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BASIC SEQUENCES AND SPACEABILITY IN ℓp SPACES

DANIEL CARIELLO AND JUAN B. SEOANE-SEPÚLVEDA

Abstract. Let X be a sequence space and denote by Z(X) the subset of X

formed by sequences having only a finite number of zero coordinates. We study
algebraic properties of Z(X) and show (among other results) that (for p ∈ [1,∞])
Z(ℓp) does not contain infinite dimensional closed subspaces. This solves an open
question originally posed by R. M. Aron and V. I. Gurariy in 2003 on the linear
structure of Z(ℓ∞).

In addition to this, we also give a thorough analysis of the existing algebraic
structures within the set X \ Z(X) and its algebraic genericity.

1. Introduction and Preliminaries

During a Non-linear Analysis Seminar at Kent State University (Kent, Ohio,
USA) in 2003, Richard M. Aron and Vladimir I. Gurariy posed the following ques-
tion:

Question 1.1 (R. Aron & V. Gurariy, 2003).
Is there an infinite dimensional closed subspace of ℓ∞ every nonzero element of which
has only a finite number of zero coordinates?

Using modern terminology (originally coined by V. Gurariy himself), a subset M
of a topological vector space X is called lineable (resp. spaceable) in X if there exists
an infinite dimensional linear space (resp. an infinite dimensional closed linear space)
Y ⊂ M ∪ {0} (see [1, 8, 12, 15]). V. Gurariy also coined the notion of algebrability
(introduced in [2]) meaning that, given a Banach algebra A and a subset B ⊂ A, it
is said that B is algebrable if there exists a subalgebra C of A so that C ⊂ B ∪ {0}
and the cardinality of any system of generators of C is infinite. The links between
the previous concepts are as follows (all the implications in the previous diagram
are strict, see e.g., [8]).

algebrability

++❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
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lineability

spaceability
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Throughout this paper, and if X denotes a sequence space, we shall denote by
Z(X) the subset of X formed by sequences having only a finite number of zero
coordinates. Therefore, the above question can be stated in terms of lineability and
spaceability:

Is Z(ℓ∞) spaceable in ℓ∞?

Lately, these concepts of lineability and spaceability have proven to be quite
fruitful and have attracted the interest of many mathematicians, among whom we
have R. Aron, L. Bernal-González, P. Enflo, G. Godefroy, V. Fonf, V. Gurariy, V.
Kadets, or E. Teixeira (see, e.g. [3–5, 8–10, 12, 19]). Question 1.1 has also appeared
in several recent works (see, e.g., [8, 12, 13, 18]) and, for the last decade, there have
been several attempts to partially answer it, although nothing conclusive in relation
to the original problem has been obtained so far.
This paper is arranged as follows. Section 2 shall focus on the algebrability (and,

thus, lineability) of the set Z(X) for X ∈ {c0, ℓp}, p ∈ [1,∞]. Sections 3 and 4 will
show that spaceability of Z(X) is actually not possible for any of the previous Banach
spaces whereas, in Section 5, we shall show that V \ Z(V ) is, actually, spaceable
(and algebrable) for every infinite dimensional closed subspace (subalgebra) V of X
(for X ∈ {c0, ℓp}, p ∈ [1,∞]).
There are not many examples of (nontrivial) sets that are lineable and not space-

able. One of the first ones in this direction was due to B. Levine and D. Milman
(1940, [17]) who showed that the subset of C[0, 1] of all functions of bounded vari-
ation is not spaceable (it is obviously lineable, since it is a linear space itself). A
more recent one was due to V. Gurariy (1966, [14]), who showed that the set of
everywhere differentiable functions on [0, 1] (which is also an infinite dimensional
linear space) is not spaceable in C([0, 1]). However, L. Bernal-González ([6], 2010)
showed that C∞(]0, 1[) is, actually, spaceable in C(]0, 1[).
Here, we shall provide (among other results) the definitive answer to Question

1.1. Namely, if X stands for c0, or ℓp, with p ∈ [1,∞], we prove the following:

i.−) Z(X) is maximal algebrable and maximal lineable ([7]), that is, Z(X)∪ {0}
contains an algebra with a system of generators of cardinality dim(X) and
a linear subspace of dimension dim(X) (Proposition 2.1).

ii.−) Z(X) is not spaceable, that is, every closed subspace of Z(X) ∪ {0} must
have finite dimension (Corollaries 3.4 and 4.8).

iii.−) V \Z(V ) is maximal spaceable for every infinite dimensional closed subspace
V of X (Theorem 5.1).

iv.−) V \Z(V ) is maximal algebrable for any infinitely generated closed subalgebra
V of ℓp (Theorem 5.3).

In order to obtain the above results we shall make use of Functional Analysis
techniques, Basic Sequences, Complemented Subspaces, and some classical Linear
Algebra and Real Analysis approaches. From now on, if Y is any sequence space and
y ∈ Y , then y(j) shall denote the j−th coordinate of y with respect to the canonical
basis (ej)j . Also, if (mk)k∈N is a subsequence of (nk)k∈N, we shall write (mk)k∈N ⊂
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(nk)k∈N. If V is a normed space and (vk)k∈N ⊂ V , we denote by 〈v1, v2, . . .〉 the
linear span of {v1, v2, . . . } and by [v1, v2, . . . ] the closed linear span of {v1, v2, . . . }.
If W ⊂ V , we denote S1(W ) = {w ∈ W, |w| = 1}. The rest of the notation shall be
rather usual.

2. Z(X) is maximal lineable for X = c0 or ℓp, p ∈ [1,+∞]

The following proposition would provide a positive answer to Question 1.1, pro-
vided we remove the hypothesis of being closed in ℓ∞.

Proposition 2.1. Z(X) is maximal algebrable for X = c0 or ℓp, p ∈ [1,+∞].

