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Complementarity and duality relations for finite-dimensional systems

i Alfredo Luis*
Departamento de fitica, Facultad de Ciencias Bicas, Universidad Complutense, 28040 Madrid, Spain
(Received 7 December 2002; published 19 March 2003

We generalize to systems with arbitrary finite dimension a measure of quantum fluctygi®rertainty
previously introduced for two-dimensional systems. Using this measure, we study the duality relations satisfied
by complementary observables looking for states with minimum joint fluctuatmagimum certainty states
We extend the duality relations to encompass several complementary observables simultaneously.
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I. INTRODUCTION II. CERTAINTY AND CERTAINTY RELATIONS

Th ncents of complementarity and uncertainty rel We will consider a general quantum system describable
_''he concepts ot complementarity and uncertainty rélay, , yinert spacety of arbitrary finite dimensiorN. The
tions are central in the quantum theory since both can b

: . “probability distribution associated with a given observable
regarded as direct consequences of the superposition prif., \ il be denoted as ,(m), wherem=0,1, ... M—1

C|ple_. The classic analyses of th_ese |dea_s have been r_nalnéxe integers. For simplicity, we assume a discrete and finite
carried out by means of uncertainty relations of the He'sen'ange of variation for the labeh. This is a general enough
berg kind, which are defined in terms of the variances Ol ation since, for practical reasons, the set of possible re-

He|r_|m|t|an opiar:ators. t . ¢ hanics h sults of any observation is always countable and finite, even
owever, the recent progress in quantum mechanics has, .ontinuous variables.

d'quSEddrfef.ler‘.m situations Wlhe'fe_ thlls stan(;l]ard happroach Later, we will define the certainty in terms of the modulus
runs into difficulties. For example, it is nown that there are ¢ o characteristic function
guantum observables that cannot be directly represented by

Hermitian operator§l]. It is also known that the variance is M-1 ~
not well defined when applied to periodic variables, such as Cy(m)= >, e2™mmMp  (m), (2.1
angle and phas¢2-4]. Moreover, there is no nontrivial m=0

lower bound to the product of variances for finite- _
dimensional systems, so that the standard uncertainty relavhere m=0,1,... M—1, that contains full information
tions cannot explain subtle examples of quantum compleabout the statistickL3]. Let us show that the modulus of the
mentarity[5]. characteristic function in Eq2.1) can be regarded as repre-
Because of these facts, it is worth investigating other measenting the degree of certainty one can have concerning the
sures of quantum fluctuationig,3,6—9. Incidentally, it has value of the corresponding observable. For example, when
been shown recently that even the very same definition ofll the probability is concentrated in a single outcome,
complementarity depends on the measure of quctuatioan(m)z(sm’mo, we have thadCM(ﬁw)| reaches its maxi-
adopted 10]. In a recent paper, we have studied a simple andmum value|C (Fn)|= 1 for all i (maximum certainty On
useful measure of quantum fluctuatiofieat we shall call h th th h th i i full i tai
certainty introduced for systems describable by two- & other hand, when the outcome Is u y l-Jn-CGt’ an
dimensional Hilbert spacds]. In this paper, we extend this Pu(M)=1M, we have thalC,,(m)| reaches its minimum
idea to Hilbert spaces of arbitrary finite dimensi@ec. ).  value |Cy(m)|=0 for all m#0 (minimum certainty. A
We show that a natural generalization leads to a wellclosely related measure of fluctuations is the dispersion, de-
behaved measure of quantum fluctuations and informatiofined in terms ofC,,(1)|, which is mainly applied to phase-
already used in very different contexi8,11,13. We show angle variable$2]. We will see bellow in Sec. Il C that the
that this measure has better properties than other definitionsgrtainty can be superior to dispersion.
specially concerning phase-angle varialsc. Il Q. In order to deal with a single number instead of a func-
In Ref.[11] the certainty has been used to derive meantion, we define the certainty as an equally weighted superpo-
ingful duality relations for pairs of complementary observ- sjtion of all the|CM(ﬁ1)|,
ables. We apply these certainty relations looking for states

with minimum joint fluctuations, i.e., maximum certainty ) M1 _
states(Sec. ). Furthermore, in Sec. IV, we show that the CM:M NE |C ()2 2.2
certainty relations can be generalized to involve several ob- m=0

servables simultaneously. Finally, in Sec. V, we examin
whether these results can be directly extended to the case
unbounded continuous Cartesian variables.

