.1 95.07837122426 74 -2.23413332400979 4.469193883514 e-10 4.890837625223 42e-09 entE 2 3-dihydroxybenzoate-AMP ligase cds-NP_415018.1 192.6334505764 87 -2.24795474749435 3.895761522454 86e-21 1.393635025301 71e-19 glsA glutaminase 1 cds-NP_417146.2 93.92346483914 8 -2.25164446068121 5.892801078791 96e-23 2.389109923087 37e-21 lhgD L-2-hydroxyglutarate dehydrogenase cds-NP_414880.2 2339.413806853 21 -2.25605786936225 7.805674665159 27e-07 5.143770441111 92e-06 mhpR DNA-binding transcriptional activator MhpR cds-NP_416319.1 2826.644070602 07 -2.26410777857501 8.955903910019 84e-10 9.507551856597 12e-09 fadD long-chain-fatty-acid--CoA ligase cds-NP_418336.1 6.089181404117 42 -2.27993426808108 0.007341949389 72478 0.018659509583 3184 frvA putative PTS enzyme IIA component FrvA cds-YP_001165313.1 9.550565847332 85 -2.29215895286888 0.001051869544 8644 0.003449775541 20781 appX cytochrome bd-II accessory subunit AppX cds-NP_414874.1 10.19082624281 8 -2.2948030904916 0.000495980584 496088 0.001752190330 4563 cynS cyanase cds-NP_418045.4 150.6307555668 12 -2.29608946447002 1.424604183231 73e-31 1.189125491768 13e-29 aldB aldehyde dehydrogenase B Supplementary Material 202 cds-NP_415125.1 70.23112095305 18 -2.29804061424974 5.485162520666 93e-08 4.439227538113 9e-07 entC isochorismate synthase EntC cds-NP_417552.1 1410.582274923 43 -2.31182045633587 1.101380999661 6e-06 7.082445491781 6e-06 fadH 2 4-dienoyl-CoA reductase cds-NP_415940.1 330.9489127904 68 -2.35608876333493 6.339896752936 4e-24 2.840941102868 45e-22 ydcJ DUF1338 domain-containing protein YdcJ cds-YP_025308.1 181.4977481902 87 -2.39048332344961 9.229065137899 6e-35 9.822032573009 65e-33 katE catalase HPII cds-NP_417145.4 117.6972761148 02 -2.39272623669237 3.199531731476 8e-18 9.265582708093 01e-17 glaH glutarate dioxygenase GlaH cds-NP_417185.1 10286.95795060 23 -2.39596250030627 2.144792780822 9e-25 1.127207761476 93e-23 srlD sorbitol-6-phosphate 2- dehydrogenase cds-NP_417352.2 1987.218558287 23 -2.39690814868829 3.507941036221 35e-08 2.962957339522 68e-07 yqeC uncharacterized protein YqeC cds-NP_418492.1 33.32285817848 2 -2.39717277132887 1.205694681610 47e-07 9.264697219523 06e-07 yjcH DUF485 domain-containing inner membrane protein YjcH cds-NP_416654.1 1388.374083929 16 -2.43477532299453 3.887911275800 08e-09 3.719289505860 89e-08 mglA D-galactose/methyl-galactoside ABC transporter ATP binding subunit cds-NP_415957.1 150.2590142156 61 -2.45328926178031 4.462214562951 48e-30 3.219601253302 45e-28 ydcS putative ABC transporter periplasmic binding protein/polyhydroxybutyrate synthase cds-NP_417875.1 15701.06115001 4 -2.45993177439711 2.486962539157 4e-30 1.857368338454 92e-28 malQ 4-alpha-glucanotransferase cds-NP_418457.1 10679.51232957 53 -2.4657790998801 3.906080885898 27e-32 3.393507414544 68e-30 malF maltose ABC transporter membrane subunit MalF cds-NP_418503.1 930.1156076512 03 -2.48347119921441 3.830952689884 94e-41 5.623574345117 31e-39 fdhF formate dehydrogenase H cds-YP_002791249.1 9.128037646036 4 -2.53419668107616 0.001088638785 13624 0.003562133211 62565 yohP putative membrane protein YohP cds-NP_416030.1 187.4450760427 89 -2.56328087630518 3.454821808356 05e-20 1.148998159232 17e-18 lsrA Autoinducer-2 ABC transporter ATP binding subunit cds-NP_417597.1 1035.388026483 83 -2.61772945583377 1.370631200495 85e-14 2.604811169870 92e-13 garD GarD cds-NP_418288.1 1093.773214404 69 -2.67620727875303 6.834675247732 42e-07 4.553241397433 01e-06 fadB multifunctional enoyl-CoA hydratase 3-hydroxyacyl-CoA epimerase Delta(3)-cis- Delta(2)- trans-enoyl-CoA isomerase L-3- hydroxyacyl-CoA dehydrogenase cds-NP_417351.1 2037.676974814 92 -2.72135590850613 1.891990972157 31e-14 3.579646919321 64e-13 yqeB XdhC-CoxI family protein YqeB cds-NP_415958.1 60.50741919651 67 -2.74754406302167 6.145366953997 43e-18 1.709857981906 34e-16 ydcT putative ABC transporter ATP- binding protein YdcT cds-NP_417595.1 109.0990447232 26 -2.7478178937467 4.010733875235 13e-16 9.081752184508 48e-15 garL alpha-dehydro-beta-deoxy-D- glucarate aldolase cds-NP_414756.2 1532.269030477 09 -2.75747939358666 4.357478915362 22e-08 3.615943029765 49e-07 fadE acyl-CoA dehydrogenase cds-NP_415500.1 474.6751741493 03 -2.80279015883576 1.761676121524 88e-41 2.777576018270 89e-39 appA periplasmic phosphoanhydride phosphatase/multiple inositol- polyphosphate phosphatase cds-NP_418460.1 27673.88358975 59 -2.83600540150556 3.948224674133 29e-46 7.639814744447 92e-44 lamB maltose outer membrane channel/phage lambda receptor protein cds-NP_417971.1 1267.498407699 92 -2.86074827824636 1.124071984183 13e-65 4.350158578788 71e-63 mdtF multidrug efflux pump RND permease MdtF cds-NP_416957.4 4.582142717906 72 -2.88764949042536 0.007434524500 66356 0.018861007627 7263 eutS putative ethanolamine catabolic microcompartment shell protein EutS cds-NP_417199.1 153.8249749384 79 -2.9067838425433 3.014735108096 86e-25 1.546232211466 06e-23 hycG formate hydrogenlyase subunit HycG cds-NP_418461.1 3816.451058259 29 -2.94384272113758 8.939958405022 74e-45 1.522296117207 27e-42 malM maltose regulon periplasmic protein Supplementary Material 203 cds-NP_418456.1 1959.601346768 86 -2.96208967253374 2.479380716339 68e-52 5.555117741820 02e-50 malG maltose ABC transporter membrane subunit MalG cds-NP_417047.1 3030.237647276 76 -3.05910345296335 1.093038961947 27e-57 3.323619186435 37e-55 hmp nitric oxide dioxygenase cds-NP_417206.1 35.14432160569 08 -3.06545114250494 2.411586539468 e-09 2.404244472720 21e-08 hypA hydrogenase 3 nickel incorporation protein HypA cds-NP_417969.1 195.7063024033 97 -3.07330588132621 4.569447859013 27e-25 2.288487004214 06e-23 gadE DNA-binding transcriptional activator GadE cds-NP_417596.1 316.6957065844 05 -3.10549306512647 6.720368590211 92e-15 1.355858250641 33e-13 garP galactarate/D-glucarate transporter GarP cds-NP_417970.1 232.2298346067 79 -3.12295520264439 3.410775278854 02e-33 3.376667526065 48e-31 mdtE multidrug efflux pump membrane fusion protein MdtE cds-NP_416653.1 642.8599145638 75 -3.15634499939536 4.849276269589 67e-12 7.294476706587 71e-11 mglC D-galactose/methyl-galactoside ABC transporter membrane subunit cds-NP_417200.1 123.7834809112 14 -3.17254961505438 8.403615982293 64e-27 4.834350437381 63e-25 hycF formate hydrogenlyase subunit HycF cds-NP_417963.4 427.4970093562 68 -3.29818394935767 4.364488291206 4e-38 5.464596075195 77e-36 slp starvation lipoprotein cds-NP_418539.1 2082.538460230 01 -3.32186258941022 4.560259415877 34e-59 1.493309564106 91e-56 adiC arginine:agmatine antiporter cds-NP_417974.1 574.8032304543 31 -3.45458365198746 3.892483507048 25e-53 9.205723494169 12e-51 gadA glutamate decarboxylase A cds-NP_417964.1 48.92011024338 44 -3.4837717046488 1.300303022982 51e-16 3.008364113498 13e-15 dctR putative DNA-binding transcriptional regulator DctR cds-NP_418164.4 3848.911659106 44 -3.60529816094719 1.896774644900 39e-28 1.242241486667 84e-26 tnaA tryptophanase cds-NP_417205.1 37.84374882569 24 -3.61691231692054 1.492706816730 95e-10 1.740946005157 17e-09 hycA regulator of the transcriptional regulator FhlA cds-NP_417202.1 235.1334728617 98 -3.62237291342426 4.573777491683 13e-37 5.262316427593 26e-35 hycD formate hydrogenlyase subunit HycD cds-NP_417201.1 377.4558417983 58 -3.63264735268967 2.032825919400 46e-53 5.090435258169 27e-51 hycE formate hydrogenlyase subunit HycE cds-NP_417203.1 340.6448002896 95 -3.81077032478555 7.563866276194 97e-39 9.757387496291 51e-37 hycC formate hydrogenlyase subunit HycC cds-NP_417965.1 116.9775474242 67 -4.03770724457128 4.654833093287 48e-25 2.304142381177 3e-23 yhiD inner membrane protein YhiD cds-NP_415495.1 193.5608316584 22 -4.06012629603409 1.358858771368 08e-13 2.400274601541 05e-12 hyaE putative HyaA chaperone cds-NP_415497.1 1245.690279476 66 -4.0737132771598 8.905141859952 84e-57 2.527279259854 61e-54 appC cytochrome bd-II subunit 1 cds-NP_415498.1 1443.351029298 93 -4.1182068041067 6.180644103523 81e-83 3.758714564100 12e-80 appB cytochrome bd-II subunit 2 cds-NP_417204.1 47.86153764001 89 -4.21320969644875 8.697042835157 09e-15 1.706143380150 4e-13 hycB formate hydrogenlyase subunit HycB cds-NP_417968.1 3240.549274029 7 -4.21426442219136 2.554502491636 41e-101 3.624839035632 07e-98 hdeD acid-resistance membrane protein cds-NP_418163.1 115.2645123208 45 -4.24303181230724 1.780047877093 99e-48 3.788831906394 56e-46 tnaC tnaAB operon leader peptide cds-NP_415496.1 345.9581840863 63 -4.25939749539409 5.147379847554 37e-66 2.191239601103 9e-63 hyaF protein HyaF cds-NP_416010.1 657.0809259000 64 -4.34875843459001 1.490956710374 39e-92 1.269400543212 76e-89 gadB glutamate decarboxylase B cds-NP_416009.1 668.1555314682 67 -4.48936542670871 1.588294723121 96e-89 1.126895106055 03e-86 gadC L-glutamate:4-aminobutyrate antiporter cds-NP_418165.1 533.4896689973 93 -4.50889516152956 4.939288596125 05e-20 1.617427042592 64e-18 tnaB tryptophan:H(+) symporter TnaB cds-NP_415492.1 2337.181442787 66 -4.56729215045044 2.120153433956 86e-45 3.760622153480 99e-43 hyaB hydrogenase 1 large subunit Supplementary Material 204 cds-NP_415491.1 1590.458375451 15 -4.65336765570616 7.717196138069 93e-81 4.106512994970 46e-78 hyaA hydrogenase 1 small subunit cds-NP_415494.1 1319.596516223 -4.71942796520138 2.793400553598 28e-41 4.246966484524 25e-39 hyaD putative hydrogenase 1 maturation protease HyaD cds-NP_415493.1 1132.650774507 86 -4.96515581661892 3.327046258885 2e-96 3.540808981018 57e-93 hyaC hydrogenase 1 cytochrome b subunit cds-NP_417967.1 9328.477129582 23 -5.32613428879488 2.956096071124 97e-133 6.292050487389 5e-130 hdeA periplasmic acid stress chaperone HdeA cds-NP_417966.4 1679.488522695 56 -5.46492044230663 4.957740844043 48e-182 2.110510277309 31e-178 hdeB periplasmic acid stress chaperone HdeB cds-NP_417277.1 1718.462980645 61 1.00123741921778 4.445086264300 33e-11 5.549188336400 74e-10 sdaB L-serine deaminase II cds-NP_416773.1 22.29720630161 33 1.0013847683626 0.005740766776 68458 0.015002114283 8221 yfbK IPR002035/DUF3520 domain- containing protein YfbK cds-NP_415295.1 165.7772617251 04 1.00370055623294 2.018563747709 95e-05 9.865701347877 43e-05 bioA adenosylmethionine-8-amino-7- oxononanoate aminotransferase cds-NP_417053.2 96.92744751379 27 1.00520919748888 7.096653952962 36e-06 3.858295769828 96e-05 mltF membrane-bound lytic murein transglycosylase F cds-NP_415371.1 444.0526895702 16 1.00697791530529 1.917101497847 54e-08 1.679238904596 09e-07 ybjC DUF1418 domain-containing protein YbjC cds-NP_414546.1 47.15430992097 92 1.010796482824 0.001237871475 31031 0.004010364437 13547 yaaX DUF2502 domain-containing protein YaaX cds-NP_415596.1 133.5854476898 87 1.01208684778221 0.000447692509 541197 0.001594834320 5999 flgG flagellar basal-body rod protein FlgG cds-NP_416879.4 1210.055228232 56 1.01337160375144 2.341157802071 17e-07 1.704820883622 89e-06 lpxP palmitoleoyl acyltransferase cds-NP_417392.1 72.09928311560 07 1.01807903847024 1.790479717666 42e-06 1.099866112280 8e-05 scpA methylmalonyl-CoA mutase cds-NP_417883.1 189.1926899135 36 1.02589705388234 7.069133338769 54e-11 8.573589921123 06e-10 glpE thiosulfate sulfurtransferase GlpE cds-NP_416454.1 21.50275755406 16 1.02699887806083 0.022265974044 3832 0.048434466789 4427 fliL flagellar protein FliL cds-NP_415874.1 200.1924996914 27 1.03770973208177 1.965965743365 91e-11 2.631797537581 34e-10 racR DNA-binding transcriptional repressor RacR cds-NP_415546.2 28.65759898866 09 1.03829998133728 0.002226960736 25955 0.006615611901 08645 insE4 IS3 element protein InsE cds-NP_418142.1 552.0981102414 1 1.04149747184673 2.850115170322 16e-06 1.682793381423 23e-05 ibpA small heat shock protein IbpA cds-NP_417870.1 63.49153803960 14 1.04274423957403 1.295418768937 14e-05 6.604308621994 49e-05 rpnA recombination-promoting nuclease RpnA cds-NP_417090.1 1193.795171921 42 1.04613548163361 1.049135477918 48e-14 2.011788166440 99e-13 pheA fused chorismate mutase/prephenate dehydratase cds-NP_416453.1 27.35227925499 27 1.05242344874263 0.000546105928 771253 0.001911819850 96976 fliK flagellar hook-length control protein cds-NP_418198.1 1063.266353422 84 1.0534249580296 8.285876160321 75e-12 1.179698154330 76e-10 mioC flavoprotein MioC cds-NP_414655.1 1696.177986472 73 1.05621149766691 3.236863679216 8e-16 7.408241227110 7e-15 pdhR DNA-binding transcriptional dual regulator PdhR cds-NP_417959.4 39.07376500042 24 1.06214695528566 0.000906035832 856288 0.003027468242 12655 arsB arsenite/antimonite:H(+) antiporter cds-NP_417628.2 26.70273219621 74 1.06445145708504 0.019300978388 68 0.043063031970 9699 ubiV ubiquinone biosynthesis protein UbiV cds-NP_417911.4 72.40172556080 62 1.07019742379872 7.004141503400 67e-06 3.812868335035 38e-05 livF branched chain amino acid/phenylalanine ABC transporter ATP binding subunit LivF cds-NP_417515.1 13.11135614011 17 1.07434762332927 0.020648866526 0819 0.045545194197 6843 ygiL putative fimbrial protein YgiL cds-NP_414924.1 162.5383638944 77 1.07460248566403 7.896530718408 75e-08 6.259875468950 85e-07 aroM protein AroM Supplementary Material 205 cds-NP_416145.1 177.4433800430 95 1.07817016760122 5.642558490021 05e-07 3.806714974963 49e-06 rsxB SoxR [2Fe-2S] reducing system protein RsxB cds-NP_418359.1 1135.506260748 32 1.08110508767611 2.378918304255 35e-24 1.125228357912 78e-22 fpr flavodoxin/ferredoxin-NADP(+) reductase cds-NP_418729.1 26.52374366241 58 1.08527203786662 0.019784724201 0155 0.043935091770 3302 nanS N-acetyl-9-O-acetylneuraminate esterase cds-NP_415008.1 497.7414432454 82 1.08921321461179 1.082576305602 37e-25 5.833578902467 45e-24 hemH ferrochelatase cds-NP_414790.1 278.8355330180 69 1.09477517941315 3.891349678178 69e-17 9.520388264371 65e-16 insI1 IS30 family transposase cds-YP_009518795.2 84.64773598648 15 1.09552346829118 0.001941814402 68057 0.005904502794 43655 yoaL protein YoaL cds-NP_414788.1 55.04036607967 91 1.09600194665676 1.512474146073 77e-05 7.583748456815 14e-05 perR putative transcriptional regulator PerR cds-NP_417942.6 649.5910253241 45 1.097060812212 9.934114779991 03e-13 1.620288376184 74e-11 yhhJ ABC transporter family protein YhhJ cds- gnl|b4623|CDS%3D4 503 42.23515573558 37 1.09748823978663 0.002207387842 02241 0.006562046119 75518 insO IS911B regulator fragment cds- gnl|b4623|CDS%3D4 503 42.23515573558 37 1.09748823978663 0.002207387842 02241 0.006562046119 75518 insO IS911B regulator fragment cds- gnl|b4623|CDS%3D4 503 42.23515573558 37 1.09748823978663 0.002207387842 02241 0.006562046119 75518 insO IS911B regulator fragment cds-NP_414746.1 89.91894266638 79 1.09963686059912 1.577114611444 72e-05 7.852370644351 07e-05 yafE putative S-adenosylmethionine- dependent methyltransferase cds-NP_416808.1 40.70327276883 25 1.10221011334146 0.000769097172 988954 0.002610882508 30461 rpnB recombination-promoting nuclease RpnB cds-NP_415121.1 80.42888071154 42 1.10493192535106 0.003016701288 30299 0.008630441790 5281 fepG ferric enterobactin ABC transporter membrane subunit FepG cds-NP_415355.1 69.38485796084 07 1.11059953455406 0.001496814556 87864 0.004702538427 03495 dgcI putative diguanylate cyclase DgcI cds-NP_417785.1 26.19826490955 49 1.11225610084238 0.009339038386 06129 0.023033769646 2705 gspE Type II secretion system protein GspE cds-NP_418388.1 33.48311635901 06 1.11371474863691 0.002866135281 81807 0.008260756868 44924 frwD putative PTS enzyme IIB component FrwD cds-NP_415060.1 38.31916220756 06 1.1156579684183 0.001155155349 60833 0.003762430239 69598 ybcI PF04307 family inner membrane protein YbcI cds-NP_415098.1 17.86704125140 09 1.11893487268066 0.009108237629 67001 0.022516705917 2504 envY DNA-binding transcriptional activator EnvY cds-NP_418435.1 58.15345329252 62 1.11933483556655 1.520473369730 95e-05 7.614888394052 51e-05 yjaA stress response protein cds-NP_417189.2 165.3897160296 51 1.12747970890308 9.374830757454 18e-13 1.534948251326 25e-11 norR DNA-binding transcriptional dual regulator NorR cds-NP_415565.1 142.6254327754 88 1.13207443501821 2.704478547142 27e-08 2.325851550542 35e-07 opgC osmoregulated periplasmic glucans (OPG) biosynthesis protein C cds-NP_416335.4 100.3404221915 42 1.14385540437436 5.797156719303 74e-06 3.188436195617 06e-05 mntP Mn(2(+)) exporter cds-NP_416482.1 49.57070942379 01 1.14449458857379 1.099625530302 92e-05 5.694776012773 17e-05 zinT metal-binding protein ZinT cds-NP_415211.2 92.17033505302 4 1.14550278946264 0.000126515456 500405 0.000515384017 53323 ybfE ribbon-helix-helix domain- containing protein YbfE cds-NP_416060.1 31.44819757929 8 1.1464851165341 0.000489190468 994841 0.001732515662 65478 ydfI putative oxidoreductase YdfI cds-NP_414815.1 211.8271058913 96 1.16121092530275 7.059558605510 03e-13 1.169359571348 49e-11 intF putative phage integrase cds-YP_026201.1 132.5820233937 82 1.16356271462219 3.565987958118 34e-08 3.006021928259 36e-07 alx putative membrane-bound redox modulator Alx Supplementary Material 206 cds-NP_417308.1 168.9602872980 83 1.1692730471782 1.166229171782 13e-07 8.977644817859 93e-07 mutH DNA mismatch repair protein MutH cds-NP_417912.1 24.97980332682 07 1.1695731894421 0.001562976115 18254 0.004881576905 59947 livG branched chain amino acid/phenylalanine ABC transporter ATP binding subunit LivG cds-NP_416649.1 91.39323008657 08 1.17053311417919 2.464738924101 67e-06 1.477801915478 98e-05 sanA DUF218 domain-containing protein SanA cds-NP_415590.1 41.74239892692 45 1.17182579714242 3.016271272082 43e-05 0.000140330784 756884 flgA flagellar basal body P-ring formation protein FlgA cds-NP_417915.1 37.87212534819 67 1.17980747712854 0.000252795178 098571 0.000961706052 873654 livK L-leucine/L-phenylalanine ABC transporter periplasmic binding protein cds-YP_026277.1 182.6056226426 96 1.18119916362534 4.366254459067 49e-09 4.167521352522 49e-08 cpxP periplasmic protein CpxP cds-NP_417393.1 22.05678284134 77 1.18580875097023 0.006539489426 01226 0.016780353518 1038 argK methylmalonyl-CoA mutase- interacting GTPase YgfD cds-NP_417708.1 52.63640027498 84 1.18632008579279 5.763862597371 54e-06 3.174225495085 46e-05 aaeA aromatic carboxylic acid efflux pump membrane fusion protein cds-NP_418704.1 169.9628899818 2 1.19591480699752 1.031513061442 16e-14 1.986946200253 06e-13 insI3 IS30 family transposase cds-NP_418487.1 40.47478463926 69 1.19713636012549 0.000656232918 134431 0.002271206123 98233 soxR DNA-binding transcriptional dual regulator SoxR cds-YP_009518742.1 68.56582921918 12 1.19890864604691 4.188663995803 45e-07 2.894666011385 6e-06 yagB orphan antitoxin YagB cds-NP_417980.1 80.95128890040 99 1.19942936253952 1.697699176415 05e-07 1.274621762610 03e-06 yhjE putative transporter YhjE cds-NP_418271.1 165.7468525616 77 1.1999606882684 1.603103893508 03e-10 1.864593790891 72e-09 bioP biotin transporter cds-NP_418041.1 14.37270433970 25 1.20838364785714 0.007470941168 60496 0.018930831282 5901 yiaT outer membrane protein YiaT cds-NP_416403.1 12.29433717366 08 1.20890177433456 0.016130272362 9952 0.036877856847 084 motB motility protein B cds-NP_418145.2 19.60761822366 58 1.21183243021276 0.010453534299 4325 0.025385450948 4792 cbrA colicin M resistance protein cds-NP_416710.1 353.8969930754 41 1.21588761318332 4.017516376689 78e-12 6.086322852515 44e-11 napA periplasmic nitrate reductase subunit NapA cds-NP_415011.1 2338.426994710 37 1.24464586993962 1.746089010251 08e-29 1.179857288355 37e-27 ybaL putative transporter YbaL cds-YP_026223.1 207.6248164594 69 1.24499013353582 6.703327581880 98e-11 8.198836749824 9e-10 livJ branched chain amino acid/phenylalanine ABC transporter periplasmic binding protein cds-NP_415968.1 269.9003341545 21 1.24635329491147 1.121620393895 21e-17 3.041234405612 67e-16 yncD putative TonB-dependent outer membrane receptor cds-NP_415922.1 157.0370856146 52 1.24735177971814 7.507509459001 68e-15 1.507522064479 72e-13 insI2 IS30 family transposase cds-NP_416707.4 18.93053048349 64 1.25283697852205 0.001824329293 63753 0.005595223201 01944 napB periplasmic nitrate reductase cytochrome c550 protein cds-NP_416914.1 20.40291719345 07 1.25458865583603 0.002190967258 64482 0.006524777538 23236 yfeK DUF5329 domain-containing protein YfeK cds-NP_415031.1 16.04684493373 1.25719987239908 0.012494632874 8394 0.029632118188 4075 ybbC PF15631 family protein YbbC cds-NP_414684.1 73.93551205599 71 1.25764531489296 1.042841013124 08e-06 6.746769290074 8e-06 folK 2-amino-4-hydroxy-6- hydroxymethyldihydropteridine diphosphokinase cds-NP_418625.1 23.28409438601 96 1.25842270308108 0.003888040417 98338 0.010803778106 6288 yjfZ DUF2686 domain-containing protein YjfZ cds-NP_415354.1 118.9926249681 93 1.25910389235274 1.652260483340 64e-10 1.911324151516 61e-09 pdeI putative c-di-GMP phosphodiesterase PdeI cds-NP_418305.1 2114.394713807 07 1.27693856674825 7.459448819118 79e-17 1.783981664212 85e-15 glnL protein histidine kinase NtrB Supplementary Material 207 cds-NP_415097.1 4805.989202823 66 1.27941204558076 3.431788608132 96e-30 2.518814500831 38e-28 ompT omptin family outer membrane protease OmpT cds-NP_415507.2 13.56824978534 35 1.28929999344514 0.013223633239 0826 0.031015430688 03 gfcA threonine-rich inner membrane protein GfcA cds-NP_416877.1 30.56633160617 53 1.30115391092176 0.000291107023 684989 0.001080420749 63121 ypdI colanic acid synthesis putative lipoprotein YpdI cds-YP_026237.1 42.44481568606 18 1.30680811193368 2.148917972086 54e-06 1.301272234306 18e-05 dgoD D-galactonate dehydratase cds-NP_417449.1 16.76433721224 82 1.34226998946754 0.005343300840 47055 0.014154593452 323 glcA glycolate/lactate:H(+) symporter GlcA cds-NP_416221.1 274.0135590348 1.34271292174838 6.986255727930 02e-21 2.437745133917 88e-19 selO protein adenylyltransferase SelO cds-NP_415220.1 15.63292225422 91 1.34473033527103 0.021562680298 2823 0.047242578502 2069 speF inducible ornithine decarboxylase cds-NP_418633.4 28.63031426004 53 1.34539867888062 0.000943359249 577043 0.003134957318 85205 ytfH putative transcriptional regulator YtfH cds-NP_416451.1 38.56110423085 87 1.35648166048973 0.000110700445 781123 0.000456197287 212235 fliI flagellar export ATPase FliI cds-NP_417419.1 99.82983432080 4 1.35777988797199 1.069605014515 23e-05 5.559595295227 53e-05 yggI protein YggI cds-YP_009518788.1 12.88853637358 79 1.36382236063089 0.008823462517 42145 0.021914515715 