Proof. For every real number p ∈ ]0, 1[ denote

xp =
(
p1, p2, p3, . . .

)
,

and let V = span{xp : p ∈ ]0, 1[}. Notice that V ⊂ X , for X = c0 or ℓp, p ∈ [1,+∞].
Next, take any x ∈ V \ {0}. We shall show that x ∈ Z(X) . We can write x as

x =
N∑

j=1

λjxpj ,

with N ∈ N, pj ∈ ]0, 1[ for every j ∈ {1, 2, . . . , N}, pN > pN−1 > . . . > p1, and
(λj)

N
j=1 ⊂ C. Let us suppose that there exists an increasing sequence of positive

integers (mk)k∈N such that x(mk) = 0 for every k ∈ N. Then, we have

0 =

N∑

j=1

λjp
mk

j

for every k ∈ N.
Dividing the last identity by pmk

N , we obtain (for every k ∈ N),

(2.1) 0 =
N−1∑

j=1

λj

(
pj
pN

)mk

+ λN .

Now, since 0 <
pj
pN

< 1 for every j ∈ {1, 2, . . . , N − 1} and lim
k→∞

mk = ∞, we have

lim
k→∞

(
pj
pN

)mk

= 0. Thus, λN = 0 in equation (2.1). By induction, we can easily

obtain λj = 0 for every j ∈ {1, 2, . . . , N}. This is a contradiction, since x 6= 0.
This argument also shows that V is c-dimensional (where c stands for the continuum)
and, thus, Z(X) is maximal lineable for X = c0 or ℓp, p ∈ [1,+∞].
Now let xp, xq ∈ {xr, r ∈ ]0, 1[ }. Notice that the coordinatewise product of xp

and xq is xpq ∈ {xr, r ∈ ]0, 1[ }. Therefore the algebra generated by {xr, r ∈ ]0, 1[ }
is the subspace generated by {xr, r ∈ ]0, 1[ } which is V .
Consider any countable subset of W ⊂ V . The subalgebra generated by W is a

vector space generated by finite products of elements of W , but finite product of
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elements from a countable set still is countable. Therefore the subalgebra generated
by W has countable dimension, therefore W cannot be a set of generators for the
algebra V , since dim(V ) is uncountable. Therefore any set of generators of V is
uncountable. �

The following result is a straightforward consequence of Proposition 2.1.

Corollary 2.2. Z(X) is maximal lineable for X = c0 or ℓp, p ∈ [1,+∞].

It this direction, we would like to recall that similar properties to the one con-
sidered here have also been studied within the framework of function spaces. For
instance, let X be any infinite dimensional closed subspace of C[0, 1] and consider
Y to be the subset of functions in X having infinitely many zeros in [0, 1]. P. Enflo,
V. Gurariy, and the second named author recently showed in [12] that Y is space-
able in X . In the next two sections we shall see that this is not the case for Z(ℓp),
p ∈ [1,∞], and Z(c0).

3. Z(X) is not spaceable for X = ℓp, p ∈ [1,∞[

We need a series of technical lemmas in order to achieve the main result of this
section. We believe that these lemmas are of independent interest.

Lemma 3.1. Let V be an infinite dimensional closed subspace of ℓp, p ∈ [1,∞[.
Given 0 < ǫ < 4

33
there is an increasing sequence of natural numbers (sk)k∈N and a

normalized basic sequence (fk)k∈N ⊂ V such that

(1) fk(sj) = 0 for 1 ≤ j ≤ k − 1.
(2) f1(s1) 6= 0.
(3) |f1(sk+1)|+ . . .+ |fk(sk+1)| <

ǫ
2k+1 |fk+1(sk+1)| for every k

(thus fk(sk) 6= 0 for every k ∈ N).
(4) (fk)k∈N has basis constant smaller than 8−2ǫ

4−9ǫ
.

(5) [f1, f2, . . . ] is complemented in ℓp with a projection Q : ℓp → ℓp of norm
||Q|| ≤ 8−2ǫ

4−33ǫ
.

Proof. Let f1 ∈ V such that |f1|p = 1. Let N1 ∈ N such that

(1) f1(N1) 6= 0.
(2) |(f1(n))

∞
n=N1+1|p <

ǫ
22
.

Let s1 = N1. Suppose we have defined f2, . . . , ft ∈ V and

s1 = N1 < s2 < N2 < . . . < st < Nt

such that

(1) |fk|p = 1 for 1 < k ≤ t
(2) fk(n) = 0 for 1 ≤ n ≤ Nk−1 for every 1 < k ≤ t

(Thus fk(sj) = 0 for 1 ≤ j ≤ k − 1 since sk−1 < Nk−1).
(3) |(|f1(n)|+ . . .+ |fk(n)|)

∞
n=Nk+1|p <

ǫ
2k+1 for 1 < k ≤ t

(4) |f1(sk+1)|+ . . .+ |fk(sk+1)| <
ǫ

2k+1 |fk+1(sk+1)| for 1 < k ≤ t− 1.
(Thus fk(sk) 6= 0 for 1 < k ≤ t)
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Since V is an infinite dimensional closed subspace of ℓp, there exists ft+1 ∈ V
such that |ft+1|p = 1 and ft+1(1) = . . . = ft+1(Nt) = 0.

Now, if there is not n > Nt such that |f1(n)|+ . . .+ |ft(n)| <
ǫ

2t+1 |ft+1(n)| then

ǫ

2t+1
> |(|f1(n)|+ . . .+ |ft(n)|)

∞
n=Nt+1|p ≥

ǫ

2t+1
|ft+1|p =

ǫ

2t+1
,

which is absurd. Therefore exist st+1 > Nt such that

|f1(st+1)|+ . . .+ |ft(st+1)| <
ǫ

2t+1
|ft+1(st+1)|.