his is naturally normalized %C,,= 1/\M. It can be easily
seen that

M-1
c? = P2 (m). 2.3
*Electronic address: alluis@fis.ucm.es M mE=0 Ja(M) (
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This demonstrates that the certainty coincides with a previ- Closely related definitions of certainty and certainty rela-

ously introduced measure of fluctuations that has been afions in terms of entropic measures of fluctuations can be

plied to asses information and localization in a wide range ofound in Refs[15,16].

different contextg9,11,13. Note that these definitions do

not require the existence of any underlying Hermitian opera- IIl. EXAMPLES

tor to represent the observahlel. Also, the possible peri- . ] o

odic character of the variable would cause no difficulty what- [N this section, we apply the above definitions to some

soever. relevant states. In particular, we will focus on states that may
After the results of Ref[11] and using the equivalence aPProach the upper bounds in the above certainty relations

(2.3, we have that the certainties of complementary observimaximum certainty statésFor definiteness, we may find

ables satisfy suitable duality relations. For definiteness, w&elpful to consider that the observablel represents num-
focus on two probability distribution® ,,(m)=(m|p|m) berlike variables, such as photon number difference between

P(k)=(K|p|k), where|m), |k) with k,m=0,1,...N—1  tWo field modes or a component of an angular momentum. In
are the orthonormal vectors describing two complementaryUch @ case, the complementary observabuefined by the
observables\, K, andp is the density matrix of the system. Orthonormal states

Complementarity means that quantum systems posses prop- N—1
erties that are mutually exclusive: the observation of one of k)= — E ei2wmk/N|m> 3.1)
them precludes the observation of the other. In other words, N m=0 ' '

precise knowledge of one of them implies that all possible
outcomes of measuring the other one are equally probabkepresents phase difference or azimuthal afbé.
[14]. In our case this means th@m|k)| is constant.

In these conditions it has been shown in Réfl] that A. Eigenstates

The simplest example is provided by the eigenvectors of

Ca+Ci<1+ % CMC}CS; 1+% , (2.4 One pf the two qbservables, SM. In such a case, we have
maximum certainty fotM and minimum certainty fofC,
and in the limit ofN>1 1
) Cu=1, C,Cz\/—ﬁ, (3.2
Co+C2<1, CpCr= > (2.5 <o that

In Sec. IV, we provide an alternative and simple derivation of ) ) 1

Egs.(2.5). CytCi=1+ N’ CMC,C=\/—N, (3.3
These complementarity relations are naturally expressed

in terms of upper instead of lower bounds since we are dealyng the statelm), |k) are maximum certainty states for the

ing with certainties instead of uncertainties. They are means,m relation. An equivalent conclusion is obtained using en-

ingful duality relations since they tell us that we cannot reachqpic duality relations and also using variances for continu-

full certainty simultaneously for two complementary observ-q ;s unbounded Cartesian variables. On the other Hamd,

ables, i.e.Cy=Cc=1 is precluded. It is worth noting that 54|k} are not maximum certainty states for the product of
for finite-dimensional Hilbert spaces the product of varianceg.g tainties.

of any pair of observables leads only to a trivial relation of
the form A MAK=0, where the equality is reached by the

always normalized eigenstates.®i or C [5]. _ _ _ _
From the above general results, we can recover the con- Itis known that for continuous unbounded Cartesian vari-

clusions of the analysis carried out in R¢6] for two-  ables(such as position and linear momentum or field quadra-

dimensional systems. In Ref5] the certainty was defined tures the standard coherent states are minimum uncertainty
just in terms of|C,,(1)|. This was enough since foi=M states. Next, we examine whether a similar result holds for

