A Note on Tropical Triangles in the Plane

M. ANSOLA M. J. de la PUENTE
Departamento de Algebra Facultad de Matemdticas, Universidad Complutense, Madrid 28040, Spain
E-mail: mpuente@mat.ucm.es macarenaa@gmail.com

Abstract We define transversal tropical triangles (affine and projective) and characterize them via six
inequalities to be satisfied by the coordinates of the vertices. We prove that the vertices of a transversal
tropical triangle are tropically independent and they tropically span a classical hexagon whose sides have
slopes o0,0,1. Using this classical hexagon, we determine a parameter space for transversal tropical
triangles. The coordinates of the vertices of a transversal tropical triangle determine a tropically regular
matrix. Triangulations of the tropical plane are obtained.

Keywords tropical triangles, tropical triangulation, linear inequalities, convexity, tropical semi-field

MR(2000) Subject Classification 52C35, 52C20, 15A39, 12K99

1 Introduction

Triangles are, after points and lines, the simplest figures in any geometry. They can be defined
either by three different non-collinear points, called vertices, or by three non-concurrent pairwise
transversal lines, called sides. The vertices of a triangle span the plane (affine or projective) and
they are independent points. Also, triangles are the simplest two-dimensional convex figures
and they provide tilings of the plane, or triangulations. This is all elementary mathematics.

If we move to the tropical plane, then natural questions about triangles arise. How are the
notions of span, independence, convexity and transversality (in their tropical versions) related
to tropical triangles? On the one hand, in [1-2] it is shown that no finite family of points
can tropically span the plane. On the other hand, tropical convexity has been thoroughly
studied in [3]; in particular, tropical triangles are defined there, and five combinatorial types
of tropical triangles are shown to exist, up to symmetry. However, most such tropical triangles
have non-transversal sides.

In this paper, we propose a finer definition of tropical triangle. Such tropical triangles will
be called transversal. It amounts to restricting to one combinatorial type from [3]. Our starting
point (from elementary geometry) is the following: the tropical triangles we are interested in
are only those defined by three different non-collinear points a, b, ¢ such that, when joined by
pairs there yield three different lines ab, bc, ca which, when intersected by pairs yield the original
points. The intersection (resp. join) we are talking about here is stable intersection (resp. stable
join) and these are the right notions to consider in tropical geometry. And it turns out that,
in transversal conditions stable intersection (resp. stable join) is nothing but plain intersection

(resp. join).
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It is a basic fact that a tropical line in the plane carries a special point, called vertex.
Therefore, with a tropical triangle T' we can associate a family of six points: the three vertices
of T and the three vertices of the tropical sides of T'. In Theorem 3 it is proved that the tropical
span of the vertices of a transversal tropical triangle T equals the classical convex hull of the
six related points. This means that giving a transversal tropical triangle T amounts to giving
a classical hexagon, H(T'), the sides of which have slopes c0,0,1. It is our opinion that all
triangles should look alike, in any geometry and this is not the case for tropical triangles, as
defined in [3], but it is certainly true, for transversal tropical triangles. Moreover, the lattice
lengths the sides of H(T') parameterize the tropical triangle T'.

In [4], Joswig raises the question of what should be the right notion of tropical triangulation.
For the tropical plane (affine or projective), we give the following solution: a triangulation 7°
of the tropical plane is a family of transversal tropical triangles {7} : j € J} such that the
associated family {H(7}) : j € J} tessellate the classical plane. More precisely, if two tropical
triangles T, T5 in 7 meet, all they share is one vertex and one side and, moreover, the associated
classical hexagons H(7T1), H(T2) have just one side in common, including the two end points,

see Figure 1.

Figure 1 Tropical triangulation of the plane

The main results of the paper are Theorems 1 and 2, where transversal tropical triangles are
characterized by six strict inequalities to be satisfied by the coordinates of the vertices (cases
affine and projective). The inequalities in Theorem 2 show a high level of symmetry.

We work exclusively in the tropical setting. Some authors solve problems in tropical geom-
etry by the lifting method, see [5-7]. This means that they start with a question in tropical
geometry, lift the question to classical geometry (when possible, see [8-9]), solve the question
there (when possible) and tropicalize the solution (always possible). Although the existence of
liftings is one powerful reason to do tropical geometry, we will not use liftings at all.