6728 nohA putative prophage DNA-packaging protein NohA cds-NP_415594.1 179.0493645248 11 1.36637432491875 2.855385396976 88e-08 2.440838480909 76e-07 flgE flagellar hook protein FlgE cds-NP_415254.1 9124.874914103 1 1.38225085828522 1.259286093127 01e-08 1.138170042131 99e-07 sucA subunit of E1(0) component of 2- oxoglutarate dehydrogenase cds-NP_416449.1 34.24669179818 44 1.40993495419924 0.000258208789 618216 0.000980548454 419933 fliG flagellar motor switch protein FliG cds-NP_416778.2 51.27857766603 5 1.42079064384895 1.792627987186 48e-05 8.863202487169 37e-05 yfbP uncharacterized protein YfbP cds-NP_418716.1 36.26806575717 54 1.43074215395088 5.036864355657 92e-05 0.000223353453 771206 yjhF putative transporter YjhF cds-YP_009518818.1 21.98190121158 58 1.43191772599808 0.000595368202 132474 0.002074044547 03596 yqiD protein YqiD cds-NP_418454.1 20.56208015689 65 1.43260221397805 0.000177062970 156748 0.000694706971 389193 psiE putative phosphate starvation- inducible protein PsiE cds-NP_416255.1 155.8784888530 94 1.43941143684895 6.151669862914 03e-16 1.349879309609 54e-14 cho excinuclease Cho cds-NP_416608.1 24.67395496634 39 1.43992532534092 0.000220624368 612995 0.000851494050 032203 rcnR DNA-binding transcriptional repressor RcnR cds- gnl|b4580|CDS%3D3 93 56.26462673832 47 1.44042841147638 3.346484597138 75e-06 1.943517725787 13e-05 yaiT putative autotransporter YaiT cds- gnl|b4580|CDS%3D3 93 56.26462673832 47 1.44042841147638 3.346484597138 75e-06 1.943517725787 13e-05 yaiT putative autotransporter YaiT cds-NP_418607.1 16.62222705907 86 1.44431798048833 0.001869395980 45448 0.005716967448 84678 yjfC putative acid--amine ligase YjfC cds-NP_416455.1 48.37375885190 18 1.44486884249993 3.834607074864 99e-06 2.179428880867 86e-05 fliM flagellar motor switch protein FliM cds-NP_418554.1 63.17356605423 84 1.44958024403997 3.457684500252 26e-07 2.436668673933 72e-06 dtpC dipeptide/tripeptide:H(+) symporter DtpC cds-NP_416999.1 61.79703500479 02 1.45074320864606 1.510753972686 5e-05 7.583748456815 14e-05 yfgG nickel/cobalt stress response protein YfgG cds-NP_415891.1 11.28631084495 63 1.45193247261466 0.008277711150 81597 0.020705350288 7928 tfaR putative tail fiber assembly protein TfaR cds-NP_418178.1 101.9515860857 31 1.45664242021452 3.736116125470 81e-05 0.000169740089 072884 bglF beta-glucoside specific PTS enzyme II/BglG kinase/BglG phosphatase cds-NP_418014.1 53.24318069765 57 1.46453409670841 4.628677454098 1e-07 3.172991935925 22e-06 insJ insertion element IS150 protein InsA Supplementary Material 208 cds-NP_416708.1 106.2857069182 24 1.48087512487458 4.167234069523 74e-10 4.572143153083 13e-09 napH ferredoxin-type protein NapH cds-NP_416450.2 26.33745028425 78 1.49175748531025 3.334343710739 83e-05 0.000153286189 812305 fliH flagellar biosynthesis protein FliH cds-NP_416456.1 22.89676509589 27 1.50398561318915 0.000386957725 314336 0.001399557380 34251 fliN flagellar motor switch protein FliN cds-NP_415289.4 79.50780215137 68 1.50585103870361 4.713032032213 6e-10 5.131298557834 6e-09 ybhD putative DNA-binding transcriptional regulator YbhD cds-NP_415296.1 274.9697529076 71 1.50717127013785 7.244086878467 79e-12 1.048914212300 59e-10 bioB biotin synthase cds-NP_415297.1 164.5303195813 87 1.52746527278121 5.285416905124 06e-09 4.988917908007 34e-08 bioF 8-amino-7-oxononanoate synthase cds-NP_415089.1 203.6718321920 13 1.55532547074602 1.969314052532 35e-12 3.107628781888 37e-11 borD prophage lipoprotein BorD cds-NP_417978.2 99.12833624031 33 1.55853625676138 4.516210084624 45e-12 6.817555436257 55e-11 rcdB putative DNA-binding transcriptional regulator YhjC cds-NP_418015.1 35.22050422382 51 1.56428776520572 1.948155933829 42e-07 1.437313658632 9e-06 insK IS150 family conserved protein InsB cds-NP_415598.3 43.33008947289 16 1.59026884981434 3.055485303268 56e-05 0.000141690642 004512 flgI flagellar P-ring protein cds-NP_415298.1 94.24245525215 32 1.59630844836499 3.608697218435 6e-11 4.585738525038 91e-10 bioC malonyl-acyl carrier protein methyltransferase cds-NP_414993.1 399.8376879697 56 1.60006335808564 8.841339355068 74e-23 3.550715248540 34e-21 hha hemolysin expression-modulating protein Hha cds-YP_002791259.1 21.47692468782 8 1.61329825742462 0.000102954447 402439 0.000428004963 468927 ilvX uncharacterized protein IlvX cds-YP_588446.1 57.37993177778 82 1.61526218341104 3.194323558577 69e-10 3.578482997069 8e-09 gnsA putative phosphatidylethanolamine synthesis regulator GnsA cds-NP_416116.1 136.3495821180 21 1.61800338489438 1.400762789058 3e-12 2.250206487932 51e-11 mdtI multidrug/spermidine efflux pump membrane subunit MdtI cds-NP_414574.1 1835.095989063 44 1.61812465905999 3.277157876393 67e-23 1.341428949981 52e-21 carB carbamoyl-phosphate synthetase large subunit cds-NP_415591.1 59.02754272356 72 1.63020410696099 1.311387157634 72e-05 6.677721447429 41e-05 flgB flagellar basal-body rod protein FlgB cds-NP_416709.1 66.03098742297 19 1.63135116943174 6.721620920105 45e-11 8.198836749824 9e-10 napG ferredoxin-type protein NapG cds-NP_415593.1 84.51190011749 51 1.64871186706882 3.469743895085 68e-07 2.437409201547 81e-06 flgD flagellar biosynthesis initiation of hook assembly cds-YP_009518761.1 34.13499990501 9 1.65795393264401 0.002756197084 67225 0.007981721761 53044 ymcF protein YmcF cds-NP_416706.1 91.81856110797 73 1.65865728425874 1.172175178449 21e-15 2.494974867329 15e-14 napC periplasmic nitrate reductase cytochrome c protein cds-NP_416076.1 27.67830259296 54 1.66709985498833 0.004154827100 06022 0.011440555604 7583 cspF cold shock-like protein CspF cds-NP_416117.1 252.0627855961 59 1.67035546647242 1.213977586223 06e-10 1.427597399047 39e-09 mdtJ multidrug/spermidine efflux pump membrane subunit MdtJ cds-NP_415633.1 13.27676564564 84 1.67587157197146 0.002191785736 35712 0.006524777538 23236 ycfT inner membrane protein YcfT cds-YP_009518779.1 43.29010439386 31 1.67621139987125 0.018177497740 8053 0.040748608679 6252 ynaM protein YnaM cds-NP_414768.1 47.40810799447 06 1.70211945315018 3.141548453761 95e-06 1.834509158801 73e-05 yafO ribosome-dependent mRNA interferase toxin YafO cds-NP_415595.1 93.28277160496 82 1.70452965905239 3.391699266278 55e-07 2.400831942172 34e-06 flgF flagellar basal-body rod protein FlgF cds-NP_416256.2 10.83360515263 15 1.7065783347887 0.005963877522 72942 0.015464170390 7069 ves HutD family protein Ves cds-NP_415592.1 49.20470820356 51 1.70775714884493 0.008259219612 20249 0.020682057581 8506 flgC flagellar basal-body rod protein FlgC cds-NP_417940.2 9.824233291134 86 1.71162273574325 0.003960324368 52242 0.010975977107 2916 yhhH PF15631 family protein YhhH Supplementary Material 209 cds-NP_414769.1 12.29142583880 67 1.75346263465221 0.002139971360 68275 0.006397372248 89498 yafP putative N-acetyltransferase YafP cds-NP_416220.1 11.04744892277 67 1.75535202330475 0.003846359096 53909 0.010715936304 9522 ydiE PF10636 family protein YdiE cds-NP_415896.1 2122.421755296 37 1.78962312274524 1.788940187947 04e-68 8.461687088989 49e-66 ydbK putative pyruvate-flavodoxin oxidoreductase cds-NP_415599.1 33.16704176366 21 1.79654099236812 8.782947190275 12e-08 6.911091717005 77e-07 flgJ putative peptidoglycan hydrolase FlgJ cds-YP_010051187.1 13.37409804699 16 1.85129729547891 0.000986812955 485667 0.003261539403 34044 mdtU protein MdtU cds-NP_417472.1 6.902468537923 43 1.85410041627492 0.021362047229 8534 0.046851228777 6846 yghW DUF2623 domain-containing protein YghW cds-NP_414573.1 673.4300652205 16 1.86787465097657 2.598115696166 89e-26 1.436386820595 12e-24 carA carbamoyl-phosphate synthetase small subunit cds-NP_418200.1 4993.314500759 5 1.88432578676071 1.638550820114 73e-19 5.166896919428 45e-18 asnA asparagine synthetase A cds-NP_418344.3 1774.789669426 83 1.88577183924192 7.741913163024 34e-15 1.540061884812 83e-13 sodA superoxide dismutase (Mn) cds-NP_415597.1 33.82723420476 81 1.92896190491832 3.618295300106 66e-09 3.476993926084 43e-08 flgH flagellar L-ring protein cds-NP_417705.2 554.7463352985 18 1.95430921277389 2.144021904024 31e-20 7.186693894040 56e-19 yhcN DUF1471 domain-containing stress-induced protein YhcN cds-NP_416075.1 671.9271446626 15 1.96483102128886 1.505239289804 86e-13 2.647852750702 19e-12 cspB cold shock-like protein CspB cds-NP_416458.1 11.76960298981 89 1.98991525072013 0.002094247722 03831 0.006295642562 12672 fliP flagellar biosynthesis protein FliP cds-NP_414844.1 5.063122187826 22 2.00430696709959 0.021720655857 4323 0.047477140393 8032 ykgH uncharacterized protein YkgH cds-YP_588452.1 8.283356601710 5 2.01155612503374 0.002954428463 67466 0.008466080779 30556 rzoR putative prophage outer membrane lipoprotein RzoR cds-NP_415299.1 54.77169165425 99 2.04709687315041 6.370325783429 71e-12 9.383556006941 27e-11 bioD dethiobiotin synthetase cds-NP_415255.1 10316.86885494 05 2.0629292970814 9.864315963244 31e-12 1.385887559588 48e-10 sucB dihydrolipoyltranssuccinylase cds-NP_417610.1 9.234983398909 41 2.07313512326119 0.004596759275 92815 0.012456017974 3005 agaI putative deaminase AgaI cds-NP_418441.1 26.81399071589 53 2.13035625973753 1.433655694481 3e-07 1.084027049983 46e-06 arpA regulator of acetyl CoA synthetase cds-NP_416242.6 65.88491953164 94 2.13215288080372 3.132948804931 56e-17 7.754048292205 62e-16 ydjM inner membrane protein YdjM cds-NP_415510.1 351.5100485675 8 2.15350759021128 1.407361060582 88e-05 7.106922935825 98e-05 cspG cold shock protein CspG cds-NP_416404.1 7.398522387900 37 2.18566052747526 0.007462566115 66596 0.018920871920 4229 motA motility protein A cds-NP_415511.1 17.92039650075 79 2.27125915491935 0.005283254407 17755 0.014012968231 3737 ymcE protein YmcE cds-NP_416019.1 4.020939845723 76 2.28520236019401 0.018970532355 2038 0.042370176409 2878 ydeQ putative fimbrial adhesin protein YdeQ cds-YP_009518791.1 40.57072597008 76 2.30521048169676 1.033784087850 61e-05 5.399777744760 81e-05 ynfS protein YnfS cds-NP_415256.1 8848.675099583 82 2.32657703750501 1.501201394165 48e-11 2.028766455543 63e-10 sucC succinyl-CoA synthetase subunit beta cds-NP_416867.1 873.7004048616 01 2.34208213389576 0.000161414997 05227 0.000643995916 07452 dsdA D-serine ammonia-lyase cds-NP_415257.1 5422.091361455 16 2.40146736754531 3.106955795008 71e-11 4.020155264240 76e-10 sucD succinyl-CoA synthetase subunit alpha cds-NP_417446.4 50.23042037861 56 2.46657834430919 6.706979695253 08e-12 9.777949507771 36e-11 pppA prepilin peptidase cds-NP_418012.1 34841.40606166 52 2.47144708268749 4.154468803723 14e-08 3.474572435648 21e-07 cspA cold shock protein CspA Supplementary Material 210 cds-YP_010051199.1 24.46398060727 47 2.50871516241267 1.685140147285 69e-08 1.491401581495 88e-07 yghF putative type II secretion system C-type protein YghF cds-NP_416647.1 543.5021968253 51 2.62820342834769 2.050081515719 93e-29 1.363624533190 58e-27 yohK putative 3-hydroxypropanoate export protein YohK cds-YP_001165307.1 4.442179584178 87 2.64743608221851 0.006264126433 87819 0.016132115081 0765 ykfM uncharacterized protein YkfM cds-NP_416646.1 156.8730078237 44 2.67466674263507 3.834826239120 76e-33 3.710194386349 33e-31 yohJ putative 3-hydroxypropanoate export protein YohJ cds-YP_026189.1 1233.752131885 17 2.69685590674382 4.555581223591 42e-65 1.616092439069 06e-62 yghJ putative lipoprotein YghJ cds-NP_415146.1 4.289641469002 07 2.72974697941154 0.007663530120 99554 0.019361215267 1086 citG triphosphoribosyl-dephospho-CoA synthase cds-YP_588474.1 6.114890429299 78 2.7956222778709 0.001904390125 34949 0.005807298541 2699 ghoT toxin of the GhoTS toxin-antitoxin system cds-YP_588447.1 4.006597305410 29 3.0236913102916 0.004577647731 0931 0.012412131459 4034 ymgF inner membrane protein YmgF cds-NP_416459.1 3.426623192803 25 3.34505177339201 0.010741565808 5561 0.025966408658 1621 fliQ flagellar biosynthesis protein FliQ cds-NP_417941.1 19.35419292973 96 3.38680006593795 1.046273118957 03e-07 8.127709247080 41e-07 yhhI putative transposase cds-YP_002791243.1 3.159665811240 46 3.42053487591051 0.021384682257 859 0.046876721097 6857 yoaJ uncharacterized protein YoaJ cds-NP_416837.1 4.895565727119 67 3.49857801826164 0.002678793185 42033 0.007789359692 85134 yfcQ putative fimbrial protein YfcQ cds-YP_588478.1 4.357965276438 71 3.50455009726099 0.003803231376 85874 0.010616626866 4181 yjjZ DUF1435 domain-containing protein YjjZ cds-NP_415509.1 20.58657693522 3.82221582034075 7.665274409530 73e-06 4.130515590047 13e-05 cspH CspA family protein CspH cds-NP_417445.1 6.236953631470 38 4.15860513185643 0.000609502131 785353 0.002117637411 52683 yghG lipoprotein YghG ereA2 GeneID baseMean log2FoldChange p value padj Gene Product cds-NP_418191.1 7617.930136593 8 -1.00025290863863 1.902687158907 83e-29 1.354650873956 83e-27 atpH ATP synthase F1 complex subunit delta cds-NP_416292.1 466.1232838420 85 -1.00191895491895 2.365365334652 79e-16 6.714236371501 35e-15 msrB methionine sulfoxide reductase B cds-NP_415497.1 1245.690279476 66 -1.00498488996541 4.534002095896 2e-05 0.000310097182 716176 appC cytochrome bd-II subunit 1 cds-NP_416437.1 322.5467629267 07 -1.00602966113434 1.513531333442 2e-11 2.738861075474 78e-10 amyA alpha-amylase cds-NP_416805.1 21.81344926117 78 -1.01091937240121 0.006316585806 55754 0.023287718300 4069 yfcG disulfide bond oxidoreductase YfcG cds-NP_417721.1 4139.972542152 97 -1.01438336803834 1.539084952226 76e-15 4.126077745383 23e-14 accB biotin carboxyl carrier protein cds-NP_417697.1 14431.84951614 62 -1.01606513020503 6.072701300388 63e-23 2.866711059520 41e-21 rpsI 30S ribosomal subunit protein S9 cds-NP_417756.1 33668.27539544 97 -1.01646595614325 2.765779088719 56e-27 1.715968368901 29e-25 rpsK 30S ribosomal subunit protein S11 cds-NP_415940.1 330.9489127904 68 -1.03471148914551 5.338124408750 67e-06 4.441278602912 68e-05 ydcJ DUF1338 domain-containing protein YdcJ cds-NP_417758.1 4547.449245405 49 -1.03629373472411 6.022318209016 14e-12 1.142136593089 83e-10 rpmJ 50S ribosomal subunit protein L36 cds-NP_414692.1 790.4133834970 56 -1.03745087570298 3.877829776952 28e-05 0.000269894466 68756 fhuA ferrichrome outer membrane transporter/phage receptor cds-NP_416285.1 55.75130898929 95 -1.04121148819328 0.000107076470 194358 0.000679631519 068065 ydjG NADH-dependent methylglyoxal reductase cds-NP_416769.1 859.2862178381 8 -1.04688446920677 7.803057216179 77e-07 7.632585020240 7e-06 elaB tail-anchored inner membrane protein ElaB Supplementary Material 211 cds-NP_415305.1 157.8553979102 35 -1.05401517554306 3.228493423274 74e-07 3.346383517251 12e-06 moaD molybdopterin synthase sulfur carrier subunit cds-NP_418414.1 56771.51988704 82 -1.05508373021547 5.198868811820 18e-28 3.473644192266 93e-26 rpoB RNA polymerase subunit beta cds-NP_415538.1 179.4342590300 61 -1.05583482540722 8.065520737616 08e-07 7.871585744599 24e-06 efeB heme-containing peroxidase/deferrochelatase cds-NP_415706.1 301.9259522365 96 -1.05917720399395 3.672302485922 15e-12 7.216655971203 58e-11 ycgB PF04293 family protein YcgB cds-NP_417757.1 36668.11301657 59 -1.06475095552322 5.507698829749 75e-44 6.834267433600 9e-42 rpsM 30S ribosomal subunit protein S13 cds-NP_417185.1 10286.95795060 23 -1.06574783174568 3.552549015232 23e-06 3.073450273536 57e-05 srlD sorbitol-6-phosphate 2- dehydrogenase cds-NP_415156.1 3991.736497560 06 -1.06643607527747 1.865399728841 02e-06 1.687798129657 62e-05 cspE transcription antiterminator and regulator of RNA stability CspE cds-NP_417351.1 2037.676974814 92 -1.06694859937831 0.002614001614 75338 0.011011259954 2909 yqeB XdhC-CoxI family protein YqeB cds-NP_417400.1 56193.92104051 45 -1.06721432243542 2.528148677798 77e-21 1.016643491451 86e-19 fbaA fructose-bisphosphate aldolase class II cds-NP_417764.1 45089.01910752 49 -1.06845905552486 1.322942333266 77e-24 6.680858782997 21e-23 rplF 50S ribosomal subunit protein L6 cds-NP_416538.1 1910.448887374 8 -1.07070978743745 4.496089210568 74e-19 1.525509018867 19e-17 wbbI beta-1 6- galactofuranosyltransferase WbbI cds-NP_416607.1 1653.482402597 6 -1.07557169658814 1.649774822991 34e-24 8.142013700285 65e-23 thiM hydroxyethylthiazole kinase cds-NP_418688.1 96.20631949386 35 -1.07624832824323 1.976445442446 91e-05 0.000144994975 617347 idnD L-idonate 5-dehydrogenase cds-NP_415303.1 682.8768824721 26 -1.07723058447583 5.568403508886 55e-15 1.404301388262 15e-13 moaB protein MoaB cds-NP_415304.1 257.2011126562 24 -1.08049560669298 9.183726965134 37e-09 1.191895756915 72e-07 moaC cyclic pyranopterin monophosphate synthase cds-NP_416606.1 2948.075299451 21 -1.08201010162524 1.337654155804 53e-26 7.745909331545 44e-25 thiD bifunctional hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase cds-NP_416289.1 33.57857141025 41 -1.08213519686362 0.000759652828 746019 0.003836246785 16739 ydjK putative transporter YdjK cds-NP_414711.1 28571.08109291 15 -1.08433081955498 1.090021516602 27e-21 4.596081016120 04e-20 rpsB 30S ribosomal subunit protein S2 cds-NP_418517.1 44.34486684623 09 -1.08759310870917 0.000501844862 318213 0.002651474740 9343 phnO aminoalkylphosphonate N- acetyltransferase cds-NP_416199.1 32.40192831087 39 -1.09170471050013 0.008444180564 94861 0.029670773619 3947 sufA iron-sulfur cluster insertion protein SufA cds-NP_416536.1 2733.514465891 87 -1.09392266655627 3.412494362570 79e-18 1.089739927694 48e-16 wbbK putative glycosyltransferase WbbK cds-NP_417347.1 35.80060429703 12 -1.1010797843317 0.001513525806 43774 0.006926493759 07178 ygeX 2 3-diaminopropionate ammonia- lyase cds-NP_417754.1 69833.78449896 16 -1.10182277468351 3.534157202968 99e-24 1.686686234340 04e-22 rpoA RNA polymerase subunit alpha cds-NP_418023.1 42.48516130789 52 -1.10901843797222 0.001184090684 40366 0.005595762614 10781 xylF xylose ABC transporter periplasmic binding protein cds-NP_416868.1 17.09430419649 67 -1.10982035915796 0.009652019053 99486 0.033058926460 1732 emrY tripartite efflux pump membrane subunit EmrY cds-NP_417755.1 40328.34631915 25 -1.11062061859468 3.162625915954 36e-19 1.090101932776 97e-17 rpsD 30S ribosomal subunit protein S4 cds-NP_415580.1 666.8448517005 78 -1.11064353766225 3.737366284003 54e-15 9.604367912087 22e-14 pyrC dihydroorotase cds-NP_416539.1 2362.317064539 18 -1.11074032960491 1.137597788922 89e-17 3.528990855208 65e-16 wbbH putative O-antigen polymerase cds-NP_418456.1 1959.601346768 86 -1.1174581263286 6.284565934186 75e-09 8.476357096948 15e-08 malG maltose ABC transporter membrane subunit MalG Supplementary Material 212 cds-NP_416030.1 187.4450760427 89 -1.12874122772444 2.333938160793 05e-05 0.000168657128 657641 lsrA Autoinducer-2 ABC transporter ATP binding subunit cds-NP_418457.1 10679.51232957 53 -1.13127976702002 5.995895056627 11e-08 6.962612895971 e-07 malF maltose ABC transporter membrane subunit MalF cds-NP_415375.1 97.48999031012 12 -1.13199546546719 1.556969356137 19e-07 1.677895263946 36e-06 potF putrescine ABC transporter periplasmic binding protein cds-NP_418190.1 18779.26860812 2 -1.13430169419139 1.416431375270 78e-34 1.308842864425 74e-32 atpA ATP synthase F1 complex subunit alpha cds-NP_418493.1 1356.873904942 62 -1.13539160658176 0.000884622323 575857 0.004350979333 2842 acs acetyl-CoA synthetase (AMP- forming) cds-NP_418410.1 12871.66249734 32 -1.14130221285177 2.451626411305 63e-15 6.375696709161 9e-14 rplK 50S ribosomal subunit protein L11 cds-NP_416653.1 642.8599145638 75 -1.14554202331963 0.011620895796 9495 0.038379886270 8378 mglC D-galactose/methyl-galactoside ABC transporter membrane subunit cds-NP_414712.1 15542.32818836 86 -1.14564006966934 1.850915641984 51e-22 8.461606982251 28e-21 tsf protein chain elongation factor EF- Ts cds-NP_415957.1 150.2590142156 61 -1.15053347307065 7.990909236577 15e-09 1.051652085286 5e-07 ydcS putative ABC transporter periplasmic binding protein/polyhydroxybutyrate synthase cds-NP_415689.2 177.1038013731 69 -1.15706482267046 3.205951288019 91e-09 4.462643090984 13e-08 ymgD PF16456 family protein YmgD cds-NP_415641.1 2914.868683688 -1.15898612798284 7.818262310356 52e-48 1.305950508226 09e-45 potD spermidine preferential ABC transporter periplasmic binding protein cds-NP_418411.1 46345.16937585 39 -1.16520294564925 7.043437686780 93e-28 4.634795435407 51e-26 rplA 50S ribosomal subunit protein L1 cds-NP_418623.1 3378.195545852 05 -1.16689254237262 6.050797382701 13e-16 1.652742958054 78e-14 rpsR 30S ribosomal subunit protein S18 cds-NP_418163.1 115.2645123208 45 -1.17212042241206 2.440341893358 27e-09 3.441040533394 47e-08 tnaC tnaAB operon leader peptide cds-NP_417763.1 14704.90594751 4 -1.17490087708325 1.271573859014 61e-14 3.102497342528 35e-13 rplR 50S ribosomal subunit protein L18 cds-NP_418491.1 111.8723506690 21 -1.17901270261081 4.431629602394 29e-06 3.751767517192 67e-05 actP acetate/glycolate:cation symporter cds-NP_416031.1 62.90744090621 13 -1.18107794217729 1.855060860850 29e-06 1.687798129657 62e-05 lsrC Autoinducer-2 ABC transporter membrane subunit LsrC cds-NP_418621.5 14379.62872614 21 -1.18302056562258 7.845125503103 15e-13 1.638047118268 12e-11 rpsF 30S ribosomal subunit protein S6 cds-NP_418045.4 150.6307555668 12 -1.18667984542322 9.325455401046 4e-11 1.551741486848 45e-09 aldB aldehyde dehydrogenase B cds-NP_417207.1 174.7219722213 33 -1.18686536101159 6.213683026164 04e-11 1.041931481954 84e-09 hypB hydrogenase isoenzymes nickel incorporation protein HypB cds-NP_416540.1 2174.125525192 28 -1.19418798027666 1.266799513508 29e-14 3.102497342528 35e-13 glf UDP-galactopyranose mutase cds-NP_418028.1 2005.264886299 17 -1.19605950935434 3.161519048017 68e-10 5.029478837194 43e-09 malS alpha-amylase cds-NP_417753.1 10849.47776493 8 -1.19617390351974 2.089747823560 93e-15 5.467334215497 05e-14 rplQ 50S ribosomal subunit protein L17 cds-NP_418648.1 326.7869946677 71 -1.19701447375147 3.647519026917 77e-10 5.781450778797 03e-09 ytfQ galactofuranose ABC transporter periplasmic binding protein cds-NP_418461.1 3816.451058259 29 -1.1988428714694 9.193761882725 42e-09 1.191895756915 72e-07 malM maltose regulon periplasmic protein cds-NP_415524.1 255.0805192065 32 -1.2029290934819 5.577241548755 84e-13 1.181559026646 18e-11 wrbA NAD(P)H:quinone oxidoreductase cds-NP_416753.4 126.3904626774 61 -1.20880774564736 9.029227233105 14e-11 1.508228225899 06e-09 yfaZ putative porin YfaZ cds-NP_418458.1 24975.49549012 