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A new class of black hole solutions of the five-dimensional minimal gauged supergravity is presented.
They are characterized by the mass, the electric charge, two equal magnitude angular momenta and the
magnitude of the magnetic potential at infinity. These black holes possess a horizon of spherical topology;
however, both the horizon and the sphere at infinity can be arbitrarily squashed, with nonextremal
solutions interpolating between black strings and black branes. A particular set of extremal configurations
corresponds to a new one-parameter family of supersymmetric black holes. While their conserved charges
are determined by the squashing of the sphere at infinity, these supersymmetric solutions possess the same
horizon geometry.
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I. INTRODUCTION

There has recently been considerable interest in solutions
of the five-dimensional gauged supergravity models,
mainly motivated by the AdS/CFT correspondence [1,2].
The black holes (BHs) play a central role in this context,
providing the thermodynamic saddle points of the dual
four-dimensional theory.
The Schwarzschild-anti–de Sitter (AdS) BH provides

the simplest example, possessing a spherical horizon and a
single global charge: the mass. As expected, the inclusion
of other charges (e.g. the angular momenta) generically
deforms the horizon shape. Despite the existence of a
number of partial results, the study of the horizon geo-
metrical properties (in particular, its deformation) in con-
junction with other BH properties is a rather poorly
explored subject, presumably due to the complexity of
the problem. However, this study is greatly simplified by
restricting to BHs with a spherical horizon topology which
possess two equal-magnitude angular momenta. Then one
can use a cohomogeneity-1 ansatz which factorizes the
angular dependence of the metric and the gauge potential
and leads to a homogeneous squashing of the horizon
geometry. Then, without any loss of generality, the induced
horizon metric can be written as

ds2H ¼ L2
H

4
ðσ21 þ σ22 þ ϵ2Hσ

2
3Þ; ð1Þ

with LH > 0 and the left invariant one-forms σ1 ¼
cosψdθ þ sinψ sin θdϕ, σ2 ¼ − sinψdθ þ cosψ sin θdϕ,
σ3 ¼ dψ þ cos θdϕ (where coordinates θ, ϕ, ψ are the

Euler angles on S3, with the usual range). The deformation
parameter ϵH gives the ratio of the S1 and the round S2 parts
of the (squashed S3-) horizon metric, while the horizon area
is AH ¼ 2π2L3

HϵH.
A black hole in minimal gauged supergravity with the

horizon geometry (1) has been constructed in closed form
by Cvetič et al. in Ref. [3]. This solution is characterized by
three nontrivial parameters, namely the massM, the electric
charge Q, and a rotation parameter J. An extension which
possesses an extra parameter Φm associated with a nonzero
magnitude of the magnetic potential at infinity has been
reported in the recent work [4].
These solutions possess a conformal boundary geometry

which is the static Einstein universe. However, a remark-
able property of the AdS/CFT correspondence is that it
does not constrain the way of approaching the boundary of
spacetime, asymptotically locally AdS (AlAdS) solutions
being also relevant. An interesting case here corresponds to
configurations whose conformal boundary metric is the
product of time and a squashed sphere,

ds2B ¼ L2

4
ðσ21 þ σ22 þ ϵ2Bσ

2
3Þ; ð2Þ

with ϵB > 0 being a squashing parameter and L the AdS
length scale.
The main purpose of this work is to investigate the

correlation between the squashing parameters ϵB and ϵH
and, more general, how the BH properties are affected by
the deformation of the boundary sphere. A new class of BH
solutions is reported in this context. Possessing arbitrary
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values of the squashing parameters ϵH and ϵB, the generic
solutions interpolate between black strings and black
branes. A particular limit describes a new one-parameter
family of supersymmetric (SUSY) BHs, which possess
special properties.

