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This paper is devoted to introducing additional structure on Čech homology groups. 
First, we redefine the Čech homology groups in terms of what we have called 
approximative homology by using approximative sequences of cycles, just as Borsuk 
introduced shape groups using approximative maps. From this point on, we are 
able to construct complete ultrametrics on Čech homology groups. The uniform 
type (and then the group topology) generated by the ultrametric leads to a shape 
invariant which we use to deduce topological consequences.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

During the 1990s we developed our program of equipping the sets of shape morphisms between spaces 
of useful structures in the sense that it could help us find new results in shape theory, as well as help to 
reinterpret known results in terms of such structures. See, in chronological order of conception, [18,19,10,
20,21,9]. Although [9] was published recently, in fact it was presented as a talk, with the same title as the 
paper in the II Congreso Iberoamericano de Topología y sus aplicaciones hold at Morelia, Mexico, March 
20-22, 1997. In [18,19] we developed the compact metrizable case using the Hilbert cube as ambient space 
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and Borsuk’s shape theory. In particular, if the domain space is (S1, 1), the construction made in [18] allows 
us to give an ultrametric to the shape group π̌1(X, x0) of a compact metrizable space X, as it was observed 
in [19] and extended later in [9] and in [25]. The main idea was to measure the closeness of two shape 
morphisms using a weighted version of the homotopy relation between maps into the Hilbert cube. The 
main tool was the use of approximative maps to represent shape morphisms. We recommend reading [3,4]
for information about this, or any other concept in shape theory for compacta (compact metrizable spaces) 
used here such as fundamental sequence, shape morphism, FANR-space, shape domination, etc. In [10,9] we 
extended our results to the general setting of topological spaces using the description of shape theory given 
in [17] and some extensions of the concept of ultrametric introduced in [23,24]. In particular in [19] we 
described and used ultrametrics on shape groups which induce natural pseudo-ultrametrics on homotopy 
groups as deduced automatically from the first few lines of page 69 in [18].

Some years later a paper appeared [1], having [11] as an old antecedent, trying to give a topology 
on fundamental groups to convert them into topological groups with analogous objectives such as those 
described in the previous paragraph. Due to the amount of errors in [1] very recently the Journal of Topology 
and its Applications published a Retraction Notice to this article. Even so, the appearance of [1] attracted 
some authors to use topologies on the fundamental group and on the shape groups to get results in so called 
wild topology. Many of them found correct, significant and/or beautiful results. To find information on these 
results, one can look for citations to [1]; for example in Google Scholar. We also suggest, for example, [5–7], 
[22] and their references for the same purpose. We also have to say that, for example, in [8] were some of the 
topological constructions made in [10] or in [9] re-introduced again to get a topology on the fundamental 
group.

With the above antecedents we decided to look for appropriate ultrametrics for Čech homology groups 
following the line initiated in [18]. In this paper we construct ultrametrics for Čech homology groups of 
compacta. The natural extension for arbitrary topological spaces and the treatment of Čech cohomology 
groups using Pontryagin duality is developed in the Ph.D. thesis [26] of the third author co-supervised 
by the first two authors. There, the concept of generalized ultrametric in the sense of Priess-Crampe and 
Ribenboim [23,24] was also used.

In section 2 we define the necessary concept of approximative cycles, to represent Čech homology classes. 
In section 3, this paper’s principal section, we define a weighted relation of homologous approximative 
cycles. This is the way to get a framework to apply a type of Cantor completion process to get complete 
ultrametrics on the Čech homology groups. As in [18], we use the Hilbert cube as ambient space. The 
uniform type generated by this ultrametric is a shape invariant. We also give a collection of properties of 
the topological group obtained from it. In addition, we give some topological conclusions about the compact 
metrizable space X. Moreover, we show in section 4 the correspondent uniform-topological version of the 
classical Hurewicz homomorphism.

It must be said as a warning that in order to unify results and proofs we are always considering the 
reduced singular homology groups in this paper. If we do not assume this, then some definitions, results and 
proofs should be changed accordingly for the case n = 0.

An analogous problem to introducing topologies on the Čech co-homology groups was also developed 
in [26]. There, it was pointed out that the unique coherent topology on the Čech co-homology groups of 
compacta, with integer coefficients, is the discrete one. This means that one can not hope for extra-help 
from the additional topological structure to solve problems depending on the algebraic structure of Čech 
co-homology groups, i.e. the algebraic structure is sufficient to get the same results. This is the reason why 
in [26] the Čech co-homology with coefficients in the circle S1 was treated to get new shape invariants. We 
have to say that the topology found in [26] is intrinsically related to the metrical construction made here 
by means of Pontryagin duality. We suggest reading Keesling’s very interesting papers [14–16] for previous 
use of Pontryagin duality in shape theory.
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2. Approximative homology

In order to fix the notation used throughout this paper, let Δn = [a0, ..., an] be the geometric n-simplex 
in Rn and let G be an Abelian group. We shall take G = Z. If X is a topological space, an n-simplex in X
is a continuous function σ : Δn → X. An n-chain in X is a (finite) formal sum of the form

k∑

i=1
niσi = n1σ1 + n2σ2 + ... + nkσk

where each σi is an n-simplex in X and ni takes values in G for all i. Given two n-chains σ and τ their sum 
σ + τ is defined as the formal sum of the corresponding addends of each chain. We will denote by Cn(X, G)
the group of all n-chains in X with coefficients in G, or shortly Cn(X) if G = Z.

Given an n-simplex σ : Δn → X, the boundary of σ is an (n-1)-chain defined as follows:

∂σ =
n∑

i=0
(−1)iσ|[a0,...,âi,...,an]

where a0, ..., an are the vertices of Δn and, as usual, [a0, ..., ̂ai, ..., an] is the proper face of Δn that does not 
contain the vertex ai.

This boundary defined over n-simplices, is extended over all n-chains by linearity, i.e. if σ =
∑k

i=1 niσi

is a n-chain, its boundary is

∂σ = ∂
( k∑

i=1
niσi

)
=

k∑

i=1
ni∂σi.

Hence, we have a boundary map

∂ : Cn(X,G) → Cn−1(X,G).

If an n-chain σ satisfies that ∂σ = 0, we say that σ is an n-cycle and if there exists an (n+1)-chain γ such 
that ∂γ = σ we say that σ is an n-boundary. We denote by Zn(X, G) and Bn(X, G) the groups of cycles and 
boundaries respectively. It is obvious that Zn(X, G) = Ker∂ and Bn(X, G) = Im∂ (in the corresponding 
dimensions). Hence, we have arrived to the classical definition of the singular homology group of X,

Hn(X,G) = Ker∂

Im∂
.

It is also well-known that every continuous map f : X → Y induces a chain map f# : Cn(X) → Cn(Y )
such that f#∂ = ∂f# and so also an homomorphism f∗ : Hn(X) → Hn(Y ) between singular homology 
groups is induced.