Next, since (|f1(n)|+ . . .+ |ft+1(n)|)n∈N ∈ ℓp then exist Nt+1 > st+1 such that

|(|f1(n)|+ . . .+ |ft+1(n)|)
∞
n=Nt+1+1|p <

ǫ

2t+2
.

The induction to construct (fk)k∈N enjoying the four above properties is now
complete. Now, in order to show that (fk)k∈N is a basic sequence, let us define

f̃1(n) =

{
f1(n), if 1 ≤ n ≤ N1

0, otherwise
f̃k(n) =

{
fk(n), if Nk−1 < n ≤ Nk

0, otherwise

Notice that f̃k 6= 0, since Nk−1 < sk < Nk and f̃k(sk) = fk(sk) 6= 0. Note also

that f̃k is a block basis of the canonical basis of ℓp.
Since

|(|f1(n)|+ . . .+ |fk(n)|)
∞
n=Nk+1|p <

ǫ

2k+1
,

then

|(fk(n))
∞
n=Nk+1|p <

ǫ

2k+1
.

Now since fk(n) = 0 for 1 ≤ n ≤ Nk−1 we obtain

1−
ǫ

2k+1
≤ |f̃k|p ≤ 1 and |fk − f̃k|p <

ǫ

2k+1

for k ∈ N. In particular, 4−ǫ
4

= 1 − ǫ
4
≤ |f̃k|p ≤ 1 for every k ∈ N. Let gk = f̃k

|f̃k|p

for every k. Notice that (gk)k∈N is a normalized block basis of the canonical basis
of ℓp. So |

∑∞
k=1 akgk|p = |(ak)k∈N|p and (gk)k∈N has basis constant K = 1. Let

{σk, k ∈ N} be the following partition of N:

σ1 = {1, . . . , N1} and σk = {Nk−1 + 1, . . . , Nk}.

Next, let Ek = {f ∈ ℓp, f(i) = 0, for i /∈ σk}. Thus, gk ∈ Ek and by [16, Theorem
30.18] the closed subspace [g1, g2, . . .] is complemented in ℓp with a projection P :
ℓp → ℓp of norm 1.
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Let us now prove that (fk)k∈N is equivalent to (gk)k∈N and [f1, f2, . . .] is also
complemented in ℓp. Indeed,

|fk − gk|p = |fk −
f̃k

|f̃kp|
|p ≤ |fk −

fk

|f̃k|p
|p + |

fk

|f̃k|p
−

f̃k

|f̃k|p
|p

≤
1− |f̃k|p

|f̃k|p
+

1

|f̃k|p

ǫ

2k+1
≤

4

4− ǫ

(
1− |f̃k|p +

ǫ

2k+1

)

≤
4

4− ǫ

(
2ǫ

2k+1

)
.

Thus, (gk)k∈N is a normalized basic sequence such that [g1, g2, . . .] is complemented
in ℓp with a projection P : ℓp → ℓp of norm 1 and

δ =
∞∑

k=1

|fk − gk|p ≤
∞∑

k=1

4

4− ǫ

ǫ

2k
=

4ǫ

4− ǫ
.

Since 0 < ǫ < 4
33
, we obtain 8Kδ||P || = 8δ ≤ 8 4ǫ

4−ǫ
< 1. By the principle of small

perturbation ([11, Theorem 4.5]) the sequence (fk)k∈N is equivalent to (gk)k∈N and
[f1, f2, . . .] is also complemented in ℓp.
Finally, let us compute an upper bound for the basis constant of (fk)k∈N and for

the norm of the projection Q : ℓp → ℓp onto [f1, f2, . . .].
First, the linear transformation T (

∑∞
k=1 akgk) =

∑∞
k=1 akfk is an invertible con-

tinuous linear transformation from the closed span of (gk)k∈N to the closed span of
(fk)k∈N.
In [11, Theorem 4.5] it is proved that ||T || ≤ (1 + 2Kδ) ≤ (1 + 8δ) ≤ 2 and

||T−1|| ≤ (1− 2Kδ)−1. Let Pn(
∑∞

k=1 akgk) =
∑n

k=1 akgk. Notice that ||Pn|| = 1.
Thus, for n ≤ m,

|
n∑

k=1

akfk|p = |T ◦ Pn ◦ T
−1(

m∑

k=1

akfk)|p ≤ ||T || ||Pn|| ||T
−1|||

m∑

k=1

akfk|p

≤
2

1− 2Kδ
|

m∑

k=1

akfk|p.

Then, the basis constant of (fk)k∈N is smaller than 2
1−2Kδ

≤ 8−2ǫ
4−9ǫ

, since K = 1 and

δ ≤ 4ǫ
4−ǫ

. Again, using [11, Theorem 4.5], the linear transformation

Id− (T ◦ P ) : [f1, f2, . . .] → [f1, f2, . . .]

is invertible and having norm smaller than 8Kδ||P || = 8δ < 1.
Therefore, there exists an inverse for S = T ◦ P : [f1, f2, . . .] → [f1, f2, . . .] with

norm ||S−1|| ≤ 1
1−8δ

. Now Q = S−1◦(T ◦P ) : ℓp → ℓp is a projection onto [f1, f2, . . .]

with norm ||Q|| ≤ ||S−1|| ||T || ||P || = 1
1−8δ

× 2× 1 ≤ 8−2ǫ
4−33ǫ

, since δ ≤ 4ǫ
4−ǫ

. �
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Lemma 3.2. Let V be an infinite dimensional closed subspace of ℓp, p ∈ [1,∞[.
There exist an increasing sequence of natural numbers (sk)k∈N and a basic sequence
(lsk)k∈N ⊂ V such that

(1) lsk(sk) 6= 0
(2) lsk(sj) = 0 for k 6= j
(3) [ls1 , ls2, . . .] is complemented in ℓp.