Tropical geometry (and the study of certain closely related objects called amoebas) is a very
recent trend in Mathematics, see [6, 10-18]. Its algebraic counterpart is tropical algebra and it
has been studied since about 1950. It is related to control theory, automata theory, scheduling
theory, discrete event systems, optimization, combinatorics, mathematical physics, etc. It has
applications in complex and real enumerative geometry, phylogenetics, etc., see [19-22]. It is a

fast developing geometry, following the track of algebraic geometry, see [23-25]. It is connected
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with toric geometry, see [26-28].

Tropical algebra has appeared in the literature under various denominations such as
minimax-algebra, max-algebra, min-algebra, max-plus algebra, min-plus algebra, semirings,
moduloids, dioids, pseudorings, pseudomodules, band spaces over belts, idempotent mathemat-
ics (semirings, analysis, calculus, etc.), Maslov dequantization, etc., see [17, 29-35].

As a rule, we will use the adjective classical (for classical mathematics) as opposed to
tropical. In this note we present results which can be traced back to [10], but have been very
much elaborated afterwards. Transversal triangles are called stable triangles there. A previous

version of this paper can be found in ArXiv.

2 Notations and Background on Elementary Tropical Geometry

The tropical semi-field is the set T := RU{—o00} endowed with tropical addition & and tropical

multiplication ®. These operations are defined as follows:
a ® b =max{a,b}, a®b=a+b,

for a,b € RU{—o00}. Note that tropical addition is idempotent, i.e., ada = a, for a € T. Tropical
addition is associative, commutative and —oo is the neutral element. Tropical multiplication
is associative, commutative and 0 is the neutral element. The element —a is inverse to a with

respect to @, for a € R. Moreover, multiplication is distributive over addition, since
a + max{b, c} = max{a + b,a + c}.

However, we cannot find an inverse element, with respect to @, for any a € R, and this is why
T is NOT a field.

For n € N, the tropical affine n-space is T", where tropical addition and multiplication are
defined coordinatewise. For addition, the neutral element is p, := (—o0,...,—00), but one
must realize that a @ b = b does not imply a = p,.

The tropical projective n-space, TP", is the defined as follows. In the space T" T\ {p, 11}
we define an equivalence relation ~ by letting (by,...,bp41) ~ (c1,...,cng1) if there exists
A € R such that (by + A, ..., bpy1 +A) = (c1,...,¢nt1). The equivalence class of (by,...,b,11)
is denoted by [b1,...,b,t1] and its elements are obtained by adding multiples of the vector
(1,...,1) to the point (b1,...,bpt1)-

Points in T™ (resp. TP") without infinite coordinates will be called interior points. The
rest of the points will be called boundary points. The boundary of T™ (resp. TP™) is the union
of its boundary points. Note that p,, is a boundary point in T™.

In this paper we only work in the tropical plane (affine or projective). Therefore, we will
just present the following notions for n = 2, although they apply in any dimension n > 2. We
will use X,Y, Z as variables.

The tropical projective plane TP? is covered by three copies of the tropical affine plane T?

as follows. The maps
g3+ T2 = TP?,  (z,y) = [z,y,0],
g2 : T2 — TP?, (x,2) — [x,0, 2],
Ji: T = TP, (y,2) = [0,y,7]
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are injective and we have TP? = imjs U imj, U imj;. The complementary set of imjs is
T]P)Q \1Hl]3 = {[Ivya 700] RIS T}

and it is in bijection with TP! (forget the last coordinate!), similarly for ji, k = 1,2. It is easy
to check that the set of interior points of TP? is equal to the intersection imjs N imjs N imj;.

As we already know, the projective tropical coordinates of a point in TP? are not unique.
In order to work with a unique triple of coordinates for (almost) each point, we choose a
normalization. A few points in TP? do not admit normalized coordinates, but this will not be
a serious obstacle. Our favorite normalization is making the last coordinate equal to zero. We
will express this by saying that we work in Z = 0; it means passing from the projective plane
to the affine one, via j;. Of course, the point [a, b, —oc] does not admit normalized coordinates
in Z =0, for a,b € T. Other possible normalizations are Y =0, or X =0, or X +Y 4+ Z =0,
etc.