95 -1.21932718032965 1.198799306634 17e-12 2.467481226877 82e-11 malE maltose ABC transporter periplasmic binding protein Supplementary Material 213 cds-NP_415160.1 298.7478976414 57 -1.22141400609797 4.727115278136 16e-17 1.415852527789 33e-15 tatE twin arginine protein translocation system - TatE protein cds-NP_418624.1 14617.62169489 83 -1.22229196196808 1.466498371515 42e-20 5.586844234641 65e-19 rplI 50S ribosomal subunit protein L9 cds-NP_415500.1 474.6751741493 03 -1.223396637489 7.356295980394 17e-10 1.120996261152 7e-08 appA periplasmic phosphoanhydride phosphatase/multiple inositol- polyphosphate phosphatase cds-NP_418622.1 14785.38934222 78 -1.233737970766 3.483179308188 71e-18 1.104193265362 3e-16 priB primosomal replication protein N cds-NP_418189.1 13230.68494082 69 -1.24413145005397 3.013487268865 54e-54 6.232178670801 45e-52 atpG ATP synthase F1 complex subunit gamma cds-NP_414713.1 4086.571032119 73 -1.24426460818396 6.571135155979 91e-32 5.096149996860 85e-30 pyrH UMP kinase cds-NP_417761.1 7052.870443944 59 -1.24842093993999 9.980407156853 04e-30 7.224151380368 79e-28 rpmD 50S ribosomal subunit protein L30 cds-NP_418651.3 97.51596354806 86 -1.24979498346818 8.247495871176 76e-07 8.013171044411 78e-06 ytfT galactofuranose ABC transporter putative membrane subunit YtfT cds-NP_417552.1 1410.582274923 43 -1.25210897119773 0.008246176932 67425 0.029116379202 1173 fadH 2 4-dienoyl-CoA reductase cds-NP_418011.1 140.7192179270 07 -1.25499778706869 7.652176346817 39e-10 1.157958253457 42e-08 yiaG putative DNA-binding transcriptional regulator YiaG cds-NP_416600.4 471.1007428743 54 -1.25719221175784 5.593924480067 96e-15 1.404301388262 15e-13 fbaB fructose-bisphosphate aldolase class I cds-NP_417762.1 55161.10536528 58 -1.25845607972236 2.106918347769 14e-42 2.473066590367 94e-40 rpsE 30S ribosomal subunit protein S5 cds-NP_415498.1 1443.351029298 93 -1.25943043072433 6.040591232297 34e-10 9.237425254178 64e-09 appB cytochrome bd-II subunit 2 cds-NP_417722.1 7998.062315344 09 -1.25967352509558 1.651545631048 1e-18 5.433835360334 79e-17 accC biotin carboxylase cds-NP_418420.4 11816.85395489 03 -1.26401919220762 4.265311801093 44e-16 1.172420832414 48e-14 thiF sulfur carrier protein ThiS adenylyltransferase cds-NP_417904.1 254.1344713643 81 -1.26812586752012 1.203145714951 02e-21 5.024290230800 28e-20 ggt glutathione hydrolase proenzyme cds-YP_026286.1 217.0143679535 65 -1.27464085009967 3.288958530811 31e-12 6.522350182334 94e-11 ytfR galactofuranose ABC transporter putative ATP binding subunit cds-NP_418164.4 3848.911659106 44 -1.2787358548662 8.244302517996 25e-05 0.000538421140 38583 tnaA tryptophanase cds-NP_418492.1 33.32285817848 2 -1.27944092013378 0.002711349240 77399 0.011344306120 117 yjcH DUF485 domain-containing inner membrane protein YjcH cds-NP_415539.1 568.2235972416 96 -1.28120753612199 0.000374090696 6567 0.002053951827 53483 phoH ATP-binding protein PhoH cds-NP_415534.1 5654.354622804 36 -1.28580235762931 1.763569635023 18e-08 2.194608287938 58e-07 putA fused DNA-binding transcriptional repressor/proline dehydrogenase/1-pyrroline-5- carboxylate dehydrogenase PutA cds-NP_416853.1 777.7586469679 42 -1.29207693635198 3.727389747038 99e-16 1.037695748166 05e-14 yfdI serotype-specific glucosyl transferase YfdI cds-NP_418415.1 65063.92409335 12 -1.29646867669173 3.826132669054 81e-32 3.077202626241 68e-30 rpoC RNA polymerase subunit beta' cds-NP_414917.2 142.8713446604 65 -1.30104718127119 2.246166777745 86e-11 4.014445397428 1e-10 phoA alkaline phosphatase cds-YP_010051189.1 21.49831337399 85 -1.30654244897587 0.003756991269 89778 0.014955649023 9836 yoaM protein YoaM cds-NP_418188.1 38351.76206693 08 -1.30795009289212 6.054509756026 12e-54 1.195215266837 34e-51 atpD ATP synthase F1 complex subunit beta cds-NP_417759.1 101839.8797741 73 -1.31544965360239 6.108557056534 28e-29 4.278945692988 45e-27 secY Sec translocon subunit SecY cds-NP_414937.2 1423.865739964 02 -1.3184955611695 1.867038766839 22e-27 1.175152081794 6e-25 malZ maltodextrin glucosidase cds-NP_418497.1 32.10643244811 49 -1.31893560660205 5.783998084514 76e-05 0.000387652834 584068 nrfD putative menaquinol-cytochrome c reductase subunit NrfD Supplementary Material 214 cds-NP_416258.1 115.8565405362 35 -1.32249562300222 6.550095140719 e-06 5.317208074045 35e-05 astE succinylglutamate desuccinylase cds-NP_417760.1 107998.2300433 81 -1.32299932362021 5.567349820310 91e-45 7.111470667532 43e-43 rplO 50S ribosomal subunit protein L15 cds-NP_418422.1 55115.07136252 65 -1.32417344155135 5.177228444756 61e-18 1.617604542127 91e-16 thiC phosphomethylpyrimidine synthase cds-NP_415986.1 25.10866010688 66 -1.32946413501429 0.001074494969 21933 0.005116811021 1837 narU nitrate/nitrite transporter NarU cds-NP_418421.1 12476.22008345 07 -1.33163343778015 1.785352464200 89e-18 5.829914099266 52e-17 thiE thiamine phosphate synthase cds-NP_418417.1 16453.22227020 08 -1.33643012848219 5.358681758874 41e-22 2.374770905999 14e-20 thiH 2-iminoacetate synthase cds-NP_418418.2 13520.81366144 85 -1.33807791460856 2.826992596473 27e-19 9.822103077186 73e-18 thiG 1-deoxy-D-xylulose 5- phosphate:thiol sulfurtransferase cds-NP_417003.1 15925.24726083 58 -1.34109847238139 5.938812506360 72e-34 5.358989709106 62e-32 guaB inosine 5'-monophosphate dehydrogenase cds-NP_418187.1 9293.803867648 54 -1.34116670673509 1.978245574381 56e-32 1.652215486449 83e-30 atpC ATP synthase F1 complex subunit epsilon cds-NP_417594.3 221.3297938878 87 -1.34542787623259 8.426319380867 01e-16 2.273012737335 74e-14 garR tartronate semialdehyde reductase cds-NP_416319.1 2826.644070602 07 -1.35213568510488 0.000250511329 412408 0.001442931967 68977 fadD long-chain-fatty-acid--CoA ligase cds-NP_415799.1 30.53291223852 97 -1.35811851671504 0.000130558464 985719 0.000803137979 366825 osmB osmotically-inducible lipoprotein OsmB cds-YP_026279.1 2634.248765980 45 -1.36134175295367 1.856927287158 79e-19 6.610356727975 94e-18 thiS sulfur carrier protein ThiS cds-NP_418288.1 1093.773214404 69 -1.36690107052709 0.011066111084 2033 0.036855920581 8212 fadB multifunctional enoyl-CoA hydratase 3-hydroxyacyl-CoA epimerase Delta(3)-cis- Delta(2)- trans-enoyl-CoA isomerase L-3- hydroxyacyl-CoA dehydrogenase cds-NP_416874.1 46.23889790190 51 -1.3682181675165 3.279164209298 74e-05 0.000232702780 408243 oxc oxalyl-CoA decarboxylase cds-NP_416450.2 26.33745028425 78 -1.37882235836589 0.002264312158 39266 0.009775256166 89794 fliH flagellar biosynthesis protein FliH cds-NP_417936.1 30.10195989150 71 -1.37971056358008 0.000238464557 061547 0.001382712378 26208 nikD Ni(2(+)) ABC transporter ATP binding subunit NikD cds-NP_417002.1 23485.00623114 03 -1.39005797370452 2.641058195357 21e-40 2.867528935609 09e-38 guaA GMP synthetase cds-NP_414913.1 65.95751657641 42 -1.3980240413186 1.637862697235 91e-06 1.503855749280 24e-05 yaiY DUF2755 domain-containing inner membrane protein YaiY cds-NP_418663.1 6541.461037171 63 -1.40116581447169 1.575741937542 18e-20 5.950823682387 55e-19 mgtA Mg(2(+)) importing P-type ATPase cds-NP_416953.1 15.27938470381 1 -1.40142273361971 0.002581038138 55981 0.010918052360 7495 eutD phosphate acetyltransferase EutD cds-NP_415958.1 60.50741919651 67 -1.4067945269203 1.167959649916 e-06 1.110634471077 31e-05 ydcT putative ABC transporter ATP- binding protein YdcT cds-NP_417780.1 11834.53862106 42 -1.40829184778513 4.394299450633 03e-17 1.325308507923 56e-15 rpsJ 30S ribosomal subunit protein S10 cds-NP_414838.2 38.77872578528 53 -1.4214659230084 8.319579208749 08e-06 6.629712385981 15e-05 rclA cupric reductase RclA cds-NP_418165.1 533.4896689973 93 -1.42168983618025 0.003213516463 21865 0.013141527306 7407 tnaB tryptophan:H(+) symporter TnaB cds-NP_417779.1 52347.66775977 84 -1.42202632021918 1.348413600664 1e-31 1.027396538190 21e-29 rplC 50S ribosomal subunit protein L3 cds-NP_418460.1 27673.88358975 59 -1.42297527629745 8.145553885670 46e-13 1.692638302653 92e-11 lamB maltose outer membrane channel/phage lambda receptor protein cds-NP_414918.4 43.53544829229 31 -1.43657032092163 0.000118761876 620802 0.000742133568 581504 psiF phosphate starvation-inducible protein PsiF Supplementary Material 215 cds-NP_415127.1 96.89705054871 56 -1.4493495665581 0.000116210678 333631 0.000730698598 353954 entB enterobactin synthase component B cds-NP_415116.1 164.0030484256 81 -1.46288393739985 3.976642580819 84e-09 5.448125781861 38e-08 fepA ferric enterobactin outer membrane transporter cds-NP_417146.2 93.92346483914 8 -1.46289974682828 1.390077405902 87e-11 2.536599232704 28e-10 lhgD L-2-hydroxyglutarate dehydrogenase cds-NP_418708.1 269.5269031672 71 -1.47217439843802 1.045616529990 48e-08 1.343524434836 89e-07 fecD ferric citrate ABC transporter membrane subunit FecD cds-NP_416449.1 34.24669179818 44 -1.47570568880196 0.001221130860 6148 0.005752029639 53369 fliG flagellar motor switch protein FliG cds-NP_417478.1 96.90464890985 35 -1.47597471293135 1.865308917526 41e-07 1.985548193337 54e-06 exbD Ton complex subunit ExbD cds-YP_026218.1 30845.38151732 85 -1.47749019238518 2.523977172583 84e-20 9.289519373331 86e-19 malP maltodextrin phosphorylase cds-NP_414756.2 1532.269030477 09 -1.48812541898114 0.003089553393 8508 0.012694352307 9413 fadE acyl-CoA dehydrogenase cds-NP_417778.1 37471.06936255 64 -1.5273990579883 5.974716663031 52e-22 2.621029744196 55e-20 rplD 50S ribosomal subunit protein L4 cds-NP_418707.1 296.2178161011 54 -1.55511197143738 5.043860371966 6e-10 7.823387712661 05e-09 fecE ferric citrate ABC transporter ATP binding subunit cds-NP_417193.1 61.93734963142 93 -1.56230518614811 1.211868973377 68e-06 1.146655109232 95e-05 hydN putative electron transport protein HydN cds-NP_415123.1 77.19739867623 04 -1.56303829150945 2.283902431796 96e-07 2.395890884370 58e-06 entS enterobactin exporter EntS cds-NP_415417.1 50.16134356437 95 -1.56779531893067 6.921554319715 49e-09 9.249326280161 35e-08 ycaC putative hydrolase YcaC cds-NP_417875.1 15701.06115001 4 -1.58688052783797 1.501192691155 9e-13 3.449566062269 89e-12 malQ 4-alpha-glucanotransferase cds-NP_417777.1 37003.97248350 76 -1.5926873200702 1.169682139591 54e-32 9.960646141658 94e-31 rplW 50S ribosomal subunit protein L23 cds-NP_415125.1 70.23112095305 18 -1.59512222542652 0.000105223798 397708 0.000670068851 086873 entC isochorismate synthase EntC cds-NP_417541.1 74.80943488573 52 -1.6106752470405 5.615745980448 05e-10 8.679425193268 99e-09 nfeF NADPH-dependent ferric-chelate reductase cds-NP_415126.1 95.07837122426 74 -1.65167703309721 2.738576367558 17e-06 2.412502467404 69e-05 entE 2 3-dihydroxybenzoate-AMP ligase cds-NP_417047.1 3030.237647276 76 -1.66118749630172 1.817042262793 77e-18 5.889115333815 93e-17 hmp nitric oxide dioxygenase cds-NP_415597.1 33.82723420476 81 -1.67799526895522 0.000201427035 677826 0.001190200838 02558 flgH flagellar L-ring protein cds-NP_415537.1 134.5325020600 05 -1.68567058179516 1.195231927260 29e-11 2.199530618682 81e-10 efeO ferrous iron transport system protein EfeO cds-NP_415556.1 10.13639077664 66 -1.69380236261667 0.008076116937 00222 0.028702598901 3098 csgF curli assembly component CsgF cds-NP_417776.1 51031.72307326 07 -1.72440063028702 4.861220932257 22e-21 1.902007433224 61e-19 rplB 50S ribosomal subunit protein L2 cds-NP_416873.1 15.17828521221 03 -1.7718883524648 0.000810864155 18741 0.004038512644 47124 yfdV putative transport protein YfdV cds-NP_416456.1 22.89676509589 27 -1.78505673235187 0.001235645423 01977 0.005807800943 91218 fliN flagellar motor switch protein FliN cds-NP_417968.1 3240.549274029 7 -1.81576515265544 3.963749274292 29e-21 1.564960281659 22e-19 hdeD acid-resistance membrane protein cds-YP_025308.1 181.4977481902 87 -1.81768084712021 4.174692001047 44e-22 1.869143026860 73e-20 katE catalase HPII cds-NP_415596.1 133.5854476898 87 -1.82882997842255 1.044739676746 34e-08 1.343524434836 89e-07 flgG flagellar basal-body rod protein FlgG cds-NP_417774.1 24570.38832739 97 -1.83585067845418 6.438762797390 33e-53 1.215806383872 44e-50 rplV 50S ribosomal subunit protein L22 cds-NP_417775.1 14135.83483927 52 -1.84386242306937 6.046292787156 91e-34 5.358989709106 62e-32 rpsS 30S ribosomal subunit protein S19 Supplementary Material 216 cds-NP_417773.1 40911.91302582 74 -1.85619865990396 3.496634196543 2e-35 3.301278764258 07e-33 rpsC 30S ribosomal subunit protein S3 cds-NP_416432.3 10.57657096811 39 -1.86669022643928 0.011476621114 6424 0.038048065267 8566 fliA RNA polymerase sigma factor FliA cds-NP_416442.1 40.13785569700 21 -1.88101312718122 1.487161124974 49e-07 1.610658545078 36e-06 yedL putative acetyltransferase YedL cds-NP_418711.1 2498.566846138 09 -1.91846606174523 6.888853674325 61e-17 2.007939027355 44e-15 fecA ferric citrate outer membrane transporter cds-NP_417770.1 4192.002234261 45 -1.93011381982074 6.065068481360 48e-17 1.791877035003 3e-15 rpsQ 30S ribosomal subunit protein S17 cds-NP_417771.1 57144.89870988 18 -1.94221429266863 4.416525659829 94e-49 7.992071225267 26e-47 rpmC 50S ribosomal subunit protein L29 cds-NP_417772.1 39157.55136943 39 -1.95712976027055 4.045385059578 36e-61 1.098069207109 3e-58 rplP 50S ribosomal subunit protein L16 cds-NP_416314.1 526.8863972574 59 -1.95765671061492 1.808668922939 76e-24 8.727832369252 65e-23 dmlA D-malate/3-isopropylmalate dehydrogenase (decarboxylating) cds-NP_417145.4 117.6972761148 02 -1.97027258586629 4.017588420351 91e-13 8.768033421903 7e-12 glaH glutarate dioxygenase GlaH cds-NP_417825.1 9.682547717162 64 -1.97259540322512 0.011493762171 5027 0.038075826934 2764 nirD nitrite reductase (NADH) small subunit cds-NP_418503.1 930.1156076512 03 -1.99782162608551 1.288148557491 15e-27 8.227101742917 73e-26 fdhF formate dehydrogenase H cds-NP_415224.1 155.2016512257 47 -2.08039551756212 4.755831049281 59e-11 8.228914042641 41e-10 kdpC K(+) transporting P-type ATPase subunit KdpC cds-NP_418709.1 243.5409628728 09 -2.08587468844096 5.991886739339 6e-12 1.141349303024 2e-10 fecC ferric citrate ABC transporter membrane subunit FecC cds-NP_417966.4 1679.488522695 56 -2.13122530215174 6.075006427540 45e-39 6.281845932097 18e-37 hdeB periplasmic acid stress chaperone HdeB cds-NP_418787.1 188.0729906070 14 -2.15156173509937 3.806011927785 54e-12 7.445725136203 88e-11 fhuF ferric-siderophore reductase FhuF cds-NP_415690.5 19.84347756703 91 -2.17685278790244 7.027974986715 92e-05 0.000463867710 74935 ymgG PF13436 family protein YmgG cds-NP_416451.1 38.56110423085 87 -2.18808595097511 1.635378147716 75e-06 1.503855749280 24e-05 fliI flagellar export ATPase FliI cds-NP_417974.1 574.8032304543 31 -2.1991897611389 1.010926376892 22e-24 5.165239123344 6e-23 gadA glutamate decarboxylase A cds-NP_418710.4 1434.246756293 3 -2.20301506848223 9.247370594359 69e-25 4.781110772774 3e-23 fecB ferric citrate ABC transporter periplasmic binding protein cds-NP_417269.1 66.79334860565 83 -2.33392793073627 1.829155467229 63e-10 2.975289211302 73e-09 gudP galactarate/D-glucarate transporter GudP cds-NP_417205.1 37.84374882569 24 -2.40029241663967 6.688369202670 41e-07 6.586754523174 05e-06 hycA regulator of the transcriptional regulator FhlA cds-NP_416448.1 23.21888947266 63 -2.44461700694058 8.797088862320 23e-06 6.959154267587 76e-05 fliF flagellar basal-body MS-ring and collar protein cds-NP_415594.1 179.0493645248 11 -2.44946929421763 6.110584356798 32e-17 1.793126206863 18e-15 flgE flagellar hook protein FlgE cds-NP_417967.1 9328.477129582 23 -2.52213416624339 3.378481237201 11e-32 2.768442266634 79e-30 hdeA periplasmic acid stress chaperone HdeA cds-NP_417206.1 35.14432160569 08 -2.54649287087628 2.178688774721 15e-07 2.302200814747 92e-06 hypA hydrogenase 3 nickel incorporation protein HypA cds-NP_415595.1 93.28277160496 82 -2.5576185913019 5.934964801512 64e-10 9.107968951579 29e-09 flgF flagellar basal-body rod protein FlgF cds-NP_417597.1 1035.388026483 83 -2.55781124317962 5.672258467454 65e-14 1.317359279366 61e-12 garD GarD cds-NP_415225.1 506.5134651539 28 -2.56776789503203 7.249819291409 17e-22 3.117422295305 94e-20 kdpB K(+) transporting P-type ATPase subunit KdpB cds-NP_416010.1 657.0809259000 64 -2.73445177648057 8.874992703491 59e-47 1.427559011528 3e-44 gadB glutamate decarboxylase B cds-NP_415226.1 572.0999757733 65 -2.74267750347421 1.761974360221 41e-33 1.530450929288 32e-31 kdpA K(+) transporting P-type ATPase subunit KdpA Supplementary Material 217 cds-NP_417199.1 153.8249749384 79 -2.75165527486185 1.929450969302 84e-22 8.728755791335 68e-21 hycG formate hydrogenlyase subunit HycG cds-NP_417198.1 149.5084824214 43 -2.75676126528329 4.258943374070 23e-25 2.283529762171 23e-23 hycH formate hydrogenlyase assembly protein cds-NP_415592.1 49.20470820356 51 -2.87724622363956 0.000127563708 109342 0.000788064273 568805 flgC flagellar basal-body rod protein FlgC cds-NP_417203.1 340.6448002896 95 -3.05905570512471 1.220146834756 18e-27 7.909101049770 26e-26 hycC formate hydrogenlyase subunit HycC cds-NP_417200.1 123.7834809112 14 -3.09049612872538 1.767689002042 98e-24 8.625925096486 15e-23 hycF formate hydrogenlyase subunit HycF cds-NP_417595.1 109.0990447232 26 -3.11949361168915 5.676572491977 55e-19 1.911112738965 77e-17 garL alpha-dehydro-beta-deoxy-D- glucarate aldolase cds-NP_417201.1 377.4558417983 58 -3.14519624405024 1.677213616238 94e-42 2.023371870923 82e-40 hycE formate hydrogenlyase subunit HycE cds-NP_416009.1 668.1555314682 67 -3.18968708460067 5.544534030763 03e-55 1.203995564780 19e-52 gadC L-glutamate:4-aminobutyrate antiporter cds-NP_417202.1 235.1334728617 98 -3.22060841932529 6.726022809602 86e-31 4.951036790187 33e-29 hycD formate hydrogenlyase subunit HycD cds-NP_415593.1 84.51190011749 51 -3.55915718399414 1.671061993919 36e-13 3.779907416454 05e-12 flgD flagellar biosynthesis initiation of hook assembly cds-NP_417596.1 316.6957065844 05 -4.46965742932001 7.194580548203 16e-27 4.400853988851 6e-25 garP galactarate/D-glucarate transporter GarP cds-NP_415591.1 59.02754272356 72 -4.54790863851073 5.764029636417 83e-11 9.740537241619 7e-10 flgB flagellar basal-body rod protein FlgB cds-NP_417204.1 47.86153764001 89 -4.98096950708198 1.962714187552 42e-12 3.946327646546 37e-11 hycB formate hydrogenlyase subunit HycB cds-NP_414674.1 79.98735589993 18 1.00268493406297 3.902303414500 7e-06 3.324602704040 47e-05 rpnC recombination-promoting nuclease RpnC cds-NP_415353.1 417.6297922033 51 1.01270732939962 4.051585958728 79e-16 1.120766740048 35e-14 gsiD glutathione ABC transporter membrane subunit GsiD cds-YP_026261.1 33.92884962003 93 1.01314357823549 0.013259993153 1268 0.042563303964 5454 yigE DUF2233 domain-containing protein YigE cds-NP_415183.1 79.35411332617 16 1.01638685368055 0.000902309257 449669 0.004432951476 36189 hscC chaperone protein HscC cds-YP_001165321.1 23.29445060968 19 1.01639165480622 0.005915518019 89982 0.021995800308 583 cydH cytochrome bd-I accessory subunit CydH cds-NP_416482.1 49.57070942379 01 1.02522073753928 0.000110456212 604475 0.000698269769 055656 zinT metal-binding protein ZinT cds-YP_010051179.1 26.59878055212 3 1.02544802384302 0.013971152154 3594 0.044192799567 6495 yljB protein YljB cds-NP_415011.1 2338.426994710 37 1.02746116769765 1.685188424911 29e-20 6.309287352922 2e-19 ybaL putative transporter YbaL cds-NP_415190.1 1587.730426104 48 1.02900205725677 6.399357787419 43e-32 5.053165612865 92e-30 lnt apolipoprotein N-acyltransferase cds-NP_414672.1 308.6292918903 86 1.03074261397499 1.259488995441 33e-05 9.504344240533 24e-05 yadE putative polysaccharide deacetylase lipoprotein YadE cds-NP_417645.1 18811.30989154 5 1.03317395749964 1.943238662366 77e-46 2.910167417468 58e-44 ftsH ATP-dependent zinc metalloprotease FtsH cds- gnl|b4623|CDS%3D4 503 42.23515573558 37 1.03394082670175 0.004354405826 38188 0.016908394541 0644 insO IS911B regulator fragment cds- gnl|b4623|CDS%3D4 503 42.23515573558 37 1.03394082670175 0.004354405826 38188 0.016908394541 0644 insO IS911B regulator fragment cds- gnl|b4623|CDS%3D4 503 42.23515573558 37 1.03394082670175 0.004354405826 38188 0.016908394541 0644 insO IS911B regulator fragment cds-NP_414776.1 32.25585971117 02 1.03680459881756 0.004645757654 47186 0.017799050561 3802 phoE outer membrane porin PhoE cds-NP_416778.2 51.27857766603 5 1.04571214130933 0.002022953525 37703 0.008904276453 22023 yfbP uncharacterized protein YfbP Supplementary Material 218 cds-YP_588467.1 33.54052743296 41 1.05815989189551 0.003251666239 51889 0.013260081200 2164 arfA alternative ribosome-rescue factor A cds-NP_418306.1 24796.04273014 36 1.06856524328365 2.057145871787 82e-09 2.929240826614 59e-08 glnA glutamine synthetase cds-NP_416914.1 20.40291719345 07 1.06996910762782 0.010804994692 8048 0.036260632402 093 yfeK DUF5329 domain-containing protein YfeK cds-NP_416826.1 18427.00105588 54 1.07751473713238 6.871131027744 64e-23 3.174608729095 21e-21 fabB 3-oxoacyl-[acyl carrier protein] synthase 1 cds-YP_588445.1 41.97181210256 99 1.07943610085259 0.000188568245 637294 0.001120317224 08039 insA4 IS1 family protein InsA cds-NP_414992.1 97.56845814048 65 1.08031230102381 0.000211222089 441849 0.001239645316 81885 maa maltose O-acetyltransferase cds-NP_415244.4 20.91364380693 49 1.08238641120814 0.006549464612 074 0.023943034352 0517 ybgO putative fimbrial protein YbgO cds-NP_415632.1 3715.879450211 28 1.08317700261552 1.143896405558 16e-28 7.885622364030 29e-27 mfd transcription-repair coupling factor cds-YP_026189.1 1233.752131885 17 1.08366259388887 1.447101406270 3e-11 2.629607283444 32e-10 yghJ putative lipoprotein YghJ cds-NP_417978.2 99.12833624031 33 1.10699528051636 1.599059811965 99e-06 1.480749842935 67e-05 rcdB putative DNA-binding transcriptional regulator YhjC cds-NP_416255.1 155.8784888530 94 1.10845705317475 1.087185007146 75e-09 1.606001525863 37e-08 cho excinuclease Cho cds-NP_417393.1 22.05678284134 77 1.11162752074332 0.011965126914 916 0.039248146670 3023 argK methylmalonyl-CoA mutase- interacting GTPase YgfD cds-NP_418736.3 89.20910703503 14 1.11219189573814 3.678073156628 96e-06 3.163142914700 91e-05 fimC type 1 fimbriae periplasmic chaperone cds-NP_416650.1 24.78795173660 89 1.11320476061029 0.007278934346 48218 0.026299172919 9033 yeiS DUF2542 domain-containing protein YeiS cds-NP_416761.4 87.85953999989 41 1.11581584274149 