Proof. Let 0 < ǫ < 1
512

then 4− 9ǫ > 1, 4− 33ǫ > 1 and

8ǫ

(
8− 2ǫ

4− 9ǫ

)(
8− 2ǫ

4− 33ǫ

)
< 512ǫ < 1.

Let (sk)k∈N and (fk)k∈N be as in lemma 3.1, using this ǫ.
Define l0,k = fk. Notice that l0,k(sk) = fk(sk) 6= 0 and l0,k(sj) = 0 for sj ∈

{s1, . . . , sk} \ {sk}. Define

l1,k = l0,k −
l0,k(sk+1)

fk+1(sk+1)
fk+1.

Notice that

(1) l1,k(sj) = 0 for sj ∈ {s1, . . . , sk, sk+1} \ {sk}.
(2) l1,k(sk) = fk(sk) 6= 0.

(3) Since |l0,k(sk+1)| = |fk(sk+1)| <
ǫ

2k+1 |fk+1(sk+1)| thus
|fk(sk+1)|

|fk+1(sk+1)|
< ǫ

2k+1 < 1

and |l1,k(n)| ≤ |fk(n)|+ |fk+1(n)| for every n ∈ N.
(4) |l1,k − l0,k|p <

ǫ
2k+1 |fk+1|p =

ǫ
2k+1 .

Supposed we have already defined l0,k, . . . , lt,k such that

(1) li,k(sj) = 0 for sj ∈ {s1, . . . , sk+i} \ {sk}, for 1 ≤ i ≤ t
(2) li,k(sk) = fk(sk) 6= 0, for 1 ≤ i ≤ t
(3) |li,k(n)| ≤ |fk(n)|+ . . .+ |fk+i(n)|, for every n ∈ N and for 1 ≤ i ≤ t
(4) |li,k − li−1,k|p <

ǫ
2k+i , for 1 ≤ i ≤ t.

Define lt+1,k = lt,k −
lt,k(sk+t+1)

fk+t+1(sk+t+1)
fk+t+1. Since fk+t+1(sj) = 0 for 1 ≤ j ≤ k + t

then lt+1,k(sj) = lt,k(sj)for 1 ≤ j ≤ k + t. Since lt+1,k(sk+t+1) = 0 then

(1) lt+1,k(sj) = 0 for sj ∈ {s1, . . . , sk+t+1} \ {sk}
(2) lt+1,k(sk) = lt,k(sk) = fk(sk) 6= 0
(3) |lt,k(sk+t+1)| ≤ |fk(sk+t+1)|+ . . .+ |fk+t(sk+t+1)|

≤ |f1(sk+t+1)|+ . . .+ |fk+t(sk+t+1)| <
ǫ

2k+t+1 |fk+t+1(sk+t+1)|.

Therefore
|lt,k(sk+t+1)|

|fk+t+1(sk+t+1)|
< ǫ

2k+t+1 < 1 and

|lt+1,k(n)| ≤ |lt,k(n)|+ |fk+t+1(n)| ≤ |fk(n)|+ . . .+ |fk+t+1(n)|
for every n ∈ N.

(4) |lt+1,k − lt,k|p <
ǫ

2k+t+1 |fk+t+1|p =
ǫ

2k+t+1 .
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The induction to construct (lt,k)
∞
t=0 for each k ∈ N is completed. Next, let t > m

and notice that

|lt,k − lm,k|p = |lt,k − lt−1,k|p + . . .+ |lm+1,k − lm,k|p ≤
ǫ

2k+t
+ . . .+

ǫ

2k+m+1
≤

ǫ

2k+m
.

Therefore (lt,k)
∞
t=0 is a cauchy sequence in V , for each k. Let lim

t→∞
lt,k = lk ∈ V . Now

notice that

(1) Since for every t, we have lt,k(sk) = fk(sk) 6= 0 then
lk(sk) = lim

t→∞
lt,k(sk) = fk(sk) 6= 0

(2) Since for t > j and j 6= k, we have lt,k(sj) = 0 then
lk(sj) = lim

t→∞
lt,k(sj) = 0.

(3) Since |lt,k − l0,k|p ≤
ǫ
2k

then |lk − fk|p = lim
t→∞

|lt,k − l0,k|p ≤
ǫ

2k
.

Thus, (fk)k∈N is a normalized basic sequence with basis constant K ≤ 8−2ǫ
4−9ǫ

such

that [f1, f2, . . .] is complemented in ℓp with a projection P : ℓp → ℓp with norm
||P || ≤ 8−2ǫ

4−33ǫ
and

δ =

∞∑

k=1

|lk − fk|p ≤
∞∑

k=1

ǫ

2k
= ǫ.

Finally 8Kδ||P || ≤ 8ǫ
(
8−2ǫ
4−9ǫ

) (
8−2ǫ
4−33ǫ

)
< 512ǫ < 1. By the principle of small pertu-

bation [11, Theorem 4.5] the sequence (lk)k∈N is equivalent to (fk)k∈N and [l1, l2, . . .]
is complemented in ℓp. Finally define lsk = lk for k ∈ N. �

Proposition 3.3. Let V be an infinite dimensional closed subspace of ℓp, p ∈ [1,∞[.
There exists 0 6= h ∈ V \ Z(V ).

Proof. Consider any lk from Lemma 3.2. Notice that any lk ∈ V \ Z(V ). �

Corollary 3.4. Z(ℓp) is not spaceable in ℓp, for p ∈ [1,∞[.

Corollary 3.5. Let V be an infinite dimensional closed subspace of ℓp. Then V \
Z(V ) is dense in V .

Proof. Let 0 6= f ∈ V . Define f1 =
f

|f |p
. We can start the proof of lemma 3.1 using

this f1. Consider the proof of lemma 3.2. For a sufficiently small ǫ (independent of
|f |p), we found a l1 ∈ V \ Z(V ) such that |f1 − l1|p <

ǫ
21

then

|f − |f |p l1| <
|f |pǫ

2
.

