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Complementarity and duality relations for finite-dimensional systems
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We generalize to systems with arbitrary finite dimension a measure of quantum fluctuations~the certainty!
previously introduced for two-dimensional systems. Using this measure, we study the duality relations satisfied
by complementary observables looking for states with minimum joint fluctuations~maximum certainty states!.
We extend the duality relations to encompass several complementary observables simultaneously.
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I. INTRODUCTION

The concepts of complementarity and uncertainty re
tions are central in the quantum theory since both can
regarded as direct consequences of the superposition
ciple. The classic analyses of these ideas have been m
carried out by means of uncertainty relations of the Heis
berg kind, which are defined in terms of the variances
Hermitian operators.

However, the recent progress in quantum mechanics
disclosed relevant situations where this standard appro
runs into difficulties. For example, it is known that there a
quantum observables that cannot be directly represente
Hermitian operators@1#. It is also known that the variance i
not well defined when applied to periodic variables, such
angle and phase@2–4#. Moreover, there is no nontrivia
lower bound to the product of variances for finit
dimensional systems, so that the standard uncertainty
tions cannot explain subtle examples of quantum com
mentarity@5#.

Because of these facts, it is worth investigating other m
sures of quantum fluctuations@2,3,6–9#. Incidentally, it has
been shown recently that even the very same definition
complementarity depends on the measure of fluctuat
adopted@10#. In a recent paper, we have studied a simple a
useful measure of quantum fluctuations~that we shall call
certainty! introduced for systems describable by tw
dimensional Hilbert spaces@5#. In this paper, we extend thi
idea to Hilbert spaces of arbitrary finite dimension~Sec. II!.
We show that a natural generalization leads to a w
behaved measure of quantum fluctuations and informa
already used in very different contexts@9,11,12#. We show
that this measure has better properties than other definiti
specially concerning phase-angle variables~Sec. III C!.

In Ref. @11# the certainty has been used to derive me
ingful duality relations for pairs of complementary obser
ables. We apply these certainty relations looking for sta
with minimum joint fluctuations, i.e., maximum certain
states~Sec. III!. Furthermore, in Sec. IV, we show that th
certainty relations can be generalized to involve several
servables simultaneously. Finally, in Sec. V, we exam
whether these results can be directly extended to the cas
unbounded continuous Cartesian variables.
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II. CERTAINTY AND CERTAINTY RELATIONS

We will consider a general quantum system describa
by a Hilbert spaceHN of arbitrary finite dimensionN. The
probability distribution associated with a given observa
M will be denoted asPM(m), where m50,1, . . . ,M21
are integers. For simplicity, we assume a discrete and fi
range of variation for the labelm. This is a general enough
situation since, for practical reasons, the set of possible
sults of any observation is always countable and finite, e
for continuous variables.

Later, we will define the certainty in terms of the modul
of the characteristic function

CM~m̃!5 (
m50

M21

ei2pmm̃/MPM~m!, ~2.1!

where m̃50,1, . . . ,M21, that contains full information
about the statistics@13#. Let us show that the modulus of th
characteristic function in Eq.~2.1! can be regarded as repre
senting the degree of certainty one can have concerning
value of the corresponding observable. For example, w
all the probability is concentrated in a single outcom
PM(m)5dm,m0

, we have thatuCM(m̃)u reaches its maxi-

mum valueuCM(m̃)u51 for all m̃ ~maximum certainty!. On
the other hand, when the outcome is fully uncerta
PM(m)51/M , we have thatuCM(m̃)u reaches its minimum
value uCM(m̃)u50 for all m̃Þ0 ~minimum certainty!. A
closely related measure of fluctuations is the dispersion,
fined in terms ofuCM(1)u, which is mainly applied to phase
angle variables@2#. We will see bellow in Sec. III C that the
certainty can be superior to dispersion.

In order to deal with a single number instead of a fun
tion, we define the certainty as an equally weighted super
sition of all theuCM(m̃)u,

C M
2 5

1

M (
m̃50

M21

uCM~m̃!u2. ~2.2!

