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1. Introduction

A recurring problem in group theoretical applications to physical problems is the

reduction of irreducible representations of a Lie group into multiplets of some subgroup

of internal symmetry. Sometimes, and depending on the nature of the embedding,

the subgroup does not provide enough labels to distinguish the basis states without

ambiguity. We are therefore led to find additional operators to separate those states

not properly described by the subgroup labels. Various techniques have been developed

to surmount this difficulty, such as the projection technique of Elliott for the reduction

chain su(3) ⊃ so(3) used in atomic physics, the method of elementary multiplets in the

spectroscopic chain so(7) ⊃ G2 ⊃ so(3) to describe f electron configurations of rare

earths, or the construction of integrity bases in the enveloping algebras for the Wigner

supermultiplet model su(4) ⊃ su(2)× su(2), among others [1]. More recently, K-matrix

theory and the rotor expansion method have been shown to be powerful techniques to

solve the missing label problem in many important problems, like the nuclear sp(3)

model [2, 3].

A complementary analytical approach to the so-called missing label problem (MLP)

was developed in [4, 5], by means of basis functions that are common eigenstates of

commuting operators. This point of view also allows to recover the missing operators as

subgroup scalars in the enveloping algebra of s, as well as to compute them as solutions of

a system of partial differential equations. Although this approach has been the less used

for solving the MLP, it presents some interesting features over the pure algebraic method

of enveloping algebras. It has been observed in the literature that symmetry breaking

is, to some extent, equivalent to consider contractions of Lie algebras [6]. In this sense,

the symmetry preserved corresponds to some subalgebra which remains unchanged by

the contraction. At least for the su(3) model, this idea has been developed by means of

the rotor expansion [3].

This is the point of view we adopt in this work. More specifically, we combine

the analytical method of [5] for solving the MLP with contractions of Lie algebras. We

prove that for any embedding s ⊃ s′ of (semisimple) Lie algebras, there is an associated

simple Inönü-Wigner contraction of s onto an affine Lie algebra g = s′
−→⊕RnL1, where nL1

denotes an n-dimensional Abelian algebra and R is a representation of the subalgebra

s′ such that the adjoint representation ad of s satisfies the condition ad(s) = ad(s′)⊕R.

It is further proven that any invariant of the contraction g can be formally taken as

missing label operator. It is therefore reasonable to study whether the invariants of

the contraction g are sufficient in number to provide a set of missing label operators,

and therefore, to completely solve the missing label problem. We characterize when

it is possible to solve the MLP by means of this associated contraction, and derive

some useful consequences for the number of invariants of inhomogeneous Lie algebras.

One important fact arises from this method, namely, that the missing label operators

obtained inherit an intrinsic meaning as terms of invariants that disappear during

contraction, and should correspond to the natural choice of operators, since they are
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internally determined by the group-subgroup chain. For the case of no missing labels,

we extract an interesting consequence, namely, that the invariants of the contraction

arise as polynomial functions of the Casimir operators of the contracted Lie algebra s

and the subalgebra s′. This enables us to determine upper bounds for the number of

inhomogeneous Lie algebras that appear as contractions of semisimple Lie algebras.

It is known from the classical theory that irreducible representations of semisimple

Lie algebras are labelled unambigously by the eigenvalues of Casimir operators. More

generally, it can be established that irreducible representations of a Lie algebra g are

labelled using the eigenvalues of its generalized Casimir invariants [5]. The number of

internal labels needed equals

i =
1

2
(dim g −N (g)), (1)

as first observed by Racah [7]. If we use some subalgebra h to label the basis states

of g, we obtain 1
2
(dim h + N (h) + l′ labels, where l′ is the number of invariants of g

that depend only on variables of the subalgebra h [5]. In order to separate irreducible

representations of g uniquely, it is necessary to find

n =
1

2
(dim g −N (g) − dim h −N (h)) + l′ (2)

additional operators, which are usually called missing label operators. The total number

of available operators of this kind is easily shown to be twice the number of needed labels,

i.e., m = 2n. For n > 1, it remains the problem of determining a set of n mutually

commuting operators. The analytical approach to the missing label problem has the

advantage of pointing out its close relation to the problem of finding the invariants of

the coadjoint representation of a Lie algebra. Although in general the missing label

operators do not constitute invariants of the algebra or subalgebra, they can actually

be determined with the same Ansatz [5, 8, 9]. Given the Lie algebra g with structure

tensor
{
Ck

ij

}
over a basis {X1, .., Xn}, we realize the algebra in the space C∞ (g∗) by

means of the differential operators defined by:

X̂i = Ck
ijxk

∂

∂xj

, (3)

where [Xi, Xj ] = Ck
ijXk (1 ≤ i < j ≤ n) and {x1, .., xn} is a dual basis of {X1, .., Xn}.

The invariants of g (in particular, the Casimir operators) are solutions of the following

system of partial differential equations:

X̂iF = 0, 1 ≤ i ≤ n. (4)

Whenever we have a polynomial solution of (4), the symmetrization map defined by

Sym(xa1

i1
..x

ap

ip
) =

1

p!

∑

σ∈Sp

xa1

σ(i1)..x
ap

σ(ip) (5)

allows to recover the Casimir operators in their usual form, i.e, as elements in the centre

of the enveloping algebra of g. A maximal set of functionally independent invariants

is usually called a fundamental basis. The number N (g) of functionally independent
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solutions of (4) is obtained from the classical criteria for differential equations, and is

given by:

N (g) := dim g − rank
(
Ck

ijxk

)
, (6)

where A(g) :=
(
Ck

ijxk

)
is the matrix associated to the commutator table of g over the

given basis. If we now consider an algebra-subalgebra chain s ⊃ s′ determined by the

embedding f , in order to compute the missing label operators we have to consider the

equations of (4) corresponding to the generators of the subalgebra s′. This system, as

proven in [5], has exactly N (f(s′)) = dim s − dim s′ − l′ solutions. Using formula (2) it

follows further that this scalar can be expressed in terms of the number of invariants of

the algebra-subalgebra chain:

N (f(s′)) = m + N (s) + N (s′) − l′. (7)

This shows that the differential equations corresponding to the subalgebra generators

have exactly n more solutions as needed to solve the missing label problem. We remark

that the scalar m depends essentially on the embedding f .