Now 0 6= |f |pl1 ∈ V \ Z(V ). �

4. Z(X) is not spaceable for X = c0 or ℓ∞

This section shall provide the definitive answer to Question 1.1 by showing that
Z(ℓ∞) is not spaceable. In other words, ℓ∞ does not contain infinite dimensional
Banach subspaces every nonzero element of which has only a finite number of zero
coordinates. In order to achieve this we shall need to obtain a sequence (lsk)k∈N
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similar to that from Lemma 3.2 (see Lemma 4.6). Despite losing the hypothesis of
the closed span of (lsk)k∈N being complemented, we gain the property lsk(sk) = 1,
obtaining still a basic sequence.

Definition 4.1. Let V be an infinite dimensional closed subspace of ℓ∞. Let s ∈ N

and define

Vs =

{
f ∈ V, f 6= 0, |f(s)| ≥

|f |∞
2

}
.

Lemma 4.2. Let V be an infinite dimensional closed subspace of ℓ∞.
For every K ⊂ V , K 6= {0}, exist s ∈ N such that

Vs ∩K 6= ∅.

Proof. Let f ∈ K, f 6= 0. Since |f |∞ = supk∈N |f(k)| there is s ∈ N such that

|f(s)| ≥ |f |∞
2

. So f ∈ Vs ∩K. �

Lemma 4.3. Let V be an infinite dimensional closed subspace of ℓ∞. There exists an
increasing sequence of natural numbers (nk)k∈N and a basic sequence (fnk

)k∈N ⊂ V
with:

(1) fnk
(nk) = 1,

(2) fnj
(ni) = 0 for j > i, and

(3) |fnk
|∞ ≤ 2 for every k ∈ N.

Proof. This proof is a variation of Mazur’s lemma ([11, Proposition 4.1]).

Let ǫ1 = 1 and ǫi ∈ ]0, 1[ such that

∞∏

i=1

(1 + ǫi) < ∞.

By Lemma 4.2 exist s ∈ N such that Vs = Vs ∩ V 6= ∅.
Let n1 = min{s ∈ N, Vs 6= ∅} and let f1 ∈ Vn1 . Define

fn1 =
f1

f(n1)
.

Notice that

fn1(n1) = 1 and 1 ≤ |fn1|∞ =
|f1|∞
|f1(n1)|

≤ 2.

Consider the projection πn1 : V → C, πn1(f) = f(n1). Let W1 = ker(πn1). Since
codim(W1) in V is finite then dim(W1) = ∞, by lemma 4.2, exist s ∈ N such that
Vs ∩W1 6= ∅.
Let n2 = min{s ∈ N, Vs ∩W1 6= ∅}. Since Vs ⊃ Vs ∩W1 then n2 ≥ n1.
Now for every f ∈ W1, f(n1) = 0 then Vn1 ∩ W1 = ∅ then n2 > n1. Next, let

f2 ∈ Vn2 ∩W1 and define

fn2 =
f2

f2(n2)
.

Notice that

fn2(n2) = 1, fn2(n1) = 0, and 1 ≤ |fn2|∞ =
|f2|∞
|f2(n2)|

≤ 2.
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Next, |a1fn1 + a2fn2 |∞ ≥ |πn1(a1fn1 + a2fn2)| = |a1| and 1 + ǫ1 = 2 ≥ |fn1|∞, so

|a1fn1 + a2fn2 |∞(1 + ǫ1) ≥ |a1||fn1|∞ = |a1fn1|∞.

Consider now the compact set S1(〈fn1, fn2〉) and let {y1, . . . , yk} ⊂ S1(〈fn1, fn2〉)
be such that if y ∈ S1(〈fn1, fn2〉) then exist yi such that |y − yi|∞ < ǫ2

2
. Consider

{φ1, . . . , φk} ⊂ S1(V
∗) such that φi(yi) = 1.

Take πn2 : V → C, Tn2(f) = f(n2). Let

W2 =

k⋂

i=1

ker(φi) ∩ ker(πn2) ∩W1.

Since codim(kerφi
), codim(kerπn2

), and codim(W1) are finite in V then codim(W2)
is finite and dim(W2) = ∞. By lemma 4.2 exist s ∈ N such that Vs ∩W2 6= ∅.
Let n3 = min{s ∈ N, Vs ∩W2 6= ∅}. Since Vs ∩W1 ⊃ Vs ∩W2 then n3 ≥ n2.
Now, for every f ∈ W2, f(n2) = 0 then Vn2 ∩W2 = ∅ then n3 > n2 . Next, let

f3 ∈ Vn3 ∩W2 and define

fn3 =
f3

f3(n3)
.

Notice that

fn3(n3) = 1, fn3(n2) = fn3(n1) = 0, and 1 ≤ |fn3|∞ =
|f3|∞
|f3(n3)|

≤ 2.

Now, let y ∈ S1(〈fn1, fn2〉). Notice that

|y + λfn3|∞ ≥ |yi + λfn3 |∞ − |yi − y|∞

≥ |yi + λfn3 |∞ −
ǫ2
2

(for some i ∈ {1, . . . , k})

≥ φi(yi + λfn3)−
ǫ2
2

≥ φi(yi)−
ǫ2
2

≥ 1−
ǫ2
2

≥
1

1 + ǫ2
.

Thus, for every y ∈ S1(〈fn1, fn2〉) and any λ ∈ C we have

|y + λfn3|∞(1 + ǫ2) ≥ |y|∞.