Let n € N. We can consider tropical polynomials in any number of variables X7, X5,..., X,
with coefficients in T. Write X for (X, Xs,...,X,,) and let i = (i1, 42,...,i,) € N” be a multi-
index. Then write

x :X?“ © - OXP =i Xy 4+ i, Xy,

and let o
p(X) = iee?ai OX = r?glx{ai +i X1+ +inXnt
where I C N” is some finite set and a; € T. Being —oo the neutral element for tropical addition,
terms having a; = —oo may be omitted in p. The polynomial p is homogeneous if there exists
d € N such that iy +-- -+, = d, for all i € I with a; # —oo. If p is homogeneous and a; # —o0,
for all
i€{(,0,...,0),(0,d,0,...,0),...,(0,...,0,d)},

then we say that p has degree d. By means of an extra variable, we can homogenize a non-
homogeneous tropical polynomial p, easily. We will use capital letters to denote homogeneous
polynomials and small letters to denote arbitrary polynomials. The non-homogeneous polyno-
mial p is said to have degree d if its homogenization has degree d. In particular, the degree
is NOT defined for some tropical polynomials. In the literature one can find a more general
notion of tropical degree, but this one is good enough for our purposes.

A tropical polynomial p (resp. homogeneous polynomial P) of degree d > 0 in n (resp. n+1)
variables defines a so-called tropical affine hypersurface V(p) (resp. projective) hypersurface
V(P)in T" (resp. TP™). By definition, V(p) (resp. V(P)) is the set of points in T™ (resp. TP™)
where the maximum is attained, at least, twice. This is certainly different from the classical
definition of algebraic hypersurface. A tropical hyperplane is a tropical hypersurface defined
by a linear polynomial.

Let n = 2. In this case, we use variables X,Y, Z, instead of X, X5, X3. In the tropical
plane, hypersurfaces are called tropical curves. We have tropical lines, conics, cubics, etc.,
meaning curves defined by tropical polynomials of degree 1, 2, 3, etc., which are homogeneous
in the projective case. Every tropical projective curve C is covered by three associated affine

curves, namely, C = C3 U Cq UCy, where Ci, :=C Nimjy, k=1,2,3.
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The simplest tropical plane curves are lines, of course. A tropical line in the affine plane is
V(p), where
p=a0X®bOY dc=max{a+ X,b0+Y,c}

for some coefficients a, b, c € R. Notice that the point py = (—00, —c0) € T? does not belong to
V(p). Theline L := V(p) is easy to describe. The points (¢—a, c—b), (—o0, c—b) and (c—a, —c0)
belong to L; the first one is interior, while the other two are boundary points. Moreover, L
is the union of three rays, meeting at the interior point (¢ — a,c¢ — b). The directions of these
rays are West, South and North—East. Notice that there is no boundary point at the end of
the North—East ray of L. The homogenization of p is

P=a0X®boY®coOZ=max{a+X,b+Y,c+ Z}.
P defines the tropical line L := V(P) in TP? and L embeds in L via j3. In particular, we have
jslc—a,c—=b) =[c—a,c—0b,0] =[—a,—b,—],
and this point is called the vertex of L. We also have
jale—a,—00) = [~a,—00,—cl,  ja(—00,c—b) = [~00,—b, —d,

and we find that [—a, —b, —o0] is the only point in L\ L. Actually, this is the missing boundary
point in the North—East ray of L. In addition, the identification of L with its image in L via
73 allows us to have a graphical representation of L in Z = 0, where the only missing point is
[—a, —b, —oc]. Of course, we can also represent L in Y =0 or in X = 0, easily.

Let n € N. Given an n x n matrix A with real entries, the tropical determinant of A, (also

called permanent) is defined as follows:

a1 e A1n
|A|tr0p = = (Ijléasx{alo(l) + -+ ana(n)}

anl e Ann t
rop

where S, denotes the permutation group in n symbols. The matrix A is tropically singular if
the maximum in |Alyop is attained, at least, twice. Otherwise, A is tropically regular, (also
said that A has a strong permanent).

There exists a duality between lines in the tropical projective plane and interior points in
the projective plane. Given an interior point a = [ay, as,a3] in TP?, let L, denote the line in
TP? defined by tropical linear form to be a; ® X ®ay ® Y @ a3 ® Z. Obviously, we have

beL, < a€ Ly,

meaning that max{a; + b1, as + ba, az + b} is attained, at least, twice.