8.400072774890 04e-05 0.000546949266 287068 arnF undecaprenyl-phosphate-alpha-L- Ara4N flippase - ArnF subunit cds-NP_418554.1 63.17356605423 84 1.11750114110578 0.000116603062 233201 0.000730746175 00547 dtpC dipeptide/tripeptide:H(+) symporter DtpC cds-YP_588446.1 57.37993177778 82 1.12991717312052 2.058597691047 39e-05 0.000150767112 516337 gnsA putative phosphatidylethanolamine synthesis regulator GnsA cds-NP_415207.1 75.31040183062 54 1.13821866755718 0.001641293091 0274 0.007402010274 48805 chiP chitooligosaccharide outer membrane channel cds-NP_415354.1 118.9926249681 93 1.13993725573957 1.167333294018 1e-08 1.495495131540 01e-07 pdeI putative c-di-GMP phosphodiesterase PdeI cds-YP_588463.1 27.70653292056 9 1.14159629574642 0.004491896647 39357 0.017299000253 158 torI prophage CPS-53 recombination directionality factor and response regulator inhibitor cds-NP_416608.1 24.67395496634 39 1.14466901238029 0.004218052048 0169 0.016518485161 8913 rcnR DNA-binding transcriptional repressor RcnR cds-NP_416304.1 152.2072573335 35 1.14620157113302 4.139437265726 24e-12 8.025703591539 75e-11 nimR DNA-binding transcriptional repressor NimR cds-NP_415191.1 3196.834043719 81 1.14678701797604 9.974870844468 57e-38 9.845650926710 68e-36 ybeX CorC-HlyC family protein YbeX cds-NP_414924.1 162.5383638944 77 1.15666251817249 8.847730133487 06e-09 1.153924683775 81e-07 aroM protein AroM cds-YP_588471.1 13.35832895928 48 1.16078879033091 0.009177995226 47666 0.031811678586 2635 yicS uncharacterized protein YicS cds-NP_416299.1 23.98909623075 97 1.174012152535 0.005300299574 38702 0.019947314602 7408 cdgI putative c-di-GMP binding protein CdgI cds-NP_416999.1 61.79703500479 02 1.18262242379944 0.000499858889 556138 0.002644198730 01499 yfgG nickel/cobalt stress response protein YfgG cds-NP_416649.1 91.39323008657 08 1.18546208322962 2.194084171826 64e-06 1.972858707710 79e-05 sanA DUF218 domain-containing protein SanA cds-NP_417628.2 26.70273219621 74 1.18834395924203 0.009263691126 28344 0.032006531870 6834 ubiV ubiquinone biosynthesis protein UbiV Supplementary Material 219 cds-NP_415289.4 79.50780215137 68 1.19692503229618 1.237501090561 45e-06 1.168362442675 74e-05 ybhD putative DNA-binding transcriptional regulator YbhD cds-NP_417873.1 1964.490037176 57 1.19747359870764 1.371042906750 15e-21 5.670894613348 48e-20 nfuA iron-sulfur cluster carrier protein NfuA cds-NP_417446.4 50.23042037861 56 1.19779877849073 0.001525613745 33419 0.006974463679 98565 pppA prepilin peptidase cds-NP_418200.1 4993.314500759 5 1.21186213327494 6.402771780045 44e-09 8.609051963076 57e-08 asnA asparagine synthetase A cds-NP_415508.1 406.3412469790 03 1.2185614796058 1.530260392827 48e-08 1.920786383251 37e-07 insB4 IS1 family protein InsB cds-YP_010051200.1 11.76742723905 53 1.22743924006478 0.012616363768 857 0.040890199886 6759 yqiM protein YqiM cds-NP_416895.2 589.5674590721 4 1.23956734869858 6.713049587434 4e-22 2.915477435822 76e-20 insL3 putative IS186/IS421 transposase cds-NP_418565.1 162.9283525053 78 1.25181473705068 7.683710605218 69e-09 1.014296509375 83e-07 yjeH L-methionine/branched chain amino acid exporter cds-NP_418178.1 101.9515860857 31 1.25457327605787 0.000420063245 255476 0.002280418342 68066 bglF beta-glucoside specific PTS enzyme II/BglG kinase/BglG phosphatase cds-NP_417752.1 201.3814992450 56 1.25476627136627 6.355582643901 72e-15 1.577274024140 87e-13 yhdN DUF1992 domain-containing protein YhdN cds-NP_417783.1 11.48203502349 11 1.26264207681261 0.015822850355 2708 0.048771212982 925 gspC Type II secretion system protein GspC cds-NP_417074.1 131.3512653872 55 1.27088363472802 4.069607892468 92e-06 3.458768508217 71e-05 grcA stress-induced alternate pyruvate formate-lyase subunit cds-NP_417065.1 936.9139784418 68 1.2711153546787 8.384527355032 42e-27 5.057500319848 03e-25 rseC protein RseC cds-NP_415355.1 69.38485796084 07 1.271465253493 0.000283915250 942663 0.001613931851 89003 dgcI putative diguanylate cyclase DgcI cds- gnl|b4580|CDS%3D3 93 56.26462673832 47 1.28271461617629 4.408657233838 73e-05 0.000303322851 043347 yaiT putative autotransporter YaiT cds- gnl|b4580|CDS%3D3 93 56.26462673832 47 1.28271461617629 4.408657233838 73e-05 0.000303322851 043347 yaiT putative autotransporter YaiT cds-NP_418014.1 53.24318069765 57 1.29734741191224 1.103260974595 44e-05 8.490828874328 74e-05 insJ insertion element IS150 protein InsA cds-NP_414993.1 399.8376879697 56 1.30934730348542 1.614280697445 67e-15 4.278040416602 16e-14 hha hemolysin expression-modulating protein Hha cds-NP_418388.1 33.48311635901 06 1.31252986566686 0.000448304850 155348 0.002409520220 03817 frwD putative PTS enzyme IIB component FrwD cds-NP_417902.1 13.10737706372 63 1.31900418027287 0.010130930376 4808 0.034508729902 0047 insB6 IS1 family protein InsB cds-NP_415031.1 16.04684493373 1.32820237157265 0.008763253893 07731 0.030593900046 3302 ybbC PF15631 family protein YbbC cds-NP_416646.1 156.8730078237 44 1.3306655453555 8.175397293435 27e-09 1.072681282338 05e-07 yohJ putative 3-hydroxypropanoate export protein YohJ cds-NP_418716.1 36.26806575717 54 1.33324426061591 0.000190376951 923512 0.001129517899 18554 yjhF putative transporter YjhF cds-NP_414746.1 89.91894266638 79 1.34300039558894 1.325563654625 85e-07 1.446463053276 4e-06 yafE putative S-adenosylmethionine- dependent methyltransferase cds-NP_414841.1 912.5979546853 23 1.35583387598887 3.493613439321 13e-12 6.896710530441 68e-11 ykgF putative amino acid dehydrogenase with NAD(P)- binding domain and ferridoxin-like domain cds-NP_418304.1 3935.605930174 47 1.36161113595132 1.600683047191 28e-19 5.745261548720 44e-18 glnG DNA-binding transcriptional dual regulator NtrC cds-NP_417954.1 743.3995509171 86 1.36794587421769 8.358666219470 79e-39 8.442252881665 5e-37 rsmJ 16S rRNA m(2)G1516 methyltransferase cds-NP_415054.1 19.64457867772 02 1.36872188126339 0.002098205809 01962 0.009158299325 19819 ybcF putative carbamate kinase Supplementary Material 220 cds-NP_414573.1 673.4300652205 16 1.3721033358656 9.415774935720 74e-15 2.323449462831 54e-13 carA carbamoyl-phosphate synthetase small subunit cds-NP_418735.2 248.1532755165 23 1.3742536154512 9.927682123729 56e-20 3.592993621946 46e-18 fimI putative fimbrial protein FimI cds-NP_415114.1 566.5219506042 56 1.39268922112135 3.091281170481 34e-21 1.231691203981 69e-19 insL2 IS186/IS421 family transposase cds-NP_418511.1 42.63006800106 37 1.40171342793169 5.105879278980 97e-08 5.977044126311 15e-07 alsA D-allose ABC transporter ATP binding subunit cds-NP_418012.1 34841.40606166 52 1.41335848129883 0.001711812156 57954 0.007672239624 38074 cspA cold shock protein CspA cds-NP_415098.1 17.86704125140 09 1.41338893149258 0.000943124254 982763 0.004597069180 01138 envY DNA-binding transcriptional activator EnvY cds-NP_417955.1 3903.808357406 6 1.41513898611235 6.295944072525 34e-58 1.439120268788 29e-55 prlC oligopeptidase A cds-NP_418015.1 35.22050422382 51 1.41651446521509 3.771006191831 97e-06 3.236656104965 66e-05 insK IS150 family conserved protein InsB cds-NP_416242.6 65.88491953164 94 1.42349323569878 5.531616780869 1e-08 6.458013892288 85e-07 ydjM inner membrane protein YdjM cds-NP_418365.1 313.1483386385 6 1.42618605044512 2.529792793185 66e-19 8.893153760436 22e-18 menA 1 4-dihydroxy-2-naphthoate octaprenyltransferase cds-NP_418000.1 104.4324927768 59 1.43998261040133 9.627227292118 36e-07 9.270742379084 27e-06 dppB dipeptide ABC transporter membrane subunit DppB cds-NP_416492.1 65.08891664272 58 1.44555558142941 1.460956520534 86e-06 1.361573855940 54e-05 cbl DNA-binding transcriptional activator Cbl cds-NP_417646.1 3297.229786281 05 1.44592769395651 1.112854787589 81e-58 2.843016672060 32e-56 rlmE 23S rRNA 2'-O-ribose U2552 methyltransferase cds-NP_414768.1 47.40810799447 06 1.44774013489693 9.251215803972 5e-05 0.000596113208 25894 yafO ribosome-dependent mRNA interferase toxin YafO cds-YP_009518769.1 9.282449830567 93 1.45672476470571 0.012328289517 9599 0.040136252905 9219 ychS putative uncharacterized protein YchS cds-NP_416335.4 100.3404221915 42 1.48236103435601 3.702351994948 04e-09 5.104544353669 63e-08 mntP Mn(2(+)) exporter cds-NP_416111.1 1904.616960475 3 1.48735859813175 4.509145570429 41e-25 2.359424001490 95e-23 mlc DNA-binding transcriptional repressor Mlc cds-NP_417419.1 99.82983432080 4 1.4915398878005 1.393572201344 97e-06 1.304371566905 43e-05 yggI protein YggI cds-NP_416647.1 543.5021968253 51 1.50505565712558 1.585174346957 73e-10 2.607731889711 15e-09 yohK putative 3-hydroxypropanoate export protein YohK cds-NP_415097.1 4805.989202823 66 1.52223917337474 4.943394423832 54e-42 5.649779469132 82e-40 ompT omptin family outer membrane protease OmpT cds-NP_418633.4 28.63031426004 53 1.525306918252 0.000182240453 984168 0.001084205878 97705 ytfH putative transcriptional regulator YtfH cds-NP_415193.2 2457.726498602 44 1.52924566464311 8.251698306699 12e-91 3.583712574599 43e-88 ybeZ PhoH-like protein cds-NP_417751.1 223.8323402823 22 1.53542311014203 1.459644998155 45e-24 7.286480720677 13e-23 zntR DNA-binding transcriptional activator ZntR cds-NP_418487.1 40.47478463926 69 1.53849933466445 1.098037809566 5e-05 8.470298769000 56e-05 soxR DNA-binding transcriptional dual regulator SoxR cds-NP_414840.1 457.7445069435 93 1.54568503202701 5.235525468932 34e-11 8.916818475126 73e-10 ykgE putative lactate utilization oxidoreductase YkgE cds-NP_418092.1 282.2690357581 44 1.55591898276194 2.945148180806 34e-26 1.639843403748 97e-24 mutM DNA-formamidopyrimidine glycosylase cds-NP_415192.1 842.1525848052 43 1.57194826594345 3.055163936158 74e-58 7.371431652631 9e-56 ybeY endoribonuclease YbeY cds-NP_416808.1 40.70327276883 25 1.57623139146486 1.150012248169 84e-06 1.097693009626 73e-05 rpnB recombination-promoting nuclease RpnB cds-NP_415510.1 351.5100485675 8 1.59880780740446 0.001286690992 11255 0.006021658382 26809 cspG cold shock protein CspG cds-NP_418556.1 450.4023204511 75 1.63169610321649 0.006901002979 51289 0.025080381539 7694 cadB lysine:cadaverine antiporter Supplementary Material 221 cds-NP_417860.2 1316.627641117 39 1.66087491448982 2.825126010087 56e-46 3.957910407035 57e-44 hslO molecular chaperone Hsp33 cds-NP_415891.1 11.28631084495 63 1.66482796574269 0.002483889168 1913 0.010576010448 4851 tfaR putative tail fiber assembly protein TfaR cds-NP_414557.1 627.1975114961 7 1.69304999990861 1.566291390446 02e-26 8.950530932509 32e-25 insL1 IS186/IS421 family transposase cds-NP_415025.4 2522.585859251 35 1.70344024583744 6.020716165830 52e-63 1.743198020546 8e-60 cnoX chaperedoxin cds-NP_418592.1 6758.253784722 78 1.71467933185072 1.124833165706 38e-69 3.757808029740 61e-67 miaA tRNA dimethylallyltransferase cds-NP_416117.1 252.0627855961 59 1.72268214620149 3.394198006682 58e-11 5.968016980980 75e-10 mdtJ multidrug/spermidine efflux pump membrane subunit MdtJ cds-YP_009518777.1 9.330592992853 66 1.72308374177426 0.005807519670 36874 0.021631267520 0784 ydaY putative uncharacterized protein YdaY cds-NP_416116.1 136.3495821180 21 1.73262781670921 3.849882536254 34e-14 9.136633800520 55e-13 mdtI multidrug/spermidine efflux pump membrane subunit MdtI cds-NP_414842.4 724.9604012807 69 1.73918717833177 3.083490368171 1e-15 7.971189683908 98e-14 ykgG DUF162 domain-containing lactate utilization protein YkgG cds-NP_415507.2 13.56824978534 35 1.74609550746891 0.000685650507 982354 0.003499154120 05566 gfcA threonine-rich inner membrane protein GfcA cds-NP_415633.1 13.27676564564 84 1.76071652128192 0.001393024319 36078 0.006436068743 59986 ycfT inner membrane protein YcfT cds-NP_416256.2 10.83360515263 15 1.7631785299902 0.004815051536 33161 0.018343656861 6563 ves HutD family protein Ves cds-NP_418555.1 674.9255446437 39 1.76866863725081 0.006384800114 82657 0.023465309539 8666 cadA lysine decarboxylase 1 cds-YP_588452.1 8.283356601710 5 1.79489508767621 0.009317086024 05384 0.032165424962 2145 rzoR putative prophage outer membrane lipoprotein RzoR cds-YP_009518791.1 40.57072597008 76 1.79823505553143 0.000680643629 513194 0.003477688568 20683 ynfS protein YnfS cds-YP_009518787.1 16.27977968490 59 1.83510647261052 0.000763033802 966135 0.003848845303 46333 ynfT protein YnfT cds-YP_009518761.1 34.13499990501 9 1.83628295903632 0.000923979936 331758 0.004524064107 65369 ymcF protein YmcF cds-NP_414973.1 22244.68729894 82 1.88981203457347 2.227762624902 9e-123 3.225057693317 77e-120 lon Lon protease cds-NP_418340.1 9.839581373527 08 1.90692505474556 0.003858158800 76585 0.015330268684 1044 rhaB rhamnulokinase cds-YP_009518818.1 21.98190121158 58 1.93435810571 2.584551431655 72e-06 2.295441077235 34e-05 yqiD protein YqiD cds-NP_418305.1 2114.394713807 07 1.94088957828788 6.208214706582 97e-37 5.991616993486 63e-35 glnL protein histidine kinase NtrB cds-NP_417104.1 5428.605549201 47 1.9502369103212 1.542963880646 43e-46 2.393247190588 38e-44 grpE nucleotide exchange factor GrpE cds-NP_418441.1 26.81399071589 53 1.97061387769163 1.585836628134 63e-06 1.471642836749 72e-05 arpA regulator of acetyl CoA synthetase cds-NP_415486.4 1853.581680395 75 2.03082094050477 2.192125536500 16e-45 2.884970062127 33e-43 hspQ heat shock protein HspQ cds-NP_417859.1 1010.610415453 52 2.03187661582355 1.975634980165 33e-70 7.150152265715 01e-68 hslR heat shock protein Hsp15 cds-NP_416877.1 30.56633160617 53 2.03714957800872 6.156867059737 6e-09 8.329991788299 19e-08 ypdI colanic acid synthesis putative lipoprotein YpdI cds-NP_415400.1 882.3079552676 02 2.0474223216713 2.035300541497 77e-48 3.535724100689 92e-46 macB ABC-type tripartite efflux pump ATP binding/membrane subunit cds-NP_416075.1 671.9271446626 15 2.08032853595053 5.377415157002 34e-15 1.365737662389 54e-13 cspB cold shock-like protein CspB cds-YP_010051187.1 13.37409804699 16 2.22398285884966 6.848561688511 07e-05 0.000453404015 445176 mdtU protein MdtU cds-NP_416404.1 7.398522387900 37 2.24736339053479 0.006258388776 513 0.023110100309 1596 motA motility protein A Supplementary Material 222 cds-NP_415893.2 28.07718439716 09 2.28074756705748 0.007284804287 96769 0.026299172919 9033 ynaE uncharacterized protein YnaE cds-NP_416059.1 6.440986321228 33 2.28376390117825 0.001823526952 87789 0.008114321266 7507 ydfZ putative selenoprotein YdfZ cds-NP_416727.1 6.323526475029 93 2.35466280246021 0.000846696806 222406 0.004183395027 78602 atoE short chain fatty acid transporter cds-YP_009518779.1 43.29010439386 31 2.40539088213583 0.000666180516 795785 0.003411818377 88219 ynaM protein YnaM cds-YP_588474.1 6.114890429299 78 2.44612189460234 0.007757857178 66053 0.027844936964 3989 ghoT toxin of the GhoTS toxin-antitoxin system cds-NP_416062.2 21.52596879825 84 2.4876499619846 0.000146273383 368985 0.000889727316 486698 ydfK cold shock protein YdfK cds-NP_415164.1 188.2664250160 82 2.76861052275006 1.023856663468 28e-40 1.140156279344 29e-38 ybeD DUF493 domain-containing protein YbeD cds-NP_418366.1 6347.994467281 74 2.79075506673962 3.241531053130 93e-153 7.038984681873 82e-150 hslU ATPase component of the HslVU protease cds-NP_417941.1 19.35419292973 96 2.86875278826751 9.370477622361 1e-06 7.378584635777 77e-05 yhhI putative transposase cds-NP_418567.1 24347.88890688 78 2.88342516396534 6.008358098960 21e-68 1.863878515984 58e-65 groL chaperonin GroEL cds-NP_414556.1 3799.557353581 61 2.97684140354745 6.369619825263 46e-95 3.073695433457 69e-92 dnaJ chaperone protein DnaJ cds-NP_418367.1 2990.402902396 6 3.0410720509163 1.123355044120 73e-185 4.878730956616 34e-182 hslV peptidase component of the HslVU protease cds-NP_415837.1 819.3407186710 41 3.04783421708749 4.779156358963 95e-88 1.886897824270 95e-85 ycjX DUF463 domain-containing protein YcjX cds-NP_415511.1 17.92039650075 79 3.13237277749794 0.000103930540 126697 0.000662805192 026792 ymcE protein YmcE cds-NP_415838.1 594.1904410295 7 3.13363966694361 5.343818390393 86e-102 2.901025408685 07e-99 ycjF DUF697 domain-containing inner membrane protein YcjF cds-NP_418566.1 3990.305475406 23 3.16345364912059 2.602799353553 29e-46 3.767985864160 64e-44 groS cochaperonin GroES cds-NP_417445.1 6.236953631470 38 3.30869741539388 0.007476810545 66268 0.026947542074 5336 yghG lipoprotein YghG cds-NP_415509.1 20.58657693522 3.36466841792476 9.357827073913 54e-05 0.000601198860 68057 cspH CspA family protein CspH cds-NP_418564.2 466.9887948491 61 3.57557576506118 3.293421658025 76e-112 2.043332894400 84e-109 fxsA protein FxsA cds-NP_414555.1 26343.06470085 49 3.59600851869751 4.361018926998 13e-114 3.156650866658 81e-111 dnaK chaperone protein DnaK cds-NP_415006.1 10418.01854438 76 3.66449470634312 6.878922860890 6e-116 5.975032396969 58e-113 htpG chaperone protein HtpG cds-NP_416244.2 3.061229871938 06 3.75902058334061 0.009177503376 69668 0.031811678586 2635 ydjO protein YdjO cds-NP_416837.1 4.895565727119 67 3.80902391002518 0.001059383902 37438 0.005067075207 06162 yfcQ putative fimbrial protein YfcQ cds-NP_417083.1 1529.174392278 8 4.01806373696876 4.685932625633 67e-28 3.179844592676 1e-26 clpB chaperone protein ClpB cds-NP_416774.2 2.139213662055 67 4.08752086705629 0.008859879378 58316 0.030906390474 8487 yfbL putative peptidase YfbL cds-NP_418141.2 101.3819031325 39 4.33284105777532 1.196251291465 18e-45 1.623537299635 39e-43 ibpB small heat shock protein IbpB cds-NP_415090.2 1.709846115818 21 4.35446676867609 0.007006959557 99446 0.025401690618 005 ybcV DUF1398 domain-containing protein YbcV cds-YP_002791243.1 3.159665811240 46 4.40791239458981 0.002604260797 12473 0.010991549700 5954 yoaJ uncharacterized protein YoaJ cds-NP_418142.1 552.0981102414 1 5.0348500900724 3.285993304511 87e-123 3.567767230373 76e-120 ibpA small heat shock protein IbpA Supplementary Material 223 ereA3 GeneID baseMean log2FoldChange p value padj Gene Product cds-NP_418708.1 269.5269031672 71 -1.00398727528514 7.219931586200 64e-05 0.000321054989 912476 fecD ferric citrate ABC transporter membrane subunit FecD cds-NP_418793.1 292.2100409263 11 -1.00416594321017 6.219858928911 49e-10 7.099936906223 97e-09 osmY periplasmic chaperone OsmY cds-NP_417757.1 36668.11301657 59 -1.00551684738293 1.821718990746 36e-39 4.034196705007 81e-37 rpsM 30S ribosomal subunit protein S13 cds-NP_415261.2 97280.31316131 37 -1.00645538277051 7.985828283611 1e-14 1.443642182371 98e-12 cydA cytochrome bd-I subunit 1 cds-NP_418189.1 13230.68494082 69 -1.00684890507773 2.595268613632 15e-36 4.257201736954 36e-34 atpG ATP synthase F1 complex subunit gamma cds-NP_416739.1 422.7478700901 68 -1.00748936176478 3.048824372110 43e-08 2.637352176577 56e-07 yfaE ferredoxin-like diferric-tyrosyl radical cofactor maintenance protein YfaE cds-NP_414605.1 80.22599670406 51 -1.0082788943345 0.000110744621 539428 0.000466243278 325215 araB ribulokinase cds-NP_417594.3 221.3297938878 87 -1.01120636512006 3.280756535705 32e-10 3.927154242334 83e-09 garR tartronate semialdehyde reductase cds-NP_415155.1 39.09389694631 64 -1.01159732325816 0.002057670874 56251 0.006547000217 98662 pagP Lipid A palmitoyltransferase cds-NP_416738.1 2896.020145575 7 -1.01266297520612 2.512682219935 08e-16 6.114653600050 81e-15 nrdB ribonucleoside-diphosphate reductase 1 subunit beta cds-YP_026170.1 2087.809903968 86 -1.01370896022826 4.109012440712 7e-22 1.685075564807 09e-20 purL phosphoribosylformylglycinamide synthetase cds-NP_417759.1 101839.8797741 73 -1.01519642857827 6.846386351433 69e-18 1.981872232058 81e-16 secY Sec translocon subunit SecY cds-NP_415763.1 16841.15712143 42 -1.01769604398676 7.194690220171 74e-28 4.978950466428 23e-26 oppF murein tripeptide ABC transporter/oligopeptide ABC transporter ATP binding subunit OppF cds-NP_418488.1 605.7891960190 62 -1.0198775514987 5.601402982272 94e-11 7.540612099844 02e-10 ghxP guanine/hypoxanthine transporter GhxP cds-NP_415638.3 85.91778971869 6 -1.02251710081071 4.675728173947 87e-06 2.672103236440 66e-05 cobB protein-lysine deacetylase/desuccinylase/lipoami dase cds-NP_417470.1 5696.783358132 18 -1.02551450319265 1.103772231881 72e-10 1.421106748547 71e-09 hybA hydrogenase 2 iron-sulfur protein cds-NP_418661.1 6677.817284736 86 -1.02743431177947 0.002957191462 3976 0.008983128248 94304 treB trehalose-specific PTS enzyme IIBC component cds-NP_416363.1 302.2304095865 41 -1.02758006768493 1.212339891011 98e-10 1.547392904118 74e-09 purT phosphoribosylglycinamide formyltransferase 2 cds-NP_416167.1 682.3945380637 98 -1.02977227936841 4.221383824892 52e-24 2.124603290960 11e-22 nemA N-ethylmaleimide reductase cds-NP_415419.2 202.0631585022 07 -1.03047366694851 7.329420824805 8e-05 0.000325270589 509668 ycaM putative transporter YcaM cds-NP_415961.1 130.6439713271 53 -1.03211944402501 5.017426446740 76e-09 4.949260964947 63e-08 patD gamma-aminobutyraldehyde dehydrogenase cds-NP_417221.1 9012.678720231 33 -1.03342902156195 5.913192456763 6e-22 2.380866308273 27e-20 rpoS RNA polymerase sigma factor RpoS cds-NP_414606.1 562.6814189141 34 -1.03555234849513 1.384772100704 4e-08 1.291190659793 64e-07 araC DNA-binding transcriptional dual regulator AraC cds-NP_417533.1 20.07132044517 06 -1.03575326488323 0.004545483540 76462 0.012996737638 5065 ttdA L(+)-tartrate dehydratase subunit alpha cds-NP_414917.2 142.8713446604 65 -1.03671396150791 3.005963930491 06e-08 2.610473381989 2e-07 phoA alkaline phosphatase cds-NP_416015.2 88.72185799460 83 -1.03695690145363 5.231259177406 96e-05 0.000242102893 382815 ydeN putative sulfatase YdeN cds-NP_417468.1 4861.956797099 08 -1.0424299303697 1.921542431107 12e-17 5.096114627169 71e-16 hybC hydrogenase 2 large subunit Supplementary Material 224 cds-NP_416586.1 23.76694159372 34 -1.04507911241314 0.003922045573 34995 0.011413101080 3988 ogrK prophage P2 late control protein OgrK cds-NP_416606.1 2948.075299451 21 -1.04897773009639 2.607724715699 84e-25 1.461976299472 73e-23 thiD bifunctional hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase cds-NP_416542.1 1659.491393326 42 -1.04908265424204 1.086724968095 68e-17 3.065671900443 17e-16 rfbC dTDP-4-dehydrorhamnose 3 5- epimerase cds-NP_415525.2 86.09650577585 67 -1.05365760600607 8.761461970373 93e-07 5.825233659975 5e-06 ymdF stress-induced bacterial acidophilic repeat motifs- containing protein YmdF cds-NP_415522.1 4027.639569770 39 -1.05445804328695 2.160422889722 72e-08 1.921388148309 62e-07 agp