Then

|a1fn1 + a2fn2 + a3fn3 |∞(1 + ǫ2) ≥ |a1fn1 + a2fn2 |∞

for every a1, a2, a3 in C. We can repeat the procedure to build fn4 , fn5, . . . satisfying

|a1fn1 + . . .+ akfnm
|∞(1 + ǫm−1) . . . (1 + ǫk) ≥ |a1fn1 + . . .+ akfnk

|∞

for every a1, . . . , am ∈ C and m ≥ k and by Banach’s criterion (fnk
)k∈N ⊂ V is a

basic sequence. Note that (fnk
)k∈N satisfies the hypothesis. �
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Lemma 4.4. Let g1, g2 ∈ ℓ∞ and let (mk)k∈N be an increasing sequence of natural
numbers. There exists (m1

k)k∈N ⊂ (mk)k∈N such that

(1) lim
k→∞

g1(m
1
k) = L1,

(2) lim
k→∞

g2(m
1
k) = L2, and

(3) m1
2 > m1

1 > m2 > m1.

Proof. The sequence (g1(mk))k∈N is bounded since g1 ∈ ℓ∞, therefore there is a
subsequence (m0

k)k∈N ⊂ (mk)k∈N and L1 ∈ C such that lim
k→∞

g1(m
0
k) = L1. Next,

and by same reasoning, there is a subsequence (m1
k)k∈N ⊂ (m0

k)k∈N and L2 such that
lim
k→∞

g2(m
1
k) = L2. Therefore lim

k→∞
g1(m

1
k) = L1 and lim

k→∞
g2(m

1
k) = L2. Removing, if

necessary, the first two terms in the sequence (m1
k)k∈N we may assume that m1

2 >
m1

1 > m2 > m1. �

Lemma 4.5. Let V be an infinite dimensional closed subspace of ℓ∞ and let (nk)k∈N
and fnk

be as in Lemma 4.3. For every (mk)k∈N ⊂ (nk)k∈N there exist (tk)k∈N ⊂
(mk)k∈N and basic sequence (htk)k∈N ⊂ V satisfying

a) htk(ts) = 0 for s < k,
b) htk(tk) = 1,
c) |htk |∞ ≤ 8, and
d) lim

s→∞
htk(ts) = 0.

Proof. First of all, let us define g1 = fm1 − fm1(m2)fm2 and g2 = fm2 . Notice that
g1(m1) = 1, g1(m2) = 0, g2(m1) = 0 and g2(m2) = 1. Now, by Lemma 4.4, there
exists (m1

k)k∈N ⊂ (mk)k∈N such that

lim
k→∞

g1(m
1
k) = L1, lim

k→∞
g2(m

1
k) = L2, and m1

2 > m1
1 > m2 > m1.

We now have the following possibilities.

(1) If L1 = 0, let h1 = g1. Notice that, since |fmi
|∞ ≤ 2 (1 ≤ i ≤ 2) we have

|h1|∞ ≤ 6. Notice also that h1(m1) = 1.
(2) If L1 6= 0 and L2 = 0, let h1 = g2. We have |h1|∞ ≤ 2 and h1(m2) = 1.

(3) If L1 6= 0, L2 6= 0 and |L1| ≤ |L2|, define h1 = g1 −
L1

L2
g2. Notice that

|h1|∞ ≤ |g1|∞ +
|L1|

|L2|
|g2|∞ ≤ 8. Also, h1(m1) = 1.

(4) Finally, if L1 6= 0, L2 6= 0 and |L2| ≤ |L1|, let h1 = g2 −
L2

L1

g1, having now

that |h1|∞ ≤ |g2|∞ +
|L2|

|L1|
|g1|∞ ≤ 8. Also, note that h1(m2) = 1.

Next, if h1(m1) = 1, define t1 = m1 and, if h1(m1) 6= 1, then h1(m2) = 1 and we
let t1 = m2. In any case, note that lim

k→∞
h1(m

1
k) = 0. Let us now suppose that, by

induction, we have already defined
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(1) (mi
k)k∈N ⊂ · · · ⊂ (m1

k)k∈N ⊂ (mk)k∈N with

mi
2 > mi

1 > mi−1
2 > mi−1

1 > . . . > m1
2 > m1

1 > m2 > m1,

(2) t1 = m1 or m2 and tj = mj−1
1 or mj−1

2 , 2 ≤ j ≤ i.
(3) hj ∈ V , 1 ≤ j ≤ i, verifying items a), b) and c) of this lemma, and

(4) lim
k→∞

hj(m
j
k) = 0, 1 ≤ j ≤ i.

Next, repeat the construction of h1 in order to obtain hi+1 by means of fmi
1
, fmi

2

instead of fm1 , fm2 .
Using the sequence (mi

k)k∈N, instead of (mk)k∈N in the previous construction, we
obtain (mi+1

k )k∈N ⊂ (mi
k)k∈N such that

mi+1
2 > mi+1

1 > mi
2 > mi

1 and lim
k→∞

hi+1(m
i+1
k ) = 0.

Define now ti+1 = mi
1 orm

i
2, depending on whether hi+1(m

i
1) = 1 or hi+1(m

i
2) = 1,

as we previously did for t1. Therefore we have hi+1(ti+1) = 1. Next, since hi+1 is a
linear combination of fmi

1
, fmi

2
, and

mi
2 > mi

1 > mi−1
2 > mi−1

1 > . . . > m1
2 > m1

1 > m2 > m1,

we obtain that hi+1(m1) = hi+1(m2) = hi+1(m
j−1
1 ) = hi+1(m

j−1
2 ) = 0 (for 2 ≤ j ≤ i),

but t1 = m1 orm2, tj = mj−1
1 ormj−1

2 (for 2 ≤ j ≤ i), which implies that hi+1(tj) = 0
for 1 ≤ j ≤ i.
Finally, notice that (ts)

∞
s=i+1 ⊂ (mi

k)k∈N, thus lim
s→∞

hi(ts) = 0 (for every i ∈ N).

Notice that (fmk
)k∈N is a basic sequence as subsequence of the basic sequence

(fnk
)k∈N.