With every topological space X one can associate an inverse system C(X) = {XU , pU U ′ , Λ} called the 
Čech system of X. As we shall briefly recall here, this inverse system is in the category HPol of polyhedra 
(and continuous maps) up to homotopy.

The indexing set Λ is the set of all normal coverings U of X ordered by the relation of refinement of 
coverings (U ≤ U ′ if and only if U ′ refines U). Recall that a normal covering is an open covering U of X
which admits a partition of unity subordinated to U .

Each term XU is the nerve |N(U)| associated to the covering U . In |N(U)| there exists a vertex corre-
sponding to each set U ∈ U and {U1, ..., Un} expand an n-simplex if and only if U1 ∩ · · · ∩ Un �= ∅.
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Finally, for U ≤ U ′, let pU U ′ be the simplicial projection pU U ′ : |N(U ′)| → |N(U)| sending a vertex 
U ′ ∈ U ′ to a vertex U ∈ U with U ′ ⊆ U . This map is not uniquely determined, but any other projection 
between the nerves is homotopic to this. Hence, the projection is unique up to homotopy.

Similarly, for U ∈ Λ, pU : X → XU is a canonical projection uniquely determined up to homotopy. 
Furthermore, pU U ′ ◦ pU ′ 
 pU .

If we apply the simplicial homology functor to the Čech inverse system, we get an inverse system of 
groups:

Hn(X) = {Hn(Xλ), pλ λ′∗,Λ}

where pλ λ′∗ is the corresponding induced map in homology. The inverse limit of this system

Ȟn(X) = limHn(X) = lim
←−

{Hn(Xλ), pλ λ′∗,Λ}

is called Čech homology group of X. This is also a functor which, for a continuous map f : X → Y , induces 
an homomorphism f∗ : Ȟn(X) → Ȟn(Y ).

Similarly, for cohomology we obtain a direct system of groups:

Hn(X) = {Hn(Xλ), p∗λ λ′ ,Λ}

where p∗λ λ′ is the induced map in cohomology. The direct limit of this system

Ȟn(X) = limHn(X) = lim
−→

{Hn(Xλ), p∗λ λ′ ,Λ}

is called Čech cohomology group of X.
In the particular case of compact metrizable spaces, it is possible to regain Čech homology and cohomology 

groups with a more geometrical inverse system of topological spaces. We shall call this special inverse system 
as Borsuk’s inverse system and its construction is as follows: given a compact metrizable space X, it can 
be considered as a closed subset of the Hilbert cube Q, with a prefixed metric. Thus, for a sequence of 
real numbers {εk} decreasing to zero, we can consider the balls of this metric Xk = B(X, εk) as terms and 
the inclusion maps ik k+1 : Xk+1 → Xk as bonding maps. Hence, {Xk, ik k+1} is an inverse sequence with 
inverse limit ∩Xk = X. Consequently,

Ȟn(X) = lim
←−

{Hn(Xk), (pk k+1)∗}

and

Ȟn(X) = lim
−→

{Hn(Xk), p∗k k+1}.

It is necessary to define concepts of approximative sequences for cycles and a relation of homology between 
them. Actually, here we shall make use of the expansion associated to a compact metrizable space X by its 
neighborhoods in the Hilbert cube Q. Let us introduce a suitable way to read the Čech homology, similar 
to Borsuk’s construction of shape groups, using the neighborhoods of X.

Definition 2.1. Let Zn(Q) be the set of all n-dimensional cycles in Q. Given A ⊆ Q, we say that σ, σ′ in 
Zn(Q) are homologous in A if there exists γ in Cn+1(A) such that ∂γ = σ−σ′. We shall denote it by σ ∼ σ′

in A.
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Remark 2.2. The previous definition implies that each simplex of the (n +1)-chain γ lies in A. In particular, 
the simplices of σ and σ′ must lie in A. Otherwise, it is impossible that σ and σ′ would be homologous 
in A. Also note that, for n ≥ 1, every pair of cycles are homologous in Q, because Hn(Q, G) = 0 (since Q
is contractible).

As we have already mentioned, we follow the construction of Borsuk for the shape groups in order to 
obtain a more geometrical interpretation of the Čech homology groups.

Definitions 2.3. Let X be a closed subspace space of Q.

a) A sequence σ = {σi}i∈N in Cn(Q) is said to be an infinite n-chain (in Q) for X if there exists a sequence 
{εi} → 0 such that σi is an n-chain in B(X, εi) for each i ∈ N. (If it is clear, we shall omit the dimension 
n of the chains in the sequel.)

b) The boundary of an infinite chain is defined as the classical boundary acting in each chain of the 
sequence, i.e.,

∂σ = ∂{σi} = {∂σi}

for an infinite chain σ. An infinite chain σ is called infinite cycle if ∂σ = 0, or equivalently, if each chain 
of the sequence is a cycle.

c) An infinite cycle σ = {σi} is said to be an approximative cycle if for every ε > 0 there exists i0 ∈ N

such that σi ∼ σi+1 in B(X, ε) for all i ≥ i0, or equivalently, if there exists an infinite chain γ = {γi}
such that ∂γi = σi − σi+1. We shall denote by ZA

n (X) the set of approximative cycles of dimension n.
d) Given two approximative cycles σ = {σi} and τ = {τi}, a sum σ + τ is defined as the (usual) sum of 

singular chains in each level, i.e.,

σ + τ = {σi} + {τi} = {σi + τi}.

Immediately, ZA
n (X) with this operation is a group.

e) Two approximative cycles σ = {σi} and τ = {τi} are said to be homologous approximative cycles if for 
all ε > 0 there exists i0 ∈ N such that σi ∼ τi in B(X, ε) for all i ≥ i0, or equivalently, if there exists an 
infinite chain γ = {γi} such that ∂γ = σ − τ . If an approximative cycle σ is homologous to zero, σ ∼ 0, 
i.e. if there exists an infinite chain γ such that ∂γ = σ, we say that σ is an approximative boundary. We 
shall denote by BA

n (X) the subgroup of ZA
n (X) of approximative boundaries of dimension n.

f) The n-dimensional approximative homology group of X is defined as the quotient group

HA
n (X) = ZA

n (X)
BA
n (X) .

It is clear how to define an operation between homology classes of approximative cycles, just as the sum 
of its representatives,

[σ] + [τ ] = [{σi}] + [{τi}] = [{σi} + {τi}] = [{σi + τi}] = [σ + τ ].

The following fact is obvious.

Proposition 2.4. (HA
n (X), +) is an Abelian group.
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Remark 2.5. Every singular cycle of X gives an approximative cycle: if s =
∑k

i=1 nisi is a cycle where 
si : Δn → X, put σi = s for every i ∈ N in order to obtain a constant sequence σ = {σi} which obviously 
is an approximative cycle. In this case, we say that σ is generated by the singular cycle s of X.