B. SU(2) coherent states

=2 finite-dimensional systems using certainty relations. To this
end we compute the certainties for the (8Ucoherent states
, 1 (18],
Cu==[1+]Cu(D)|?], (2.6)
2 N-1 _q\1/2
P o N—1-m) o im
BED smmzcos( >emlm),
and then Eq(2.4) implies that m=0 | M

(3.9

1 .
Cu(DIPHIC(DP<1, [Cu(1)Cu(D)|<=, (2. whered, ¢ are parameters. In order to derive useful expres-
[Cad DI+ [Ci(D)] [Ca(1)Ck(D)] 2 @7 sions, we consider the most interesting case of |akrge that
sums can be replaced by integrals gl ¢), (k|£) can be
that are the duality relations derived in REB). suitably approximated by Gaussian functions
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FIG. 1. C,, (solid) andC (dasheglas a function o for SU(2)

; FIG. 2. C2,+C2 (solid) andC,,Cx (dashedlas a function ofg
coherent states withi=10 andg=0. amtC (solid wMCrc ( s

for SU(2) coherent states withNl=10 and¢=0.

- —(m-m)%/(40?) nime deviate from maximum certainty ds increases. All these
(m[¢&)= e e'm?, X . . _
(2mwo?)V4 plots are in good agreement with the conclusions derived
(3.5 from the Gaussian approximations above.
8702 1/4 , , -
k| &)= —o (b= ) g imdy
(k&) N2 © © ' C. Phase-coherent states
Let us consider another family of coherent states
where
\/_ N—1
— 6 N 27 = m
m=N Siﬂzi, o= 7 siné, (ﬁk:Wk. (3.6 |§’n> NmZ:n 4 |m>’ 3.9

These approximations allow us to compute the certaintiegyhere A/ is a normalization constant. These states are inter-
very easily, leading to mediate between number and phase since wherd the
state|Z,n) tends to be a number stdt), while |£,n) tends

2 _ 2 __ g to be a phase-angle stateé whenn=0 and|{|—1. On the
¢ Ci=2\m N 3.7 other hand, in the limitN—o~ these states approach the
SU(1,1) coherent phase statg20].
and For simplicity, we consider again the limitd>1 and

|Z|N=0 replacing sums by integrals. In such a case it can be

2 e 1 rom o Coo 1 38 easily seen that
MT Lk 2\/;0 w N’ MUK \/N .
. L . _ 1—|¢|? 1
The Gaussian approximations above are valid provided P(k)= , (3.10
that 6 is not too close to 0 orr (if 6=0,7, we get the N(1+[¢]?) 1- 2|¢ co b o)
number state§&)=|m=0), [m=N—-1), respectively, al- 1+]¢2 P

ready examined in the preceding secjidvore specifically

the sums inm and k can be safely replaced by integrals

provided thatN>o>1. Therefore, from Eq(3.8), we have Wherep=arg/ and
Ca+C2<1, C\Cr<1 and the S(R) coherent states are far
from being maximum certainty states.

This conclusion is supported by the exact numerical cal-
culations represented in Figs. 1, 2, and 3. In Fig. 1, we have
represented ,, andCy as functions o) for N=10. C,, (Cx)
is maximum(minimum) for #=0,7 since in such a cade)
is a number statém), while it is minimum (maximum for
0= /2, a so-called phase state in some contEk®4. Note
that for SU2) coherent state§ never reaches the maximum
Cy=1. In Fig. 2, we have represented the sum and product 3 10 G
of certainties. We can see that the proddgiCy does not N
depend oné appreciably and that fod= /2, we have a
local maximum of the sum of certainties. In Fig. 3, we have F|G. 3. cf\/ﬂrcfC (triangles andC,,Cx (squarepas a function of
represented the sum and product of certaintieferr/4 as  the dimensionN for a SU2) coherent state wittd==/4 and ¢
a function ofN, where it can be appreciated how these states-0.