Let two points a,b in the tropical plane (affine or projective) be given. If a and b do not
both lie on a classical line of slope 0o, 0, 1, then there exists a unique tropical line through both
points and this line is called the (tropical) join of a and b. Otherwise, there exist infinitely
many tropical lines going through a and b. The (tropical) stable join of a,b is defined as the
limit, as € tends to zero, of the tropical lines going through perturbed points a’<, b". Here, a<

denotes a translation of a by a length—e vector v, see [6, 12]. We denote this line by ab. Of
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course, if a and b do not both lie on a classical line of slope 0o, 0, 1, then their join and their
stable join coincide.

Now, the intersection of two tropical lines L, M in the plane (affine or projective) may be a
point or a ray. In the former case, we will say that the tropical lines L and M are transversal.
In any case, we define the so-called stable intersection, L Nest M, as the limit point, as € tends
to zero, of the intersection of perturbed lines LY, M"<. Here, L' denotes a translation of L by
a length—e vector v..

It is well known that duality transforms stable join into stable intersection and conversely,
ie.,

Lo Nest Ly = ¢ <= ab= L.,

for a,b, ¢ interior points in TP2. By duality, we will say that the points a,b are transversal if
there exists a unique tropical line passing a and b.

Stable intersection and stable join are defined in wider generality. Now consider n hyper-
planes in TP™ and take an associated system of n linear tropical homogeneous polynomials in
n+1 variables. Let A be the nx (n+1) coefficient matrix of the system. Foreach j =1,...,n+1,
let A7 be the square matrix obtained by deleting the j-th column from A. Then the tropical
version of Cramer’s rule tells us that the point [|A!|top, .- -, A" top] € TP™ is the stable
intersection of the n given hyperplanes. Moreover, the intersection of the n hyperplanes equals
the stable intersection if and only if A7 is tropically regular, for all j = 1,...,n + 1; see [6].

For tropical lines in the plane, the tropical version of Cramer’s rule goes as follows: the
stable intersection of the lines L, and L; is the point

[max{a2 + bg, b2 + ag}, max{a1 + b3, b1 + ag}, max{a1 + bQ, b1 + (12}].

Since the computation of this point is nothing but a tropical version of the cross-product of
the triples @ and b, we will denote it by a ® b. Notice that a ® b = b ® a. In other words, the

tropical version of Cramer’s rule in the plane means
LyNest Ly =a® b,

and, by duality,
ab = La®b-

In particular, the vertex of the tropical line ab is the point —(a ® b).

Tropical cross-product satisfies a ® a = —a, if a is interior. But, unluckily, tropical cross-
product is non-associative and so, it seems tricky to compute expressions such as (¢c®a)® (a®D).
However, we will see in Corollary 1 that only three values are possible for this long expression.

Lemma 1 Interior points a,b € TP? are transversal if and only if a @ b & {—a, —b}.

Proof 1If a,b are interior points in T2, then a simple computation shows that a ® b € {—a, —b}
if and only if the points a, b lie on a classical line of slope 0o, 0, 1, and this is the non-transversal
case. Now if a,b are interior points in TP2, we obtain the desired result, either passing to the
affine setting, or using Cramer’s rule. Indeed, an easy computation shows that a®b € {—a, —b}
if and only if some coordinate in a ® b = [max{as + b3, bs + a3}, max{ay + bs, by + a3}, max{a; +

ba, b1 + as}] is tropically singular. O
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Lemma 2 Suppose that a,b,c are three interior points in the tropical plane (affine or projec-
tive) which are tropically non-collinear. Assume that a,b are transversal, a,c are transversal and

the tropical lines ab, ca are transversal. Then (c®a)® (a®b) = a, i.e., caNess ab = caNab = a.

Proof Since the lines ab and ca are transversal, then the points ¢ ® a,a ® b do not lie on a
classical line of slope 00,0, 1. Since the points a, b are transversal, then a and b lie on different
rays of the tropical line with vertex at —(a ® b). A similar situation is true for the points a, ¢
and the tropical line with vertex at —(c ® a). Then a is the unique point of intersection of ab
and ca. This gives a picture in R?. A symmetric picture, with respect to the origin, is obtained
by considering the points ¢c®a, a ® b and the vertex, —((c®a) ® (a®b)), of the unique tropical
line through them. Therefore (¢ ® a) ® (a ® b) = a. O

The corollary below is a direct consequence of Lemmas 1 and 2.