Moreover, if s ∼ t as n-cycles in X, then the corresponding approximative cycles σ and τ satisfies σ ∼ τ

as approximative cycles. In that way, for each n ≥ 0, it is obtained a homomorphism of Abelian groups

ϕA : Hn(X) −→ HA
n (X)

since ϕA([σ]) is a well-defined approximative homology class.

The functorial properties of the approximative homology are resumed in the following results. For this, 
we follow the description of Borsuk for the (Vietoris) homology properties of shape, but in the framework 
of approximative cycles. For the definition of fundamental sequence between compact metrizable spaces, see 
[3,4].

Lemma 2.6. If {fk, X, Y } is a fundamental sequence between compact metrizable spaces, then for every 
approximative cycle σ = {σi} for X, there exists an increasing sequence {ik} of indices such that for every 
sequence of indices {jk} such that jk ≥ ik for k ∈ N, the sequence {fk#(σjk)} is an approximative cycle 
for Y , where fk# is the induced map by each fk in the group of chains of Q.

Proof. By definition of fundamental sequence, for every neighborhood V of Y there exists a neighborhood 
U of X such that fk|U 
 fk+1|U in V for almost k. So for any sequence {ηk} (without loss of generality it 
can be supposed that ηk = diamQ

k ) of positive numbers tending to zero, there exists a sequence {δk}, also 
of positive numbers converging to zero, such that

if σ is a cycle in B(X, δk) then fk#(σ) ∼ fk+1#(σ) as cycles in B(Y, ηk) for k ∈ N,

and

if σ ∼ σ′ as cycles in B(X, δk) then fk#(σ) ∼ fk+1#(σ′) as cycles in B(Y, ηk) for k ∈ N.

Let σ = {σi} be an approximative cycle and take {εi} such that σi is a cycle in B(X, εi). This sequence 
{εi} converges to zero because of the definition of approximative cycle. Fix a sequence of indices {ik} such 
that εj ≤ δk for every j ≥ ik. Then, if a sequence of indices {jk} satisfies jk ≥ ik for k ∈ N, then σjk , σjk+1

are homologous cycles in B(X, δk), so

fk#(σjk+1) ∼ fk+1#(σjk+1) in B(Y, ηk)

and

fk#(σjk) ∼ fk#(σjk+1) in B(Y, ηk).

Therefore,

fk#(σjk) ∼ fk+1#(σjk+1) in B(Y, ηk)

and it follows that {fk#(σjk)} is an approximative cycle for Y . �
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Remark 2.7. From the previous proof, if σ′ = {σ′
i} is another approximative cycle homologous to σ, then the 

sequence of indices {ik} can be selected so that the inequality jk ≥ ik for k ∈ N implies that {fk#(σjk)} and 
{fk#(σ′

jk
)} are homologous approximative cycles. The approximative homology class of the approximative 

cycle {fk#(σjk)} does not depend on the choice of the subsequence.

With the lemma above, we get the next.

Proposition 2.8. Every continuous map f : X → Y between compact metrizable spaces induces, for each 
n ≥ 0, a homomorphism f∗ : HA

n (X) → HA
n (Y ) between its approximative homology groups. If g : Y → Z

is another continuous map to a compact metrizable space Z, then (g ◦ f)∗ = g∗ ◦ f∗. Moreover, the identity 
map i : X → X induces the identity homomorphism i∗ : HA

n (X) → HA
n (X).

Proof. Given an approximative class in HA
n (X) with representative {σi}, let us assign the approximative 

class in HA
n (Y ) with representative {fk#(σjk)} given by 2.6. In that way, we obtain a map between the 

corresponding approximative homology groups, that clearly is an homomorphism of groups.2
The remaining properties are straightforward to check. �
The viewpoint of the homology from approximative cycles agrees with singular homology when X is an 

ANR. We need to use the following assertion (see Lemma 3.8 of [4]).

Lemma 2.9. If r : U → X is a retraction of a neighborhood U of X (in Q), then for every neighborhood V of 
X (in Q) there is a neighborhood V ′ of X (in Q) and a homotopy h : V ′ × [0, 1] → V such that h(x, 0) = x

and h(x, 1) = r(x) for every point x ∈ V ′.

Lemma 2.10. Let X be an ANR in Q. Every approximative cycle σ is homologous to an approximative cycle 
τ generated by a singular chain of X.

Proof. Let σ = {σi} ⊂ Zn(Q) be an approximative cycle. Since X is an ANR, there exists a neighborhood
U of X in Q and a retraction r : U → X. Let us take ε0 > 0 such that B(X, ε0) ⊆ U .

For this ε0, there exists i0 ∈ N such that σi ∼ σi+1 in B(X, ε0) for all i ≥ i0. Hence, σi0 ∼ σi in B(X, ε0)
for all i ≥ i0.

The retraction r induces r# : Cn(U) → Cn(X) by

r#(
k∑

i=1
niγi) =

k∑

i=1
ni(r ◦ γi).

Let us consider r#(σi0), which is a singular cycle in X, and put τi = r#(σi0) for all i ∈ N. Thus we have 
an approximative cycle τ = {τi} generated by the singular chain r#(σi0).

The induced infinite chain r#(σ) = {r#(σi)} is again an approximative cycle such that r#(σ) ∼ τ . 
Indeed:

The relation

σi0 ∼ σi in B(X, ε0) for all i ≥ i0

implies

r#(σi0) ∼ r#(σi) in X for all i ≥ i0,

2 Notice also that homotopic fundamental sequences induce the same homomorphism in homology. We do not need that result 
and, in fact, it shall be deduced from the isomorphism of the approximative homology to the Čech homology.
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but r#(σi0) = τi, so

τi ∼ r#(σi) in X for all i ≥ i0,

thus, τ ∼ r#(σ).
On the other hand, using 2.9, for ε > 0 let δ > 0 (we can assume 0 < δ < ε < ε0) be such that there 

exists an homotopy

h : B(X, δ) × [0, 1] → B(X, ε)

such that h(x, 0) = x and h(x, 1) = r(x) for every point x ∈ B(X, δ). For this δ, there exists i1 ∈ N such 
that σi lies in B(X, δ) for every i ≥ i1 (and also in B(X, ε)). If we denote

h0 = h|B(X,δ)×{0} and h1 = h|B(X,δ)×{1},

then

σi = id#(σi) = h0#(σi) ∼ h1#(σi) = r#(σi)

in B(X, ε). Thus, r#(σ) ∼ σ and consequently, σ ∼ τ . �
Proposition 2.11. Let X be an ANR in Q. Then, HA

n (X) is isomorphic to Hn(X), for every n ≥ 0.

Proof. As it was pointed out in 2.5, every singular homology class generates an approximative one. Moreover, 
if two cycles are representatives of the same singular class, they are also in the same approximative class. 
Conversely, by the preceding lemma, every approximative class is generated by a well-defined singular class, 
so ψA is a bijective homomorphism. �

In fact, the groups defined in 2.3 are the same as classical Čech homology groups, as the next proposition 
shows.