Since we are interested in combining the invariants with contractions, we briefly

recall the elementary notions that will be used in the following. Let g be a Lie algebra

and Φt ∈ End(g) a family of non-singular linear maps, where t ∈ [1,∞).‡ For any

X, Y ∈ g we define

[X, Y ]Φt
:= Φ−1

t [Φt(X), Φt(Y )] , (8)

which obviously represent the brackets of the Lie algebra over the transformed basis.

Now suppose that the limit

[X, Y ]∞ := lim
t→∞

Φ−1
t [Φt(X), Φt(Y )] (9)

exists for any X, Y ∈ g. Then equation (9) defines a Lie algebra g′ called the contraction

of g (by Φt), non-trivial if g and g′ are non-isomorphic, and trivial otherwise [10, 11].

A contraction for which there exists some basis {X1, .., Xn} such that the contraction

matrix AΦ is diagonal, that is, adopts the form

(AΦ)ij = δijt
nj , nj ∈ Z, t > 0, (10)

is called a generalized Inönü-Wigner contraction [11]. This is the only type of

contractions that we will need in this work. It is known (see e.g. [12]) that for a

contraction g g′ of Lie algebras, the following inequality must be satisfied

N (g) ≤ N (g′) . (11)

The notion of contraction can also be formulated for invariant functions [13]. The

procedure is formally valid for polynomial and non-polynomial invariants, but in this

work we will only consider Casimir operators. Suppose that the contraction is of the

‡ Other authors use the parameter range (0, 1], which is equivalent to this by simply changing the

parameter to t′ = 1/t.
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type (10). If F (X1, ..., Xn) = αi1...ipXi1 ...Xip is a Casimir operator of degree p, then the

transformed invariant takes the form

F (Φt(X1), .., Φt(Xn)) = tni1
+...+nipαi1...ipXi1 ...Xip. (12)

Now, defining

M = max
{
ni1 + ... + nip | αi1..ip 6= 0

}
, (13)

the limit

F ′(X1, .., Xn) = lim
t→∞

t−MF (Φt(X1), ..., Φt(Xn)) =
∑

ni1
+...+nip=M

αi1...ipXi1...Xip (14)

gives a Casimir operator of degree p of the contraction g′. It should be remarked that,

starting from an adequate fundamental system of invariants {C1, .., Cp} of g, it is always

possible to obtain a set of p independent invariants of the contraction. However, it is

not ensured that these invariants are of minimal degree in the contraction [14].

2. Embedding of Lie algebras and the associated contraction

An embedding of a Lie algebra s′ into a Lie algebra s is specified by an isomorphic

mapping f : s′ −→ s. A special type of embeddings correspond to the so-called regular

subalgebras, which can be directly obtained from the Dynkin diagram of semisimple Lie

algebras [15]. Each embedding determines an embedding index jf and a branching rule

for irreducible representations of s, which depend essentially on the embedding. For

simple complex Lie algebras and maximal semisimple subalgebras, the branching rules

have been computed and tabulated up to rank eight [16]. In particular, for the reduction

chain s′ →֒f s, the adjoint representation of s satisfies the following decomposition

ads = ads′ ⊕ R, (15)

where R is a (completely reducible) representation of s′ determined by the embedding

index jf .§

In this paragraph we point out that any embedding of (semisimple) Lie algebras

s′ ⊂ s naturally induces a contraction of s onto an affine Lie algebra. To this extent,

consider a basis {X1, .., Xs, Xs+1, .., Xn} of s such that {X1, .., Xs} is a basis of s′, and

{Xs+1, .., Xn} spans the representation space of the induced R. Over this basis, the

structure tensor of s can be rewritten as follows

[Xi, Xj] =
s∑

k=1

Ck
ijXk, 1 ≤ i, j, k ≤ s, (16)

[Xi, Xj] =
n∑

k=s+1

Ck
ijXk, 1 ≤ i ≤ s, s + 1 ≤ j, k ≤ n, (17)

[Xi, Xj] =

s∑

k=1

Ck
ijXk +

n∑

l=s+1

C l
ijXl, s + 1 ≤ i, j ≤ n. (18)

§ The complete reducibility is actually ensured only if the subalgebra s′ is semisimple.
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For any t ∈ R we consider the non-singular linear transformations

Φt (Xi) =

{
Xi, 1 ≤ i ≤ s
1
t
Xi, s + 1 ≤ i ≤ n

. (19)

Expressing the brackets over the transformed basis {X ′
i = Φt (Xi) : 1 ≤ i ≤ n} we

obtain

[
X ′

i, X
′
j

]
=

s∑

k=1

Ck
ijX

′
k, 1 ≤ i, j, k ≤ s, (20)

[
X ′

i, X
′
j

]
=

n∑

k=s+1

Ck
ijX

′
k, 1 ≤ i ≤ s, s + 1 ≤ j, k ≤ n, (21)

[
X ′

i, X
′
j

]
=

s∑

k=1

1

t2
Ck

ijX
′
k +

n∑

l=s+1

1

t
C l

ijX
′
l , s + 1 ≤ i, j ≤ n. (22)

It follows at once that the subalgebra s′ remains invariant, as well as the representation

of s′ over its complementary in s. These equations also show that the limit

lim
t→∞

Φ−1
t [Φt (X) , Φt (Y )]

exists for any pair of generators X, Y ∈ s, we thus obtain a non-trivial contraction‖ of

s denoted by g and with non-vanishing brackets

[
X ′

i, X
′
j

]
=

s∑

k=1

Ck
ijX

′
k, 1 ≤ i, j, k ≤ s, (23)

[
X ′

i, X
′
j

]
=

n∑

k=s+1

Ck
ijX

′
k, 1 ≤ i ≤ s, s + 1 ≤ j, k ≤ n. (24)

We observe that if s′ is semisimple, then it coincides with the Levi subalgebra of g, and

the Levi decomposition of this contraction equals

g = s′
−→⊕R (n − s) L1,

where (n − s)L1 denotes the Abelian algebra of dimension n − s. This Lie algebra is

affine, and by the contraction we know that N (g) ≥ N (s). Applying the analytical

method, the invariants of g are obtained from the solutions of the system:

X̂iF = Ck
ijxk

∂F

∂xj

= 0, 1 ≤ i ≤ s, (25)

X̂s+iF = Cs+k
s+i,jxs+k

∂F

∂xj

= 0, 1 ≤ i, k ≤ n − s, 1 ≤ j ≤ s. (26)