glucose-1-phosphatase cds-NP_417032.1 367.0757467530 86 -1.06247571190419 1.641553159939 89e-08 1.502156806895 41e-07 hcaR DNA-binding transcriptional dual regulator HcaR cds-NP_418547.1 424.9625391950 49 -1.06473386249637 4.101909385480 92e-14 7.710302296156 23e-13 dcuB anaerobic C4-dicarboxylate transporter DcuB cds-NP_417722.1 7998.062315344 09 -1.06478351939193 1.082265420298 33e-13 1.925041584940 29e-12 accC biotin carboxylase cds-NP_416742.1 3822.886923093 93 -1.06538929828266 0.000841394810 471559 0.002934281587 06971 glpQ glycerophosphoryl diester phosphodiesterase GlpQ cds-NP_418623.1 3378.195545852 05 -1.06836612058525 1.145317697304 75e-13 2.029044832545 09e-12 rpsR 30S ribosomal subunit protein S18 cds-NP_418576.1 835.5496985218 53 -1.06961908168645 3.694951842815 69e-09 3.727777155314 5e-08 frdC fumarate reductase membrane protein FrdC cds-NP_418787.1 188.0729906070 14 -1.08207161131566 0.000292764269 551237 0.001127523143 81788 fhuF ferric-siderophore reductase FhuF cds-NP_415829.1 70.09575122615 63 -1.08421518081101 5.154280738307 59e-05 0.000240047136 995752 ycjQ D-guloside 3-dehydrogenase cds-NP_418755.4 468.0353507779 45 -1.08519949554972 1.564368925325 55e-09 1.689899992748 01e-08 yjiM putative dehydratase subunit cds-NP_416805.1 21.81344926117 78 -1.08564052617139 0.002655405278 14413 0.008189556215 48561 yfcG disulfide bond oxidoreductase YfcG cds-NP_418754.2 148.6568375173 73 -1.08674788294869 2.743398912117 01e-06 1.635331599161 e-05 yjiL putative ATPase activator of (R)- hydroxyglutaryl-CoA dehdratase cds-NP_417079.1 3258.397975470 84 -1.08733794033664 2.864584915633 05e-11 3.977193288820 93e-10 patZ peptidyl-lysine N-acetyltransferase cds-NP_418433.1 774.2333670130 63 -1.0881718130494 7.471534891087 7e-17 1.923920234455 08e-15 purD phosphoribosylamine--glycine ligase cds-NP_418497.1 32.10643244811 49 -1.08817992542051 0.000444474438 396904 0.001653594249 61522 nrfD putative menaquinol-cytochrome c reductase subunit NrfD cds-NP_417760.1 107998.2300433 81 -1.08930633683834 4.637600503950 84e-31 4.191822986122 1e-29 rplO 50S ribosomal subunit protein L15 cds-NP_416288.1 58.40891750962 84 -1.09095323660077 0.000177399029 055748 0.000714272999 716278 ydjJ putative zinc-binding dehydrogenase YdjJ cds-YP_010051192.1 40.20926207756 39 -1.09370955341606 0.000252912875 341144 0.000983451382 69177 pssL protein PssL cds-NP_417186.1 296.4065670410 99 -1.09675442978413 0.006760672893 36051 0.018392518577 8217 gutM DNA-binding transcriptional activator GutM cds-NP_417026.1 1788.774338029 92 -1.09772336916517 1.520834092563 18e-08 1.399578207064 54e-07 iscR DNA-binding transcriptional dual regulator IscR cds-NP_417207.1 174.7219722213 33 -1.09809616390158 4.682100986638 12e-10 5.410631527582 52e-09 hypB hydrogenase isoenzymes nickel incorporation protein HypB cds-NP_418719.1 67.64251113343 79 -1.10029884508553 0.000596924796 004598 0.002156427342 17322 yjhI putative DNA-binding transcriptional regulator YjhI cds-NP_417763.1 14704.90594751 4 -1.10567502730511 3.932298234939 65e-13 6.647385069674 7e-12 rplR 50S ribosomal subunit protein L18 cds-NP_418445.1 278.1955669770 9 -1.10678454348185 2.759485528356 69e-07 1.952358051931 6e-06 pepE peptidase E cds-NP_416032.1 27.25490864909 74 -1.10691898418768 0.010003387345 3516 0.025924518755 1565 lsrD Autoinducer-2 ABC transporter membrane subunit LsrD Supplementary Material 225 cds-NP_414576.4 604.3057611172 95 -1.11005223017894 1.130147945368 51e-05 5.987350777556 35e-05 caiF DNA-binding transcriptional activator CaiF cds-NP_416129.1 6933.899450041 84 -1.11109647249843 3.208262859643 19e-15 6.897765148232 86e-14 fumA fumarase A cds-NP_416285.1 55.75130898929 95 -1.11150568662618 2.362597229605 99e-05 0.000116008238 690964 ydjG NADH-dependent methylglyoxal reductase cds-NP_415326.1 183.3177478553 15 -1.11232794896262 6.119413285536 95e-05 0.000276560014 710644 fiu iron catecholate outer membrane transporter Fiu cds-NP_417762.1 55161.10536528 58 -1.1141713167163 1.235233507675 48e-33 1.334353464754 8e-31 rpsE 30S ribosomal subunit protein S5 cds-NP_416128.1 1136.858836764 4 -1.11586020636087 1.990895058659 71e-07 1.450275364276 95e-06 fumC fumarase C cds-NP_415535.1 3090.752710727 34 -1.11880730712113 1.593602145476 42e-15 3.676074949122 43e-14 putP proline:Na(+) symporter cds-NP_417773.1 40911.91302582 74 -1.12364976069596 6.560451969546 58e-14 1.205653185606 71e-12 rpsC 30S ribosomal subunit protein S3 cds-NP_417764.1 45089.01910752 49 -1.12573418254509 3.819981620247 22e-27 2.488043911187 49e-25 rplF 50S ribosomal subunit protein L6 cds-NP_417539.1 7687.733417197 25 -1.12995973412731 4.794075717824 13e-40 1.117524281802 27e-37 rpoD RNA polymerase sigma factor RpoD cds-NP_416413.1 86.63409335729 54 -1.13543626736427 8.862243008662 29e-06 4.775045533499 42e-05 araG arabinose ABC transporter ATP binding subunit cds-NP_415924.1 1323.162903397 06 -1.13693729716796 1.206077062244 16e-09 1.332098580718 05e-08 pdxI pyridoxal reductase cds-NP_418621.5 14379.62872614 21 -1.138099427429 5.409620481050 29e-12 8.121765800193 81e-11 rpsF 30S ribosomal subunit protein S6 cds-YP_009518815.1 111.4622372189 7 -1.13947024001288 1.205068954793 64e-05 6.346314388562 46e-05 yghO putative DNA-binding transcriptional regulator YghO cds-NP_416338.1 2871.365985262 08 -1.14101964029865 1.814754100038 03e-11 2.576136509316 8e-10 yobF DUF2527 domain-containing protein YobF cds-NP_417003.1 15925.24726083 58 -1.16142199899032 6.176482061948 64e-26 3.799394312829 24e-24 guaB inosine 5'-monophosphate dehydrogenase cds-NP_417038.4 96.72280690700 31 -1.16255214243881 1.484851602796 22e-07 1.109006365730 94e-06 yphA putative inner membrane protein cds-NP_417771.1 57144.89870988 18 -1.16767134928437 8.155259018633 15e-19 2.579974442394 73e-17 rpmC 50S ribosomal subunit protein L29 cds-NP_415263.1 1619.863008047 01 -1.17133076531888 3.404845027925 24e-25 1.839031540083 03e-23 ybgE PF09600 family protein YbgE cds-NP_418541.2 912.2971050461 17 -1.17454839507786 1.409931290884 94e-08 1.309137460656 06e-07 adiA arginine decarboxylase degradative cds-NP_415984.1 67.65269911607 06 -1.1792856285124 8.605499574449 64e-07 5.731392122592 1e-06 narY nitrate reductase Z subunit beta cds-NP_415915.1 208.1410929115 8 -1.18263775855217 1.848039444849 66e-11 2.606677293388 26e-10 paaJ beta-ketoadipyl-CoA thiolase cds-NP_416191.1 32424.94133049 93 -1.18627711251832 1.544830939456 64e-25 9.122741641137 95e-24 pykF pyruvate kinase 1 cds-NP_415262.1 77375.89612436 68 -1.18687428943553 1.124067177859 15e-18 3.505981359674 77e-17 cydB cytochrome bd-I subunit 2 cds-NP_417985.1 13427.96758268 61 -1.1884171237923 6.688190129157 82e-08 5.395627337347 91e-07 dctA C4 dicarboxylate/orotate:H(+) symporter cds-NP_415894.4 289.5044262935 15 -1.1899742734645 2.040812966280 44e-12 3.228128795591 46e-11 uspF universal stress protein F cds-NP_417772.1 39157.55136943 39 -1.196858688908 5.720789579651 43e-24 2.815264116475 13e-22 rplP 50S ribosomal subunit protein L16 cds-NP_417466.1 540.8611092762 32 -1.19879792928746 1.644325733641 93e-15 3.773429364922 33e-14 hybE hydrogenase 2-specific chaperone cds-NP_418624.1 14617.62169489 83 -1.20414201560569 5.066613120893 92e-20 1.780954723209 46e-18 rplI 50S ribosomal subunit protein L9 cds-NP_415018.1 192.6334505764 87 -1.20479227063682 6.421941401644 7e-08 5.209300085693 11e-07 glsA glutaminase 1 Supplementary Material 226 cds-NP_417030.2 937.3342762888 82 -1.20839886257399 6.262437065013 39e-10 7.130162920551 23e-09 csiE stationary phase-inducible protein CsiE cds-NP_418711.1 2498.566846138 09 -1.20860161160257 1.289277909939 75e-07 9.794531497638 32e-07 fecA ferric citrate outer membrane transporter cds-NP_415916.1 183.3848260917 63 -1.20987341103537 1.134168732016 47e-10 1.454926600211 3e-09 paaK phenylacetate-CoA ligase cds-NP_414713.1 4086.571032119 73 -1.21179090865633 1.537823929575 46e-30 1.335494545899 95e-28 pyrH UMP kinase cds-NP_417345.1 3403.658472650 74 -1.21297093185742 9.935224645112 85e-09 9.483428869225 18e-08 ygeV putative sigma(54)-dependent transcriptional regulator YgeV cds-NP_415160.1 298.7478976414 57 -1.21397753326828 1.744254301480 38e-17 4.682001394700 98e-16 tatE twin arginine protein translocation system - TatE protein cds-NP_415707.1 9758.229291316 66 -1.21548504638249 3.629735283191 98e-10 4.284976935547 54e-09 dadA D-amino acid dehydrogenase cds-NP_415538.1 179.4342590300 61 -1.21826325022853 9.879232734822 36e-09 9.450350277003 93e-08 efeB heme-containing peroxidase/deferrochelatase cds-NP_415019.1 283.4075056902 9 -1.21878511785182 8.008133843618 65e-11 1.046254418683 98e-09 ybaT putative transporter YbaT cds-NP_415580.1 666.8448517005 78 -1.24493485362969 7.546141916695 47e-19 2.404450543096 71e-17 pyrC dihydroorotase cds-NP_414916.1 30.19636187530 97 -1.25851904131057 0.001549318587 29844 0.005049250936 82473 iraP anti-adaptor protein IraP cds-NP_418622.1 14785.38934222 78 -1.26710776437698 4.132958321209 94e-19 1.345946500341 09e-17 priB primosomal replication protein N cds-NP_415127.1 96.89705054871 56 -1.26797192246828 0.000622388796 180176 0.002237467514 83929 entB enterobactin synthase component B cds-NP_415333.1 2819.504070698 06 -1.26942275843245 1.926988742672 16e-20 6.995600935487 71e-19 dps DNA protection during starvation protein cds-NP_417002.1 23485.00623114 03 -1.27130734089282 4.842425549090 98e-34 5.499257117159 99e-32 guaA GMP synthetase cds-NP_415830.2 24.05780930655 88 -1.27416024283264 0.001328262865 40841 0.004406648862 09276 ycjR 3-dehydro-D-guloside 4- epimerase cds-NP_418709.1 243.5409628728 09 -1.28404621198547 1.419959826864 e-05 7.346965038762 45e-05 fecC ferric citrate ABC transporter membrane subunit FecC cds-NP_415375.1 97.48999031012 12 -1.2896410496931 1.450215813355 32e-09 1.582021142204 61e-08 potF putrescine ABC transporter periplasmic binding protein cds-NP_416813.1 929.3559354179 9 -1.30096337428862 7.313677511949 83e-11 9.669336626992 78e-10 argT lysine/arginine/ornithine ABC transporter periplasmic binding protein cds-NP_417454.1 4503.955395193 06 -1.30542777086074 2.201669275029 99e-09 2.316197914277 4e-08 glcC DNA-binding transcriptional dual regulator GlcC cds-NP_415757.1 174154.2265167 24 -1.31591546468816 1.251805038369 08e-17 3.465152821835 41e-16 adhE fused acetaldehyde-CoA dehydrogenase and iron- dependent alcohol dehydrogenasealdehyde/alcohol dehydrogenase AdhE cds-NP_414984.1 141.0976264586 26 -1.31661719056753 9.786412123610 27e-06 5.253820520663 01e-05 glnK nitrogen regulatory protein PII-2 cds-NP_415377.1 25.22390215902 87 -1.31816462637766 6.831199816244 4e-05 0.000305609939 254005 potH putrescine ABC transporter membrane subunit PotH cds-NP_415979.2 89.56066582432 92 -1.32336287507204 1.574643656642 02e-06 9.934610762489 3e-06 yddH flavin reductase-like protein YddH cds-NP_415813.4 168.8135520493 78 -1.32551438002469 2.510997018795 83e-10 3.055276317650 2e-09 puuA glutamate-putrescine ligase cds-NP_416843.1 1054.163081251 87 -1.32560634618478 1.970552516252 07e-08 1.766716011028 42e-07 fadJ 3-hydroxyacyl-CoA dehydrogenase FadJ cds-NP_417780.1 11834.53862106 42 -1.32936569954894 2.099248036814 6e-15 4.695742199521 14e-14 rpsJ 30S ribosomal subunit protein S10 cds-NP_415902.1 274.2842712606 93 -1.33565028046341 8.317540080241 4e-09 8.008344568562 86e-08 feaR DNA-binding transcriptional activator FeaR Supplementary Material 227 cds-NP_414851.1 27.85630913240 53 -1.33607677934968 0.000434836368 271337 0.001622485488 68892 yahC uncharacterized protein YahC cds-NP_415708.1 2699.784343284 16 -1.33779316940357 7.092964112440 2e-11 9.405610195807 68e-10 dadX alanine racemase 2 cds-NP_416656.1 3310.632448362 97 -1.34074304266892 1.506639863601 27e-05 7.768228120943 e-05 galS DNA-binding transcriptional dual regulator GalS cds-NP_417910.1 259.6815993429 53 -1.34886429567586 9.892113089358 98e-08 7.659470082652 26e-07 ugpB sn-glycerol 3-phosphate ABC transporter periplasmic binding protein cds-YP_026181.1 6487.289412203 97 -1.35670756955325 8.053913970850 08e-05 0.000352478112 419911 srlE sorbitol-specific PTS enzyme IIBC1 component cds-NP_417774.1 24570.38832739 97 -1.35723339204484 9.122460580187 46e-30 7.623278850877 41e-28 rplV 50S ribosomal subunit protein L22 cds-NP_415376.4 36.52850564761 92 -1.35813275729649 1.551795974625 96e-05 7.978586395369 56e-05 potG putrescine ABC transporter ATP binding subunit cds-NP_416655.1 4110.755856113 97 -1.36866930086832 2.549046939634 35e-09 2.662671909349 18e-08 mglB D-galactose/methyl-galactoside ABC transporter periplasmic binding protein cds-NP_417775.1 14135.83483927 52 -1.36894057675729 1.744000521731 75e-19 5.941675623653 78e-18 rpsS 30S ribosomal subunit protein S19 cds-NP_416005.1 11.81890553997 58 -1.37264890926847 0.011471152039 2713 0.029092394365 4133 ddpX D-alanyl-D-alanine dipeptidase cds-NP_415541.1 120.4350393545 01 -1.37965354741997 2.083974032652 6e-10 2.571008632484 22e-09 pgaC poly-N-acetyl-D-glucosamine synthase subunit PgaC cds-NP_415537.1 134.5325020600 05 -1.38129866846422 7.809995547408 84e-09 7.562293290725 37e-08 efeO ferrous iron transport system protein EfeO cds-NP_416052.1 105.8830039422 92 -1.38641733366817 6.441217321554 93e-08 5.215384189610 01e-07 dgcZ diguanylate cyclase DgcZ cds-YP_588444.1 953.9978810912 12 -1.39365911655369 2.654607581755 85e-27 1.808808766091 79e-25 cydX cytochrome bd-I accessory subunit CydX cds-NP_416294.4 4099.762591472 93 -1.39538952194908 2.573595886740 05e-19 8.570267806294 5e-18 yeaD putative aldose 1-epimerase YeaD cds-NP_416959.1 382.2317239732 55 -1.3977287057878 5.887876980077 57e-16 1.402011136815 25e-14 talA transaldolase A cds-NP_418546.1 474.5779920442 9 -1.39806363446056 1.029086451408 95e-31 9.908312811500 48e-30 fumB fumarase B cds-NP_415772.1 198.9566705540 61 -1.39854142629035 9.106362627109 87e-12 1.326713160377 29e-10 ompW outer membrane protein W cds-NP_414985.1 1226.598104308 66 -1.4014033275332 4.566327443384 06e-09 4.565296669694 8e-08 amtB ammonium transporter cds-NP_417776.1 51031.72307326 07 -1.40286432780516 1.879949826548 04e-14 3.667972591093 06e-13 rplB 50S ribosomal subunit protein L2 cds-NP_418630.1 281.6870948308 53 -1.41117218551463 2.928494231693 79e-15 6.326976074230 14e-14 ytfE iron-sulfur cluster repair protein YtfE cds-NP_414913.1 65.95751657641 42 -1.41139954296567 7.172829717190 54e-07 4.820707559550 36e-06 yaiY DUF2755 domain-containing inner membrane protein YaiY cds-NP_418688.1 96.20631949386 35 -1.41281495590082 2.177843344952 17e-08 1.929133634958 63e-07 idnD L-idonate 5-dehydrogenase cds-NP_415524.1 255.0805192065 32 -1.4135602389629 1.527546904663 97e-17 4.125308073632 16e-16 wrbA NAD(P)H:quinone oxidoreductase cds-NP_416262.1 373.0213633040 12 -1.42018267973725 2.185799839104 86e-15 4.840453743697 71e-14 astC succinylornithine transaminase cds-NP_416853.1 777.7586469679 42 -1.42165831251508 2.267927095378 94e-19 7.667671072849 88e-18 yfdI serotype-specific glucosyl transferase YfdI cds-NP_416960.1 920.2591749111 42 -1.4298295046359 1.452498560736 23e-23 6.843740559043 36e-22 tktB transketolase 2 cds-NP_415156.1 3991.736497560 06 -1.43101276799944 1.585802870822 33e-10 1.984045456178 56e-09 cspE transcription antiterminator and regulator of RNA stability CspE cds-NP_415978.1 23.45216553411 62 -1.4315286100784 9.630672379174 04e-05 0.000414118912 304484 pptA tautomerase PptA Supplementary Material 228 cds-NP_415997.1 66.22036099466 53 -1.43797995013853 9.942151581264 43e-07 6.533203168163 23e-06 sra ribosome-associated protein Sra cds-NP_417269.1 66.79334860565 83 -1.43879447836546 2.410335647837 65e-05 0.000118221224 632037 gudP galactarate/D-glucarate transporter GudP cds-NP_416484.2 1680.865883606 65 -1.43996497300794 1.736462775792 99e-09 1.857679621736 02e-08 mtfA Mlc titration factor cds-NP_415130.1 8084.358535077 8 -1.45611977053065 5.285747067814 83e-06 2.989856163901 9e-05 cstA pyruvate transporter CstA cds-NP_417147.1 228.3863598956 38 -1.45638643731633 2.971138981035 78e-21 1.144276047565 87e-19 gabD succinate-semialdehyde dehydrogenase (NADP(+)) GabD cds-NP_416217.1 719.2297168033 14 -1.47367109489204 1.523132357650 46e-11 2.176113939365 76e-10 ppsA phosphoenolpyruvate synthetase cds-NP_415986.1 25.10866010688 66 -1.48875555227674 0.000195600670 923755 0.000783995811 331502 narU nitrate/nitrite transporter NarU cds-NP_417778.1 37471.06936255 64 -1.49442869616763 4.348662612587 01e-21 1.646173223175 03e-19 rplD 50S ribosomal subunit protein L4 cds-NP_415540.1 45.10788943225 01 -1.49529869229857 1.697120244716 14e-07 1.252757593974 63e-06 pgaD poly-N-acetyl-D-glucosamine synthase subunit PgaD cds-NP_414918.4 43.53544829229 31 -1.4982838683664 4.426049438945 3e-05 0.000207658611 918313 psiF phosphate starvation-inducible protein PsiF cds-NP_417279.2 1159.857676732 36 -1.50131340501496 3.333160727688 83e-13 5.721925915865 82e-12 fucO L-1 2-propanediol oxidoreductase cds-NP_415828.1 10.13023396646 29 -1.50287726545317 0.010368083730 7299 0.026775651803 7333 ycjP putative ABC transporter membrane subunit YcjP cds-NP_415959.1 27.20740760740 21 -1.5073749519075 1.415055350212 98e-05 7.330152217652 97e-05 ydcU putative ABC transporter membrane subunit YdcU cds-NP_418122.1 27.53761613275 07 -1.50997901242599 0.009141397474 49762 0.023886282840 4424 uhpT hexose-6-phosphate:phosphate antiporter cds-NP_417148.1 324.1012712985 72 -1.51587620815309 1.583237249096 82e-35 2.261986379435 43e-33 gabT 4-aminobutyrate aminotransferase GabT cds-NP_417779.1 52347.66775977 84 -1.52038125849136 6.940421802857 19e-36 1.070964887125 25e-33 rplC 50S ribosomal subunit protein L3 cds-NP_416639.2 43.84577408936 07 -1.52397915870105 6.580775901708 68e-08 5.318659939537 91e-07 yohC putative inner membrane protein cds-NP_416414.1 81.10592300982 62 -1.52568892978142 3.337415146253 83e-07 2.342537509153 44e-06 araF arabinose ABC transporter periplasmic binding protein cds-NP_418024.1 27.48973014421 93 -1.53483915619741 7.955290177607 18e-05 0.000349197028 707851 xylG xylose ABC transporter ATP binding subunit cds-NP_418459.1 36770.61368870 36 -1.5366812802466 6.400825989694 4e-12 9.481357293764 71e-11 malK maltose ABC transporter ATP binding subunit cds-NP_417400.1 56193.92104051 45 -1.54274385332985 9.629324539499 04e-43 2.843218559029 42e-40 fbaA fructose-bisphosphate aldolase class II cds-NP_417777.1 37003.97248350 76 -1.54328690220625 8.790290811919 62e-31 7.786439601198 4e-29 rplW 50S ribosomal subunit protein L23 cds-NP_418651.3 97.51596354806 86 -1.54619059452117 1.020334970809 75e-09 1.135443111989 04e-08 ytfT galactofuranose ABC transporter putative membrane subunit YtfT cds-NP_415123.1 77.19739867623 04 -1.5472561862653 1.518627100725 81e-07 1.128259407389 52e-06 entS enterobactin exporter EntS cds-NP_418418.2 13520.81366144 85 -1.54833432721519 2.836480650152 72e-25 1.570346599940 8e-23 thiG 1-deoxy-D-xylulose 5- phosphate:thiol sulfurtransferase cds-NP_415423.1 58905.98131048 88 -1.54866933398299 3.436259304761 05e-27 2.305938251634 35e-25 pflB pyruvate formate-lyase cds-NP_415960.1 29.94645991301 19 -1.55292013038087 1.905130889867 58e-05 9.588437171844 89e-05 ydcV putative ABC transporter membrane subunit YdcV cds-NP_415116.1 164.0030484256 81 -1.55408586964459 2.768687131436 85e-10 3.359593234283 24e-09 fepA ferric enterobactin outer membrane transporter cds-NP_415392.1 408.6096727860 41 -1.55515196179851 6.733616380819 35e-25 3.593155054295 05e-23 poxB pyruvate oxidase cds-NP_418690.4 535.5232606703 39 -1.56082001265435 1.735219265708 69e-23 8.005506383149 77e-22 ahr NADPH-dependent aldehyde reductase Ahr Supplementary Material 229 cds-NP_418648.1 326.7869946677 71 -1.57386626524827 1.897368264495 97e-16 4.721035979467 79e-15 ytfQ galactofuranose ABC transporter periplasmic binding protein cds-NP_418420.4 11816.85395489 03 -1.57522243010381 3.952624040148 5e-24 2.012203663657 21e-22 thiF sulfur carrier protein ThiS adenylyltransferase cds-NP_416874.1 46.23889790190 51 -1.58162374689593 1.286835010593 42e-06 8.308151985303 6e-06 oxc oxalyl-CoA decarboxylase cds-NP_416589.2 16.39176500036 06 -1.58316568886659 0.001282909163 73646 0.004268974219 52577 yegR uncharacterized protein YegR cds-NP_416437.1 322.5467629267 07 -1.58326845344897 1.099697073734 57e-25 6.581835594014 06e-24 amyA alpha-amylase cds-NP_416199.1 32.40192831087 39 -1.5920140715731 0.000150266637 650288 0.000612263972 541974 sufA iron-sulfur cluster insertion protein SufA cds-NP_418710.4 1434.246756293 3 -1.59621110040304 6.270055987822 49e-14 1.157086582086 08e-12 fecB ferric citrate ABC transporter periplasmic binding protein cds-NP_418422.1 55115.07136252 65 -1.59877131268573 1.573875179658 06e-25 9.171964698296 76e-24 thiC phosphomethylpyrimidine synthase cds-NP_416031.1 62.90744090621 13 -1.60186008559673 1.420036960133 15e-10 1.796955341837 06e-09 lsrC Autoinducer-2 ABC transporter membrane subunit LsrC cds-NP_415947.1 1208.764730867 06 -1.60335174123035 2.855117234549 38e-18 8.602254579468 84e-17 tehB tellurite methyltransferase cds-YP_026286.1 217.0143679535 65 -1.61341176451071 1.263371645645 83e-18 3.885745151781 5e-17 ytfR galactofuranose ABC transporter putative ATP binding subunit cds-YP_026272.1 256.4157188948 6 -1.61661571948358 3.620898615849 68e-08 3.084030763384 27e-07 fadA 3-ketoacyl-CoA thiolase cds-NP_416415.1 872.9462849174 84 -1.61861591807057 1.733357433552 33e-06 1.085861396492 68e-05 ftnB putative ferritin-like protein cds-NP_414863.1 111.8423928195 96 -1.63294094025225 8.562030974536 06e-15 1.739506201202 76e-13 yahO DUF1471 domain-containing protein YahO cds-NP_416337.1 8474.210851934 55 -1.63502632604007 1.099095262859 83e-22 4.726109630297 26e-21 cspC transcription antiterminator and regulator of mRNA stability CspC cds-NP_415050.1 36.61474211646 82 -1.6421037958099 2.224667152203 68e-07 1.612610608364 99e-06 allD ureidoglycolate dehydrogenase cds-NP_415706.1 301.9259522365 96 -1.64470754921051 1.685385136534 14e-26 1.066367252815 67e-24 ycgB PF04293 family protein YcgB cds-YP_026279.1 2634.248765980 45 -1.65486824940241 5.395112743744 97e-28 3.854024893878 47e-26 thiS sulfur carrier protein ThiS cds-NP_416259.1 187.6958473081 95 -1.65551236638015 8.317410766745 22e-12 1.215769382373 42e-10 astB N-succinylarginine dihydrolase cds-NP_418417.1 16453.22227020 08 -1.65766535121605 