II. GENERAL SOLUTIONS

In the minimal case, the bosonic sector of the d ¼ 5
gauged supergravity consists of the graviton and an Abelian
vector only, with action

I ¼ 1

16π

Z
M

d5x
ffiffiffiffiffiffi
−g

p �
Rþ 12

L2
− FμνFμν

−
2

3
ffiffiffi
3

p εμναβγAμFναFβγ

�
; ð3Þ

where R is the curvature scalar, A is the gauge potential and
F ¼ dA is the field strength tensor.
The appropriate ansatz for the metric and the gauge

potential is given by [4,5],

ds2 ¼ F1ðrÞdr2 þ
1

4
F2ðrÞðσ21 þ σ22Þ

þ 1

4
F3ðrÞðσ3 − 2WðrÞdtÞ2 − F0ðrÞdt2;

A ¼ a0ðrÞdtþ akðrÞ
1

2
σ3: ð4Þ

The BHs in [3,4] can be written in this form and have
ϵB ¼ 1, while ϵH presents a complicated dependence on the
global parameters (e.g. with ϵH > 1 for Q ¼ Φm ¼ 0).
We have found that these BHs possess a generalization

with a squashed Einstein universe in the boundary metric.
As such, apart from fM; J;Q;Φmg the new BHs have an
additional free geometric parameter, the boundary squash-
ing ϵB. These asymptotics are compatible with the follow-
ing approximate expression of the metric functions at
infinity [6] (which fixes the boundary conditions imposed
in the numerics),

F0 ∼
�
r
L

�
2

þ 1

9
ð13 − 4ϵ2BÞ þ � � � ;

F−1
1 ∼

�
L
r

�
2

−
1

9
ð14 − 5ϵ2BÞ

�
L
r

�
4

þ � � � ;

F2 ∼ r2 −
5L2

4
ð1 − ϵ2BÞ þ � � � ;

F3 ∼ ϵ2Br
2 þ 13L2ϵ2B

9
ð1 − ϵ2BÞ þ � � � ;

W ∼ −
ĵ
r4

þ � � � ; ð5Þ

while the U(1) potential behaves as

ak ∼ −2Φm þ
�
μ − 4ΦmL2ϵ2B log

�
L
r

��
1

r2
þ � � � ;

a0 ∼ V0 þ q=r2 þ � � � : ð6Þ

The asymptotically flat solutions necessarily haveΦm ¼ 0;
however, an A(l)AdS spacetime effectively acts like a box
[7–10]. This allows for the existence of a nonvanishing
asymptotic magnetic field, Fθϕ → Φm sin θ, such that the
parameter Φm can be identified with the magnetic flux at
infinity through the base space S2 of the S1 fibration [4],

Φm ¼ 1

4π

Z
S2∞

F: ð7Þ

The global charges of the solutions are encoded in a set
of free coefficients which enter their asymptotic expansion,
being computed by using the standard holographic renorm-
alization procedure [11–13]. One finds e.g. the angular
momentum and the (holographic) electric charge,

J ¼ πĵϵ3B
4

; Q ¼ −π
�
qϵB þ 16

3
ffiffiffi
3

p Φ2
m

�
: ð8Þ

The solutions possess a horizon located at r ¼ rH > 0,
where, restricting to the nonextremal case, F0 ¼
f0ðr − rHÞ2 þ � � �, while the remaining functions are non-
zero. The Hawking temperature is TH ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0=F1ðrHÞ

p
,

while the horizon metric is given by (1), with L2
H ¼ F2ðrHÞ

and ϵ2H ¼ F3ðrHÞ=F2ðrHÞ.
The BHs are obtained numerically, by solving the field

equations subject to the boundary conditions described
above [14], the results being displayed in units with
L ¼ 1. All configurations reported here (including the
SUSY ones) are regular on and outside the horizon.
Also, they do not present other pathologies [such as closed
timelike curves (CTCs)].
The most remarkable feature of these BHs is that they