Notice also that hk is a linear combination of fmk−1
1

and fmk−1
1

, h1 is a linear com-

bination of fm1 and fm2 and mk−1
2 > mk−1

1 > . . . > m1
2 > m1

1 > m2 > m1 for every
k. Therefore (hk)k∈N is a block sequence of the basic sequence (fmk

)k∈N. Therefore
(hk)k∈N is also a basic sequence. Finally, let htk = hk. �

Lemma 4.6. Let V be an infinite dimensional closed subspace of ℓ∞ and let (nk)k∈N
be as in Lemma 4.3. For every (mk)k∈N ⊂ (nk)k∈N there exist (sk)k∈N ⊂ (mk)k∈N
and a basic sequence (lsk)k∈N ∈ V , satisfying

a) lsk(sk) = 1,
b) lsk(sj) = 0, for j 6= k.
c) |lsk |∞ ≤ 9, for every k ∈ N.

Proof. Consider (tk)k∈N ⊂ (mk)k∈N and (htk)k∈N ⊂ V as in Lemma 4.5. Let K be
the basic constant of the basic sequence (htk)k∈N and let 0 < ǫ < 1

2K
. (Recall that

K is always equal or bigger than 1, therefore ǫ < 1 ). Let s1 = t1. Suppose defined,
by induction, {s1, . . . , sn} ⊂ {t1, t2, . . .}. Since lim

j→∞
|hs1(tj)| + . . . + |hsn(tj)| = 0,

exist sn+1 ∈ {t1, t2, . . .}, sn+1 > sn, such that

|hs1(sn+1)|+ . . .+ |hsn(sn+1)| ≤
ǫ

2n+1 × 8
.
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The induction to construct (sk)k∈N ⊂ (mk)k∈N is completed.

Now define l0,k = hsk . Notice that l0,k(sk) = 1 and l0,k(sj) = 0 for sj ∈ {s1, ..., sk}\
{sk}. Define l1,k = l0,k − l0,k(sk+1)hsk+1

.
Notice that

• l1,k(sk) = 1 and l1,k(sj) = 0 for sj ∈ {s1, ..., sk+1} \ {sk},
• since |hsk(sk+1)| ≤

ǫ
2k+1×8

then

|l1,k(sj)| ≤ |l0,k(sj)|+ |hsk+1
(sj)| = |hsk(sj)|+ |hsk+1

(sj)|

for every j ∈ N.
• |l1,k − l0,k|∞ = |l0,k(sk+1)||hsk+1

|∞ ≤ ǫ
2k+1×8

× 8 = ǫ
2k+1

Suppose we have already defined, by induction, l0,k, l1,k, . . . , lt,k ∈ V such that

• ln,k(sk) = 1 for 0 ≤ n ≤ t,
• ln,k(sj) = 0 for sj ∈ {s1, ..., sk+n} \ {sk} and 0 ≤ n ≤ t,
• |ln,k(sj)| ≤ |hsk(sj)| + |hsk+1

(sj)| + . . . + |hsk+n
(sj)|, for every j ∈ N and

0 ≤ n ≤ t,
• |ln,k − ln−1,k|∞ ≤ ǫ

2k+n for 1 ≤ n ≤ t,

Next, define lt+1,k = lt,k − lt,k(sk+t+1)hsk+t+1
. Notice that

• lt+1,k(sk) = 1,
• lt+1,k(sj) = 0 for sj ∈ {s1, ..., sk+t+1} \ {sk},
• since |lt,k(sk+t+1)| ≤ |hsk(sk+t+1)|+ |hsk+1

(sk+t+1)|+ . . .+ |hsk+t
(sk+t+1)| ≤

|hs1(sk+t+1)|+ |hs2(sk+t+1)|+ . . .+ |hsk+t
(sk+t+1)| ≤

ǫ

2k+t+1 × 8

then |lt+1,k(sj)| ≤ |lt,k(sj)| + |hsk+t+1
(sj)| for every j ∈ N and by induction

hypothesis

|lt+1,k(sj)| ≤ |hsk(sj)|+ |hsk+1
(sj)|+ . . .+ |hsk+t+1

(sj)|,

for every j ∈ N.
• |lt+1,k − lt,k|∞ = |lt,k(sk+t+1)||hsk+t+1

|∞ ≤ ǫ
2k+t+1×8

× 8 = ǫ
2k+t+1

The induction to construct (lt,k)
∞
t=0 ⊂ V , for every k ∈ N, is completed.

Now |l0,k|∞+|l1,k−l0,k|∞+|l2,k−l1,k|∞+. . . ≤ |l0,k|∞+ ǫ
2k+1 +

ǫ
2k+2 +. . . ≤ |l0,k|∞+ǫ.

Thus, for each k ∈ N, the series lim
t→∞

lt,k = l0,k + (l1,k − l0,k) + (l2,k − l1,k) + . . . is

absolutely and coordinatewise convergent to some lk ∈ V . Notice that lt,k(sk) = 1
for every t then lim

t→∞
lt,k(sk) = lk(sk) = 1. Next lt,k(sj) = 0 for t > j and j 6= k then

lim
t→∞

lt,k(sj) = lk(sj) = 0. Now, lt,k − l0,k = (lt,k − lt−1,k) + . . .+ (l1,k − l0,k) then

|lt,k − l0,k|∞ ≤
ǫ

2k+t
+

ǫ

2k+t−1
+ . . .+

ǫ

2k+1
≤

ǫ

2k
,
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then lim
t→∞

|lt,k − l0,k|∞ = |lk − hsk |∞ ≤
ǫ

2k
, for every k ∈ N, so

|lk|∞ ≤ |hsk |∞ +
ǫ

2k
≤ 8 + 1 = 9.

Since hsk(sk) = 1 then |hsk |∞ ≥ 1 and we have
∣∣∣∣

lk
|hsk |∞

−
hsk

|hsk |∞

∣∣∣∣
∞

≤
ǫ

2k
.