This is naturally normalized 1>CM>1/AM . It can be easily
seen that

C M
2 5 (

m50

M21

PM
2 ~m!. ~2.3!
©2003 The American Physical Society08-1



ev
a
o

o
ra

at

e
r
w

ta
.
r
o

rd
bl
ab

o

se
ea
a
c

rv
t
ce
f
e

o

la-
be

e
ay

ions
d

een
. In

of
e

e
en-
u-

of

ri-
ra-
inty
for
his

es-

ALFREDO LUIS PHYSICAL REVIEW A67, 032108 ~2003!
This demonstrates that the certainty coincides with a pr
ously introduced measure of fluctuations that has been
plied to asses information and localization in a wide range
different contexts@9,11,12#. Note that these definitions d
not require the existence of any underlying Hermitian ope
tor to represent the observableM. Also, the possible peri-
odic character of the variable would cause no difficulty wh
soever.

After the results of Ref.@11# and using the equivalenc
~2.3!, we have that the certainties of complementary obse
ables satisfy suitable duality relations. For definiteness,
focus on two probability distributionsPM(m)5^murum&,
PK(k)5^kuruk&, where um&, uk& with k,m50,1, . . . ,N21
are the orthonormal vectors describing two complemen
observablesM, K, andr is the density matrix of the system
Complementarity means that quantum systems posses p
erties that are mutually exclusive: the observation of one
them precludes the observation of the other. In other wo
precise knowledge of one of them implies that all possi
outcomes of measuring the other one are equally prob
@14#. In our case this means thatu^muk&u is constant.

In these conditions it has been shown in Ref.@11# that

C M
2 1C K

2 <11
1

N
, CMCK<

1

2 S 11
1

ND , ~2.4!

and in the limit ofN@1

C M
2 1C K

2 <1, CMCK<
1

2
. ~2.5!

In Sec. IV, we provide an alternative and simple derivation
Eqs.~2.5!.

These complementarity relations are naturally expres
in terms of upper instead of lower bounds since we are d
ing with certainties instead of uncertainties. They are me
ingful duality relations since they tell us that we cannot rea
full certainty simultaneously for two complementary obse
ables, i.e.,CM5CK51 is precluded. It is worth noting tha
for finite-dimensional Hilbert spaces the product of varian
of any pair of observables leads only to a trivial relation o
the formDMDK>0, where the equality is reached by th
always normalized eigenstates ofM or K @5#.

From the above general results, we can recover the c
clusions of the analysis carried out in Ref.@5# for two-
dimensional systems. In Ref.@5# the certainty was defined
just in terms ofuCM(1)u. This was enough since forN5M
52

CM
2 5

1

2
@11uCM~1!u2#, ~2.6!

and then Eq.~2.4! implies that

uCM~1!u21uCK~1!u2<1, uCM~1!CK~1!u<
1

2
, ~2.7!

that are the duality relations derived in Ref.@5#.
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Closely related definitions of certainty and certainty re
tions in terms of entropic measures of fluctuations can
found in Refs.@15,16#.

III. EXAMPLES

In this section, we apply the above definitions to som
relevant states. In particular, we will focus on states that m
approach the upper bounds in the above certainty relat
~maximum certainty states!. For definiteness, we may fin
helpful to consider that the observableM represents num-
berlike variables, such as photon number difference betw
two field modes or a component of an angular momentum
such a case, the complementary observableK defined by the
orthonormal states

uk&5
1

AN
(

m50

N21

ei2pmk/Num&, ~3.1!

represents phase difference or azimuthal angle@17#.

A. Eigenstates

The simplest example is provided by the eigenvectors
one of the two observables, sayM. In such a case, we hav
maximum certainty forM and minimum certainty forK,

CM51, CK5
1

AN
, ~3.2!

so that

CM
2 1CK

2 511
1

N
, CMCK5

1

AN
, ~3.3!

and the statesum&, uk& are maximum certainty states for th
sum relation. An equivalent conclusion is obtained using
tropic duality relations and also using variances for contin
ous unbounded Cartesian variables. On the other hand,um&
and uk& are not maximum certainty states for the product
certainties.