L5 4

0.5 ..
CKCM.-..'IIII

certainty sum and product
»>
| 4

032108-3



ALFREDO LUIS PHYSICAL REVIEW A67, 032108 (2003

2 £ “

= ] A 2 2

g 5 I a0 TGy

§ g .. ‘AA‘AAAA
> 05 e
‘g CKCM ....-.l
5

0.5 Iq 1 © 5 10 15
N

FIG. 4. Cy, (solid) and C (dashedl as a function of/¢| for a

phase.coherent state wiN- 10, n=0. ande=0. FIG. 6.C3,+C% (triangles andC,Cy (squaresas a function of

the dimensiorN for a phase-coherent state wjfj=1/2,n=0, and
¢=0.

o2 1-¢1? 1+]¢[?

1
~ 2
M TN o 2 2 [ { m
CK|SU(2)2N mm 1_N ’ (314)

so that the certainty relations are

1-ld? 11+ L SIO that forms1, we have?| sy <Celpnase These relations
+ = , Cre= —. clearly _reflect that the phase-coherent states have less phase
1+)¢? N1-]g? IN fluctuations(larger certaintythan the S(2) coherent states.
(3.12  This is a natural conclusion that other measures of phase
fluctuations, such as dispersion, do not reflect, as it has been
It can be noted that these relations do not depenad dimese  discussed recently in Ref20].
expressions reproduce essentially the results obtained for the
SU(2) coherent states above. This behavior is also confirmed D. Intermediate states
by the exact numerical calculations represented in Figs. 4, 5,
and 6. Focusing on the differences with the(3)Ucoherent
states we can appreciate tliat reaches maximum certainty
Cr=1 when|{|=1, since in this limit the state becomes a _ P
phase state. In agreement with the results of Sec. lll A, we [y =N(|m)+e""?[k)), (3.19
have maximum sum of certaint?,+CZ for [{|=0,1 (i.e.,
for number and phase states, respectively
The phase-coherent states provide a suitable illustration
the good properties of the certainty. If we exprégsn terms

of the mean value of the numbazEmm P(m), we have

o+ Ca=

Finally, we consider some other states intermediate be-
tween|m) and|k) of the form

where N is a normalization constant angd is an arbitrary
(ﬁhase. These states have been studied before as intermediate

umber-phase statd21]. For simplicity, we can consider
again the limitN>1 so that

for the phase-coherent states with- 0, 1
5 m
CK|phase:2Ni (3.13 and
while for the SU2) coherent state 5 , 1 1
3]
= 2, A2 . .
s 1 Cx +CM We can see that these states are not maximum certainty
a | states since they reach half of the maximum values allowed
= 0.8 .
g by Eg.(2.5. Nevertheless, they are closer to maximum cer-
g 0.6¢ tainty than the S(2) coherent states.
;0.4 F e
‘é 02} CKCM IV. CERTAINTY RELATIONS FOR SEVERAL MUTUALLY
g COMPLEMENTARY OBSERVABLES
<]
(]

0.5 1€ 1 In thifs section,_we show _that the certainty relations can be
generalized to involve simultaneously several mutually
FIG. 5.C%,+C% (solid) andC,Cx (dashedlas a function off| ~ complementary observable$t;, j=1,...J, made ofN
for a phase-coherent state with=10, n=0, ande=0. orthogonal projectors. We start with the exact equdlity

032108-4



COMPLEMENTARITY AND DUALITY RELATIONS FOR . .. PHYSICAL REVIEW A 67, 032108 (2003

) . N-1 C%.--C35 with the restriction(4.7). The conclusion is that the
Cit---+C5= i Zm Y P1(my)- - - Py(my)[P(my) maximum product is obtained when all tdeare equal, lead-
S ’ ing to
e Py(my)], (4.1) e
1 J-1
where P;(m;) is the probability of the outcomen; for the N i R N/ (4.9
observableM; . The desired relation will emerge once we
provide a constant upper bound for the term in square brackl-.he Eqs.(2.5) are obtained for the particular cage 2 and

ets on the right-hand side of E¢4.1). To this end we can
restrict ourselves to the space spannegiy, . . . ,|m;) for
fixed values oin;, ... m;, being|mj) them;th eigenvector
of the observable\t;. Any pure state of such space can be
expressed always as

N>1.