Proposition 2.12. Let X be a closed subspace of Q. Then HA
n (X) is isomorphic to Ȟn(X), for each n ≥ 0.

Proof. Consider Borsuk’s inverse system for a decreasing sequence of real numbers tending to zero, {εm}. 
That is, for each m ∈ N take Xm = B(X, εm), imm+1 as the inclusion of Xm+1 in Xm, and compact 
ANR-spaces Pm such that

B(X, ε1) ⊇ P1 ⊇ B(X, ε2) ⊇ P2 ⊃ · · · ⊃ X.

See pages 104-105 in [2].
The inverse limit of this inverse sequence is 

⋂
m∈N Xm = X, and therefore the same inverse limit is 

valid for the sequence of polyhedra and inclusions pmm+1. Hence, Ȟn(X) is the inverse limit of the inverse 
sequence of groups {Hn(Pm), (pmm+1)∗}.

By definition of inverse limit, the elements of Ȟn(X) are sequences {σm} such that each σm lies in 
Pm ⊆ B(X, εm) and (pmm+1)∗(σm+1) = σm. That is, σm+1 ∼ σm in B(X, εm) for every m ∈ N. Therefore, 
it is clear that every Čech homology class is an approximative one.

On the other hand, let σ = {σi} be an approximative cycle. We can choose a subsequence σ′ = σim with 
σim lying in B(X, εm). Obviously, σ′ is again an approximative cycle and σ ∼ σ′. From that, σim ∼ σim+1

in B(X, εm). Consequently, σ′ is an element of Ȟn(X).
Moreover, it is clear that the group operations of Ȟn(X) and HA(X) are equivalent. �
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Corollary 2.13. Let X be a compact metrizable space, and {Xn, pn n+1} an inverse sequence of ANRs such 
that X = lim

←
{Xn, pn n+1}. Then,

HA
k (X) = lim

←
{HA

k (Xn), (pn n+1)∗}

for each k ≥ 0.

Proof. From 2.11 and 2.12:

HA
k (X) = Ȟk(X) = lim

←
{Hk(Xn), (pn n+1)∗} = lim

←
{HA

k (Xn), (pn n+1)∗}. �

3. Cantor completion process for an ultrametric on Ȟn(X)

We shall consider the reduced homology groups and reduced cycles in the case n = 0 in order to avoid 
differences with n ≥ 1 in the developing below. If the reader want to deal with the non-reduced homology 
group Ȟ0(X), it should be added

F (σ, τ) = 1 + diamQ

if σ and τ are not homologous in the Hilbert cube Q in the definition of the map F below.
Over Zn(Q), we define a map F : Zn(Q) × Zn(Q) → R as

F (σ, τ) = inf{ε > 0 |σ ∼ τ in B(X, ε)}.

This map is well-defined since the singular reduced homology of the Hilbert cube is zero in any dimension. 
This implies that if ε > diamQ, then B(X, ε) = Q and σ ∼ τ in Q for every σ, τ in Zn(Q). Thus,

0 ≤ F (σ, τ) ≤ diamQ

for any pair of cycles σ, τ in Q.
It can be easily checked that the map F enjoys the following properties for every σ, τ, η in Zn(Q):

i) F (σ, τ) ≥ 0;
ii) F (σ, τ) = F (τ, σ);
iii) F (σ, τ) ≤ max{F (σ, η), F (η, τ)} (in particular, this implies the triangle inequality).

Remark 3.1. In spite of the previous properties, F is not a metric, nor even a pseudometric in Zn(Q). There 
are cycles such that F (σ, σ) �= 0. If we restrict ourselves to Zn(X) (cycles formed by simplices lying in X) 
we obtain a pseudometric.

Definitions 3.2.

a) A sequence {σi} ⊂ Zn(Q) is said to be F -Cauchy if for every ε > 0 there exists i0 ∈ N such that 
F (σi, σi′) < ε for all i, i′ ≥ i0.

b) Two F -Cauchy sequences {σi}, {τi} ⊂ Zn(Q) are said to be F -related, denoted by {σi}F{τi}, if the 
sequence σ1, τ1, σ2, τ2, σ3, τ3... is again F -Cauchy.
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Proposition 3.3.

a) The F -relation is an equivalence relation.
b) For every pair {σi}, {τi} of F -Cauchy sequences, there exists limi→∞ F (σi, τi).
c) Let {σi}, {σ′

i}, {τi}, {τ ′i} be F -Cauchy sequences such that {σi}F{σ′
i} and {τi}F{τ ′i}. Then limi→∞ F (σi,

τi) = limi→∞ F (σ′
i, τ

′
i).

Proof.

a) Reflexive and symmetric properties are obvious. For the transitive property, given {σi}F{τi} and 
{τi}F{ωi}, let us take ε > 0. Then, there exist i1 and i2 realizing {σi}F{τi} and {τi}F{ωi}, respectively. 
Also, there exist i3, i4 and i5 for the fact that {σi}, {τi} and {ωi} are F -Cauchy sequences. Let us take 
i0 = max{i1, i2, i3, i4, i5}. Hence, for i, i′ ≥ i0, we have:

F (σi, σi′) < ε

F (ωi, ωi′) < ε

F (σi, ωi′) ≤ max{F (σi, τi), F (τi, τi′), F (τi′ , ωi′)} < ε.

Thus, σ1, ω1, σ2, ω2, ... is F -Cauchy, so {σi}F{ωi}.
b) We claim that |F (σi, τi) − F (σi′ , τi′)| ≤ F (σi, σi′) + F (τi, τi′). Assuming this, the sequence {F (σi, τi)}

is a Cauchy sequence in R, so it is convergent.
In order to prove the claim, we distinguish two cases:
Case 1: F (σi, τi) ≥ F (σi′ , τi′).

|F (σi, τi) − F (σi′ , τi′)| =F (σi, τi) − F (σi′ , τi′)

≤F (σi, σi′) + F (σi′ , τi′) + F (τi′ , τi) − F (σi′ , τi′)

=F (σi, σi′) + F (τi, τi′).

Case 2: F (σi, τi) ≤ F (σi′ , τi′).

|F (σi, τi) − F (σi′ , τi′)| =F (σi′ , τi′) − F (σi, τi)

≤F (σi′ , σi) + F (σi, τi) + F (τi, τi′) − F (σi, τi)

=F (σi, σi′) + F (τi, τi′).

c) It is sufficient to apply b) to the sequences {ai} and {bi} formed respectively by σ1, σ′
1, σ2, σ′

2...

and τ1, τ ′1, τ2, τ
′
2..., that are F -Cauchy by hypothesis. {F (σi, τi)} and {F (σ′

i, τ
′
i)} are subsequences of 

{F (ai, bi)}, which has limit by b), so limi→∞ F (σi, τi) = limi→∞ F (σ′
i, τ

′
i). �

The next result is easily stated, and it connects with the definitions established in the preceding section.