Corollary 1 Suppose that a,b,c are three interior points in the tropical plane (affine or

projective) which are tropically non-collinear. Then

(c®a)®@(a®b)e{—(c®a),—(a®D),a}.

3 Transversal Triangles in Tropical Plane

In this section, a,b,c will always denote three different interior points in the tropical plane
(affine or projective) which are tropically non-collinear. The tropical sides defined by a, b, ¢ are
the tropical lines ab, be, ca and we know that the points —(a®b), —(b® ¢) and —(c® a) are the
vertices of them.

In the first example below, we see that ab Nest bc # b and this is unpleasant for a triangle.
In the second one, we see have ca Negt ab = a, ab Negt be = b, be Negy ca = ¢, showing the kind of
triangles we are interested in.
Example 1  In TP? take a = [-1,1,0], b= [0,0,0], ¢ = [~1,2,0]. Then, a® b = [1,0,1] and
b®c=1[2,0,2],s0 that (a®b) ® (b®c) =[2,3,2] = —(a®b) #b.
Example 2 The reader can easily check that the points a = [-3,—1,0], b = [0,0,0], ¢ =
[—1,2,0] satisfy (c®a)®@ (a®b) =a, (a®b) @ (b®c)=band (h®c)® (c®a)=c.

Thus, for some purposes, some care must be taken in order to define triangles in the tropical

plane (affine or projective).

Definition 1  Three points a, b, c define a transversal tropical triangle abc if the vertices a, b, ¢

are pairwise transversal and so are the tropical sides.

Definition 2 Three points a, b, ¢ define a good tropical triangle abc if, by stable join, they give
rise to three tropical lines ab, bc, ca which, stably intersected by pairs, yield the original points
a,b,c, i.e., caNest b = a, ab Negt bec = b, be Negt ca = c.

Definition 3 Three points a, b, ¢ define a proper tropical triangle abe if a, b, ¢, —(a®Db), —(b&®c)
and —(c ® a) are siz different points. A tropical triangle which is not proper will be called
improper.

Example 3 The points [0,0,0],[1,1,0], [0, 1,0] define a good tropical triangle and so do the
points [0,0,0],[1,1,0],[1,0,0]. Both triangles are improper. The triangle in Example 2 is good

and proper.
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By Lemmas 1 and 2 and Corollary 1, a tropical triangle T' is transversal if and only if T is

good and proper.

Theorem 1 Three points a = (a1,az), b = (b1, b2), ¢ = (c1,¢2) in R? determine a transversal

tropical triangle if and only if, perhaps after relabeling, the following inequalities hold:

a1<b1<01,a2<62<b2,

by — by <a; —ag <cp— co.

In particular, these inequalities determine an open unbounded polyhedron in RS, which can be
viewed projectively in TP®.

Proof The inequalities hold for (aj,az, b1, b2, c1,c2) € R® if and only if they hold for (a; +
Ayaz + A b1+ A ba + N ep + A ca + A), for A € R. This proves the last statement.

Let us assume that the six inequalities hold. Easy computations yield a®b = [ba, b1, a1 +b2],
b®c = [by,c1,¢1 + bo] and ¢ ® a = [ea,¢1,¢1 + az). Then we obtain (¢ ® a) ® (a ® b) =
[b2 4+ a1 +c¢1,c1+as+ba,ba+c1] = a and, similarly, (a®b)® (b®c¢) = band (b®c)®(c®a) = ¢,
proving that the tropical triangle abc is transversal.

Conversely, suppose that the points a, ¢, b define a transversal triangle. Then no two of the
given points lie on a classical line of slope 00,0, 1. In particular, the numbers a; — ag, by — ba,

c1 — co are pairwise different. We may assume that
ay < min{by, ¢y},
b1 — by < 1 — co.

Then we compute the point (¢ ® a) ® (a ® b) and see that one of its coordinates is given by the

value of a singular tropical determinant, unless
by — by <a; —ag <cp— co.

Now classical and tropical geometry tell us that the coordinates of the vertex —(a ® b) are
[a1, a1 — by + by, 0], on the one hand, and [— max{as, by}, —b1, —a; — b2] on the other. Equating

these projective tropical coordinates yields

max{az,ba} = ba.
A similar computation for —(c ® a) yields

max{as, ca} = ca.