B. SU„2… coherent states

It is known that for continuous unbounded Cartesian va
ables~such as position and linear momentum or field quad
tures! the standard coherent states are minimum uncerta
states. Next, we examine whether a similar result holds
finite-dimensional systems using certainty relations. To t
end we compute the certainties for the SU~2! coherent states
@18#,

uj&5 (
m50

N21 S N21

m D 1/2

sinm
u

2
cos(N212m)

u

2
eimwum&,

~3.4!

whereu, w are parameters. In order to derive useful expr
sions, we consider the most interesting case of largeN so that
sums can be replaced by integrals and^muj&, ^kuj& can be
suitably approximated by Gaussian functions
8-2
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^muj&.
1

~2ps2!1/4
e2(m2m̄)2/(4s2)eimw,

~3.5!

^kuj&.S 8ps2

N2 D 1/4

e2s2(fk2w)2
e2 im̄fk,

where

m̄.N sin2
u

2
, s.

AN

2
sinu, fk5

2p

N
k. ~3.6!

These approximations allow us to compute the certain
very easily, leading to

CM
2 .

1

2Aps
, CK

2 .2Ap
s

N
~3.7!

and

CM
2 1CK

2 .
1

2Aps
12Ap

s

N
, CMCK.

1

AN
. ~3.8!

The Gaussian approximations above are valid provi
that u is not too close to 0 orp ~if u50,p, we get the
number statesuj&5um50&, um5N21&, respectively, al-
ready examined in the preceding section!. More specifically
the sums inm and k can be safely replaced by integra
provided thatN@s@1. Therefore, from Eq.~3.8!, we have
CM

2 1CK
2 !1, CMCK!1 and the SU~2! coherent states are fa

from being maximum certainty states.
This conclusion is supported by the exact numerical c

culations represented in Figs. 1, 2, and 3. In Fig. 1, we h
representedCM andCK as functions ofu for N510. CM (CK)
is maximum~minimum! for u50,p since in such a caseuj&
is a number stateum&, while it is minimum ~maximum! for
u5p/2, a so-called phase state in some contexts@19#. Note
that for SU~2! coherent statesCK never reaches the maximum
CK51. In Fig. 2, we have represented the sum and prod
of certainties. We can see that the productCMCK does not
depend onu appreciably and that foru5p/2, we have a
local maximum of the sum of certainties. In Fig. 3, we ha
represented the sum and product of certainties foru5p/4 as
a function ofN, where it can be appreciated how these sta

FIG. 1. CM ~solid! andCK ~dashed! as a function ofu for SU~2!
coherent states withN510 andw50.
03210
s

d

l-
e

ct

s

deviate from maximum certainty asN increases. All these
plots are in good agreement with the conclusions deri
from the Gaussian approximations above.

C. Phase-coherent states

Let us consider another family of coherent states

uz,n&5N (
m5n

N21

zmum&, ~3.9!

whereN is a normalization constant. These states are in
mediate between number and phase since whenz→0 the
stateuz,n& tends to be a number stateum&, while uz,n& tends
to be a phase-angle stateuk& whenn50 anduzu→1. On the
other hand, in the limitN→` these states approach th
SU~1,1! coherent phase states@20#.

For simplicity, we consider again the limitsN@1 and
uzuN.0 replacing sums by integrals. In such a case it can
easily seen that

P~k!5
12uzu2

N~11uzu2!

1

12
2uzu

11uzu2
cos~fk2w!

, ~3.10!

wherew5argz and

FIG. 2. C M
2 1C K

2 ~solid! andCMCK ~dashed! as a function ofu
for SU~2! coherent states withN510 andw50.

FIG. 3. C M
2 1C K

2 ~triangles! andCMCK ~squares! as a function of
the dimensionN for a SU~2! coherent state withu5p/4 and w
50.
8-3
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CM
2 .

12uzu2

11uzu2
, CK

2 .
1

N

11uzu2

12uzu2
, ~3.11!

so that the certainty relations are

CM
2 1CK

2 .
12uzu2

11uzu2
1

1

N

11uzu2

12uzu2
, CMCK.

1

AN
.

~3.12!