interpolate between two classes of solutions with different
topologies: black strings and black branes. Starting with the
vacuum static case [15], we exhibit in Fig. 1 the domain of
existence of the BHs in the ðAH; THÞ-plane, which shows
that the ϵB ¼ 1 pattern is generic. Their horizon deforma-
tion is also displayed, and one can see that the parameters
ϵH and ϵB are correlated, with ϵH=ϵB → 1 for large horizon
size (for instance this happens in Fig. 1 also in the ϵB ¼ 5
curve for very large values of the area, which are not
displayed in the range shown). However, the small BHs are
always close to sphericity, with a well-defined LH → 0
limit. This is a smooth, horizonless geometry, which can be
viewed as a deformation of the globally AdS spacetime,
providing a natural background for a model with ϵB ≠ 1.
Moreover, the ratio ϵH=ϵB is well defined as ϵB → 0,
depending only on the value of LH. Then, after the
rescaling ψ → ψ̄=ϵB, one finds that in the ϵB → 0 limit,
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the solutions become AdS black strings. For such con-
figurations, both the boundary and the horizon metric
are the direct product S2 × S1, with an arbitrary periodicity
for S1 as parametrized by ψ̄ [e.g. ds2B ¼ L2

4
ðdθ2þ

sin2θdϕ2 þ dψ̄2Þ]. These solutions were originally found
in [17] (see also [18,19]), and provide natural AlAdS
generalizations of the (uniform) black strings in d ¼ 5

Kaluza-Klein theory. We also notice that ϵ2B can be
continued to negative values, which results in a different
set of solutions with CTCs.
The infinitely squashed limit is also well defined. After

taking ϵB → λN together with rescaling the coordinates,
r → λr, θ → Θ=λ, ψ → −Ψ=ðNλ2Þ − ϕ, t → t=λ, one finds
that λ → ∞ results in an AlAdS twisted black brane [20],
with a conformal boundary metric which is the product of
time and

ds2B ¼ L2

4

�
dΘ2 þ Θ2dϕ2 þ

�
dΨþ N

Θ2

2
dϕ

�
2
�
: ð9Þ

The same type of line element is found for the horizon
metric (although with different factors for the two distinct
parts),

ds2H¼L2
H

4

�
dΘ2þΘ2dϕ2þmH

�
dΨþN

Θ2

2
dϕ

�
2
�
: ð10Þ

In the generic spinning magnetized case, the relation
between the horizon and boundary deformations is more
intricate. Depending on the values of M, J, Q and Φm,
one finds e.g. solutions with a large ϵB and arbitrarily small
ϵH. Similarly, there are spinning magnetized BHs whose
horizon is a round sphere, ϵH ¼ 1, while the value of ϵB is
very large (or very small). Some of these features can be
seen in Fig. 2, where the ðϵB; ϵHÞ-diagram is shown vs TH

for a particular set of solutions. In this figure it can be
seen that the black holes reach a finite value of ϵH as we
approach extremality ðTH → 0Þ. This is always the case as
long as ϵB is different from 0. On the other hand, in this
figure we can see that for nonextremal black holes (with
TH ≠ 0), decreasing the value of ϵB to 0 also makes ϵH go
to 0. This indicates the presence of a regular string limit,
with ϵH=ϵB being finite (note e.g. the linear relation
between ϵB and ϵH for large enough values of the temper-
ature). In Fig. 3 we show the area AH as a function of ϵH
and TH. In this figure we can see that the ϵH → 0 limit of
nonextremal solutions causes the area to go up to infinity
(see how the surface bends up on the right side of the
figure). Actually this limit has a finite AH=ϵB limit,
indicating that the density AH=ϵB of the limiting string
is finite. We have verified numerically these features by
directly constructing the string configurations and compar-
ing the corresponding charge densities (such asM=ϵB, etc.).
Therefore the black string limit is well defined for a

part of the parameter space only (for example, close to
extremality the correlation between ϵH and ϵB is lost,
without a smooth black string limit in the extremal case).
Nevertheless, the infinite squashing limit is well behaved,
resulting in a family of charged and magnetized black
branes with the same conformal boundary metric as in the
static vacuum case [21].
Let us mention that, unsurprisingly, the squashed spin-

ning and magnetized BHs share some common features
with the ϵB ¼ 1 solutions in [3,4]. For example, their
thermodynamics is qualitatively similar to that case, the
BHs with a large enough boundary magnetic field