Therefore, we have

ag < min{bg, co}.

We proceed to determine the values of min{by, ¢} and min{bs, ca}. There are only three possible
cases, because the condition b; — by < ¢; — co eliminates the possibility b; > ¢; and b < cs.
Now if by > ¢; and by > ¢, then b ® ¢ = [ba,b1,c1 + ba] and a ® b = [ba, b1, a1 + ba], so that
(b®c)®(a®b) =—(b® c) # b, contradicting transversality. And if b; < ¢1 and by < cg, then
b®c = [co,c1,01 + bo] and ¢ ® a = [ca,¢1,¢1 + az] so that (c®a) R (b®¢c) = —(b®¢) # ¢,
contradicting transversality. Therefore, by < ¢; and by > ¢ and all six inequalities have been

proved. O
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Figure 2 Transversal tropical triangle

Let us make a picture of a tropical triangle abc in R?, say in Z = 0. The six inequalities
shown in the previous theorem must be satisfied. We have to represent the vertices a, b, ¢ and

the tropical sides ab, bc, ca, whose vertices are the points
—(a®b)=(a1,a1 + by —b1), —(c®a)=(azs+c1 —ca,a2), —(bR¢c)=(c1,b2).
Then we obtain a classical convex hexagon having vertices (in clockwise order)
a,—(a®b),b,—(b&c),c,—(c®a)

and slopes 00,1,0,00,1,0, see Figure 2. It will be denoted by H(abc). The six inequalities
shown in Theorem 1 provide the lengths of the sides of H(abc).

Up to translation, scaling and exchange of variables X, Y, Z, a transversal tropical triangle
T is determined by a classical convex hexagon H C R2 of slopes 00,0, 1. Now, H is determined

by the lattice lengths of its sides, which are real positive numbers [y, s, ..., ls such that
Lo+ 11 =11 + 140, j=12(orj=1,2,...,6),
where subscripts are taken modulo 6. Therefore, the set
Pi={{l1,la,...,lg] ETP° : l; >0and l; o ®lj_1 =111 Oljy2, j=1,2}

is a parameter space for transversal tropical triangles. The dimension of P is three and any

positive numbers 1, lo, 3,5 € R such that
ls < min{h + ZQ, lo + 13}
determine a unique point in P.

Let us now translate the six inequalities found in Theorem 1 to the projective setting.

Theorem 2 Let a = [a},d),as], b = [b},bh,05], ¢ = [c],ch,ch] € TP? be three different
interior points. Then a,b,c determine a transversal tropical triangle if and only if, perhaps
after relabeling, the following siz inequalities hold:

by — by < ay —ab <y — b,

ay — ay < ch — cy < by — by,

¢y —ch <V —b) <afy—al.
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Proof Without loss of generality, we may work in Z = 0. Then a = [a} — a},ab — a5, 0],
b= [b} — b5, b, —b5,0], c = [c] — ¢k, ch — c4,0]. Now, notice that the points (a] — a}, ay — a}),
(b} —bh, bl —b%), (cy —ch, ch—ch) belong to R? and satisfy the six inequalities shown in Theorem 1,
where a; = a} — a3, bj = b; — by, ¢; = ¢} —c5, j = 1,2, and so we are done. O
Notice the high cyclic symmetry shown in the six inequalities in Theorem 2. Notice also
that the letters a, b, c are arranged as a latin square.
Now we proceed to relate tropical transversal triangles with the notions of tropical span,

tropical independence and strong permanent. The following definitions are standard.

Definition 4 In T™ or TP™, let uq,...,us be different interior points. A point u is tropically

spanned by ui,...,us if it can be written as

U=A Qu BB A; Ous = max{A; +ug, ..., s+ us},

for some A1,...,As €T, and not all A; equal to —oo.
The points uq,...,us are tropically independent if there does not exist j € {1,...,s} such
that u; is tropically spanned by wy, ..., uj_1,Ujy1, ..., Us.

Notice that all points spanned by interior points are interior.
Tropical span is closer to classical convexity than to linear, affine or projective span. This
is shown in the following theorem, which can be traced back to [1-4, 35]. The classical segment

defined by points a,b will be denoted conv(a,b).

Theorem 3 Let three points a, b, c in TP? determine a transversal tropical triangle. Then the
following assertions hold.