Proposition 3.4.

a) A sequence {σi} ⊂ Zn(Q) is F -Cauchy if and only if it is an approximative cycle.
b) Two F -Cauchy sequences {σi}, {τi} ⊂ Zn(Q) are F -related if and only if {σi} ∼ {τi} as approximative 

cycles.
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Proof.

a) Let {σi} ⊂ Zn(Q) be F -Cauchy and ε > 0. For ε′ < ε, there exists i0 ∈ N such that F (σi, σi′) < ε′

for every i, i′ ≥ i0. This means that, for each δ > ε′, σi ∼ σi′ in B(X, δ) for all i, i′ ≥ i0. In particular, 
σi ∼ σi+1 in B(X, ε) for every i ≥ i0, so {σi} is an approximative cycle.
Conversely, let {σi} be an approximative cycle and ε > 0. For ε′ < ε, there exists i0 ∈ N such that 
σi ∼ σi′ in B(X, ε′) for all i, i′ ≥ i0.
Let i, i′ ≥ i0. Without loss of generality, suppose that i′ = i + j. By the transitivity of the homology 
relation we obtain

σi ∼ σi+1 ∼ ... ∼ σi+j−1 ∼ σi+j = σi′

in B(X, ε′). Hence,

F (σi, σi′) = inf{δ > 0 |σi ∼ σi′ in B(X, δ)} ≤ ε′ < ε

so {σi} is F -Cauchy.
b) Let {σi}, {τi} ⊂ Zn(Q) be F -Cauchy sequences such that {σi}F{τi}. Let ε > 0 and take ε′ < ε. Then, 

there exists i0 ∈ N such that F (σi, τi) < ε′ for all i ≥ i0. That is, for each δ > ε′, σi ∼ τi in B(X, δ) for 
every i ≥ i0. In particular, σi ∼ τi in B(X, ε) for each i ≥ i0.
On the other hand, if {σi}, {τi} are homologous approximative cycles, they are F -Cauchy sequences by 
the previous point. We check now that the sequences are F -related. Let ε > 0. For ε′ < ε, there exists 
i0 ∈ N such that σi ∼ τi in B(X, ε′) for every i ≥ i0. Hence, F (σi, τi) ≤ ε′ < ε for all i ≥ i0. Therefore, 
the sequence σ1, τ1, σ2, τ2... is F -Cauchy, so {σi}F{τi}. �

The main result of this section is the following.

Theorem 3.5. Let Ȟn(X) be the n-dimensional Čech homology group of a compact metrizable space X. Given 
two homology classes in α, β ∈ Ȟn(X), define

dX(α, β) = lim
i→∞

F (σi, τi),

where {σi} and {τi} are F -Cauchy sequences corresponding to α and β respectively. Then, (Ȟn(X), dX) is 
a complete ultrametric space.

Proof. As it has been proved in 2.12, for every Čech homology class α, there exists one and only one class 
of approximative cycles with representative σ associated to α.

Let σ = {σi} and τ = {τi} be approximative cycles representatives of the class of α and β respectively. 
dX is well-defined since the limit

dX(α, β) = lim
i→∞

F (σi, τi)

always exists by 3.3.b) and others representatives σ′, τ ′ in the classes of α and β give us the same limit by 
3.3.c). Moreover, dX satisfies the properties of an ultrametric as it shall be shown in the next part.

i) dX(α, β) ≥ 0 since F (·, ·) is always non-negative. In addition, dX(α, β) = 0 if and only if α = β.
Suppose first that dX(α, β) = limi→∞ F (σi, τi) = 0. That is, for every ε > 0 there exists i0 ∈ N such 
that σi ∼ τi in B(X, ε) for all i ≥ i0. But that means that σ and τ are homologous as approximative 
cycles, so that α = β.
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Conversely, if α = β then {σi} ∼ {τi} hence, by 3.4, {σi}F{τi}, and

dX(α, β) = lim
i→∞

F (σi, τi) = 0.

ii) Since

dX(α, β) = lim
i→∞

F (σi, τi) = lim
i→∞

F (τi, σi) = dX(β, α),

then F is symmetric.
iii) Let η = {ηi} be an approximative cycle representing another Čech homology class γ. From the property 

iii) of the map F ,

dX(α, β) = lim
i→∞

F (σi, τi) ≤

≤ lim
i→∞

max{F (σi, ηi), F (ηi, τi)} =

= max{ lim
i→∞

F (σi, ηi), lim
i→∞

F (ηi, τi)} =

= max{dX(α, γ), dX(γ, β)}.

Finally, the completeness of (Ȟn(X), dX) is obtained in the same way as the completion of R from Q via 
Cauchy sequences. �

The equivalence between the approximative homology and Čech homology, allows to give an easy inter-
pretation of the meaning of the ultrametric that we have defined. Recall that, for n = 0 we are using the 
reduced homology.

Theorem 3.6. Let X be a compact metrizable space and suppose it is embedded in the Hilbert cube (Q, ρ)
as a closed subset. If α, β ∈ Ȟn(X) are two homology classes, and ε > 0, then dX(α, β) < ε if and only if 
iε∗(α) = iε∗(β) as homology classes in Hn(B(X, ε)), where iε∗ is the induced homomorphism in homology 
by the inclusion map iε : X ↪→ B(X, ε).

Proof. Let us prove only the first part. So let α, β ∈ Ȟn(X) be two homology classes. Using 2.12, α and 
β are represented by approximative cycles {αk} and {βk} respectively. If we consider a sequence {εk} → 0
(e.g. εk = diamQ

k ), without loss of generality, we can suppose that αk, βk are cycles lying in B(X, εk) for 
each k ∈ N (if it would not be the case, pass to a subsequence).

First, if dX(α, β) < ε, then limk→∞ F (αk, βk) = l < ε. Then, for any l′ such that l < l′ < ε, there exists 
k0 ∈ N satisfying F (αk, βk) < l′ for k ≥ k0. Thus, αk ∼ βk in B(X, l′) ⊂ B(X, ε).

On the other hand, we have αk = iεk∗(α) and βk = iεk∗(β). Hence,

iε∗(α) = iεεk∗ ◦ iεk∗(α) = iεεn∗ ◦ iεk∗(β) = iε∗(β)

in Hn(B(X, ε)).
For the converse, let us suppose iε∗(α) = iε∗(β). Using 3.4, let us take k0 ∈ N such that

F (αk, αk+1) <
ε

2 and F (βk, βk+1) <
ε

2 for each k ≥ k0.

Hence, for every k ≥ k0 we have αk ∼ αk+1 as cycles in B(X, ε/2), so there exist (n + 1)-chains γk such 
that γk = αk+1 − αk, and all simplices of γk lie in B(X, ε/2). Analogously, there exist (n + 1)-chains γ′

k

lying in B(X, ε/2) such that γ′
k = βk+1 − βk.
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In addition,

αk0 = iε∗(α) = iε∗(β) = βk0

as homology classes in Hn(B(X, ε)), using the hypothesis and because αk0 = iεk0∗(α) is a cycle homologous 
to iε(α) in B(X, ε) (resp. for βk).