FIG. 1. The ðTH; AHÞ-domain of existence of static vacuum
black holes with a deformed sphere at infinity. The inset shows
the horizon deformation ϵH for several values of the boundary
squashing ϵB. FIG. 2. The ðTH; ϵB; ϵHÞ-domain of existence is shown for a

particular set of black holes. The ðQ; J;ΦmÞ-dependence of the
boundary squashing parameter ϵB is imposed such that the
extremal limit corresponds to supersymmetric solutions [e.g.
Φm ¼ Lðϵ2B − 1Þ=2 ffiffiffi

3
p

]. Color curves are isolines of constant ϵB,
and grey curves are isolines of constant ϵH .
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becoming thermodynamically stable for the full range
of TH; see Fig. 3. Also, for any ϵB > 0, the zero horizon
size limit of the solutions with Φm ≠ 0 is nontrivial and
describes a one-parameter family of spinning charged
(nontopological) solitons. Such solutions possess no hori-
zon, with the size of both parts of the horizon metric
vanishing as rH → 0 (while grr and gtt remain nonzero).
Interestingly, for a given ϵB, the solitons form a one-
parameter family of solutions, most of their properties
being determined by Φm. For example, the following
relation holds,

J ¼ ΦmQ; with Q ¼ −
8πΦ2

m

3
ffiffiffi
3

p ; ð11Þ

as implied by the existence of two first integrals of the
system [21]. Although no similar expression exists for M,
the relation

M ¼ 3πL2

32

�
1þ 32ffiffiffi

3
p Φm

L
ðϵ2B − 1Þ − 64

3

Φ2
m

L2
ϵ2B

�
ð12Þ

provides a good fit for the mass of the solutions with ϵB
close to 1 and a small boundary magnetic field.

III. SUPERSYMMETRIC BLACK HOLES

As found in Ref. [22], a particular set of ϵB ¼ 1 BHs [3]
preserves one quarter of the supersymmetry. Then it is
natural to inquire if these special configurations survive
when deforming the boundary geometry according to (2).
To address this issue, we use the framework proposed
in [22] and consider a line element,

ds2 ¼ −f2ðρÞðdtþΨðρÞσ3Þ2 þ
1

fðρÞ ds
2
B;

with ds2B ¼ dρ2 þ a2ðρÞðσ21 þ σ22Þ þ b2ðρÞσ23; ð13Þ

and a U(1) potential,

A ¼
ffiffiffi
3

p

2

�
fðρÞdtþ

�
fðρÞΨðρÞ þ L

3
pðρÞ

�
σ3

�
: ð14Þ

All functions which enter the above ansatz are determined
by aðρÞ and its derivatives [22], aðρÞ being the solution of a
sixth order equation,

�
∇2f−1 þ 8L−2f−2 −

L2g2

18
þ f−1g

�0
þ 4a0g

af
¼ 0; ð15Þ

where∇2 is the Laplacian for ds2B, g¼−a000
a0 −

3a00
a − 1

a2þ
ð4a0Þ2
a2 ,

and f−1 ¼ L2

12a2a0 ð4ða0Þ3 þ 7aa0a00 − a0 þ a2a000Þ. Any sol-
ution of this equation corresponds to a configuration which
preserves (at least) one quarter of the supersymmetry.
Without any loss of generality, the horizon is located

at ρ ¼ 0, with a Taylor series expansion of the solution
aðρÞ ¼ L

P
k≥1αkðρLÞk. Combining this expansion with the

sixth order Eq. (15), one finds α1 ≠ 0, α2 ¼ 0, together
with the constraint

ð11α21 − 8Þα4 ¼ 0: ð16Þ

The choice α4 ¼ 0 corresponds to the exact solution
found by Gutowski and Reall in Ref. [22], with
aðρÞ ¼ αL sinhðρ=LÞ, where α1 ¼ α > 1=2. These BHs
possess a horizon with LH ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4α2 − 1Þ=3

p
and ϵH ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 þ 3=4
p

> 1, while ϵB ¼ 1 and Φm ¼ 0.
However, the condition (16) can also be satisfied by

taking α1 ¼ 2
ffiffiffiffiffiffiffiffiffiffi
2=11

p
, α4 ≠ 0. This leads to a new set of

BHs with the following near-horizon expansion [23]:

aðρÞ
L

¼ 2

ffiffiffiffiffi
2

11

r
ρ

L
þ α3

�
ρ

L

�
3

þ α4

�
ρ

L

�
4

þ � � � : ð17Þ

These asymptotics can be smoothly matched to a large-ρ
expansion of aðρÞ with the following leading order terms,

aðρÞ
L

¼ a0e
ρ
L þ

�
a2 þ c

ρ

L

�
e−

ρ
L

a0

þ
�
a4 þ

2− 16a2 − 5c
12

c
ρ

L
−
2

3
c2
�
ρ

L

�
2
�
e−

3ρ
L

a30
þ � � � ;