Now equation (25) reproduces the subsystem of (4) corresponding to the generators

of the embedded subalgebra s′ that must be solved in order to find the missing label

operators for the reduction chain s′ ⊂ s. This means in particular that any invariant

of the contraction g is a solution to that system, thus can be taken as candidate for

missing label operator, whenever it is functionally independent from the invariants of s

‖ This is in fact a simple Inönü-Wigner contraction, following the notation of [11].
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and s′. As a consequence, we obtain that N (f(s′)) ≥ N (g). Combining this inequality

with formula (7), we conclude that

N (f(s)) = m + N (s) + N (s′) − l′ ≥ N (g) ≥ N (s). (27)

The term N (f(s)) on the left hand side gives the total number of available labelling

operators, the invariants of s and s′ comprised, as shown in [5]. Therefore, if the

contraction g has enough invariants, we can extract a set of n commuting missing label

operators and solve the missing label problem completely. The most important case in

physical applications corresponds to reductions chains of the type s ⊃ s′, where s is

semisimple and s′ is a reductive Lie algebra. Although the contraction method remains

completely valid for reductions involving non-reductive algebra-subalgebra chains, in

the following we will restrict ourselves to the case of reductive subalgebras, for being

the most representative case in Physics.

Suppose therefore that s is of rank p, s′ is a reductive subalgebra and let

g = s′
−→⊕R(dim s − dim s′)kL1 denote the contraction associated to the chain s ⊃ s′.

Let {C1, .., Cp} be the Casimir operators of s, and {D1, .., Dq} the invariants of s′.

Contracting the invariants Ci or some appropriate combination of them, we can always

obtain p independent invariants of g. Completing if necessary to a maximal set of

invariants of g, we obtain the fundamental system
{
C ′

1, .., C
′
p, .., C

′
r

}
(r ≥ p). In

order to solve the missing label problem using the latter set of functions, the system

F = {C ′
1, .., C

′
r} must contain at least n functions that are independent on the Casimir

invariants of s and s′, i.e.,

rankF (mod {C1, .., Cp, D1, ..Dq}) ≥ n. (28)

By the construction, the set {C1, .., Cp, D1, .., Dq−l′} is functionally independent. Now

the question arises whether adding the invariants of g some dependence relations appear.

In general, and whenever no invariant is preserved by the contraction, the functions Ci

and C ′
i are independent. In this case a dependence relation means that some Ci is a

function of C ′
i and the invariants of s′. We observe that such a dependence relation

appears at least for the quadratic Casimir operator C1.¶ Indeed, writing C1 over the

transformed basis (19) we obtain the following decomposition of C1 as polynomial in

the contraction variable t:

C1 = F + t2C ′
1,

where F is a quadratic invariant of s′. This decomposition follows from the well known

fact that, over the given basis, the quadratic Casimir operator of a reductive subalgebra

is always a summand of the quadratic Casimir operator of s.+ As a consequence, we

obtain the upper bound

rank {C1, .., Cp, C
′
1, .., C

′
r, D1, .., Dq} < N (g) + N (s) + N (s′) − l′. (29)

¶ Is either s or s′ is not reductive, this is not applicable, since existence of quadratic operators is not

ensured.
+ For higher order invariants, dependence relations could also appear, depending on the homogeneity

degree of the invariants of s with respect to the generators of the subalgebra.
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Combining the lower and upper bounds (28) and (29) respectively, we obtain a necessary

numerical condition on the number of invariants of the contraction g:

n < N (g) . (30)

These facts, put together, allow us to characterize when the contraction g provides

enough labelling operators to solve the missing label problem for s ⊃ s′.

Theorem 1 A necessary and sufficient condition for solving the missing label problem

for the reduction s ⊃ s′ by means of the invariants of the associated contraction

s g = s is that the affine Lie algebra g satisfies the constraints

(i) N (g) ≥ n + 1,

(ii) there are at least n invariants of g that are functionally independent from the

invariants of s and s′.

The first condition, the easiest to evaluate, provides a numerical criterion to decide

whether the missing labels can be found by means of the affine algebra g. Unfortunately,

there is no general criterion to decide automatically whether and how many of the

contracted invariants are independent on the Casimir operators of s and s′. We can

however derive the following sufficient condition.

Corollary 1 If the contraction g satisfies the numerical condition N (g) ≥

{n + 1,N (s) + N (s′) + 1 − l′}, then it solves the MLP.

The use of the contraction naturally associated to an embedding has further

applications, which can be useful for a general study of affine Lie algebras, in particular

inhomogeneous algebras [17, 18, 19]. Let s′ →֒f1
s be an embedding and s g =

s′
−→⊕RkL1 the associated contraction. Since the subalgebra s′ remains invariant by

the contraction, we naturally obtain the embedding f2 : s′ → g. If we now consider

the missing label problem for the latter embedding,∗ we immediately see that the

system of PDEs to be solved is exactly the same as for the embedding f1. This

means that the solutions coincide, and, in particular, their number. This implies that

N (f1 (s′)) = N (f2 (s′)). Recall that for each embedding the number of independent

solutions is given by

N (f1 (s′)) = dim s − dim s′ + l′,

N (f2 (s′)) = dim g − dim s′ + l′1, (31)

where l′1 denotes the number of common invariants of s′ and g. Since contractions

preserve the dimension, we conclude from formula (31) that l′ = l′1, that is, the

subalgebra s′ has the same number of common invariants with s than with the

contraction g. On the other hand, using the reformulation (7)

N (f1 (s′)) = m + N (s) + N (s′) − l′

N (f2 (s′)) = m̃ + N (g) + N (s′) − l′1 (32)

∗ Actually the mappings f1 and f2 are the same, but we distinguish the target algebra by the indices.
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we deduce that

m − m̃ = N (g) −N (s) ≥ 0. (33)

This result tells us that the number of available labelling operators for the reduction

chain s ⊃ s′ is always higher than that of the chain g ⊃ s′. Even more, the inequality (33)

gives us a criterion to compute the number of invariants of contractions in dependence

of the available missing label operators with respect to an invariant subalgebra.

Proposition 1 Let s  g be a contraction such that the subalgebra s′ is (maximal)

invariant. Then following equality holds:

N (g) = N (s) + m − m̃,

where m and m̃ is the number of available missing label operators for the algebra

subalgebra chain s ⊃ s′ and g ⊃ s′, respectively.