It can be noted that these relations do not depend onn. These
expressions reproduce essentially the results obtained fo
SU~2! coherent states above. This behavior is also confirm
by the exact numerical calculations represented in Figs. 4
and 6. Focusing on the differences with the SU~2! coherent
states we can appreciate thatCK reaches maximum certaint
CK51 when uzu51, since in this limit the state becomes
phase state. In agreement with the results of Sec. III A,
have maximum sum of certaintyCM

2 1CK
2 for uzu50,1 ~i.e.,

for number and phase states, respectively!.
The phase-coherent states provide a suitable illustratio

the good properties of the certainty. If we expressCK in terms
of the mean value of the numberm̄5(mmP(m), we have
for the phase-coherent states withn50,

CK
2 uphase.2

m̄

N
, ~3.13!

while for the SU~2! coherent state

FIG. 4. CM ~solid! and CK ~dashed! as a function ofuzu for a
phase-coherent state withN510, n50, andw50.

FIG. 5. C M
2 1C K

2 ~solid! andCMCK ~dashed! as a function ofuzu
for a phase-coherent state withN510, n50, andw50.
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CK
2 uSU(2).

2

N
Apm̄S 12

m̄

N
D , ~3.14!

so that form̄@1, we haveCK
2 uSU(2)!CK

2 uphase. These relations
clearly reflect that the phase-coherent states have less p
fluctuations~larger certainty! than the SU~2! coherent states
This is a natural conclusion that other measures of ph
fluctuations, such as dispersion, do not reflect, as it has b
discussed recently in Ref.@20#.

D. Intermediate states

Finally, we consider some other states intermediate
tweenum& and uk& of the form

uc&5N~ um&1e2 iwuk&), ~3.15!

whereN is a normalization constant andw is an arbitrary
phase. These states have been studied before as interme
number-phase states@21#. For simplicity, we can conside
again the limitN@1 so that

CM.CK.
1

2
, ~3.16!

and

CM
2 1CK

2 .
1

2
, CMCK.

1

4
. ~3.17!

We can see that these states are not maximum certa
states since they reach half of the maximum values allow
by Eq. ~2.5!. Nevertheless, they are closer to maximum c
tainty than the SU~2! coherent states.

IV. CERTAINTY RELATIONS FOR SEVERAL MUTUALLY
COMPLEMENTARY OBSERVABLES

In this section, we show that the certainty relations can
generalized to involve simultaneously several mutua
complementary observablesMj , j 51, . . . ,J, made ofN
orthogonal projectors. We start with the exact equality@7#

FIG. 6. C M
2 1C K

2 ~triangles! andCMCK ~squares! as a function of
the dimensionN for a phase-coherent state withuzu51/2, n50, and
w50.
8-4
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COMPLEMENTARITY AND DUALITY RELATIONS FOR . . . PHYSICAL REVIEW A 67, 032108 ~2003!
C 1
21•••1C J

25 (
m1 , . . . ,mJ50

N21

P1~m1!•••PJ~mJ!@P1~m1!

1•••1PJ~mJ!#, ~4.1!

where Pj (mj ) is the probability of the outcomemj for the
observableMj . The desired relation will emerge once w
provide a constant upper bound for the term in square bra
ets on the right-hand side of Eq.~4.1!. To this end we can
restrict ourselves to the space spanned byum1&, . . . ,umJ& for
fixed values ofm1 , . . . ,mJ , beingumj& themj th eigenvector
of the observableMj . Any pure state of such space can
expressed always as

uc&5(
j 51

J

a j umj&. ~4.2!

In such a case

P1~m1!1•••1PJ~mJ!5a†G2a<g, ~4.3!

whereG,, j5^m,umj& is aJ3J Hermitian matrix andg is the
maximum eigenvalue ofG. The last inequality follows be-
causea†Ga5^cuc& andG.0.