ð18Þ

fα3; α4; a0; a2; a4g in the above relations being free param-
eters (with a0 ≠ 0) and c ¼ ð1 − ϵ2BÞ=4.

FIG. 3. The ðTH; ϵH; AHÞ-diagram for the same solutions as in
Fig. 2. The full set of SUSY solutions is mapped here to a single
point, possessing the same horizon area and deformation. Isolines
of constant ϵB and AH are marked with color and grey lines,
respectively.
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This results in a family ofAlAdSBHs,which, aftermoving
to a nonrotating frame at infinity, can also be viewed as a
special class within the ansatz (4). Their spatial boundary is a
squashed sphere, with F3=F2 → ϵ2B. The global charges are
determined by the squashing parameter ϵB, with [21]

M ¼ πL2

�
7913

34848
þ 33280

35937

1

ϵ2B
−

7

36
ϵ2B þ 89

864
ϵ4B

�
;

J ¼ −πL3

�
16640

35937
−
2795

8712
ϵ2B þ 1

9
ϵ4B −

1

27
ϵ6B

�
;

Q ¼ −π
ffiffiffi
3

p
L2

1

13068
ð6449 − 1936ϵB

2 þ 968ϵB
4Þ: ð19Þ

They necessarily possess a boundary magnetic field, with
Φm ¼ 2ffiffi

3
p ðϵ2B − 1Þ, while the horizon angular velocity is

ΩH ¼ 2=ðLϵ2BÞ. The most unusual feature of the new BHs
is that although ϵB is arbitrary, their horizon geometry (1) is
frozen, with LH ¼ L

ffiffiffiffiffiffiffiffiffiffi
7=11

p
, ϵH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

65=44
p

and

AH ¼ 7π2L3

ffiffiffiffiffiffiffiffi
455

p

121
: ð20Þ

As ϵB → 1, the solutions bifurcate from a critical Gutowski-
Reall BH with α ¼ 2

ffiffiffiffiffiffiffiffiffiffi
2=11

p
. Also, as seen in Figs. 2 and 3,

they are approached smoothly as a particular limit of the
general solutions. However, different from the nonextremal
case, these BHs do not possess a solitonic limit. Nevertheless,
SUSY solitons with ϵB ≠ 1 exist as well [24], satisfying a
different set of boundary conditions at ρ ¼ 0 and bifurcating
from the globally AdS background. Again, most of their
physical properties aredeterminedby theboundary squashing
parameter ϵB. A diagram summarizing the picture for these
three different types of SUSY solutions is shown in Fig. 4.
The frozen horizon geometry prevents the SUSY sol-

utions from approaching a black string limit as ϵB → 0.
Instead, a BH with nonasymptotically flat, non-AlAdS
asymptotics is approached. The limit ϵB → ∞ is also
nonstandard. The same scaling as in the non-SUSY case
leads to an exact plane-fronted wave solution which is not
asymptotically AdS [25].

IV. FURTHER REMARKS

The new rotating magnetized BH solutions in this work
provide new backgrounds whose AdS/CFT duals describe
four-dimensional field theories in a squashed Einstein
universe. Also, they can be uplifted either to type IIB or
to eleven-dimensional supergravity [26–29].
Their existence raises many questions. In particular, it

would be interesting to provide a microscopic interpretation
from the boundary CFT for the entropy of the SUSY BHs.
Generalizations of these solutions with an arbitrary multi-
polar structure of the U(1) field at infinity and two
independent rotation parameters are also likely to exist,
in particular, SUSY configurations.
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