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A non-perturbative method [1] which combines constraints from chiral symmetry break-
ing and coupled channel unitarity is used to describe meson-meson interactions up to√

s . 1.2 GeV, extending in this way the range of applicability of the information con-
tained in Chiral Perturbation Theory (χPT ) [2], since this perturbative series is typically
restricted to

√
s . 500 MeV. The approach uses the O(p2) and O(p4) χPT Lagrangians.

The seven free parameters resulting from the O(p4) Lagrangian are fitted to the experi-
mental data. The approach makes use of the expansion of T−1 instead of the amplitude
itself as done in χPT . The former expansion is suggested by analogy with the effective
range approximation in Quantum Mechanics and it appears to be very useful. The results,
in fact, are in good agreement with a vast amount of experimental analyses [3,4].

The amplitudes develop poles corresponding to the f0(980), a0(980), ρ(770), K∗(890),
the octet contribution to the φ, f0(400−1200) ≡ σ and κ [4]. The total and partial decay
widths of the resonances are also well reproduced.

1. Introduction

χPT is the low energy effective theory of the strong interactions. It is given as a power
expansion of the external four-momenta of the pseudo-Goldstone bosons π, K and η on
the scale ΛχPT ≈1 GeV. As a result, the expansion is typically valid up to

√
s .500 MeV.

However, the constraints coming from the spontaneous/explicit chiral symmetry are not
restricted to the low energy region [5]. In this work, we present a way of resummation
of the χPT series that in fact can be applied to any other system whose dynamics can
be described by low energy chiral Lagrangians. We describe the successfull application
of such approach to meson-meson interactions which are well reproduced up to

√
s .1.2

GeV.
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2. Formalism

Let us a consider a partial wave amplitude T with definite isospin (I). We use a matrix
formalism in order to deal with coupled channels. In this way T will be a matrix whose
element ij represents the scattering of i → j with angular momentum L and isospin I. If
we consider only two body intermediate states unitarity with coupled channels reads in
our normalization:

ImT−1 = ρ (1)

where ρ is a diagonal matrix with elements ρi =
pi

8π
√

s
θ(s−(m1i +m2i)

2 with pi the center

mass three-momentum, m1i and m2i are the masses of the particles in the state i and θ(x)
is the usual Heaviside function. Eq. (1) is a well known result and is the basis of the K
matrix formalism since all the dynamics is embodied in ReT−1 which is K−1. The former
equation shows clearly that, when considering T−1, unitarity is exactly satisfied with two
body intermediate states.

From the χPT expansion of T = T2 + T4 + O(p6), where T2 and T4 are the O(p2) and
O(p4) contributions respectively, we work out the expansion of T−1. In this way we will
obtain our approach for the K matrix (or ReT−1).

T−1 = [T2 + T4 + ...]−1 = T−1
2 · [1 + T4 · T−1

2 + ...]−1

= T−1

2 · [1 − T4 · T−1

2 + ...] = T−1

2 · [T2 − T4] · T−1

2 (2)

Inverting the former result, one obtains:

T = T2 · [T2 − T4]
−1 · T2

K = T2 · [T2 − ReT4]
−1 · T2 (3)

3. ππ and KK̄ coupled amplitudes

In [3] we study the (I, L) = (0, 0), (1, 1) and (2, 0) partial waves. To make use of eq.
(3) one needs the lowest and next to leading order χPT amplitudes. In our case the
ππ → ππ and ππ → KK̄ are taken from [6] and the KK̄ → KK̄ is also given in [3]. Our
amplitudes depend on six parameters L1, L2, L3, L4, L5 and 2L6 + L8 which are fitted to
the elastic ππ (I, L) = (0, 0) and (1, 1) phase shifts.

In the following table we show the resulting values for the Li coefficients comparing
them with the χPT values.

With the former values for the Li couplings we also calculate other scattering parameters
in good agreement with experiment.

It is worth to indicating that from eq. (3) the χPT expansion is recovered for low
energies up to O(p4). In this way, we also calculate in [3] the scattering lengths with
values in agreement with χPT and experiment.
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Figure 1. Elastic P-wave ππ phase
shifts. References in [3].

Figure 2. Elastic S-wave I = 0 ππ
phase shifts. References in [3].

Table 1
Li coefficients.

Fit χPT
L1 103 0.72+0.03

−0.02 0.4 ± 0.3
L2 103 1.36+0.02

−0.05 1.4 ± 0.3
L3 103 −3.24 ± 0.04 3.5 ± 1.1
L4 103 0.20 ± 0.10 −0.3 ± 0.5
L5 103 0.0+0.8

−0.4 1.4 ± 0.5
(2L6 + L8) 103 0.00+0.26

−0.20 0.5 ± 0.7

4. S and P-wave meson-meson scattering amplitudes

In [4] we thoroughly study the meson-meson interactions for L = 0 and 1 making use
of eq. (3). However, in this case there are a lot of channels whose χPT T4 amplitudes
have not been calculated yet 3. The calculation of the T4 although straightforward is
cumbersome. As a result, we approximate the T4 amplitude as in [4]

T4 ≈ T P
4 + T2 · g(s) · T2 (4)

where T P
4 is the polynomial part of the amplitude which is essential for the vector channels

(this is another way to see Vector Meson Dominance [7]) and T2 ·g(s)·T2 takes into account
unitarity in coupled channels, mostly important for the scalar channels. The g(s) function
is a diagonal matrix whose elements are the loop integral with two meson propagators:

gi(s) = i

∫
d4q

(2π)4

1

q2 − m2
1n + iǫ

1

(P − q)2 − m2
2n + iǫ

(5)

3Even more, when this work was done the KK̄ → KK̄ amplitudes were not calculated.
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We regularize it making use of a cut-off qmax.
With respect to a full χPT calculation we are neglecting in eq. (4) the tadpole contri-

bution (which numerically usually results to be small [6]) and the unphysical cuts (which
correspond to singularities away from the physical region and hence they give rise to soft
contributions which we reabsorb in the Li couplings).

After inserting eq. (4) with eq. (5) in eq. (3) we obtain the final expression for the T
matrix as in [4]. We reproduce in that work a vast amount of experimental data (phase
shifts and inelasticites) for the S and P-wave meson-meson scattering. We also study the
mass, widths and partial decay widths of the resonances (poles) present in our amplitudes:

Table 2
Masses and partial widths in MeV.

Channel
(I, J)

Resonance
Mass

from pole
Width

from pole
Mass

effective
Width

effective
Partial
Widths

(0, 0) σ 442 454 ≈ 600 very large ππ − 100%

(0, 0) f0(980) 994 28 ≈ 980 ≈ 30
ππ − 65%
KK̄ − 35%

(0, 1) φ(1020) 980 0 980 0
(1/2, 0) κ 770 500 ≈ 850 very large Kπ − 100%
(1/2, 1) K∗(890) 892 42 895 42 Kπ − 100%

(1, 0) a0(980) 1055 42 980 40
πη − 50%

KK̄ − 50%
(1, 1) ρ(770) 759 141 771 147 ππ − 100%

5. Conclusion

We have presented a method of resummation of the χPT series based in the expansion
of T−1. In this way unitarity is fulfilled to all orders and resonances are well reproduced.
The method is rather general and could be applied to any system whose dynamics is
described by chiral Lagrangians. We have applied it successfully to describe the S and
P-wave meson-meson amplitudes giving rise to the resonances: f0(980), a0(980), ρ(770),
K∗(890), the octet contribution to the φ, f0(400 − 1200) ≡ σ and κ.
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