This result has useful applications, like the determination of the number of

invariants of some inhomogeneous Lie algebras. As a particular case, we obtain the

following upper bound

N (g) ≤ N (s) + m. (34)

This bound has an important interpretation, namely, that the number of invariants of

a contraction is, in some sense, determined by the number of available missing label

operators for the missing label problem with respect to a maximal subalgebra of s that

remains invariant by the contraction. This fact establishes a quite strong restriction to

semidirect products of semisimple and Abelian Lie algebras to appear as contractions

of semisimple Lie algebras [20].

3. The case n = m = 0

In the case of zero missing labels, the invariants of the algebra-subalgebra chain provide a

complete description of the states. This situation is not uncommon for certain canonical

embeddings, such as the inclusions so(N) ⊂ so(N + 1) of (pseudo)-orthogonal Lie

algebras. Even if this case is trivial, its interpretation in terms of the associated

contraction provides some interesting information concerning the invariants of the

contraction.

At first, if m = 0, then by formula (33) we have N (g) = N (s), i.e., the contraction

determined by the embedding s ⊃ s′ preserves the number of invariants. It is worth to

be observed that the converse does not necessarily hold. Moreover, by formula (2), we

have

0 = m = dim s − dim s′ −N (s) −N (s′) + 2l′. (35)

In absence of additional internal labels, the system X̂iF = 0 for the generators of s′ has

exactly

N (f(s)) = N (s) + N (s′) − l′ (36)
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solutions. Since any invariant of the contraction g = s′
−→⊕R(dim s−dim s′)L1 is a special

solution of this system, the latter equation tells that any invariant of g is functionally

dependent on the invariants of s and the subalgebra s′. That is, the Casimir invariants

of the algebra-subalgebra chain completely determine the invariants of the contraction.♯

Expressed in another way, in this situation, polynomial functions of the invariants of s

and the contraction g allow to recover naturally the invariants of the subalgebra.

These observations provide a new (and very short) proof of the fact that the number

of invariants for inhomogeneous pseudo-orthogonal Lie algebras is given by

N (Iso(p, q)) =

[
p + q + 1

2

]
. (37)

In fact, it is straightforward to verify that n = 0, and since Iso(p, q) is a contraction of

so(p + 1, q), the result follows at once from formula (34). Moreover, the invariants of

Iso(p, q)) can be obtained from the invariants of so(p + 1, q) and so(p, q). This explains

in some manner why the classical Gel’fand method applies so well to inhomogeneous

algebras of this kind [19].

As example, consider the embedding so (3, 1) →֒ so (4, 1) of the Lorentz algebra into

the Anti De Sitter algebra so (4, 1). Using the kinematical basis {Jα, Pα, Kα, H}1≤α≤3,

where Jα are spatial rotations, Pα spatial translations, Kα the boosts and H the time

translation, the non-trivial brackets of so (4, 1) are

[Jα, Jβ] = εαβγJγ, [Jα, Pβ] = εαβγPγ, [Jα, Kβ] = εαβγKγ, [H, Pα] = εαβγKα,

[H, Kα] = εαβγPα, [Pα, Pβ] = εαβγJγ, [Kα, Kβ] = −εαβγJγ, [Pα, Kα] = H.
(38)

It follows at once that so (3, 1) is generated by the rotations and boosts. In this case

there are no missing labels, thus n = m = 0. The corresponding contraction defined by

the linear maps

J ′
α = Jα, P ′

α =
1

t
Pα, K ′

α = Kα, H ′ =
1

t
H

leads to the Poincaré algebra Iso (3, 1). Over this basis, the Casimir operators of so (4, 1)

are

C2 = jαjα + pαpα − kαkα − h2

C4 = jαjαh2 + (pαpα) (kαkα) − (pαkα)2 + (pαjα)2 − (jαkα)2 − 2εαβγjαpβkγh.

Contraction of these invariants give the Casimir operators of the Poincaré algebra

C ′
2 = pαpα − h2

C ′
4 = jαjαh2 + (pαpα) (kαkα) − (pαkα)2 + (pαjα)2 − 2εαβγjαpβkγh.

Now observe that C21 = pαpα − kαkα and C22 = jak
α are the Casimir operators of the

so (3, 1) subalgebra. It follows that

C2 = C ′
2 + C21, C4 = C ′

4 − C2
22,

♯ Of course, if N (s′) = 0, this assertion fails, but for reductive subalgebras this situation is excluded.
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i.e., the mass squared and spin squared operators of the Poincaré algebra are obtainable

as a difference of the Casimir operators of the Lorentz and De Sitter Lie algebras, and

therefore the information they provide is already contained in the reduction chain.

4. The case n = 1, m = 2

In the case of one missing label operator, any solution of the contraction g that

is independent of the invariants of the algebra-subalgebra chain can be used. No

commutation problems arise at this step. Formula (34) establishes the maximal possible

number for the invariants of g:

N (g) ≤ N (s) + 2.

For the case of semisimple Lie algebra s and maximal reductive subalgebra s′, there are

eight cases with one missing label [5, 21]. Most of these chains have been solved finding

finite integrity bases, that is, a set of elementary subgroup scalar such that any other

can be expressed by a polynomial in them. All eight cases can also be solved applying

the contraction method. In order to illustrate how the contraction method works, we

consider two representative cases, and resume the results for the remaining cases in

Table 1.

4.1. The su (3) ⊃ so (3) reduction

This reduction chain, first considered in atomic physics by Elliott, is probably the best

known and best studied case concerning the missing label problem. A complete set of

commuting operators and their eigenvalues for different irreducible representations of

su(3) were first determined in [22].

The so (3) subalgebra is naturally identified with the three orbital angular momentum

operators, while the remaining five generators transform under rotations like the

elements of a second rank tensor [1, 3]. Here we consider a basis {Li, Tjk} formed

by rotations Li and the operators Tik and commutation relations

[Lj , Lk] = iεjklLl, [Lj , Tkl] = iεjkmTlm + iεjlmTkm,

[Tjk, Tlm] = i
4

{
δl
jεkmn + δm

j εk ln + δl
kεjmn + δm

k εj ln

}
Ln,

where T33 + (T11 + T22) = 0. The symmetrized Casimir operators, following the

notation of [22], are given by C(2) = LiLi + 2TikTik, C(3) = LiTikLk − 4
3
TikTklTli and

C(2,0) = LiLi. The contraction g associated to this reduction has Levi decomposition

g = so (3)−→⊕RI
5

5L1, where RI
5 denotes the five dimensional irreducible representation

of so (3). This is equivalent to the rotor algebra [R5]SO(3) studied in [2]. It is

straightforward to verify that N (g) = 2. Therefore, a basis of invariants of g can

be obtained by contraction of C(2) and C(3). Specifically, we get the (unsymmetrized)

Casimir invariants

C2 = 2tikt
ik,

C3 = tikt
kltli.
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As already observed, C2 is functionally dependent on C(2) and C(2,0), therefore of no use

for the MLP. The independence of
{
C(2), C(3), C(2,0), C3

}
follows from the Jacobian

∂
{
C(2), C(3), C(2,0), C3

}

∂ {l2, l3, t11, t12}
6= 0.