Let γ be an (n + 1)-chain lying in B(X, ε) such that γ = αk0 − βk0 . Recall that γ is finite formal sum ∑
aiγi where ai ∈ Z and γi : Δn → B(X, ε) is continuous. Hence, 

⋃
γi(Δn) is compact, so there exists 

0 < δ < ε such that γ lies in B(X, δ) ⊂ B(X, ε).
Putting it all together, we obtain F (αk, βk) ≤ max{δ, ε/2} for k ≥ k0, so

dX(α, β) = lim
k→∞

F (αk, βk) < ε,

as desired. �
Corollary 3.7. Let X be a compact metrizable space. Then:

a) Every ball (open or closed) is a clopen set in (Ȟn(X), dX).
b) dim(Ȟn(X), dX) = 0 for every n ∈ N.

Both properties are consequence of well-known facts about ultrametrics.

Example 3.8. Let P 2 be the real projective plane. It is well-known that Ȟ1(P 2) = H1(P 2) = Z2. Let 0, α be 
the two elements of this group. By choosing a suitable embedding of P 2 into Q, we can suppose that the 
metric in the group is given by

dP2(0, 0) = 0, dP2(0, α) = 1, dP2(α, α) = 0.

In this case B(0, 1) = {0}, so B(0, 1) = {0}, while B(0, 1) = {0, α} = Z2.

The previous example is just a particular case of what happens with any polyhedron, since the additional 
metric structure that we have introduced in the groups gets reduced only to the algebraic information in 
the case of nice spaces such as ANRs. We show that in the next result.

Proposition 3.9. If X is a compact metrizable ANR (in Q), then (Ȟn(X), d) is uniformly discrete.

Proof. Since X is an ANR, there exists a neighborhood U of X in Q and a retraction r : U → X. Take 
ε0 > 0 such that B(X, ε0) ⊆ U .

Let α, β ∈ Ȟn(X) = Hn(X) such that dX(α, β) < ε0. By 2.10 and 2.11, there exist two singular cycles 
lying in X such that the approximative cycles generated by them are representatives of the classes α and β
respectively. Then,

dX(α, β) = lim
i→∞

F (σi, τi) = F (σ, τ) = l < ε0

which means in particular that σ ∼ τ in B(X, ε0.) Hence, there exists a singular chain γ lying in B(X, ε0)
such that ∂γ = σ − τ .

The retraction s = r|B(X,ε0) : B(X, ε0) → X induces a map s# over the chain groups such that s#∂ =
∂s#. Hence, s#(γ) is chain lying in X such that
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∂s#(γ) = s#(∂γ) = s#(σ − τ) = s#(σ) − s#(τ) = σ − τ,

thus σ ∼ τ in X. Consequently, α = β. �
Example 3.10. The situation is completely different for a general compact metrizable space.

Let us consider the Hawaiian Earring space X = HE =
⋃

n∈N Cn, where Cn is the circle with center 
(0, 1/n) and radius 1/n. Then, x0 = (0, 0) is the tangency point of all circles and we shall consider it as the 
base-point of X. We denote by ln the loop, based at x0, which runs counterclockwise along Cn.

Alternatively, we can define X as an inverse limit in the following way. Let Xn be the union of the first 
n circles, i.e.,

Xn =
n⋃

m=1
Cm

and let pn n+1 : Xn+1 → Xn be a map such that coincides with 1Xn
over Xn, and pn n+1(Cn+1) = {x0}. 

Then, we have an inverse sequence {Xn, pn n+1} whose inverse limit is X∞ = HE. Also, the Hawaiian 
Earring space can be embedded in the Hilbert cube in a way that B(HE, 1n ) 
 Xn and inclusions as 
bonding maps.

For some n ∈ N, let 〈ln〉 be the shape class of the loop ln. It is clear that ln 
 cx0 in B(HE, 1
m ) if and 

only if m > n. Hence,

dHE(〈ln〉, 〈cx0〉) = 1
n
.

In general, the induced sequence in homology is given by

Z ←− Z× Z ←− Z× Z× Z ←− · · ·
a ←−� (a, b) ←−� (a, b, c) ←−� · · ·

which has 
∏

Z = ZN as inverse limit. In the considered immersion, the ultrametric on Ȟ1(HE) = ZN is 
given by

dHE(α, β) = 1
n0

where n0 = min{n ∈ N | αn = βn in H1(Xn)}, where αn, βn are cycles representing homology classes in 
H1(Xn) and the topology generated by this ultrametric is the usual product topology on ZN .

Analogous conclusion arises for Ȟm(HEm) where HEm is the m-dimensional Hawaiian Earring.

The ultrametric structure mixes properly with the algebraic one:

Proposition 3.11. (Ȟn(X), dX) is a topological group.

Proof. By 2.12, it is enough to check the continuity of the maps

r : HA
n (X) −→ HA

n

[{σi}] �−→ −[{σi}]
s : HA

n ×HA
n (X) −→ HA

n

([{σi}], [{τi}]) �−→ [{σi}] + [{τi}]

with the metric dX([{σi}], [{τi}]) = limi→∞ F (σi, τi).



JID:TOPOL AID:6697 /FLA [m3L; v1.255; Prn:20/03/2019; 17:19] P.15 (1-23)
A. Giraldo et al. / Topology and its Applications ••• (••••) •••–••• 15
If dX([{σi}], [{τi}]) = l, then

dX([{σi}], [{τi}]) < l + ε for every ε > 0.

Then there exists i0 ∈ N such that F (σi, τi) < l + ε for every i ≥ i0, which means

σi ∼ τi in B(X, l + ε) for every i ≥ i0.

Hence, −σi ∼ −τi in B(X, l + ε), and therefore, F (−σi, −τi) < l + ε. Thus,

dX(−[{σi}],−[{τi}]) ≤ l + ε,

which implies dX(−[{σi}], −[{τi}]) ≤ l.
This gives the inequality dX(−[{σi}], −[{τi}]) ≤ dX([{σi}], [{τi}]).
By symmetry, the same argument gives us the other inequality. So the equality

dX([{σi}], [{τi}]) = dX(−[{σi}],−[{τi}])

holds. Then, r is an isometry. In particular, r is continuous.
A similar argument is valid to see that

s(B([{σi}], δ) ×B([{τi}], δ)) ⊂ B([{σi}] + [{τi}], ε),

taking δ = ε, for any ε > 0 given. Then s and r are continuous, and HA
n (X) (or Ȟn(X)) is a topological 

group. �
Remark 3.12. As in the proof above, it can be checked that the inequality

dX([σ] + [μ], [τ ] + [η]) ≤ max{dX([σ], [τ ]), dX([μ], [η])}

is valid for every [σ], [τ ], [μ], [η] ∈ HA
n (X).