Then δ =

∞∑

k=1

∣∣∣∣
lk

|hsk|∞
−

hsk

|hsk|∞

∣∣∣∣
∞

≤
∞∑

k=1

ǫ

2k
= ǫ.

Now the normalized sequence
(

hsk

|hsk
|∞

)
k∈N

as a block basis of the basic sequence

(htk)k∈N is also a basic sequence with basic constant K ′ ≤ K. Then 2K ′δ ≤ 2Kδ ≤
2Kǫ < 1.

By the principle of small pertubation [11, Theorem 4.5] the sequence
(

lk
|hsk

|∞

)
k∈N

is a basic sequence equivalent to the normalized basic sequence
(

hsk

|hsk
|∞

)

k∈N
. Notice

that (lk)k∈N is a block basis of
(

lk
|hsk

|∞

)

k∈N
, therefore is also a basic sequence. Finally

define lsk = lk. �

From the previous lemma, we can now infer the following.

Proposition 4.7. Let V be an infinite dimensional closed subspace of ℓ∞. There
exists 0 6= h ∈ V \ Z(V ).

Proof. Consider lsk from Lemma 4.6. We have that lsk ∈ V \ Z(V ). �

Corollary 4.8. Z(ℓ∞) is not spaceable in ℓ∞.

As a consequence of Lemma 4.6 we also have the following result, whose proof is
simple.

Corollary 4.9. Let V be an infinite dimensional closed subspace of c0. Then V \
Z(V ) is dense in V .

Proof. Every 0 6= f ∈ V ⊂ c0, satisfies lim
k→∞

f(nk) = 0. Let ǫ > 0. There exists

(mk)k∈N ⊂ (nk)k∈N such that (f(mk))k∈N ∈ l1 and |(f(mk))k∈N|1 ≤
ǫ

9
.

By Lemma 4.6, exist (sk)k∈N ⊂ (mk)k∈N and lsk ∈ V such that

a) lsk(sk) = 1,
b) lsk(sj) = 0, for j 6= k.
c) |lsk |∞ ≤ 9 for every k ∈ N.

Notice that |f(s1)ls1|∞ + |f(s2)ls2 |∞ + . . . ≤ (|f(s1)|+ |f(s2)|+ . . .) 9 ≤ ǫ.
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Therefore f − f(s1)ls1 − f(s2)ls2 − . . . converge absolutely and coordinatewise to
some g ∈ V . Notice that for every k ∈ N

g(sk) = f(sk)− f(s1)ls1(sk)− f(s2)ls2(sk)− . . . = f(sk)− f(sk)lsk(sk) = 0

and |g − f |∞ ≤ ǫ. �

5. Algebrability and maximal spaceability of ℓp \ Z(ℓp), for p ∈ [1,∞].

In this section we prove that, although Z(ℓp) is not spaceable in ℓp, for every
p ∈ [1,∞], we have that V \Z(V ) is maximal spaceable for every infinite dimensional
closed subspace V of ℓp, for p ∈ [1,∞]. The spaceability, for the case p ∈ [1,∞[,
shall be obtained in a strong sense, meaning that the Banach space constructed
inside V \Z(V ) shall be complemented in ℓp. Also, V \Z(V ) is maximal algebrable
provided V is any infinite dimensional closed subalgebra of ℓp, p ∈ [1,∞].

Theorem 5.1. Let V be an infinite dimensional closed subspace of ℓp, p ∈ [1,∞].
Then V \ Z(V ) is maximal spaceable in V .

Proof. By Lemmas 3.2 and 4.6, there is an increasing sequence of natural numbers
(sk)k∈N and a sequence (lsk)k∈N ⊂ V such that

a) lsk(sk) 6= 0,
b) lsk(sj) = 0, for j 6= k.

Let W = 〈ls2, ls4, ls6 , . . .〉 and notice that every f ∈ W satisfies f(s2k−1) = 0 for
every k ∈ N. Since convergence in norm implies coordinatewise convergence in ℓp,
p ∈ [1,∞] then for every f ∈ W , we obtain f(s2k−1) = 0 for every k ∈ N.
Notice that {l2k ∈ W, k ∈ N} is a linear independent set then W is a infinite

dimensional closed subspace of V with W ⊂ V \ Z(V ) ∪ {0}. �

Corollary 5.2. Let V be an infinite dimensional closed subspace of ℓp, p ∈ [1,∞[.
Then the infinite dimensional closed subspace W ⊂ V \ Z(V ) ∪ {0}, obtained in
Theorem 5.1, is complemented in ℓp.

Proof. Notice that the sequence (lsk)k∈N ⊂ V used in the proof of theorem 5.1 is a ba-
sic sequence such that [ls1, ls2, . . .] is complemented in ℓp. Since W = [ls2 , ls4, ls6, . . .]
is complemented in [ls1, ls2, . . .] by [ls1, ls3, ls5, . . .]. We got the result. �

Theorem 5.3. Let V be an infinite dimensional closed subalgebra of ℓp, p ∈ [1,∞],
with the coordinatewise product. Then V \ Z(V ) is algebrable in V .

Proof. By Lemmas 3.2 and 4.6, there is an increasing sequence of natural numbers
(sk)k∈N and lsk ∈ V such that

a) lsk(sk) 6= 0,
b) lsk(sj) = 0, for j 6= k.

Consider the following closed subalgebra of V :

V (0, (s2k−1)k∈N) = {f ∈ V, such that f(s2k−1) = 0, k ∈ N} ⊂ V \ Z(V ) ∪ {0}.
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Now V (0, (s2k−1)k∈N) is an infinite dimensional subspace of V since {ls2k , k ∈ N}
is a linear independent subset. Since any infinite dimensional closed algebra has at
least c generators then V \ Z(V ) is algebrable. �
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functions on R, Proc. Amer. Math. Soc. 133 (2005), no. 3, 795–803.
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