The invariant C3 is therefore sufficient to solve the missing label problem. In fact, we

can recover the missing label operator X(3) from [22] by simply considering the linear

combination

X(3) = C(3) +
4

3
{C3}symmetrized .

This operator is equivalent to the third order operator obtained by Bargmann and

Moshinsky in [23], and also to the operator determined in [2] using the K-matrix

approach. It is observed that the fourth order operator X(4) = LiTijTjkLk cannot be

obtained from the invariants of su (3) , so (3) and the contraction g. This is essentially

due to the fact that the fundamental Casimir operators of su(3) have degree two and

three.

4.2. The seniority model

The reduction so (5) ⊃ su (2)× u (1) has been used in the treatment of the paring force

between particles in the same nuclear shell, and is usually referred to as the seniority

model [24].

In order to analyze this chain, we use the same basis {U±, U3, V3, V±, S±, T±} of [25].

The su (2) × u (1) subalgebra is generated by the operators {U±, U3, V3}. The nonzero

brackets are given by

[U±, U3] = ∓U±, [U+, U−] = 2U3, [U±, V±] = ∓2S±, [U±, V∓] = ∓2T±,

[U±, S∓] = ±V∓, [U±, T∓] = ±V∓, [U3, S±] = ±S±, [U3, T±] = ±T±,

[V3, S±] = ±S±, [V3, T±] = ∓T±, [V+, V−] = 2V3, [V±, V3] = ∓V±,

[V±, S∓] = ∓U∓, [V±, T±] = ±U±, [S+, S−] = U3 + V3, [T+, T−] = U3 − V3.

Over this basis, the (unsymmetrized) Casimir operators of so (5) can be chosen as

C2 = u+u− + u2
3 + v2

3 + v+v− + 2 (s+s− + t+t−) ,

C4 =
(
u+u− + u2

3

)
v2
3 + u+u− (s+s− + t+t−) + u2

+s−t− + u2
−s+t+ + 2u3v3 (s+s− − t+t−)

+ ((t−v− − s−v+)u+ + (t+v+ − s+v−) u−) v3 + ((t+v+ + s+v−) u− + (s−v+ + t−v−) u+)u3

+v+v−s+s− + u2
3v+v− + (s+s− − t+t−)2 − v2

+s−t+ − v2
−s+t− + v+v−t+t−,

while those of the subalgebra are given by C21 = u+u− + u2
3, C22 = v3. The associated

contraction g is easily seen to have exactly two invariants, which can be obtained from

those of so (5) by the contraction method:

C ′
2 = v+v− + 2 (s+s− + t+t−) ,

C ′
4 = v+v−s+s− + (s+s− − t+t−)2 − v2

+s−t+ − v2
−s+t− + v+v−t+t−.
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Table 1. Comparison of missing labels of [5] and those obtained by contraction.

s ⊃ s′ N (g) N (f (s′)) rank F Order of Φ Operator of [5]

su (3) ⊃ so (3) 2 5 4 3 X(3)a

so (5) ⊃ su (2) × u (1) 2 6 5 4 UV L2

G2 ⊃ su (3) 2 5 4 6 U3V 3

sp (6) ⊃ sp (4) × su (2) 3 8 7 6 Q3T 2L

so (7) ⊃ G2 3 7 6 6 T 4S2

su (4) ⊃ [su (2)]2 × u (1) 3 7 6 4 UV ST

su (3) × su (3) ⊃ su (3) 2 8 7 3 UV 2

[su (2)]
3 ⊃ su (2) 3 6 5 2 −b

a The notation for the operator corresponds to that used in [22].
b This case, omitted in [5], was first considered in [21].

As expected, we have C2 = C ′
2 + C21 + C2

22, thus at most C ′
4 is independent on the

invariants of so (5) and su (2) × u (1). A short computation shows that

rank {C2, C4, C21, C22, C
′
4} = 5,

showing that the missing label problem can be solved using the contraction g. Now,

after some manipulation we can arrive at the expression Ω4 = C4−C ′
4−C21C

2
22 explicitly

given by

Ω4 = u+u− (s+s− + t+t−) + u2
3v+v− + u2

+s−t− + u2
−s+t+ + 2u3v3 (s+s− − t+t−)

+ ((t−v− − s−v+)u+ + (t+v+ − s+v−) u−) v3 + ((t+v+ + s+v−) u− + (s−v+ + t−v−) u+)u3.

This operator is obviously independent on the invariants of the orthogonal algebra

and the subalgebra, and can therefore be taken as the missing operator. It can be verified

that Ω4, after symmetrization, coincides with the fourth order operator UV L2 found in

[5]. The remaining third order operator cannot be obtained using the contraction g. In

this case, this is a consequence of the non-existence of cubic Casimir operators for the

orthogonal algebra so(5).

5. The case n = 2, m = 4

The case with two missing labels is notably more complicated, because in addition to

determine two missing label operators, these must commute. Although a considerable

number of cases has been studied, only for a few the most general form of missing

label operators has been analyzed in detail, such as the Wigner supermultiplet su(4) ⊃

su(2) × su(2) [26, 27] or the chain so(5) ⊃ su(2) used for the classification of nuclear

surfon states [24].