5.853159775296 29e-33 6.028754568555 18e-31 thiH 2-iminoacetate synthase cds-NP_416844.1 1948.121368842 86 -1.68781886758267 1.038268514560 02e-05 5.540350904802 79e-05 fadI 3-ketoacyl-CoA thiolase FadI cds-NP_414864.1 77.21292756987 87 -1.71032674839068 1.221701948356 99e-15 2.847851541722 69e-14 prpR DNA-binding transcriptional dual regulator PrpR cds-NP_418421.1 12476.22008345 07 -1.7118427983611 1.780300392137 77e-29 1.408026863710 39e-27 thiE thiamine phosphate synthase cds-NP_416007.3 27.68545759393 92 -1.7211553216194 3.977964668853 56e-05 0.000187829483 138085 dosC diguanylate cyclase DosC cds-NP_414838.2 38.77872578528 53 -1.72756210709832 5.843922473448 68e-08 4.784238934363 07e-07 rclA cupric reductase RclA cds-NP_416298.1 366.9796454765 81 -1.73448599194035 9.241738497715 51e-19 2.902954596197 3e-17 yeaH DUF444 domain-containing protein YeaH cds-NP_416590.1 77.93873644515 75 -1.7367240127676 9.529156269454 27e-13 1.540315077277 85e-11 yegS lipid kinase YegS cds-NP_416289.1 33.57857141025 41 -1.741918021012 1.424111776565 4e-07 1.065437678785 16e-06 ydjK putative transporter YdjK cds-NP_418491.1 111.8723506690 21 -1.74854875887915 1.657921669465 08e-11 2.361072371080 65e-10 actP acetate/glycolate:cation symporter cds-NP_415933.1 14740.81201545 98 -1.75216568033436 8.593265244667 23e-08 6.724305966189 25e-07 aldA aldehyde dehydrogenase A Supplementary Material 230 cds-NP_416654.1 1388.374083929 16 -1.79932546540117 1.310711876843 61e-05 6.837624149046 33e-05 mglA D-galactose/methyl-galactoside ABC transporter ATP binding subunit cds-NP_418011.1 140.7192179270 07 -1.81194205666485 2.173331296337 86e-18 6.592934459918 08e-17 yiaG putative DNA-binding transcriptional regulator YiaG cds-NP_416297.1 1072.966589731 6 -1.81969043179445 5.934537473510 78e-34 6.571016617544 81e-32 yeaG protein kinase YeaG cds-NP_417904.1 254.1344713643 81 -1.82091114779697 5.563370956951 45e-41 1.368898331574 33e-38 ggt glutathione hydrolase proenzyme cds-NP_417158.4 125.2957507662 29 -1.82854242606367 9.311989221211 57e-18 2.660825823273 94e-16 ygaM DUF883 domain-containing protein YgaM cds-YP_009518758.1 8.945391040897 38 -1.83701970939545 0.001693597333 79477 0.005475140577 64747 ybfQ inactive transposase YbfQ cds-NP_417352.2 1987.218558287 23 -1.84875721916633 2.074990906134 39e-05 0.000103144048 52154 yqeC uncharacterized protein YqeC cds-NP_418663.1 6541.461037171 63 -1.86104199081314 6.345803151892 44e-35 8.266341811685 76e-33 mgtA Mg(2(+)) importing P-type ATPase cds-NP_417146.2 93.92346483914 8 -1.86724772034827 1.070717854444 52e-17 3.039877805983 83e-16 lhgD L-2-hydroxyglutarate dehydrogenase cds-NP_416030.1 187.4450760427 89 -1.87478318300287 3.773025516288 27e-12 5.742518904343 89e-11 lsrA Autoinducer-2 ABC transporter ATP binding subunit cds-NP_417280.1 101.6026107176 73 -1.88554514905175 5.992509470247 18e-14 1.110494746599 36e-12 fucA L-fuculose-phosphate aldolase cds-NP_416873.1 15.17828521221 03 -1.89483107005971 0.000248582400 554724 0.000970874296 346449 yfdV putative transport protein YfdV cds-NP_416314.1 526.8863972574 59 -1.90396379419673 8.668168455909 83e-24 4.172969357741 81e-22 dmlA D-malate/3-isopropylmalate dehydrogenase (decarboxylating) cds-NP_417963.4 427.4970093562 68 -1.91585133320556 1.681316800410 17e-15 3.818744671290 6e-14 slp starvation lipoprotein cds-NP_415940.1 330.9489127904 68 -1.92130312838202 6.659748107127 82e-17 1.724913705641 47e-15 ydcJ DUF1338 domain-containing protein YdcJ cds-NP_415126.1 95.07837122426 74 -1.92443243697237 4.367489803489 5e-08 3.684497588505 71e-07 entE 2 3-dihydroxybenzoate-AMP ligase cds-YP_002791249.1 9.128037646036 4 -1.97423535838039 0.006046257765 9808 0.016695059629 3821 yohP putative membrane protein YohP cds-NP_416261.1 208.2128169504 08 -1.98292808513435 2.243579975733 38e-22 9.463634011926 79e-21 astA arginine N-succinyltransferase cds-NP_418028.1 2005.264886299 17 -1.98881507210275 1.728354931048 69e-25 9.941407778720 3e-24 malS alpha-amylase cds-NP_415417.1 50.16134356437 95 -1.99437889174653 3.571814780777 23e-13 6.084449101562 44e-12 ycaC putative hydrolase YcaC cds-NP_417964.1 48.92011024338 44 -1.99484320948663 7.078468096957 37e-10 7.977235420209 72e-09 dctR putative DNA-binding transcriptional regulator DctR cds-NP_414937.2 1423.865739964 02 -1.99615580967704 9.256866457838 02e-60 5.856951648823 51e-57 malZ maltodextrin glucosidase cds-NP_418539.1 2082.538460230 01 -2.0149230133895 1.504993783205 89e-23 7.016439437704 08e-22 adiC arginine:agmatine antiporter cds-NP_416260.1 256.4657332673 36 -2.01951742500989 1.765747675431 58e-22 7.519708129313 92e-21 astD aldehyde dehydrogenase cds-NP_417971.1 1267.498407699 92 -2.02808526466951 1.580591827438 35e-35 2.261986379435 43e-33 mdtF multidrug efflux pump RND permease MdtF cds-NP_416600.4 471.1007428743 54 -2.03032132368186 2.115015518501 05e-35 2.927313666075 36e-33 fbaB fructose-bisphosphate aldolase class I cds-NP_417970.1 232.2298346067 79 -2.04057096819338 1.429719140642 63e-17 3.884801272335 11e-16 mdtE multidrug efflux pump membrane fusion protein MdtE cds-NP_418045.4 150.6307555668 12 -2.05793117924609 3.602667460756 09e-27 2.381524505028 17e-25 aldB aldehyde dehydrogenase B cds-NP_416769.1 859.2862178381 8 -2.0678780833484 3.360691559914 61e-22 1.404198388571 87e-20 elaB tail-anchored inner membrane protein ElaB Supplementary Material 231 cds-NP_417351.1 2037.676974814 92 -2.07100989217866 5.313986835030 46e-09 5.218547160166 27e-08 yqeB XdhC-CoxI family protein YqeB cds-NP_415906.1 12.40186234853 46 -2.07228044566435 6.960885271101 2e-05 0.000311003860 932382 paaA phenylacetyl-CoA 12-epoxidase monooxygenase subunit cds-NP_415671.1 5.052920625930 23 -2.07843570606774 0.018174101262 6594 0.043021429445 3867 ymfQ DUF2313 domain-containing protein YmfQ cds-NP_415539.1 568.2235972416 96 -2.07860138821017 8.507189891014 62e-09 8.173176578590 83e-08 phoH ATP-binding protein PhoH cds-NP_415125.1 70.23112095305 18 -2.11411978135396 3.665383381531 28e-07 2.556532755401 9e-06 entC isochorismate synthase EntC cds-NP_417184.1 922.2386446009 12 -2.12724894332225 1.943574788928 68e-21 7.685797089433 13e-20 srlB sorbitol-specific PTS enzyme IIA component cds-NP_414880.2 2339.413806853 21 -2.13896213774937 2.802311036270 62e-06 1.668203706941 21e-05 mhpR DNA-binding transcriptional activator MhpR cds-NP_418493.1 1356.873904942 62 -2.24034340092758 5.832030683618 41e-11 7.803644682098 48e-10 acs acetyl-CoA synthetase (AMP- forming) cds-NP_416258.1 115.8565405362 35 -2.26052684385935 6.865923671130 75e-14 1.256577518158 6e-12 astE succinylglutamate desuccinylase cds-YP_025308.1 181.4977481902 87 -2.27661630726541 6.197539879681 07e-33 6.238387301615 33e-31 katE catalase HPII cds-NP_417552.1 1410.582274923 43 -2.2921686188879 1.351365988875 82e-06 8.661649731882 76e-06 fadH 2 4-dienoyl-CoA reductase cds-NP_415958.1 60.50741919651 67 -2.29347264375567 2.949478904570 22e-14 5.679670464496 31e-13 ydcT putative ABC transporter ATP- binding protein YdcT cds-NP_418492.1 33.32285817848 2 -2.298104813442 2.572225486936 13e-07 1.837481722845 18e-06 yjcH DUF485 domain-containing inner membrane protein YjcH cds-NP_416319.1 2826.644070602 07 -2.32267036799557 3.262778219465 62e-10 3.916218085098 44e-09 fadD long-chain-fatty-acid--CoA ligase cds-NP_415534.1 5654.354622804 36 -2.33377071419633 1.692251623579 51e-24 8.817626400980 74e-23 putA fused DNA-binding transcriptional repressor/proline dehydrogenase/1-pyrroline-5- carboxylate dehydrogenase PutA cds-NP_418457.1 10679.51232957 53 -2.34737747176128 2.711752954030 97e-29 2.107079619895 29e-27 malF maltose ABC transporter membrane subunit MalF cds-NP_418458.1 24975.49549012 95 -2.36001636669004 5.360793343648 04e-43 1.695925265644 08e-40 malE maltose ABC transporter periplasmic binding protein cds-NP_418023.1 42.48516130789 52 -2.38124874834165 1.498983137384 32e-10 1.886078498714 53e-09 xylF xylose ABC transporter periplasmic binding protein cds-NP_418503.1 930.1156076512 03 -2.38433563024141 1.735362434645 87e-38 3.202466759602 74e-36 fdhF formate dehydrogenase H cds-NP_417965.1 116.9775474242 67 -2.3956092060003 5.986399471854 34e-13 9.930248412300 7e-12 yhiD inner membrane protein YhiD cds-NP_415957.1 150.2590142156 61 -2.44583286115698 2.043949102707 8e-30 1.740894341517 86e-28 ydcS putative ABC transporter periplasmic binding protein/polyhydroxybutyrate synthase cds-NP_417597.1 1035.388026483 83 -2.45176071929932 5.191523200284 23e-13 8.709566762901 08e-12 garD GarD cds-YP_026218.1 30845.38151732 85 -2.45597465116317 3.662424408626 1e-53 1.802319745089 44e-50 malP maltodextrin phosphorylase cds-NP_417047.1 3030.237647276 76 -2.47758844736536 7.181900501415 21e-39 1.445847150944 e-36 hmp nitric oxide dioxygenase cds-NP_417595.1 109.0990447232 26 -2.48129581421372 7.771196095517 7e-14 1.410599487993 77e-12 garL alpha-dehydro-beta-deoxy-D- glucarate aldolase cds-NP_415556.1 10.13639077664 66 -2.51004680750125 0.000212972134 767646 0.000848249626 695959 csgF curli assembly component CsgF cds-NP_418456.1 1959.601346768 86 -2.51459630363246 1.364854231454 09e-38 2.628234517873 98e-36 malG maltose ABC transporter membrane subunit MalG cds-NP_415500.1 474.6751741493 03 -2.51798872392528 6.955568489655 58e-35 8.801775097338 44e-33 appA periplasmic phosphoanhydride phosphatase/multiple inositol- polyphosphate phosphatase Supplementary Material 232 cds-NP_418288.1 1093.773214404 69 -2.53040317661987 2.631400642973 52e-06 1.577060006458 69e-05 fadB multifunctional enoyl-CoA hydratase 3-hydroxyacyl-CoA epimerase Delta(3)-cis- Delta(2)- trans-enoyl-CoA isomerase L-3- hydroxyacyl-CoA dehydrogenase cds-NP_417185.1 10286.95795060 23 -2.53567346611233 3.044435971120 37e-28 2.210460150179 03e-26 srlD sorbitol-6-phosphate 2- dehydrogenase cds-NP_417198.1 149.5084824214 43 -2.5367802068753 1.095032156327 18e-23 5.214943462766 76e-22 hycH formate hydrogenlyase assembly protein cds-NP_416653.1 642.8599145638 75 -2.58132100789343 1.433201331828 61e-08 1.327959978801 02e-07 mglC D-galactose/methyl-galactoside ABC transporter membrane subunit cds-NP_418461.1 3816.451058259 29 -2.59153843953063 3.209543577631 41e-35 4.307596516766 51e-33 malM maltose regulon periplasmic protein cds-NP_417145.4 117.6972761148 02 -2.64832709844364 1.661931658014 63e-21 6.631257039051 15e-20 glaH glutarate dioxygenase GlaH cds-NP_418460.1 27673.88358975 59 -2.68500931297178 1.523668143492 91e-41 3.969603651488 29e-39 lamB maltose outer membrane channel/phage lambda receptor protein cds-NP_418163.1 115.2645123208 45 -2.68709722136575 1.711414711407 25e-34 1.994698883374 4e-32 tnaC tnaAB operon leader peptide cds-NP_415835.1 3.742832444530 45 -2.71556580390073 0.015951628488 134 0.038727948443 5494 ompG outer membrane porin G cds-NP_417875.1 15701.06115001 4 -2.71556986985641 1.401000998681 99e-36 2.386551316600 97e-34 malQ 4-alpha-glucanotransferase cds-YP_001165313.1 9.550565847332 85 -2.76026628278807 0.000219400768 790861 0.000870722226 679859 appX cytochrome bd-II accessory subunit AppX cds-NP_416442.1 40.13785569700 21 -2.78466099389415 3.769533567704 21e-13 6.396652939219 14e-12 yedL putative acetyltransferase YedL cds-NP_418164.4 3848.911659106 44 -2.82156303209921 4.116576741991 01e-18 1.223645529548 87e-16 tnaA tryptophanase cds-NP_418165.1 533.4896689973 93 -2.83301821675624 4.893396636981 4e-09 4.837690559194 34e-08 tnaB tryptophan:H(+) symporter TnaB cds-NP_415497.1 1245.690279476 66 -2.89567179063701 4.282925876204 58e-31 3.951891397022 94e-29 appC cytochrome bd-II subunit 1 cds-NP_414756.2 1532.269030477 09 -2.90331138665979 8.176083996519 9e-09 7.889297607970 94e-08 fadE acyl-CoA dehydrogenase cds-NP_415491.1 1590.458375451 15 -2.92084251142389 7.012414027236 91e-36 1.070964887125 25e-33 hyaA hydrogenase 1 small subunit cds-NP_417199.1 153.8249749384 79 -3.01866249146698 5.633238709206 35e-27 3.615886122184 77e-25 hycG formate hydrogenlyase subunit HycG cds-NP_417596.1 316.6957065844 05 -3.0592753166386 1.475545760596 89e-14 2.930579450082 34e-13 garP galactarate/D-glucarate transporter GarP cds-NP_415492.1 2337.181442787 66 -3.07214414601514 4.673582045380 74e-22 1.899017878806 54e-20 hyaB hydrogenase 1 large subunit cds-NP_415496.1 345.9581840863 63 -3.16817350198279 1.358939072091 15e-47 4.629800884839 76e-45 hyaF protein HyaF cds-NP_415498.1 1443.351029298 93 -3.19045199672676 2.343931824036 88e-53 1.297659256082 42e-50 appB cytochrome bd-II subunit 2 cds-NP_415494.1 1319.596516223 -3.19419869688116 1.075574299237 79e-20 4.003124849852 23e-19 hyaD putative hydrogenase 1 maturation protease HyaD cds-NP_415493.1 1132.650774507 86 -3.25865464822726 8.218175653763 37e-50 3.033191664209 83e-47 hyaC hydrogenase 1 cytochrome b subunit cds-NP_417206.1 35.14432160569 08 -3.33093762954418 3.041499409280 02e-10 3.670517951962 18e-09 hypA hydrogenase 3 nickel incorporation protein HypA cds-NP_417974.1 574.8032304543 31 -3.34807218898754 3.396481868811 47e-51 1.504301819696 6e-48 gadA glutamate decarboxylase A cds-NP_417201.1 377.4558417983 58 -3.41767029661653 2.814289976116 58e-50 1.133135482201 85e-47 hycE formate hydrogenlyase subunit HycE cds-NP_415495.1 193.5608316584 22 -3.55805192524107 3.439650772332 6e-11 4.716474696799 1e-10 hyaE putative HyaA chaperone Supplementary Material 233 cds-NP_417202.1 235.1334728617 98 -3.63230276857347 5.360621017272 18e-38 9.496876194199 39e-36 hycD formate hydrogenlyase subunit HycD cds-NP_417200.1 123.7834809112 14 -3.65993369152525 4.196989211517 94e-31 3.951891397022 94e-29 hycF formate hydrogenlyase subunit HycF cds-NP_417968.1 3240.549274029 7 -3.71038432270214 1.363941860252 26e-80 1.208179699811 45e-77 hdeD acid-resistance membrane protein cds-NP_416114.2 1637.039358775 68 -3.7594800651994 0.000755723125 314543 0.002660650017 50247 asr periplasmic chaperone Asr cds-NP_417203.1 340.6448002896 95 -3.77327088467965 6.300391470219 81e-39 1.328782562933 5e-36 hycC formate hydrogenlyase subunit HycC cds-NP_417205.1 37.84374882569 24 -3.82960241642539 3.471124646152 35e-11 4.744941684508 87e-10 hycA regulator of the transcriptional regulator FhlA cds-NP_417966.4 1679.488522695 56 -3.97330696726928 1.681383496427 42e-120 7.446847505677 03e-117 hdeB periplasmic acid stress chaperone HdeB cds-NP_417204.1 47.86153764001 89 -4.29904097664917 2.349192266670 5e-15 5.150778489645 36e-14 hycB formate hydrogenlyase subunit HycB cds-NP_416009.1 668.1555314682 67 -4.31314324886979 2.201968918822 24e-87 2.438130085365 93e-84 gadC L-glutamate:4-aminobutyrate antiporter cds-NP_416010.1 657.0809259000 64 -4.32748479897044 6.509045082386 58e-94 9.609520223296 73e-91 gadB glutamate decarboxylase B cds-NP_417967.1 9328.477129582 23 -4.61412644913442 4.741752811373 59e-102 1.050061160078 68e-98 hdeA periplasmic acid stress chaperone HdeA cds-NP_418177.1 18.76269640110 98 1.00798259499972 0.013151378665 9528 0.032796991053 7753 bglB 6-phospho-beta-glucosidase B cds-NP_415504.1 52.86783007341 66 1.00906118732302 0.000447089004 809706 0.001661205706 62935 gfcD putative lipoprotein GfcD cds-NP_418271.1 165.7468525616 77 1.0125064479844 7.389194112880 5e-08 5.875536934640 53e-07 bioP biotin transporter cds-YP_026273.1 1643.577325566 29 1.0132703342139 1.428679538345 73e-34 1.710168020360 34e-32 trkH K(+) transporter TrkH cds-NP_414788.1 55.04036607967 91 1.01552102035051 6.042082922824 27e-05 0.000273903636 286476 perR putative transcriptional regulator PerR cds-NP_418355.1 122.9398095469 53 1.01826336511737 6.077470622096 21e-07 4.153876139701 26e-06 yiiQ DUF1454 domain-containing protein YiiQ cds-NP_415742.1 84.18296536103 44 1.01887068700073 2.551319872115 02e-05 0.000123765560 93754 narG nitrate reductase A subunit alpha cds-NP_415102.1 130.9254563585 41 1.02024355529118 3.190334835468 15e-07 2.249998883166 95e-06 cusS sensor histidine kinase CusS cds-NP_415011.1 2338.426994710 37 1.0210262243121 2.415177914205 61e-20 8.696604050420 02e-19 ybaL putative transporter YbaL cds-YP_026261.1 33.92884962003 93 1.02237613584601 0.011500301529 3827 0.029138921895 6727 yigE DUF2233 domain-containing protein YigE cds-YP_588445.1 41.97181210256 99 1.02336757735155 0.000337916488 218629 0.001285766431 54666 insA4 IS1 family protein InsA cds-NP_417707.1 81.95134904818 18 1.0244974413743 4.791455265013 19e-05 0.000224564607 07665 aaeB aromatic carboxylic acid efflux pump subunit AaeB cds-NP_416492.1 65.08891664272 58 1.0248492582847 0.000660919943 713002 0.002360656798 95555 cbl DNA-binding transcriptional activator Cbl cds-NP_415352.1 470.8859974034 94 1.02755805800909 1.428996313550 22e-18 4.364844601871 67e-17 gsiC glutathione ABC transporter membrane subunit GsiC cds-NP_415656.1 35.00228370798 56 1.02896926292454 0.005906868426 09012 0.016371414430 0082 ymfE uncharacterized protein YmfE cds-NP_417053.2 96.92744751379 27 1.02962509398857 3.880326219544 52e-06 2.252420029667 46e-05 mltF membrane-bound lytic murein transglycosylase F cds-NP_416060.1 31.44819757929 8 1.03302753313791 0.001700330359 7675 0.005492898003 94622 ydfI putative oxidoreductase YdfI cds-NP_418290.4 889.5105469945 46 1.03596699712105 1.446774751634 27e-11 2.080443303567 59e-10 yigZ IMPACT family member YigZ cds-NP_418388.1 33.48311635901 06 1.0398772910638 0.005337967957 96257 0.015001180257 4976 frwD putative PTS enzyme IIB component FrwD Supplementary Material 234 cds-NP_414790.1 278.8355330180 69 1.04209469776709 1.044954172225 82e-15 2.461756398291 56e-14 insI1 IS30 family transposase cds-NP_417393.1 22.05678284134 77 1.04227828484145 0.017087231694 7267 0.040996397170 0674 argK methylmalonyl-CoA mutase- interacting GTPase YgfD cds-NP_418633.4 28.63031426004 53 1.04427830743771 0.010874080536 8009 0.027855004451 9902 ytfH putative transcriptional regulator YtfH cds-NP_416933.4 150.7991593207 81 1.04766182666408 3.641120472479 86e-12 5.560869852625 28e-11 eutK putative structural protein ethanolamine utilization microcompartment cds-NP_418487.1 40.47478463926 69 1.06666540014456 0.002434982103 976 0.007584061700 7804 soxR DNA-binding transcriptional dual regulator SoxR cds-NP_416592.2 25.40545610052 29 1.06704616097959 0.005546100233 48265 0.015536798187 2831 insE5 IS3 element protein InsE cds-NP_418599.1 325.3238602074 18 1.07089115109254 2.920255593131 12e-06 1.733754962731 6e-05 nsrR DNA-binding transcriptional regulator NsrR cds-NP_414798.1 55.06597263619 23 1.07183996325242 0.000100929801 631001 0.000431901537 607443 insB2 IS1 family protein InsB cds-NP_414799.1 53.50670933429 12 1.0763069049935 1.977708749476 03e-05 9.919900397994 73e-05 insA2 IS1 family protein InsA cds-NP_415314.1 378.1529560199 04 1.07836248111912 4.132772670967 07e-15 8.800024115246 71e-14 ybhS ABC exporter membrane subunit YbhS cds-NP_415696.1 185.2281440760 08 1.07964871389736 1.128244820237 93e-08 1.065457635145 8e-07 pliG inhibitor of g-type lysozyme cds-NP_415380.1 335.0345086543 13 1.08168361288951 1.290506594022 95e-09 1.414765768546 45e-08 rlmC 23S rRNA m(5)U747 methyltransferase cds-NP_416627.2 21.08863116833 55 1.0829867270876 0.005458630432 85074 0.015311129947 4958 yehR DUF1307 domain-containing lipoprotein YehR cds-NP_418197.1 2923.082586016 15 1.08428400826736 4.407491867904 81e-32 4.337951440655 64e-30 mnmG 5- carboxymethylaminomethyluridine -tRNA synthase subunit MnmG cds-NP_414841.1 912.5979546853 23 1.08568446761277 2.524275454386 65e-08 2.218257140372 71e-07 ykgF putative amino acid dehydrogenase with NAD(P)- binding domain and ferridoxin-like domain cds-NP_418607.1 16.62222705907 86 1.08955841944942 0.020419223868 9829 0.047611844245 167 yjfC putative acid--amine ligase YjfC cds-NP_415874.1 200.1924996914 27 1.09878852664158 9.315555467343 25e-13 1.516860116355 27e-11 racR DNA-binding transcriptional repressor RacR cds-NP_415628.1 1101.590976348 8 1.10313617966822 1.142382660501 01e-14 2.299824001526 8e-13 ycfJ PF05433 family protein YcfJ cds-NP_416482.1 49.57070942379 01 1.10767706641591 1.989801358822 62e-05 9.958000246582 35e-05 zinT metal-binding protein ZinT cds-NP_418554.1 63.17356605423 84 1.10784595210329 0.000111245970 422686 0.000467909214 626853 dtpC dipeptide/tripeptide:H(+) symporter DtpC cds-NP_417980.1 80.95128890040 99 1.10984785464409 1.301887052908 52e-06 8.393097172244 27e-06 yhjE putative transporter YhjE cds-YP_026202.1 644.3917040946 89 1.11055023548307 1.422663413520 72e-06 9.066152889903 98e-06 cyuA putative L-cysteine desulfidase CyuA cds-NP_417641.4 19.16179350363 86 1.11352047681276 0.021446461235 9755 0.049653098177 8022 yhbX putative hydrolase YhbX cds-NP_416276.4 132.8818999160 08 1.1179931232993 6.641694450356 07e-06 3.672417568118 23e-05 ynjI DUF1266 domain-containing protein YnjI cds-NP_415715.1 341.0853353219 6 1.12789442353723 1.728417984936 68e-09 1.853577490962 71e-08 treA periplasmic trehalase cds-NP_414746.1 89.91894266638 79 1.13986330922486 7.026409873558 6e-06 3.851481352721 66e-05 yafE putative S-adenosylmethionine- dependent methyltransferase cds-NP_415353.1 417.6297922033 51 1.14586318165661 1.129100850409 53e-20 4.167323055386 5e-19 gsiD glutathione ABC transporter membrane subunit GsiD cds-NP_416998.1 58.15032697893 87 1.14782304048239 1.169126874052 71e-05 6.179072703078 08e-05 pdeF cyclic di-GMP phosphodiesterase PdeF Supplementary Material 235 cds-NP_414655.1 1696.177986472 73 1.15170825343185 5.007291820472 4e-19 1.618780691450 53e-17 pdhR DNA-binding transcriptional dual regulator PdhR cds-NP_417705.2 554.7463352985 18 1.15793615440624 4.697504139067 02e-08 3.925518081495 82e-07 yhcN DUF1471 domain-containing stress-induced protein YhcN cds-NP_417975.1 36.32441700245 43 1.16485148011067 0.000684493228 864685 0.002436993979 61551 ccp cytochrome c peroxidase cds-NP_417420.1 54.58979586975 38 1.16688193254083 8.320868527561 91e-05 0.000362727625 084367 endA DNA-specific endonuclease I cds-NP_418379.1 34.25876031584 42 1.1682014066059 0.000933672516 618977 0.003233178714 70324 yijF DUF1287 domain-containing protein YijF cds-NP_418352.1 53.44130581491 63 1.16863814920423 5.974971653354 59e-06 3.349765753507 28e-05 sbp sulfate/thiosulfate ABC transporter periplasmic binding protein Sbp cds-NP_418129.2 1147.598343166 8 1.17088301705211 4.064791842006 45e-16 9.784219058829 65e-15 emrD multidrug efflux pump EmrD cds-NP_417902.1 13.10737706372 63 1.17143200040919 0.021275921501 875 