Corollary 3.13. The translations in HA
n (X) (hence in Ȟn(X)) are isometries.

Proof. From the last remark,

dX([σ] + [μ], [τ ] + [μ]) ≤ max{dX([σ], [τ ]), dX([μ], [μ])} = max{dX([σ], [τ ]), 0} = dX([σ], [τ ])

Then,

dX([σ], [τ ]) = dX([σ] + [μ] − [μ], [τ ] + [μ] − [μ]) ≤ dX([σ] + [μ], [τ ] + [μ]) ≤ dX([σ], [τ ])

so dX([σ] + [μ], [τ ] + [μ]) = dX([σ], [τ ]) in HA
n (X).

Hence,

dX(α + γ, β + γ) = dX(α, β) in Ȟn(X). �
The last result allows us to define a norm on Čech homology groups.
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Definition 3.14. Given α ∈ Ȟn(X), we define the norm of α as

‖α‖ = dX(α, 0).

From 3.13, this norm recovers the definition of the metric d by means of

dX(α, β) = ‖α− β‖.

Corollary 3.15. For any n ∈ Z, ‖nσ‖ ≤ ‖σ‖ ≤ diamQ.

Proof. For α ∈ Ȟn(X),

‖α + α‖ = dX(α + α, 0) = dX(α,−α) ≤ max{dX(α, 0), dX(−α, 0)} = dX(α, 0) = ‖α‖

and the statement holds by induction. �
Some consequences of dX being an ultrametric are discussed in the next result.

Proposition 3.16. Let X be a compact metrizable space. For any ε > 0, let us denote Hε = {α ∈
Ȟn(X) | ‖α‖ < ε}. Then, Hε is a clopen normal subgroup and a neighborhood of the neutral element 0 
of Ȟn(X). In particular, {H 1

m
}m∈N is a numerable basis of neighborhoods of the identity in Ȟn(X) formed 

by clopen normal subgroups.

Proof. Let us fix ε > 0 and let α, β be in Hε. Then,

‖α + β‖ ≤ max{‖α‖, ‖β‖} < ε,

so α+ β is in Hε. This subgroup is normal because Ȟn(X) is Abelian. Moreover, Hε = B(0, ε) is clopen by 
3.7. �

The metric dX has functorial properties with respect to homomorphisms induced by continuous maps 
between compact metrizable spaces or, more generally, by shape morphisms. These properties are immediate 
from the functoriality of approximative homology and its identification with Čech homology groups. By 2.12, 
we obtain also a homomorphism between Ȟn(X) and Ȟn(Y ) which is in fact the classical homomorphism 
induced by a shape morphism, with its usual functorial properties.

Proposition 3.17. Let {fk, X, Y } be a shape morphism between compact metrizable spaces in Q. Then {fk}
induces a uniformly continuous homomorphism of topological groups f∗ : Ȟn(X) → Ȟn(Y ).

Proof. As it has been recalled before, every shape morphism induces a homomorphism between the corre-
sponding Čech homology groups. It remains to verify the uniform continuity of this homomorphism.

Let ε > 0. Since {fk} is a fundamental sequence, for 0 < ε′ < ε take δ > 0 such that

fk|B(X,δ) 
 fk+1|B(X,δ) in B(Y, ε′) for almost k.

Let α, β be two Čech homology classes and σ = {σi}, τ = {τi} be two approximative cycles for X
representing α and β respectively such that dX(α, β) = limi→∞ F (σi, τi) < δ.

From the proof of 2.6, we can take a subsequence {ik} of indices such that the inequality jk ≥ ik implies 
that both {fk#(σik)}, {fk#(τik)} are approximative cycles for Y . The subsequences {σik} and {τik} are 
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again approximative cycles and obviously {σi}F{σik} and {τi}F{τik}, which implies limk→∞ F (σik , τik) =
limi→∞ F (σi, τi) < δ.

Therefore, we have that

σik ∼ τik in B(X, δ)

for k ∈ N large enough, and consequently

fk#(σik) ∼ fk#(τik) in B(Y, ε′)

for k sufficiently large.
As it has been remarked, the image of an approximative cycle is independent of the chosen subsequence, 

thus

dY (f∗(α), f∗(β)) = lim
k→∞

F (fk#(σik), fk#(τik)) ≤ ε′ < ε,

which finishes the proof. �
Corollary 3.18. Let X, Y be two compact metrizable spaces and let f : X → Y be a map between them. Then 
f induces a uniformly continuous homomorphism of topological groups f∗ : Ȟn(X) → Ȟn(Y ).

Proof. Since Q is an absolute extensor for metrizable spaces and Y is in Q, then there exists an extension 
map f̃ : Q → Q of f . Setting fk = f̃ for every k ∈ N, we obtain a fundamental sequence generated by f . 
Now it is sufficient to apply 3.17 to that fundamental sequence. �

With these functorial properties, we can show now the invariance up to shape of the uniform type induced 
by the ultrametric and consequently the shape invariance of the induced topology.

Theorem 3.19. Let X, Y be compact metrizable spaces. If X, Y are of the same shape, then Ȟn(X) and 
Ȟn(Y ) are uniformly topologically isomorphic.

Proof. Since X, Y are of the same shape, there exist fundamental sequences {fk, X, Y } and {gk, Y, X} such 
that {gkfk} 
 {idX} and {fkgk} 
 {idY }. Hence,

g∗f∗ = idȞn(X) and f∗g∗ = idȞn(Y )

which implies the statement of the theorem because of 3.17. �
Corollary 3.20. If two compact metrizable spaces X, Y have the same homotopy type, then Ȟn(X) and Ȟn(Y )
are uniformly topologically isomorphic.

Proof. Having the same homotopy type implies that, in particular, X, Y have the same shape and the result 
comes from the previous theorem. �

In the following corollary we use the concept of shape domination as introduced by Borsuk in [3,4].

Corollary 3.21. Let X, Y be compact metrizable spaces such that X is shape dominated by Y . Then Ȟn(X)
injects in Ȟn(Y ). Moreover, if Ȟn(Y ) is discrete, then so is Ȟn(X). In particular, if X is dominated in 
shape by an ANR, then Ȟn(X) is uniformly discrete.
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Proof. By hypothesis, there exist fundamental sequences {fk, X, Y } and {gk, Y, X} such that {gkfk} 

{idX}. So g∗f∗ = idȞn(X) which in particular implies that Ȟn(X) injects in Ȟn(Y ) via f∗. From that, it is 
obvious that if Ȟn(Y ) is discrete, then so is Ȟn(X).

If in addition Y is an ANR, Ȟn(Y ) is uniformly discrete by 3.9, so Ȟn(X) must also be uniformly 
discrete. �

A stronger version of this result is the following.