5.1. The supermultiplet model

This model, used by Wigner to describe light nuclei, has been considered in detail

by various authors, usually by means of enveloping algebras [26, 27, 28]. It has been

shown that the set of available operators is partitioned into two separate sets, the
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Moshinky-Nagel operators Ω, Φ and two other operators O1, O2, first found in [26] and

later evaluated numerically in [27]. We start from the same basis {Si, Tj, Qαβ} used in

[28], where 1 ≤ i, j, α, β ≤ 3. The non-vanishing brackets of su (4) are

[Si, Sj] = iεijkSk, [Ti, Tj] = iεijkTk, [Si, Qjα] = iεijkQkα, [Tα, Qiβ] = iεαβγQiγ,

[Qiα, Qjβ] =
i

4
{δαβεijkSk + δijεαβγTγ} , (39)

where εijk is the completely antisymmetric tensor. The su (2) × su (2)-subalgebra

is generated by the operators {Si, Tj}. It follows easily from the brackets that the

generators of su (4) decompose as the following su (2) × su (2)-representation

R = (D1 ⊗ D0) ⊕ (D0 ⊗ D1) ⊕ (D1 ⊗ D1) , (40)

where D1 denotes the adjoint representation of su(2) and D0 the trivial representation.

The two missing label operators are therefore determined by the system of differential

equations

ŜiF = ǫijksk

∂F

∂sj

+ǫijkqkl

∂F

∂qkl

= 0, T̂αF = ǫαβγtγ
∂F

∂tβ
+ǫβγµqαµ

∂F

∂qβµ

= 0, i = 1, 2, 3(41)

corresponding to the generators of the subalgebra. From the nine independent solutions,

five of them correspond to invariants of su (4) and the subalgebra. The Casimir operators

can be taken as.

C2 = sαsα + tβtβ + 4qαβqαβ, (42)

C3 = sαtβqαβ − 4εijkεαβγqiαqjβqkγ, (43)

C4 = 16
{
ε2

αβγ(q
2
αβ

(
q2
αγ + q2

γβ

)
+ 2q2

αα

(
q2
αγ + q2

βα

)
− 2qααqαβqγαqγβ + 3q2

αβ

(
q2
γα + q2

γγ

))

+
∑

a<β

(
3
(
q2
ααq2

ββ + q2
αβq2

βα

)
− 2qααqββqαβqβα

)
+ q4

αβ

}
+ (sαsα)2 +

(
tβtβ

)2
+ 3sαsαtβtβ

+23q2
αβ

(
sαsα + tβt

β
)

+ 4 {tαtβqγαqγβ + sαsβqαγqβγ − εαβγεµνρsµtαqνβqργ} (44)

for su (4), and C21 = sαsα, C22 = tβtβ for the subalgebra. In this case, the contraction

g = (su(2)×su(2))
−→⊕D1⊗D1

9L1 associated to the embedding has the following non-trivial

brackets

[Si, Sj] = iεijkSk, [Ti, Tj] = iεijkTk, [Si, Qjα] = iεijkQkα, [Tα, Qiβ] = iεαβγQiγ. (45)

Using formula (6) we easily get N (g) = 3. Contracting the invariants we obtain three

independent invariants of g, given respectively by

C ′
2 = 4qαβqαβ, (46)

C ′
3 = −4εijkεαβγqiαqjβqkγ , (47)

C ′
4 = 16

{
ε2

αβγ(q
2
αβ

(
q2
αγ + q2

γβ

)
+ 2q2

αα

(
q2
αγ + q2

βα

)
− 2qααqαβqγαqγβ + 3q2

αβ

(
q2
γα + q2

γγ

)
)

+q4
αβ +

∑

a<β

(
3
(
q2
ααq2

ββ + q2
αβq2

βα

)
− 2qααqββqαβqβα

)
}

. (48)

As observed, the quadratic Casimir operator of g satisfies the condition C2 − C ′
2 =

C21 + C22, and is therefore dependent. To prove that F = {C2, C3, C4, C21, C22, C
′
3, C

′
4}
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is a functionally independent set, we consider the Jacobian with respect to the variables

{s2, s3, t1, t2, q11, q12, q23} :

∂(C21, C2, C3, C4, C
′
2, C

′
3, C

′
4)

∂(s2, s3, t1, t2, q11, q12, q23)
6= 0. (49)

Actually, this is a maximal set of independent functions among the invariants of the

intervening Lie algebras su (4) , su (2) × su (2) and g. This means that the contraction

method provides at most two of the four available operators. If we take the difference of

the cubic invariants of su(4) and g, we recover exactly the cubic operator Ω of Moshinsky

and Nagel [28]:

C3 − C ′
3 = Ω = sαtβqαβ. (50)

As known, the operator Ω only commutes with the fourth order operator Φ defined by

Φ = SiSjQiαQjα + QiαQiβTαTβ − ǫijkǫαβγSiTαQjβQkγ. (51)

With some more effort we can express Φ with the help of the preceding functions of F ,

obtaining

Φ =
1

4

{
C4 − C ′

4 + C2
21 − C2

2 + C ′2
2 − C21 (C ′

2 − C2)
}

. (52)

This means that the commuting Ω − Φ operators of Moshinky-Nagel are completely

determined by the contraction associated to the embedding of spin-isospin subalgebra

in su (4), while the other pair of commuting operators, being summands of Φ, cannot

be obtained by this method.

5.2. The nuclear surfon model

The reduction chain so(5) ⊃ su(2) has been analyzed in [29], where two commuting

missing label operators of degrees four and six were found. The authors looked for the

simplest possible operators solving the labelling problem. We reconsider the problem

with the contraction method. As in [29], we choose the basis of so(5) to consist of

generators {L0, L1, L−1} with brackets [L0, L±1] = ±L±1, [L1, L−1] = 2L0 together with

an irreducible tensor representation Qµ (µ = −3..3). The brackets of so(5) over this

basis are given in Table 2. According to [29], the Casimir operators of so(3) and so(5)

are given respectively by:

C21 = l20 + l1l−1,

C2 = l20 + l1l−1 −
2

5
(q3q−3 + q1q−1) +

1

15
q2q2 + q2

0,

C4 = l30q0 +
1

6

(
l−1q1 − l1q−1 +

1

2
l1l−1

)
q2
0 +

1

6

(
q3q−1q−2 + q2q1q−3 +

1

3
q2
1q−2 +

1

3
q2q

2
−1

)
q0 +

−
1

3

(
1

3
l−1q−1 +

1

2
l0q−2 +

2

3
l1q−3

)
q2
1 +

1

3

(
2

3
l−1q3 +

1

3
l1q1 −

1

2
l0q2

)
q2
−1 +

1

4

(
l31q−3 − l3−1q3

)