0.049361475291 6733 insB6 IS1 family protein InsB cds-NP_417911.4 72.40172556080 62 1.17758607596612 6.315729490987 74e-07 4.303440910089 96e-06 livF branched chain amino acid/phenylalanine ABC transporter ATP binding subunit LivF cds-NP_418015.1 35.22050422382 51 1.18939219513524 9.539665234420 97e-05 0.000411003670 459635 insK IS150 family conserved protein InsB cds-NP_418716.1 36.26806575717 54 1.18951282748992 0.000800863940 637504 0.002806191766 67999 yjhF putative transporter YjhF cds-YP_009518778.1 15.49323298406 05 1.19305174684976 0.008437190365 11689 0.022296131340 7534 ynaA putative prophage tail length tape measure domain-containing protein YnaA cds-NP_415215.1 36.31092680535 16 1.19454170094853 5.954251868142 62e-05 0.000270198581 188562 ybfP lipoprotein YbfP cds-NP_414868.1 13.91352880164 95 1.195366756555 0.017652915332 3918 0.042012231062 4197 prpD 2-methylcitrate dehydratase cds-NP_417978.2 99.12833624031 33 1.19883607926296 1.298156725410 83e-07 9.845096124733 84e-07 rcdB putative DNA-binding transcriptional regulator YhjC cds-YP_025303.1 99.98963851365 19 1.20294617417253 6.169806125301 06e-08 5.032425659108 36e-07 blr beta-lactam resistance protein cds-NP_415308.1 49.83009960445 55 1.2090869675259 0.000184929027 664461 0.000743240166 538928 ybhM Bax1-I family protein YbhM cds-NP_418566.1 3990.305475406 23 1.21057650434544 4.756258020802 26e-08 3.959674205664 14e-07 groS cochaperonin GroES cds-NP_414815.1 211.8271058913 96 1.21825722973678 3.958620860258 35e-14 7.492620423112 91e-13 intF putative phage integrase cds-NP_414869.1 45.30984500639 3 1.22197510697539 0.000122094575 992224 0.000508708256 885759 prpE propionyl-CoA synthetase cds-NP_415089.1 203.6718321920 13 1.22693004894377 3.136876937657 97e-08 2.687278134794 42e-07 borD prophage lipoprotein BorD cds-NP_416462.1 13.69192123517 48 1.2343531779132 0.008678143638 4634 0.022840329647 6645 dsrB protein DsrB cds-NP_416403.1 12.29433717366 08 1.23449630880773 0.013448439246 275 0.033387408868 6951 motB motility protein B cds-NP_415712.1 19.66557500206 32 1.2349787035729 0.003778477966 26611 0.011031561577 1869 ycgR flagellar brake protein YcgR cds-YP_009518788.1 12.88853637358 79 1.23653289889415 0.017762529723 1659 0.042227720957 5425 nohA putative prophage DNA-packaging protein NohA cds-NP_414562.1 27.21856646034 85 1.24208666188148 0.000485573085 080603 0.001787700077 99002 insB1 IS1 family protein InsB cds-NP_417074.1 131.3512653872 55 1.24574239465879 5.667045248288 29e-06 3.185195863536 66e-05 grcA stress-induced alternate pyruvate formate-lyase subunit cds-NP_418299.1 66.72855561951 83 1.24748075784684 7.839605673155 54e-06 4.255099696863 46e-05 yihG 1-acylglycerol-3-phosphate O- acyltransferase YihG cds-NP_417628.2 26.70273219621 74 1.24767293457218 0.005670198743 44232 0.015804474659 9786 ubiV ubiquinone biosynthesis protein UbiV Supplementary Material 236 cds-NP_416710.1 353.8969930754 41 1.24841097496982 9.781196090934 37e-13 1.569598459664 79e-11 napA periplasmic nitrate reductase subunit NapA cds-NP_416145.1 177.4433800430 95 1.24864132710542 5.745484622122 78e-09 5.605011319687 62e-08 rsxB SoxR [2Fe-2S] reducing system protein RsxB cds-NP_416117.1 252.0627855961 59 1.25104735760524 1.536972357317 58e-06 9.738555894935 02e-06 mdtJ multidrug/spermidine efflux pump membrane subunit MdtJ cds-YP_009518795.2 84.64773598648 15 1.25767030381097 0.000356584149 624325 0.001350993326 50653 yoaL protein YoaL cds-NP_417901.1 9.083663743775 04 1.25794400342875 0.020601711839 9986 0.047973176519 1134 insA6 IS1 family protein InsA cds-NP_415296.1 274.9697529076 71 1.25936278720485 1.090539591629 45e-08 1.034261210134 22e-07 bioB biotin synthase cds-NP_415896.1 2122.421755296 37 1.25980670401305 1.207559249894 63e-34 1.485633310495 37e-32 ydbK putative pyruvate-flavodoxin oxidoreductase cds-NP_414992.1 97.56845814048 65 1.2603231213097 1.250010361443 41e-05 6.559592287716 68e-05 maa maltose O-acetyltransferase cds-NP_416142.1 12.27658807899 73 1.26777708938481 0.010992569407 9808 0.028142248501 7034 cnu H-NS- and StpA-binding protein cds-NP_414808.1 97.94866145680 99 1.27507659045896 2.691686746809 07e-07 1.916636752671 6e-06 insB3 IS1 family protein InsB cds-NP_415653.4 132.9153806989 54 1.27519367703135 1.819533559713 38e-08 1.651375847534 95e-07 rluE 23S rRNA pseudouridine(2457) synthase cds-NP_414923.1 67.63688617031 15 1.27519966527257 3.676332708307 47e-06 2.145253961145 43e-05 yaiA protein YaiA cds-NP_416708.1 106.2857069182 24 1.28483560158129 6.367342208135 69e-08 5.174487823822 57e-07 napH ferredoxin-type protein NapH cds-NP_417942.6 649.5910253241 45 1.28741950668767 4.758929883739 07e-17 1.254601217564 31e-15 yhhJ ABC transporter family protein YhhJ cds-NP_414840.1 457.7445069435 93 1.28813814859705 4.436793913225 44e-08 3.732871912721 98e-07 ykgE putative lactate utilization oxidoreductase YkgE cds-NP_418567.1 24347.88890688 78 1.29378057947902 5.578500429637 61e-15 1.159961427364 55e-13 groL chaperonin GroEL cds-YP_026277.1 182.6056226426 96 1.29566771502734 1.006504245401 5e-10 1.299652274893 07e-09 cpxP periplasmic protein CpxP cds-YP_026229.1 16.29106542472 83 1.30179473730278 0.002491863782 9771 0.007734032722 3585 hokA small toxic polypeptide cds-NP_417065.1 936.9139784418 68 1.30343520672179 2.429973296352 43e-28 1.793725288257 49e-26 rseC protein RseC cds-NP_414842.4 724.9604012807 69 1.30984573829809 2.890471385331 13e-09 2.970277903858 83e-08 ykgG DUF162 domain-containing lactate utilization protein YkgG cds-NP_418344.3 1774.789669426 83 1.31015744032725 6.810043247717 36e-08 5.473989390951 04e-07 sodA superoxide dismutase (Mn) cds-NP_415565.1 142.6254327754 88 1.31533817360399 7.577406786016 56e-11 9.988194837877 18e-10 opgC osmoregulated periplasmic glucans (OPG) biosynthesis protein C cds-NP_417520.1 28.77181544715 35 1.32545432259091 6.095866046871 11e-05 0.000275777229 025456 yqiI putative fimbrial protein YqiI cds-NP_416608.1 24.67395496634 39 1.34169229439423 0.000579344174 652231 0.002099767061 81238 rcnR DNA-binding transcriptional repressor RcnR cds-NP_415289.4 79.50780215137 68 1.34349476900522 2.958530323833 7e-08 2.574328252310 3e-07 ybhD putative DNA-binding transcriptional regulator YbhD cds-NP_415336.1 311.9254114929 02 1.34501951979671 1.150217949760 7e-08 1.083896872231 94e-07 opgE phosphoethanolamine transferase OpgE cds-NP_415508.1 406.3412469790 03 1.34589559108923 3.504232563031 68e-10 4.172109145609 49e-09 insB4 IS1 family protein InsB cds-NP_415355.1 69.38485796084 07 1.34775267807086 0.000105132482 434497 0.000447292761 481641 dgcI putative diguanylate cyclase DgcI cds-NP_418625.1 23.28409438601 96 1.35108591962044 0.001801794796 20675 0.005791109689 69498 yjfZ DUF2686 domain-containing protein YjfZ Supplementary Material 237 cds-YP_010051200.1 11.76742723905 53 1.35621467639943 0.004744789754 10035 0.013531663761 0499 yqiM protein YqiM cds-NP_418729.1 26.52374366241 58 1.35956868669724 0.003190631923 91415 0.009561102023 69131 nanS N-acetyl-9-O-acetylneuraminate esterase cds-NP_415242.1 447.5105494509 63 1.36085650138449 2.554898837300 46e-33 2.694201654858 03e-31 nei endonuclease VIII cds- gnl|b4580|CDS%3D3 93 56.26462673832 47 1.36335451046513 1.074917213841 83e-05 5.715256110570 78e-05 yaiT putative autotransporter YaiT cds- gnl|b4580|CDS%3D3 93 56.26462673832 47 1.36335451046513 1.074917213841 83e-05 5.715256110570 78e-05 yaiT putative autotransporter YaiT cds-YP_026237.1 42.44481568606 18 1.36389294616358 6.296360573075 13e-07 4.296853771671 77e-06 dgoD D-galactonate dehydratase cds-NP_418251.1 36.25970157588 45 1.3686814593136 4.580855749349 82e-06 2.621267456572 4e-05 cyaY frataxin CyaY cds-NP_416761.4 87.85953999989 41 1.37549330918186 8.946141702234 24e-07 5.913800238685 89e-06 arnF undecaprenyl-phosphate-alpha-L- Ara4N flippase - ArnF subunit cds-YP_588477.1 43.95983431426 98 1.38915811134117 2.743341304449 77e-06 1.635331599161 e-05 topAI toxin of the TopAI-YjhQ toxin- antitoxin system TopA inhibitor cds-NP_415207.1 75.31040183062 54 1.3967451346223 9.567083398637 76e-05 0.000411784376 79851 chiP chitooligosaccharide outer membrane channel cds-NP_416914.1 20.40291719345 07 1.40402497008817 0.000523218308 502994 0.001913570510 61912 yfeK DUF5329 domain-containing protein YfeK cds-NP_416255.1 155.8784888530 94 1.40424543235839 2.731221380249 38e-15 5.929695829962 99e-14 cho excinuclease Cho cds-NP_416706.1 91.81856110797 73 1.40578229706932 1.474786048826 84e-11 2.113860003318 47e-10 napC periplasmic nitrate reductase cytochrome c protein cds- gnl|b4623|CDS%3D4 503 42.23515573558 37 1.40608625116431 7.174944148869 59e-05 0.000319696455 083938 insO IS911B regulator fragment cds- gnl|b4623|CDS%3D4 503 42.23515573558 37 1.40608625116431 7.174944148869 59e-05 0.000319696455 083938 insO IS911B regulator fragment cds- gnl|b4623|CDS%3D4 503 42.23515573558 37 1.40608625116431 7.174944148869 59e-05 0.000319696455 083938 insO IS911B regulator fragment cds-NP_418014.1 53.24318069765 57 1.40698130846236 1.242767931636 61e-06 8.035356451413 93e-06 insJ insertion element IS150 protein InsA cds-YP_588446.1 57.37993177778 82 1.41454713811506 4.136937288830 15e-08 3.496659399280 29e-07 gnsA putative phosphatidylethanolamine synthesis regulator GnsA cds-NP_415354.1 118.9926249681 93 1.4300951501499 2.428713546743 33e-13 4.251688655543 96e-12 pdeI putative c-di-GMP phosphodiesterase PdeI cds-NP_417083.1 1529.174392278 8 1.43224551831605 9.345369959750 52e-05 0.000403811156 602293 clpB chaperone protein ClpB cds-NP_416116.1 136.3495821180 21 1.43678747065379 3.429850272436 04e-10 4.094557104210 03e-09 mdtI multidrug/spermidine efflux pump membrane subunit MdtI cds-NP_414897.1 10.18452702833 53 1.4437793401756 0.016015411750 5317 0.038803204946 9939 yaiP putative glucosyltransferase cds-NP_415255.1 10316.86885494 05 1.45470359764682 1.580733782693 24e-06 9.958847686413 04e-06 sucB dihydrolipoyltranssuccinylase cds-YP_009518777.1 9.330592992853 66 1.46243314214388 0.018878308137 0004 0.044498151537 4001 ydaY putative uncharacterized protein YdaY cds-NP_415630.1 18.98054559660 19 1.47207742962856 0.007463688059 59825 0.020070840568 2821 bhsA DUF1471 domain-containing multiple stress resistance outer membrane protein BhsA cds-NP_418435.1 58.15345329252 62 1.47268940244275 6.751219565804 16e-09 6.557270056347 95e-08 yjaA stress response protein cds-NP_416650.1 24.78795173660 89 1.47931329674478 0.000252045948 551001 0.000982180796 439726 yeiS DUF2542 domain-containing protein YeiS cds-NP_415298.1 94.24245525215 32 1.4912203837612 6.347230884915 17e-10 7.208175792125 46e-09 bioC malonyl-acyl carrier protein methyltransferase Supplementary Material 238 cds-NP_416709.1 66.03098742297 19 1.49931141881437 2.087595588531 66e-09 2.206673236660 31e-08 napG ferredoxin-type protein NapG cds-NP_416999.1 61.79703500479 02 1.49941348655624 7.260586160709 81e-06 3.970016803183 18e-05 yfgG nickel/cobalt stress response protein YfgG cds-NP_415060.1 38.31916220756 06 1.5064655424725 8.020940567186 33e-06 4.342878456243 06e-05 ybcI PF04307 family inner membrane protein YbcI cds-NP_418305.1 2114.394713807 07 1.51092327017641 5.077922190696 38e-23 2.249011738259 43e-21 glnL protein histidine kinase NtrB cds-NP_415054.1 19.64457867772 02 1.5114668358808 0.000537400002 117821 0.001962196710 12352 ybcF putative carbamate kinase cds-NP_418198.1 1063.266353422 84 1.51245774371108 7.131839939740 51e-23 3.096756773834 38e-21 mioC flavoprotein MioC cds-NP_415097.1 4805.989202823 66 1.52107391352721 4.846148360695 78e-42 1.341474443095 1e-39 ompT omptin family outer membrane protease OmpT cds-NP_415211.2 92.17033505302 4 1.52276955473755 2.727288826799 44e-07 1.938870339308 94e-06 ybfE ribbon-helix-helix domain- containing protein YbfE cds-NP_414993.1 399.8376879697 56 1.52561353207227 7.278843100927 51e-21 2.732033567288 81e-19 hha hemolysin expression-modulating protein Hha cds-NP_416903.1 10.75910637642 74 1.5575994893727 0.003235518067 27715 0.009675968615 78022 yfeN putative outer membrane porin YfeN cds-NP_415507.2 13.56824978534 35 1.5608631365583 0.002257668547 30505 0.007096674234 21863 gfcA threonine-rich inner membrane protein GfcA cds-NP_414924.1 162.5383638944 77 1.56354344574511 2.148652796037 52e-15 4.782102127462 41e-14 aroM protein AroM cds-NP_416646.1 156.8730078237 44 1.56525014156797 5.479538459918 4e-12 8.198944540195 48e-11 yohJ putative 3-hydroxypropanoate export protein YohJ cds-YP_002791259.1 21.47692468782 8 1.57119199262285 0.000151015685 762786 0.000614185924 925051 ilvX uncharacterized protein IlvX cds-NP_414769.1 12.29142583880 67 1.58194348672882 0.005738774752 0645 0.015945441265 3034 yafP putative N-acetyltransferase YafP cds-NP_414684.1 73.93551205599 71 1.58409216673939 4.493939782978 55e-10 5.224057558743 3e-09 folK 2-amino-4-hydroxy-6- hydroxymethyldihydropteridine diphosphokinase cds-NP_415297.1 164.5303195813 87 1.59868032683366 9.183708116132 49e-10 1.027137455715 93e-08 bioF 8-amino-7-oxononanoate synthase cds-NP_416220.1 11.04744892277 67 1.6012865719542 0.008508542284 35906 0.022457886637 322 ydiE PF10636 family protein YdiE cds-NP_418340.1 9.839581373527 08 1.61616236216875 0.014221359890 1733 0.035129059092 9044 rhaB rhamnulokinase cds-NP_416649.1 91.39323008657 08 1.63069349412122 2.633489958828 13e-11 3.679409156987 32e-10 sanA DUF218 domain-containing protein SanA cds-NP_415633.1 13.27676564564 84 1.63077935176162 0.002820495361 09318 0.008615154451 22874 ycfT inner membrane protein YcfT cds-NP_414573.1 673.4300652205 16 1.63644396610209 1.560855559850 32e-20 5.713247334361 21e-19 carA carbamoyl-phosphate synthetase small subunit cds-NP_417708.1 52.63640027498 84 1.63690331937343 1.484005472046 71e-10 1.872552773702 24e-09 aaeA aromatic carboxylic acid efflux pump membrane fusion protein cds-NP_415006.1 10418.01854438 76 1.64705959507874 9.144040904736 4e-25 4.821304424652 09e-23 htpG chaperone protein HtpG cds-NP_416707.4 18.93053048349 64 1.67984943238161 1.891725379295 27e-05 9.542655700340 25e-05 napB periplasmic nitrate reductase cytochrome c550 protein cds-NP_417214.1 7.511245656732 79 1.6822623253462 0.021093589581 9821 0.048964102860 9008 pphB phosphoprotein phosphatase 2 cds-NP_416242.6 65.88491953164 94 1.68856310197779 3.847003670248 37e-11 5.242578232470 77e-10 ydjM inner membrane protein YdjM cds-NP_416808.1 40.70327276883 25 1.71179697616877 7.793099074605 91e-08 6.163506393112 43e-07 rpnB recombination-promoting nuclease RpnB cds-NP_416778.2 51.27857766603 5 1.72176538052024 1.492909298471 7e-07 1.113147354028 81e-06 yfbP uncharacterized protein YfbP Supplementary Material 239 cds-NP_417610.1 9.234983398909 41 1.75258132047211 0.017480304701 5254 0.041691044438 91 agaI putative deaminase AgaI cds-NP_414768.1 47.40810799447 06 1.77151344495762 1.117131915063 58e-06 7.276143017377 34e-06 yafO ribosome-dependent mRNA interferase toxin YafO cds-NP_416062.2 21.52596879825 84 1.77755342965181 0.006983543612 7837 0.018940670337 4274 ydfK cold shock protein YdfK cds-YP_001165332.1 4.935429242969 8 1.79251108444304 0.021337891802 3103 0.049479331304 9385 yjbT PF17089 family protein YjbT cds-NP_416647.1 543.5021968253 51 1.82762085707818 5.954697374158 21e-15 1.226667659076 59e-13 yohK putative 3-hydroxypropanoate export protein YohK cds-NP_415257.1 5422.091361455 16 1.82776071729034 4.318148212444 74e-07 2.997661196382 09e-06 sucD succinyl-CoA synthetase subunit alpha cds-NP_415256.1 8848.675099583 82 1.83223524382477 1.073662619349 75e-07 8.284410698780 6e-07 sucC succinyl-CoA synthetase subunit beta cds-NP_417289.2 17.03062787607 94 1.83799327808656 3.436811649114 74e-05 0.000165093696 246521 ygdI DUF903 domain-containing lipoprotein YgdI cds-NP_418200.1 4993.314500759 5 1.85456662111002 5.960448638980 73e-19 1.912958479858 38e-17 asnA asparagine synthetase A cds-YP_588452.1 8.283356601710 5 1.86457403741711 0.005974787952 05406 0.016538959899 7796 rzoR putative prophage outer membrane lipoprotein RzoR cds-NP_418178.1 101.9515860857 31 1.86553662057153 1.088663245428 05e-07 8.385546980871 03e-07 bglF beta-glucoside specific PTS enzyme II/BglG kinase/BglG phosphatase cds-NP_418441.1 26.81399071589 53 1.87329442009067 4.205318623512 06e-06 2.422022910732 76e-05 arpA regulator of acetyl CoA synthetase cds-NP_418012.1 34841.40606166 52 1.93124288388787 1.824062585075 04e-05 9.241677611534 46e-05 cspA cold shock protein CspA cds-NP_416877.1 30.56633160617 53 1.9448270081038 2.170879259660 72e-08 1.926818485177 82e-07 ypdI colanic acid synthesis putative lipoprotein YpdI cds-NP_416256.2 10.83360515263 15 1.95966017845059 0.001377133589 4381 0.004544951317 15451 ves HutD family protein Ves cds-NP_416075.1 671.9271446626 15 2.06662997516882 7.597520236023 95e-15 1.557843385432 87e-13 cspB cold shock-like protein CspB cds-YP_009518761.1 34.13499990501 9 2.09061057493477 0.000142778239 579607 0.000587153967 59339 ymcF protein YmcF cds-NP_416335.4 100.3404221915 42 2.10067455396216 1.201546637674 06e-17 3.346949722175 1e-16 mntP Mn(2(+)) exporter cds-NP_415893.2 28.07718439716 09 2.11189281019349 0.012871447233 8936 0.032171354288 3265 ynaE uncharacterized protein YnaE cds-NP_417419.1 99.82983432080 4 2.12041539693794 3.103123445595 39e-12 4.822362715979 64e-11 yggI protein YggI cds-NP_415510.1 351.5100485675 8 2.13197099102969 1.709996915747 89e-05 8.695265602580 25e-05 cspG cold shock protein CspG cds-NP_416404.1 7.398522387900 37 2.14382656784402 0.008569775798 54815 0.022579141589 3931 motA motility protein A cds-YP_009518818.1 21.98190121158 58 2.15980133017082 8.293601792440 38e-08 6.512830201900 43e-07 yqiD protein YqiD cds-YP_009518779.1 43.29010439386 31 2.28841867330812 0.001187435247 74092 0.003996315130 88489 ynaM protein YnaM cds-YP_009518791.1 40.57072597008 76 2.32354809782248 8.534673067464 22e-06 4.608069869201 72e-05 ynfS protein YnfS cds-NP_415299.1 54.77169165425 99 2.36557925484608 1.018372030805 98e-15 2.411962419486 46e-14 bioD dethiobiotin synthetase cds-YP_010051187.1 13.37409804699 16 2.46316291581668 6.970665880457 91e-06 3.830406846718 13e-05 mdtU protein MdtU cds-NP_415679.1 5.057430647547 49 2.5476157217157 0.010597483073 3955 0.027241005532 2511 ycgX DUF1398 domain-containing protein YcgX cds-NP_416076.1 27.67830259296 54 2.58323843472484 6.639112737646 e-06 3.672417568118 23e-05 cspF cold shock-like protein CspF Supplementary Material 240 cds-YP_010051199.1 24.46398060727 47 2.59125485407825 4.874227835788 38e-09 4.829520153178 24e-08 yghF putative type II secretion system C-type protein YghF cds-YP_026189.1 1233.752131885 17 2.63534562036893 3.136819814673 02e-62 2.315495826531 14e-59 yghJ putative lipoprotein YghJ cds-NP_415086.1 3.842130974781 42 2.67785175475451 0.017686592045 0618 0.042069772377 8619 essD putative phage lysis protein cds-NP_417446.4 50.23042037861 56 2.74275063346281 1.558765458763 37e-14 3.082041168242 39e-13 pppA prepilin peptidase cds-NP_415506.1 6.472748132001 35 2.81448121050485 0.001370790690 51825 0.004530770125 60101 gfcB lipoprotein GfcB cds-NP_415511.1 17.92039650075 79 2.91890168472461 0.000293366187 335756 0.001127880940 72054 ymcE protein YmcE cds-NP_416837.1 4.895565727119 67 2.91904103909601 0.013327228357 0102 0.033138679932 1514 yfcQ putative fimbrial protein YfcQ cds-YP_009518755.1 2.610625363053 52 3.00343209921787 0.019718301963 5196 0.046183162028 7827 tfaD putative tail fiber assembly protein TfaD cds-YP_588474.1 6.114890429299 78 3.09342751292085 0.000520662915 757265 0.001905798391 64374 ghoT toxin of the GhoTS toxin-antitoxin system cds-NP_417941.1 19.35419292973 96 3.20163725734292 5.182842990070 73e-07 3.569955148215 13e-06 yhhI putative transposase cds-NP_417729.1 6.983882354189 38 3.30081181916733 0.000868893051 529721 0.003015930505 66233 yhdU DUF2556 domain-containing protein YhdU cds-YP_588478.1 4.357965276438 71 3.5138201211375 0.003646531381 41875 0.010716948319 4102 yjjZ DUF1435 domain-containing protein YjjZ cds-NP_415872.2 3.693415097400 92 3.73973720127324 0.004534017287 77206 0.012972327240 0145 ydaF DUF1391 domain-containing protein YdaF cds-NP_415090.2 1.709846115818 21 3.80131019372962 0.019345718114 0143 0.045454740332 6097 ybcV DUF1398 domain-containing protein YbcV cds-NP_417445.1 6.236953631470 38 3.99602037378283 0.001000365704 7311 0.003439650986 24402 yghG lipoprotein YghG cds-NP_416774.2 2.139213662055 67 4.09513182323563 0.008091822874 20843 0.021511814831 8542 yfbL putative peptidase YfbL cds-NP_416244.2 3.061229871938 06 4.1075469612904 0.003902153267 41303 0.011370155803 5344 ydjO protein YdjO cds-NP_415509.1 20.58657693522 4.15346393752686 1.067085936267 93e-06 6.980980224122 07e-06 cspH CspA family protein CspH Supplementary Material 241 Supplementary Table S8. Sequences of all integron cassette 5’UTRs used in this work. GTT crossover point is marked in blue, and GFP start codon in green. Related to Figure 50. Table from 107 ARC 5’ UTR Sequence aacA1 GTTAGGGCGACGCCGCTAATG aacA2 GTTAGGCGTCATG aacA3 GTTAGGCAGCACAGAGCGACCATTTCATG aacA4 GTTAGGCATCACAAAGTACAGCATCGTGACCAACAGCAACGATTCCGTCACAATG aacA5 GTTAGGCAGCACGGAGACACTTCAGCATG aacA7 GTTAGGCACCAATG aacA8 GTTAGGCAGCACAAACTCCGTCCTCATG aacA16 GTTGGGCTGATTGATTTGTTTGTTCTAGCATTACCTATATG aacA17 GTTGGGCTGATTGATTTGTTTGTTCTAGTATTACCTATATG aacA27 GTTAGGCCCGCACGGAATCAACATCTCATG aacA28 GTTAGCCGGACGCTGCGCGCGAAGAGGTTTTATG aacA29 GTTAGACGGCTATG aacA30 GTTAGGCTGGCGCGCTTCGCGCGGAAGACTTTATGGCTACTCGGAGACCTTAAATG aacA31 GTTAGGCAGCACAAAGACCGTTCTCATG aacA32 GTTAGGCAGCACAAAAGGACCGTCCCATG aacA34 GTTAGAAGGCCCAGGCTATG aacA35 GTTAGGCAGCACAGGGCCACCTTCTTATG aacA37 GTTAACCGCGGCTATG aacA38 GTTAGGCAGCACATAACCACCGTCACACCATG aacA39 GTTAGCCGGACGCTTCGCGCAAAGAGGTATTATG aacA40 GTTAGGCAGCACAGTCCAGACTCCGCATG aacA42 GTTAGGCTGACGCGCTTCGCGCGGAAGACTTTATGGCTACTCGGAGACTTTGAATG aacA43 GTTAGCCAGACGCTTCGCGCCGAGGACAAATG aacA44 GTTAGGCAGCACAAGACCACCTGTTCATGCCCGCGAACGAAAACACCGTAACCCTACGTCTGATGACTGA GCACAATTGGTGATTAAATG aacA45 GTTAAAAGGCTCAGCCAATG aacA46 GTTAGGGCGACGCCGCATTCGCGGCGCGTGAAGAAAGAGGATCTTATG aacA47 GTTATG aacA48 GTTAGGTCCCACTAAACCTGCACCGAGCATG aacA49 GTTAGCTTGACGCTTCGCGCAGAGGAGAGTTTCAATG aacA50 GTTAGACAGCACAAAGACAATTCTCATG aacA51 GTTAGGCCACAAGGAACCGTCCCAGTATG aacA52 GTTAGGCAGCACAAGATG aacA54 GTTAGGCCGCACAAAATCAACGCCTTATG aacA56 GTTAGCCGGACGCTTCGCGCAGGAGTAAGAATG aacA59 