On the other hand, it can be seen that

a†Ga<a8†G8a8<g8a8†a85g8a†a, ~4.4!

wherea j85ua j u, G,, j8 5u^m,umj&u, and g8 is the maximum
eigenvalue ofG8. This relation serves to demonstrate th
g<g8 simply by particularizing it to the eigenvector ofG
with eigenvalueg. In such a casea†Ga5ga†a so that Eq.
~4.4! implies thatg<g8. The interest of this inequality stem
from the fact thatg8 ~unlike g) can be easily computed
Since we are dealing with mutually complementary obse
ables, we have

G,, j8 5u^m,umj&u5H 1 if ,5 j

1

AN
if ,Þ j ,

~4.5!

so that

G85S 12
1

AN
D I 1

1

AN
O, ~4.6!

whereI is the identity matrix andO is a matrix made entirely
of ones. The eigenvalues ofO areJ ~for ua i u5constant) and
0. Therefore,g85(AN1J21)/AN.

Then Eqs.~4.3! and ~4.4! lead to the following upper
bound for the sum of certainties

C 1
21•••1C J

2<11
J21

AN
. ~4.7!

From this relation we can derive an upper bound for
product of certainties by looking for the extremes
03210
k-

t
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e

C 1
2
•••C J

2 with the restriction~4.7!. The conclusion is that the
maximum product is obtained when all theCj are equal, lead-
ing to

C1•••CJ<F1

J S 11
J21

AN
D G J/2

. ~4.8!

The Eqs.~2.5! are obtained for the particular caseJ52 and
N@1.

It is worth stressing that these relations~4.7! and~4.8! are
valid for any dimensionN. On the other hand, whenN is
prime ~or the power of a prime@22#! a stronger result can b
obtained

C 1
21•••1C J

2<11
J21

N
, ~4.9!

that can be derived from the exact equality valid for pu
states andJ5N11 mutually complementary observable
@11#

C 1
21•••1CN11

2 52, ~4.10!

taking into account that alwaysCj
2>1/N.

Finally, we mention that the standard Heisenberg unc
tainty relations as well as the entropic relations can be s
ably generalized to involve the fluctuations and correlatio
of several observables simultaneously@15,23,24#.

V. CONTINUOUS LIMIT

It might be thought that the above relations may be ea
generalized to the case of continuous unbounded Carte
variables by considering the limitN→`. However, such a
simple generalization does not hold. To show this, we c
assume that the discrete probabilitiesP(m) are actually de-
rived from a continuous probability densityP(x) as

P~m!5E
(m21/2)d

(m11/2)d
dxP~x!.P~md!d, ~5.1!

where the last approximation holds provided thatd is small
enough. In the limitd→0, we have

(
m

P2~m!.d2(
m

P 2~md!.dE dxP 2~x!→0, ~5.2!

so that in this limit the certainty always vanish. This lack
straightforward continuous limit also occurs for the entrop
duality relations@6,7,25#. Therefore, it seems that the prece
ing definitions and relations cannot be translated to the c
tinuous case simply as the limitN→` and replacing sums
by integrals, so that the continuous case should be addre
directly.

As an illustration, we can consider the particular case
Gaussian distributions for two adimensional canonically c
jugate variables with commutation relation@X,Y#5 i for
which
8-5
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E dxP X
2~x!1E dyP Y

2~y!5
1

2Ap
S 1

DX
1

1

DYD ,

E dxP X
2~x!E dyP Y

2~y!5
1

4p

1

DXDY
, ~5.3!

where PX(x), PY(y) are the probability distributions~as-
sumed to be Gaussian! associated withX, Y, respectively. In
this particular case, the product of certainties is equivalen
the standard uncertainty relation, while the sum of certain
behaves entirely differently, increasing without limit whe
the state approaches the eigenstates ofX or Y. In this case the
standard coherent states are maximum certainty states
provided, we impose the additional requirementDX5DY.
ry

.

K

03210
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VI. CONCLUSIONS

We have shown that a natural generalization to arbitr
dimension of the certainty introduced in Ref.@5# leads to a
measure of fluctuations and quantum information better
haved than variance.

We have applied this formalism looking for states wi
minimum joint fluctuations. We have found that the eige
states of the corresponding observables are maximum
tainty states. We have found also a family of intermedi
states that are close to maximum certainty.

We have extended the duality relations to encompass
eral observables simultaneously. The certainty relati
found apply to systems with arbitrary dimension.

We have discussed the application of these results to c
tinuous unbounded Cartesian variables showing that it is
possible to derive suitable duality relations as the limiti
case of the finite-dimensional analyses.
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