1

3

(
1

20
q2q−2 − q1q−1 − 3l−1q1 +

7

4
q2
0 + 3l1q−1 +

1

5
q3q−3

)
l20 −

3

100
q2
3q

2
−3 −

q−2q2

540

(
q1q−1 + 36q2

0

)
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+
1

12

(
q2
−1 − 3l−1q−1 + 3l0q−2 + q1q−3 − q0q−2

)
l21 +

1

12

(
3l0q2 + q3q−1 + q2

1 + 3l1q1 − q2q0

)
l2−1

+
1

3

(
−

11

20
l1l−1 + l−1q1 −

3

2
l0q0 − l1q−1

)
q−3q3 +

1

6

(
1

10
l1l−1 −

q−2q2

6
l1q−1 +

2

3
l0q0 +

1

6
l−1q1

)

−
1

12

(
l1l−1 −

34

3
l0q0

)
q−1q1 +

1

4

(
l1q2q−3 −

1

9
l−1q2q−1 +

1

9
l1q1q−2 − l−1q3q−2

)
q0 +

q2
2q

2
−2

675

−
1

6
(9l1l−1 + l−1q1 − l1q−1) l0q0 +

1

12
((q2q−3 − q1q−2) l1l0 + (−q3q−2 + q2q−1) l−1l0) − l0q

3
0

+
1

18
l0q2q1q−3 −

1

36

(
q2
2q−1q−3 − l1q3q

2
−2 + q3q1q

2
−2 + l−1q

2
2q−3

)
−

1

9

(
q3
1q−3 + q3q

3
−1

)
−

5

108
q2
1q

2
−1

+
1

5

(
7

6
q1q−1 − 3q2

0 +
1

20
q2q−2

)
q−3q3 +

1

18
l0q3q−1q−2.

For this algebra, the transformations (19) defining the contraction g are given

by L′
i = Li, Q′

µ = 1
t
Qµ. The resulting algebra has an Abelian radical of dimension

seven, which implies that the invariants will only depend on the qµ-variables [12]. It is

straightforward to verify that N (g) = 4, and from the four Casimir operators, two can

be obtained by contracting the invariants C2 and C4 of so(5). A basis of invariants of

g is completed with two operators C ′
6 and C ′

8 of degrees 6 and 8 respectively. Omitting

C8 because of its length, the explicit form of the invariants C ′
2, C

′
4 and C ′

6 is as follows:

C ′
2 = −

2

5
(q3q−3 + q1q−1) +

1

15
q2q2 + q2

0,

C ′
4 =

1

6

(
q3q−1q−2 + q2q1q−3 +

1

3
q2
1q−2 +

1

3
q2q

2
−1

)
q0 −

1

540

(
q1q−1 + 36q2

0

)
q−2q2

−
1

36

(
q2
2q−1q−3 + q3q1q

2
−2

)
−

1

9

(
q3
1q−3 + q3q

3
−1

)
+

1

5

(
7

6
q1q−1 − 3q2

0 +
1

20
q2q−2

)
q−3q3

+
q2
2q

2
−2

675
−

5

108
q2
1q

2
−1 −

3

100
q2
3q

2
−3,

C ′
6 = −729q6

0 − 54q4
1q

2
−2 + 54q3q−3

(
9q2q

2
0q−2 + 162q1q

2
0q−1 − 32q2

1q
2
−1 + 6q2q1q−1q−2

)

+6q2q−2

(
6q3q

3
−1 − 10q2

1q
2
−1 + 6q−3q

3
1 − 63q1q

2
0q−1

)
− 162q2

0

(
q2
−2q3q1 + q2

2q−3q−1

)

+54
(
q2
0

(
27q2

3q
2
−3 − 8q−3q

3
1 − 8q3q

3
−1 − 13q2

1q
2
−1

)
− q2

3

(
−q0q

3
−2 + q2

−1q
2
−2

)
−

(
q2
1q

2
−3 + q4

−1

)
q2
2

)

+972
(
q3
0 (q3q−1q−2 + q2q1q−3) −

(
q2
3q−1q−2q−3 +

(
q2q

2
−1q−3 + q2q1q

2
−3 + q2

1q−2q−3

)
q3

)
q0

)

+288q−1q1

(
q−3q

3
1 + q3q

3
−1

)
+ 90q−2q2

(
q2
1q−2 + q2q

2
−1

)
q0 + 396q−1q0q1

(
q2
1q−2 + q2q

2
−1

)

+180q1q−1

(
q2
−2q3q1 + q2

2q−3q−1

)
+ 864q−3q3

(
q−3q

3
1 + q3q

3
−1

)
+ q3

2q
3
−2 − 64q3

1q
3
−1 + q3

2q0q
2
−3

−324q3
0

(
q2
1q−2 + q2q

2
−1

)
− 18q−2q2

(
q2
−2q3q1 + q2

2q−3q−1

)
− 756q0q1q−1 (q3q−1q−2 + q2q1q−3)

+243 (6q1q−1 − 30q3q−3 + q2q−2) q4
0 − 3q2

2q
2
−2

(
4q1q−1 + 9q2

0

)

By inspection, we easily see that C2 − C ′
2 = C21, therefore the set

{C2, C4, C21, C
′
2, C

′
4, C

′
6} has at most rank five. Computing the Jacobian with respect to

the variables {q−3, q0, q1, l1, l0}, we prove that the rank is indeed five. We can therefore

solve the missing label problem. From the preceding functions we deduce that a missing

label operator is at least of order 4, thus reconfirming the observation on the minimal
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Table 2. so(5) brackets in a so(3) = {L0, L±1} basis.

[] Q3 Q2 Q1 Q0 Q−1 Q−2 Q−3

L0 3Q3 2Q2 Q1 0 −Q−1 −2Q−2 −3Q−3

L1 0 6Q3 Q2 2Q1 6Q0 10Q−1 Q−2

L−1 Q2 10Q1 6Q0 2Q−1 Q−2 6Q−3 0

Q3 0 0 0 Q3 Q2 10Q1 + 15L1 5Q0 − 15L0

Q2 0 −6Q3 −Q2 −15L1 30Q0 + 60L0 10Q−1 − 15L−1

Q1 0 3L1 − Q1 −3L0 − 3Q0 15L−1 Q−2

Q0 0 −Q−1 − 3L−1 −Q−2 Q−3

Q−1 0 −6Q−3 0

Q−2 0 0

degree of such an operator made in [29]. This fourth order operator can be taken for

example as Φ1 = C4 − C ′
4 + 7

12
C21 (C21 − C2). We point out that this choice does not

coincide with that made in [29], where the simplest possible fourth order operator was

considered. A sixth degree missing label operator that commutes with Φ1 can be taken

as Φ2 = C ′
6 − 13608C4 (C2 − C21) + 729 (C2

2 − C3
21) + 2187 (C2

2 − C2
21).