GTTAGGCAGCACAGAAGCCGCATCCCATG aacA61 GTTAGGCAGCACAGGGCCACCGCTTATG aacA64 GTTAGCCGGACGCCTTCGGCGCTAGGAATAAAATG aacAX GTTATGCATACAAATCATCACCGTGATTTACTCTTACCGGAAAGCTGAAGAAACAGATAGAGAAGCCATCT ACCAAATG aacC1 GTTAGGTGGCTCAAGTATG aacC2 GTTAGGTGGCTCAATG aacC3 GTTAGGCAGCAGCAGCTAAGATG aacC4 GTTAGGTGGCTCACGTATG aacC5 GTTAGGCATCAGGAGCAGACGAGTGTCAGTCGAAATCATCCATCTCACTGGAAACGATGTTGCGATG aacC6 GTTAGGTGGCTCAATG aacC11 GTTAGGTGGCTCACGTATG aacC13 GTTAGGCATTAGGAGCCGATGAATG Supplementary Material 242 aadA1 GTTAAACATCATG aadA2 GTTAGACATCATG aadA4 GTTAGGCATCTTCATG aadA5 GTTAGGCATCATG aadA6 GTTAGACATCATG aadA7 GTTAGACATCATG aadA9 GTTAGACATG aadA10 GTTAGACATCATG aadA11 GTTAGACATCATG aadA13 GTTAGACATCATG aadA16 GTTAGACATCATG aadA24 GTTAGACATCATG aadA28 GTTAGACATCATG aadA29 GTTAGACATCATG aadA34 GTTAGACATCATG aadB GTTAGGCCGCATG aphA15 GTTAGACCGCTATG aphA16 GTTAGCTTGACGCTCCGCGCAGGAAAGAGAAAATG blaOXA-9 GTTATGCACCTATTAAGCGCACAGCGGAGCAATG dfrA5 GTTAACCCGGAACCAAAATTGTGAAAGTATCATTAATG fosG GTTATGTTTGTTAAGGTAGATTTGTGCTCCGAGGAATG aacA1 alt GTTAGGGCGACGCCGCTATTGCGGCGCGAATACAAAGAGGAAGAGATG aacA4 alt GTTAGGCATCACAAAGTACAGCATCATG aacA43 alt GTTAGCCAGACGCTTCGCGCCGAGGACAATTGATG aacA47 alt GTTATGCATCACAGAACCACCATACCTATG aacAX alt GTTATGCATACAAATCATCACCGTGATTTACTCTTACCGGAAAGCTGAAGAAACAGATAGAGAAGCCATCT ACCAATTGTATTGCTTGGTAATG aacC5 alt GTTAGGCATCAGGAGCAGACGAATG aadA9 alt GTTAGACATGATG Supplementary Material 243 Supplementary Figure S1. Resistance characterisation of aa ARCs by agar diffusion test. Antimicrobial resistance to several beta-lactams is shown as reduction in growth inhibition halo (mm.) in comparison with the parental strain in the presence of these antibiotic discs. Dark red correlates with higher resistance (inhibition halo decrease), while light blue denotes lower resistance. Blank cells represent a variation in inhibition halo £ 5 mm. (also found when unrelated antibiotics such as ampicillin and ciprofloxacin are tested). A phylogenetic tree showing sequence homology between the encoded proteins is shown in the left side of the graph. Figure from 122. Kan am yc in To bra myc in Amika cin Gen tam ici n Stre pto myc in Apra myc in Neo myc in sat2 aacAX aphA15 aphA16 aacA49 aacA43 aacA64 aacA28 aacA56 aacA16 aacA17 aacA30 aacA42 aacA7 aacA2 aacA48 aacA29 aacA37 aacA34 aacA45 aacA4 aacA50 aacA8 aacA31 aacA51 aacA59 aacA38 aacA27 aacA54 aacA61 aacA3 aacA47 aacA35 aacA52 aacC5 aacC13 aacC3 aacC2 aacC6 aacC4 aacC1 aacC11 aadB aadA4 aadA5 aadA29 aadA7 aadA6 aadA10 aadA16 aadA34 aadA1 aadA13 aadA2 aadA28 aadA11 aadA24 Antibiotics A R C s -20 mm. -15 mm. -10 mm. -5 mm. Inhibition halo reduction Kan am yc in To bra myc in Amika cin Gen tam ici n Stre pto myc in Apra myc in Neo myc in sat2 aacAX aphA15 aphA16 aacA49 aacA43 aacA64 aacA28 aacA56 aacA16 aacA17 aacA30 aacA42 aacA7 aacA2 aacA48 aacA29 aacA37 aacA34 aacA45 aacA4 aacA50 aacA8 aacA31 aacA51 aacA59 aacA38 aacA27 aacA54 aacA61 aacA3 aacA47 aacA35 aacA52 aacC5 aacC13 aacC3 aacC2 aacC6 aacC4 aacC1 aacC11 aadB aadA4 aadA5 aadA29 aadA7 aadA6 aadA10 aadA16 aadA34 aadA1 aadA13 aadA2 aadA28 aadA11 aadA24 Antibiotics -20 mm. -15 mm. -10 mm. -5 mm. Inhibition halo reduction Supplementary Material 244 Supplementary Figure S2. Resistance characterisation of bla ARCs by agar diffusion test. Antimicrobial resistance to several beta-lactams is shown as reduction in growth inhibition halo (mm.) in comparison with the parental strain in the presence of these antibiotic discs. Dark blue correlates with higher resistance (inhibition halo decrease), while light blue denotes lower resistance. Blank cells represent a variation in inhibition halo £ 4 mm. (as observed for control antibiotic discs of kanamycin and ciprofloxacin). A phylogenetic tree showing sequence homology between the encoded proteins is shown in the left side of the graph. Figure from 122. Ampic illin Amox ici llin Amox . C lav ula nic Cefa clo r Cefo tax im e Cefo xit in Ceft az idi me Im ipe ne m Mero pe ne m Erta pe ne m Aztr eo na m OXA-2 OXA-21 OXA-46 OXA-118 OXA-20 OXA-5 OXA-129 OXA-10 OXA-198 OXA-1 OXA-9 VIM-1 VIM-2 VIM-7 IMP-2 IMP-31 BEL-1 GES-1 PBL-1 Antibiotics bl a A R C s -25 mm. -20 mm. -15 mm. -10 mm. -5 mm. Inhibition halo reduction Ampic illin Amox ici llin Amox . C lav ula nic Cefa clo r Cefo tax im e Cefo xit in Ceft az idi me Im ipe ne m Mero pe ne m Erta pe ne m Aztr eo na m OXA-2 OXA-21 OXA-46 OXA-118 OXA-20 OXA-5 OXA-129 OXA-10 OXA-198 OXA-1 OXA-9 VIM-1 VIM-2 VIM-7 IMP-2 IMP-31 BEL-1 GES-1 PBL-1 Antibiotics bl a A R C s -25 mm. -20 mm. -15 mm. -10 mm. -5 mm. Inhibition halo reduction Supplementary Material 245 Supplementary Figure S3. pMBAARCs fluorescence do not change in stationary growth phase. A) GFP fluorescence normalized to pMBA levels of each pMBA derived strain in stationary phase. B) Normalised GFP fluorescence levels of pMBAARCs both in exponential and stationary growth phases. ARCs are ordered by families according to its nomenclature. Data is expressed as the mean of three independent replicates, error bars represent the standard error of the mean (SEM). C) Correlation between pMBAARCs GFP normalised fluorescence in exponential and stationary growth phases. Pearson correlation coefficient (r) and p-value are indicated. dfr A1 2 bla OX A- 20 aa cA 54 aa cA 59 aa cA 35 aa cA 38arr 7 bla OX A- 1 dfr A2 1 qa cE Δs ul1 dfr B7 dfr A2 2 aa cA 27 ap hA 15 aa dA 16 fos M bla OX A- 10 bla IM P- 31 bla OX A- 46 aa cA 45arr 6 bla PB L-1 aa cC 11 aa cA 48 aa dA 5 aa cA 3 aa cA 61 aa dA 4 aa cA 2 qa cK bla BE L-1arr 5 dfr A2 9 aa cA 31 bla IM P- 2 bla OX A- 19 8 fos L dfr A3 4 dfr B6 qa cF dfr B1 aa dA 34 bla OX A- 2 aa cA 7 aa dA 6 qa cL aa cA 29 aa cC 4 sa t2 aa cA 64 aa cC 3 aa cC 2 aa cA X aa cC 1 qa cG dfr B5 dfr A1 4 aa cA 51 aa dA 1 fos G fos E aa dA 29 ca tB 10 dfr B9 bla OX A- 21 aa cA 42 aa cA 50 aa cA 37 bla VI M- 7 aa cC 6 dfr A5 aa cA 4 aa dA 11 aa cA 8 fos I dfr A2 5 dfr A3 5 aa dA 7 dfr A3 0 sm r2 bla OX A- 12 9 bla GE S- 1 aa dA 10 qa cE dfr B2 aa cA 17 ere A3 sm r3 dfr B3 aa cA 28 dfr A1 7 dfr A2 7 qa cH aa cA 47 bla OX A- 11 8 ca tB 6 ere A2 aa cA 52 aa cA 30 dfr A1 6 aa cA 34 qa cM dfr A1 5 bla OX A- 5 dfr A1 aa cA 16fos F bla VI M- 1 ap hA 16 dfr B8fos H ca tB 3 dfr A6 aa dA 2 aa dA 28 bla OX A- 9 fos N aa cC 5 dfr A7 aa cA 49 aa cA 56 bla VI M- 2 ca tB 2 fos K aa dA 24 ca tB 5 dfr A3 1 aa cC 13 fos C2arr 2 sm r1 aa dA 13 dfr B4 aa dB arr 8b aa cA 43 0.01 0.1 1 10 ARCs G FP fl uo re sc en ce (n or m . p M B A ) aa cA 2 aa cA 3 aa cA 4 aa cA 7 aa cA 8 aa cA 16 aa cA 17 aa cA 27 aa cA 28 aa cA 29 aa cA 30 aa cA 31 aa cA 34 aa cA 35 aa cA 37 aa cA 38 aa cA 42 aa cA 43 aa cA 45 aa cA 47 aa cA 48 aa cA 49 aa cA 50 aa cA 51 aa cA 52 aa cA 54 aa cA 56 aa cA 59 aa cA 61 aa cA 64 aa cA X aa cC 1 aa cC 2 aa cC 3 aa cC 4 aa cC 5 aa cC 6 aa cC 11 aa cC 13 aa dA 1 aa dA 2 aa dA 4 aa dA 5 aa dA 6 aa dA 7 aa dA 10 aa dA 11 aa dA 13 aa dA 16 aa dA 24 aa dA 28 aa dA 29 aa dA 34 aa dB ap hA 15 ap hA 16sa t2 arr 2 arr 5 arr 6 arr 7 arr 8b bla BE L-1 bla GE S- 1 bla IM P- 2 bla I MP -31 bla OX A- 1 bla OX A- 2 bla OX A- 5 bla OX A- 9 bla OX A- 10 bla OX A- 20 bla OX A- 21 bla OX A- 46 bla OX A- 11 8 bla OX A- 12 9 bla OX A- 19 8 bla PB L-1 bla VI M- 1 bla VI M- 2 bla VI M- 7 ca tB 2 ca tB 3 ca tB 5 ca tB 6 ca tB 10 dfr A1 dfr A5 dfr A6 dfr A7 dfr A1 2 dfr A1 4 dfr A1 5 dfr A1 6 dfr A1 7 dfr A2 1 dfr A2 2 dfr A2 5 dfr A2 7 dfr A2 9 dfr A3 0 dfr A3 1 dfr A3 4 dfr A3 5 dfr B1 dfr B2 dfr B3 dfr B4 dfr B5 dfr B6 dfr B7 dfr B8 dfr B9 ere A2 ere A3 fos C2fos E fos F fos G fos H fos I fos K fos L fos M fos N qa cE qa cE Δs ul1qa cF qa cG qa cH qa cK qa cL qa cMsm r1 sm r2 sm r3 0.01 0.1 1 10 ARCs G FP fl uo re sc en ce (n or m . p M B A ) GFP fluorescence expo. GFP fluorescence stat. 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 Correlation GFP fluorescence stat. vs. expo. GFP fluorescence expo. (norm. pMBA) G FP fl uo re sc en ce s ta t. (n or m . p M B A ) r = 0,8950 p-value <0.0001 A B C Supplementary Material 246 pMBAARC GROWTH CURVES 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 pMBA 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA2 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA3 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA4 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA7 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA8 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA16 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA17 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA27 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA28 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA29 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA30 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA31 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA34 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA35 0 5 10 15 20 25 30 35 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA37 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA38 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA42 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA43 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA45 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA47 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA48 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA49 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA50 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA51 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA52 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA54 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA56 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA59 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA61 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacA64 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacAX 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacC1 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacC2 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacC3 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacC4 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacC5 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacC6 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacC11 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aacC13 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aadA1 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aadA2 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aadA4 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aadA5 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aadA6 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aadA7 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aadA10 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aadA11 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aadA13 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aadA16 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aadB 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aphA15 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 aphA16 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 sat2 Supplementary Material 247 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 pMBA 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 arr2 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 arr5 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 arr6 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 arr7 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 arr8b 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaBEL-1 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaGES-1 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaIMP-2 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaIMP-31 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaOXA-1 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaOXA-2 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaOXA-5 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaOXA-9 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaOXA-10 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaOXA-20 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaOXA-21 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaOXA-46 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaOXA-118 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaOXA-129 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaOXA-198 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaPBL-1 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaVIM-1 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaVIM-2 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 blaVIM-7 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 catB2 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 catB3 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 catB5 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 catB6 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 catB10 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA1 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA5 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA6 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA7 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA12 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA14 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA15 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA16 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA17 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA21 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA22 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA25 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA27 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA29 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA30 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA31 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA34 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrA35 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrB1 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrB2 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrB3 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrB4 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrB5 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrB6 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrB7 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrB8 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 dfrB9 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 ereA2 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 ereA3 Supplementary Material 248 Supplementary Figure S4. Growth curves of all pMBA derivatives. Growth (OD600) was measured along 24h in MH medium supplemented with zeocin. Growth curves are represented as the mean of three independent replicates, the standard error of the mean (SEM) is represented as a shadow in lighter colour. 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 pMBA 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 fosC2 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 fosE 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 fosF 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 fosG 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 fosH 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 fosI 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 fosK 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 fosL 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 fosM 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 fosN 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 qacE 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 qacEΔsul1 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 qacF 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 qacG 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 qacH 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 qacK 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 qacL 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 qacM 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 smr1 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 smr2 0 2 4 6 8 10 12 14 16 18 20 22 24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (h) O D 60 0 smr3 Supplementary Material 249 Supplementary Figure S5. Relative abundance of each OMM12 member in vivo competitions. Relative abundances of every member of OMM12 consortia in mice before (day 0) and after (day 7 and caecum) in vivo competitions of pMBAARC DGFP (ereA2, aacA7, and blaOXA-10) vs. pMBA DGFP. OMM12 members and E. coli are represented in different colours following the figure legend pattern. 0 5 10 20 40 60 80 100 Day 0 re la tiv e ab un da nc e (% o f t ot al g en e co pi es ) 0 5 10 20 40 60 80 100 Day 7 re la tiv e ab un da nc e (% o f t ot al g en e co pi es ) E.coli YL45 KB1 YL32 YL31 I49 I46 YL44 YL27 I48 YL58 0 5 10 20 40 60 80 100 Day 7 caecum re la tiv e ab un da nc e (% o f t ot al g en e co pi es ) ereA2 aacA7 blaOXA-10 Supplementary Material 250 Supplementary Figure S6. Volcano plots showing DE genes of pMBA and pMBA derivatives. A) pMBA DE genes in comparison with E. coli MG1655. B) pMBAereA3 DE genes in comparison with pMBA. C) pMBAdfrA31 DE genes in comparison with pMBA. D) pMBAdfrA21 DE genes in comparison with pMBA. Gene expression was measured by RNA-seq in every strain. Dotted-lines represent significance and fold change thresholds (padj <0.05 and fold change >2 respectively). Genes with a similar transcription in both strains are coloured in blue, while upregulated and downregulated genes are represented in green and red respectively. Data is represented as the mean of three independent replicates. -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 0 5 10 15 20 log2 (FoldChange) -lo g 10 (p ad j) pMBAdfrA21 vs. pMBA -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 0 50 100 150 200 log2 (FoldChange) -lo g 10 (p ad j) pMBAdfrA31 vs. pMBA -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 0 50 100 150 log2 (FoldChange) -lo g 10 (p ad j) pMBAereA3 vs pMBA -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 0 20 40 60 80 log2 (FoldChange) -lo g 10 (p ad j) pMBA vs MG1655 A B C D Supplementary Material 251 Supplementary Figure S7. Non-corrected recombination frequency of each ARC. Graph showing recombination rates of all ARCs present in pMBA recombination collection previous to integron-dependent checking and correction. Bars represents the mean of at least 3 biological replicates and error bars correspond to the standard error of the mean (SEM). aa dA7 Δ int qac EΔ su l1 dfrA 5 dfrA 16 dfrA 15 dfrA 35 dfrA 25 fosN dfrA 14 fosF aa dA4 dfrA 12 dfrA 34 dfrA 30 fosK dfrA 29 ap ha1 6 bla OXA-5 blaI MP31 aa dA16 dfrA 27 qac K sm r2 bla OXA-1 aa dA10 ere A3 aa dA13 qac G ap ha1 5 ca tB 6 dfrB 6 bla OXA-2 bla OXA-12 9 bla OXA-21 aa dA5 fosG aa cC 11 bla VIM -7 ca tB 2 arr 8b aa cC 13 dfrB 3 aa dB arr 2 bla OXA-46 aa dA11 aa dA24 sm r3 dfrB 5 dfrA 7 aa dA28 aa cC 6 fosC 2 dfrB 8 bla OXA-19 8 dfrB 7 dfrA 17 ca tB 3 dfrB 2 dfrB 1 bla OXA-20 ca tB 5 bla OXA-10 aa cA 49 aa cA 16 aa dA2 bla OXA-9 ca tB 10 bla PBL-1 ere A2 fosL dfrB 4 qac L dfrA 1 aa dA34 fosM qac E bla OXA-11 8 bla VIM -1 fosH dfrA 31 aa cC 2 bla VIM -2 dfrB 9 qac H qac MfosI aa dA1 arr 6 arr 5 aa cA 30 aa cA 42arr 7 dfrA 22sa t2 bla IM P-2 bla BEL-1 qac F sm r1 aa cC 5 dfrA 6 aa cA 38 aa cA 43 aa cC 3 fosE dfrA 21 aa cA 3 aa cA 27 aa cC 1 bla GES-1 aa cA 54 aa dA29 aa cA 17 aa cA 56 aa cA 28 aa cA 47 aa dA6 aa cA 48 aa dA7 aa cA 35 aa cA 4 aa cC 4 aa cA 8 aa cA 59 aa cA 2 aa cA 31 aa cA 34 aa cA 64 aa cA 45 aa cA 29 aa cA 51 aa cA 37 aa cA X aa cA 50 aa cA 61 aa cA 7 aa cA 52 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 ARCs R . F . Supplementary Material 252 Supplementary Figure S8. Cassette expression correlates with the presence of SD-like sequences. Correlation between GFP fluorescence and the number of matches to AGGAGG at a distance of A) 6 bp from the start codon (positions -7 to -12); and B) 6 or 7 bp from the start codon (positions -7 to -13). Curves were fitted using a nonlinear (semilog) regression. 5’-UTRs that are too short to encode an RBS at these positions were excluded from the analysis. Related to Figure 50. Figure modified from 107. A B Supplementary Material 253 Supplementary Material 254 Supplementary Material 255 Supplementary Material 256 Supplementary Figure S9. Antibiotic concentrations used do not affect growth. Growth curves of all constructions in media used to deliver “riboswitch” induction experiments. Curves are the mean of three biological replicates. The order of 5´UTRs is conserved among panels. Figure modified from 107. Related to Figures 51, 53, and 54. Supplementary Material 257 Supplementary Figure S10. Alternative 5´UTRs are not induced by aminoglycosides. A) Sequence of main alternative 5´UTRs used in case of dubious annotations. B) Fluorescence of main and alternative sequences fused to the GFP gene. C) Induction ratios of main and alternative 5´UTRs for all Ag. Induction is not observed for any sequence. Figure from 107. Supplementary Material 258 Supplementary Figure S11. Results from statistical models applied to induction assays. Change in fluorescence readings in the presence of A) aminoglycosides and B) all antibiotics, as determined by a linear mixed regression model considering gene, batch, and sample as random effects. C) Expected change in florescence readings after the addition of antibiotics is estimated by a linear mixed model including genes and batches as random effects. Related to figures 51 and 53. Figure from 107. Supplementary Material 259 Supplementary Figure S12. Hierarchical clustering tree of all attC sites present in ARCs. Phylogenetic relation between nucleotidic sequences of all attC sites harboured in ARCs. Tesis Alberto Hipólito Carrillo de Albornoz PORTADA ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF ABBREVIATIONS RESUMEN/ SUMMARY RESUMEN SUMMARY INTRODUCTION OBJECTIVES MATERIALS AND METHODS RESULTS PART 1. EVOLUTIONARY DYNAMICS OF INTEGRON RESISTANCE CASSETTES PART 2. A DEEPER LOOK INTO THE INTEGRON MODEL DISCUSSION CONCLUSIONS BIBLIOGRAPHY ANNEX. SUPPLEMENTARY MATERIAL