1 The points tropically spanned by a,c,b are exactly those of the solid hexagon H(abc).

2 The points a,b, c are tropically independent.

3 The matriz 3 X 3 given by coordinates of a,b, c is tropically reqular (i.e., this matriz has

a strong permanent).

Proof We may work in Z = 0 and therefore, we may assume, without loss of generality, that
the coordinates of a, b, ¢ satisfy the six inequalities shown in Theorem 1.

First, we show that the vertices b, c tropically span the union of the classical segments
conv(b, —(b ® ¢)) and conv(—(b® ¢),c). We have b = [by, b2,0], ¢ = [c1, ¢2,0] with by < ¢1 and
¢g < by. Then —(b®c) = [c1, b2, 0] = bde. A point u tropically spanned by b, cis u = A\ObBuGc.
Working in the projective plane, we may assume A = 0 and g € T. Thus

U= [max{blv Mt Cl}a max{an B+ 02}7 maX{Oa ;u'}]

Now, if 0 > p, then by > p + co.

o Ifby > pu—+cy, then u =50

o If by < p+ e, then u = [+ c1,bo,0] and the point (1 + c1,by) € R? runs through the
segment conv(b, —(b® c)).

Now, if 0 < p, then by < p+ ¢;.

o Ifby > p+co, then u = [+ c1,b2, 1] = [c1,ba — i1,0] and the point (c1,by — p) € R?
runs through the segment conv(—(b ® ¢), ¢).

o Ifby <p+co, thenu=c.
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In particular, we have proved that the point u = b® u ® ¢ € {b,c}, whenever u does not
belong to the closed interval [by — ¢1,bs — ¢3]. As a by-product, we have proved that a is not
tropically spanned by b, c.

In a similar manner, the vertices a, ¢ tropically span the set conv(a, —(c® a)) U conv(—(c®
a), c) and a, b tropically span the set conv(a, —(a ® b)) Uconv(—(a®b),b). Therefore, all points
on the sides of the classical hexagon H(abc) are tropically spanned by a, b, c. And, in particular,
the tropical independence of a, b, ¢ follows.

Now we consider a point ¢ = (t1,t3) € R? in the interior of the hexagon H(abc). Then we
take the (unique) point u = (u1,t2) € R? on the border of H(abc) with u; < t; and the (unique)
point ¢ = (t1, ¢2) on the border with g < t5. Then ¢t = u @ ¢ and, since u is tropically spanned
by a,b and q is tropically spanned by a, c, then t is tropically spanned by a, b, c.

To finish up, let

a; a 0
A=1 b b 0
C1 C2o O

and check that |Aliop = €1 + b2, using the six inequalities. Moreover, the maximum is attained

only once, showing that A is tropically regular. O
The converse to the second and third statements in Theorem 3 do not hold.

Example 4 The points a = [0,0,0], b = [3,9,0] and ¢ = [2,1,0] are tropically independent

but they only satisfy five of the six inequalities in Theorem 1. Moreover, the coordinate matrix

A is tropically regular and |Aliop = 11.

Now let T be a transversal (i.e., good and proper) tropical triangle abc (affine or projective).
Good improper tropical triangles arise from T, by letting two or more adjacent vertices a, —(a®
b),b, —(b®c), ¢, —(c®a) of H(abc) collapse, but keeping a, b, ¢ pairwise different. This means that
the classical hexagon H(abc) collapses to a n-polygon, with 3 < n < 6 sides (of slopes 0,0, 1).
Equivalently, at most three inequalities in Theorems 1 or 2 become equalities. The reader can
easily sketch (say in Z = 0), the 14 existing combinatorial types of improper good tropical
triangles thus obtained. He/she can also arrange them into a graph. The vertices in this graph
are improper good tropical triangles and two such triangles 7" and T" in this graph are joined
by an edge if H(T") is obtained from H(T") by collapsing two consecutive vertices. The leaves in
this graph correspond either to tropical triangles T" such that either H(T') is a classical pentagon
(there are six such leaves) or H(T) is a classical triangle (there are two such leaves: T = abc
such that a = —(a®b),b=—-(b®¢),c=—(c®a) or b= —(a®b),b=—(bR®¢),a = —(c®a)).
The latter are, by the way, like the two triangles shown in Example 3.
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