6. On the validity of the method

The contraction method can constitute a practical procedure to reduce to some extent

the computations when we consider reduction chains s ⊃ s′ with more than three missing

labels, whenever the conditions of theorem 1 are satisfied. For example, a solution for the

general chains sp(2N) ⊃ sp(2N − 2)× u(1) or sp(2N) ⊃ sp(2N − 2)× su(2), considered

for the first time in [30], can be found by analyzing the corresponding contractions.

As has been pointed out when deriving formula (30), the contraction method could

fail if the contraction g has “to few” invariants with respect to the number of necessary

labelling operators. Actually, this can happen for reductive s′ and semisimple s if the

following numerical equality N (s) = N (g) = n holds. Since in this case a fundamental

system of invariants of the contraction g can be obtained by appropriate contraction of

the Casimir operators of s, the dependence of the quadratic Casimir operator implies

that we get at most n − 1 of the needed labelling operators. The remaining operator,

which must be computed explicitly, may however be determined in some sense by the

other operators, by means of the commutation property it must satisfy. Although for

this extreme case we don’t obtain a complete set by the contraction, it could also happen

that any degeneracy of practical interest can be resolved using only the n− 1 operators

associated to the contraction. This however requires a case by case inspection.

The lowest dimensional reduction where the contraction produces an insufficient

number of labelling operators is the reduction G2 ⊃ su(2) × su(2), where G2 is the

exceptional Lie algebra of rank two. In this case, we have n = 2 missing labels, therefore

four available operators. In [31], a pair of commuting operators of order six that solves

the missing label problem was found. The general form of commuting operators remains
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however an unanswered question. Observe that here, N (G2) = N ([su(2)]2) = 2 holds.

In this case, the G2 generators decompose as those of the subalgebra and an eight

dimensional irreducible representation R of su(2)× su(2), therefore the contraction has

the Levi decomposition g = (su(2) × su(2))
−→⊕R8L1. This algebra satisfies N (g) = 2.

This means that the invariants C ′
2 and C ′

6 of the contraction algebra are obtained by

limiting procedure from the quadratic and hexic Casimir operators of G2. Now the

quadratic operator is dependent on the operators of the same degree of G2 and the

subalgebra. A routinary but cumbersome computation shows that the function C ′
6 is

independent on the invariants of the algebra-subalgebra chain. Therefore we arrive at

a missing label operator Φ of degree six, but a second independent operator cannot

be constructed, because there is no other independent higher order invariant in the

contraction. Taking into account the construction made in [31], this second operator

must be either of degree six or eight. Since both G2 and g have at most one (independent)

invariant of order higher than two, the failure of the contraction seems to be directly

related to the order of the required labelling operators.

7. Conclusions

We have shown that many physically relevant missing label problems can be completely

solved by using the properties of the reduction chain s ⊃ s′, by means of a Lie algebra

contraction associated to this reduction. Analyzing the set of invariants of the three

involved Lie algebras, suitable commuting operators can be found that solve the missing

label problem. In this approach, the found operators inherit an intrinsic meaning,

namely as those terms of the Casimir operators of s that get lost during contraction,

up to some combination of lower order invariants of s and s′. We have recomputed

some classical reductions appearing in atomic and nuclear physics, obtaining complete

agreement with the result obtained by different authors and techniques. Further we

have furnished a natural explanation of the order of these operators, which are directly

related to the order of the Casimir operators of the contracted Lie algebra. For the

special case of n = m = 0, we have obtained a direct relation among the invariants

of s and s′ with those of the contraction g, which provides a new interpretation of the

contracted invariants.

It seems natural that, whenever the reduction chain is non-canonical and the

reduction is not multiplicity free, the information lost is somehow determined by the

chain itself, and not by a priori external techniques. In this sense, the missing label

operators which arise from the contraction g should correspond to the natural choice of

physical labelling operators, as they are obtained using only the available information

on the algebra-subalgebra chain and their invariants. This suggests that these could be

the correct physical operators to be considered for the labelling of states. An argument

supporting this interpretation is the equivalence of the contraction procedure with the K-

matrix method in the su(3) ⊃ so(3) chain or the Wigner supermultiplet model. Whether

the remaining possibilities that arise from the general algebraic solution of the missing



19

label problem are physically more relevant than those operators found by contraction,

remains a question that should be analyzed for any specific physical situation. All

examples show also that the affine contraction provides at most n of the 2n available

operators, thus induces a kind of partition in the set of labelling operators. This suggests

the existence of a certain kind of hierarchy among these operators, as well as the fact

that some of them are not directly related to the properties of the embedding of the

subalgebra, and therefore not equivalent to these. The next natural step is to analyze

if the contraction g can also be used to derive the eigenvalues of the missing label

operators.

The failure of the proposed method for the special case N (g) = N (s) = n

is essentially a consequence of the existence of the quadratic Casimir operators for

reductive Lie algebras. In this situation, a similar obstruction to obtain the sufficient

number of labelling operators will appear whenever the Lie algebra s, the subalgebra

s′ and the contraction g have all a Casimir operator of the same degree. In this case

the invariant of the contraction will be dependent, we thus loose one solution. How

to recover this operator without solving explicitly the system of partial differential

equations remains unanswered, as well as the meaning of this lost solution. In spite

of this incompleteness, the method is still worthy to be applied, since often particular

degeneracies can be solved using less than the required labelling operators [32].

Finally, the contraction method, essentially reducing the obtainment of missing

label operators to the computation of invariants of three Lie algebras, constitutes an

appropriate class of algebras to be tested with the geometrical method based on moving

frames, recently introduced in [33, 34], and tested successfully for large types of algebras.

In this frame, the solving of differential equations is replaced by algebraic systems,

which can be often be solved in more effective manner. This algorithm can be therefore

applied more efficiently to obtain a maximal number of independent invariants of the

three Lie algebras involved in the MLP. Further, this approach probably allows to

deduce some properties linking the corresponding automorphism groups of these Lie

algebras. Moreover, in the case of non-reductive subalgebras, the geometric method

provides solutions avoiding complex realizations of the invariants, therefore discarding

supplementary complications that usually arise from the analytical approach. Whether

the method can be implemented to compute directly the missing label operators, is a

problem that has still to be explored.
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