It is worth stressing that these relatiads7) and(4.8) are
valid for any dimensiorN. On the other hand, wheN is
prime (or the power of a primg22]) a stronger result can be

obtained
: -1
|¢>:le aj|my). (4.2 C§+--~+C§s1+T, 4.9
In such a case that can be derived from the exact equality valid for pure
t 2 states andJ=N+1 mutually complementary observables
whereG, ;=(m,|m;) is aJX J Hermitian matrix andj is the Cl4. (2 =2, (4.10

maximum eigenvalue o6. The last inequality follows be-
causea' Gar=(y|¢) andG>0.

: taking into account that alwayg?= 1/N.
On the other hand, it can be seen that 9 )@’

Finally, we mention that the standard Heisenberg uncer-
tainty relations as well as the entropic relations can be suit-
ably generalized to involve the fluctuations and correlations
of several observables simultaneoufl,23,24.

a'Ga=a''G'a'<sg' @'’ =g’ a'a, (4.9

where o =|aj|, G ;=[(m;|m;)|, andg’ is the maximum
eigenvalue ofG’. This relation serves to demonstrate that
g=g’' simply by particularizing it to the eigenvector & V. CONTINUOUS LIMIT
with eigenvalueg. In such a case'Ga=ga'a so that Eq.
(4.4) implies thatg=<g’. The interest of this inequality stems
from the fact thatg’ (unlike g) can be easily computed.
Since we are dealing with mutually complementary observ
ables, we have

It might be thought that the above relations may be easily
generalized to the case of continuous unbounded Cartesian
variables by considering the limki—o. However, such a
simple generalization does not hold. To show this, we can
assume that the discrete probabilitieém) are actually de-
rived from a continuous probability densify(x) as

1 if €=]

o N — (m+1/2)8
G,y =|(m¢[my)] it 04], 4.9 P(m)=J dxPO)=P(M&)s, (5.

(m—1/2)8
so that where the last approximation holds provided thas small

enough. In the limit)— 0, we have
G'=|1 ! I+ ! @) (4.6
B NN 9 > P2m)=52>, Pz(ma):af dxP2(x)—0, (5.2
m m

wherel is the identity matrix ané is a matrix made entirely
of ones. The eigenvalues @fareJ (for | «;| = constant) and
0. Thereforeg’ = (\J/N+J—1)/JN.

Then Egs.(4.3) and (4.4) lead to the following upper
bound for the sum of certainties

so that in this limit the certainty always vanish. This lack of
straightforward continuous limit also occurs for the entropic
duality relationg6,7,25. Therefore, it seems that the preced-
ing definitions and relations cannot be translated to the con-
tinuous case simply as the limi—c and replacing sums
by integrals, so that the continuous case should be addressed
2 2 J- directly.
Ci+---+0i=<1+—. (4.7) Y- _ _ _
JN As an illustration, we can consider the particular case of
Gaussian distributions for two adimensional canonically con-
From this relation we can derive an upper bound for thgugate variables with commutation relatidiX,Y]=i for
product of certainties by looking for the extremes of which
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fdpz +fd7>2 . 1+1)

f 5 2 1 1
dex(x)f dyPi(y)= 27 AXAY' (5.3

where Px(x), Py(y) are the probability distributiongas-
sumed to be Gaussipassociated witlX, Y, respectively. In
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VI. CONCLUSIONS

We have shown that a natural generalization to arbitrary
dimension of the certainty introduced in REb] leads to a
measure of fluctuations and quantum information better be-
haved than variance.

We have applied this formalism looking for states with
minimum joint fluctuations. We have found that the eigen-
states of the corresponding observables are maximum cer-
tainty states. We have found also a family of intermediate
states that are close to maximum certainty.

We have extended the duality relations to encompass sev-

this particular case, the product of certainties is equivalent tera| observables simultaneously. The certainty relations
the standard uncertainty relation, while the sum of certaintiefoynd apply to systems with arbitrary dimension.

behaves entirely differently, increasing without limit when

the state approaches the eigenstates afY. In this case the

We have discussed the application of these results to con-
tinuous unbounded Cartesian variables showing that it is not

standard coherent states are maximum certainty states onfpssible to derive suitable duality relations as the limiting

provided, we impose the additional requirema=AY.

case of the finite-dimensional analyses.
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