Proposition 3.22. Let X and Y be two compact metrizable spaces. If Sh(X) ≤ Sh(Y ), then Ȟn(X) is a 
factor subgroup of Ȟn(Y ) (for each n ≥ 0). Moreover, there exists a continuous retraction from Ȟn(Y ) to 
Ȟn(X).

Proof. Let F : X → Y and G : Y → X two shape morphisms such that G ◦ F = 1X in Sh.
The already known part can be sketched as follows: The induced maps on homology F∗ : Ȟn(X) → Ȟn(Y )

and G∗ : Ȟn(Y ) → Ȟn(X) satisfy G∗ ◦ F∗ = (G ◦ F )∗ = 1Ȟn(X). Then, F∗ is injective and G∗ is onto. In 

addition, Ȟn(Y ) = Ȟn(X) ⊕KerG∗ where, by abuse of notation, we have identified Ȟn(X) with its image 
F∗(Ȟn(X)) in Ȟn(Y ).

To prove the topological part, observe that the induced map on homology

G∗ : Ȟn(Y ) → Ȟn(X)

is continuous (by 3.17). Using the previous decomposition Ȟn(Y ) ∼= Ȟn(X) ⊕KerG∗, we have that every 
element γ of Ȟn(Y ) can be decomposed (in a unique way) as γ = γ1 + γ2 with γ1 in F∗(Ȟn(X)) and 
γ2 in KerG∗. Furthermore, γ1 = F∗(γ′

1) for (a unique) γ′
1 of Ȟn(X), and γ1 is the same element, under 

identification, as γ′
1. Hence,

G∗(γ) = G∗(γ1) = G∗(F∗(γ′
1)) = γ′

1 = γ1.

In particular, if γ2 = 0 (i.e. if γ is in Ȟn(X)), then G∗(γ) = γ, hence G∗ is a continuous retraction from 
Ȟn(Y ) onto Ȟn(X). �
Corollary 3.23. If X is a FANR, then Ȟn(X) is uniformly discrete.

Proof. Since X is a FANR, there exists a neighborhood U of X which is an ANR and there exists a 
fundamental sequence {rk, U, X} which is a fundamental retraction. Moreover, there exists a compact poly-
hedron P , which is a neighborhood of X in the Hilbert cube, such that X ⊂ P ⊂ U . This means that 
{rkik} 
 {idX}, where {ik, X, P} is the fundamental sequence generated by the inclusion of X in P . In 
particular, X is shape dominated by P , so we can apply 3.21 joint with 3.9 in order to obtain the desired 
result. �

The above corollary shows us that FANR-spaces are adequate objects in shape theory to be studied by 
means of the algebra of Čech homology groups as ANRs are adequate in homotopy theory to be studied by 
means of algebraic properties of singular homology groups.

Example 3.24. Let us consider X = W the Warsaw circle. An inverse sequence {Xn, pn n+1} which represents 
the shape of this space is given by compact polyhedron Xn contained, for each n ∈ N, in the annulus B(X, 1n)
and inclusions pn n+1 = Xn+1 ↪→ Xn. Thus, the induced inverse sequence in homology is given by {Z, idZ}
which obviously has Z with discrete topology as inverse limit. Hence, Ȟ1(W) = Z and the ultrametric is 
just the discrete metric. This fact is a consequence of being Sh(W) = Sh(S1).
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Some properties that the metric space that we have constructed enjoys are resumed in the following.

Theorem 3.25. (Ȟn(X), dX) is a second-countable space (hence, separable), homeomorphic to a closed subset 
of the irrationals.

Proof. Let {Xm} be a basis of neighborhoods of X in Q formed by compact ANRs such that Xm ⊃ Xm+1. 
By 2.11 and 2.12, for each m ∈ N

HA
n (Xm) = Hn(Xm) = Ȟn(Xm)

and by 3.9 Hn(Xm) is discrete.
Given any compact ANR, A, there exists a compact polyhedron P which dominates A in shape, so Hn(A)

injects in Hn(P ) by applying 3.21. In addition, P has only a finite number of simplices in dimension n, so 
that Hn(P ) is finitely generated. Hence Hn(P ) has countable many elements, and then so has Hn(A).

Last argument shows that card(Hn(Xm)) ≤ ℵ0, so it is trivially separable. Countable products of sepa-
rable metric spaces is again a separable metric space, thus

∏

m∈N
Hn(Xm) ↪→ ZN ≈ R \Q

is separable metric and, hence, second countable (which is an hereditary property). Since

Ȟn(X) = lim
←

{Hn(Xm), imm+1∗} ≤
∏

m∈N
Hn(Xm)

is closed, the result follows. �
Using this topological information, we have the following characterization of discreteness on Ȟn(X).

Proposition 3.26. If X is a compact metrizable space, then the topology generated by the ultrametric d is 
discrete if and only if Ȟn(X) is countable.

Proof. Obviously, if Ȟn(X) is discrete and separable (by 3.25), it must be countable.
On the other hand, if Ȟn(X) is countable, we can put

Ȟn(X) =
⋃

α∈Ȟn(X)

{α}

where {α} is closed for each α ∈ Ȟn(X). By 3.25, Ȟn(X) is complete (and d is a metric), so we can apply the 
Baire’s theorem. Thus, there exists an element α0 such that int({α0}) �= ∅ which implies int({α0}) = {α0}
so {α0} open. Since Ȟn(X) is a topological group, this implies that every point is open and, therefore, 
Ȟn(X) is discrete. �

We can also state the following.

Proposition 3.27. Let F : X → Y be a shape morphism which induces an isomorphism F∗ : Ȟn(X) → Ȟn(Y )
for each n ∈ N. Then F∗ is a uniform topological isomorphism.

Proof. Without loss of generality, we can suppose that F is given by a fundamental sequence, and apply 
3.17 in order to obtain that F∗ is continuous. Now, the Banach open mapping theorem for separable and 
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completely metrizable topological groups stays that F∗ is open, and this is equivalent to say that the 
inverse homomorphism of F∗ is continuous. Furthermore, since the ultrametric d is both-sides invariant, any 
continuous homomorphism is uniformly continuous. Thus, F∗ is a uniform topological isomorphism. �
Example 3.28. Let X = HE the Hawaiian Earring space and Y =

∏
k∈N S1. There exists a uniform 

topological isomorphism between Ȟ1(X) and Ȟ1(Y ), despite X and Y are not of the same shape.
Let us consider X, Y embedded in the Hilbert cube Q in such a way that there exists a sequence {εn} of 

positive real numbers converging to zero such that

B(HE, εn) ∼=
∨

n

S1 and B(
∏

k∈N
S1) ∼=

n∏

k=1

S1.

Then,

H1(B(HE, εn)) ∼= H1(B(
∏

k∈N
S1, εn)) ∼= Z× · · · × Z

and let us denote fn the corresponding isomorphism of groups. This induces an isomorphism between the 
inverse limits

f = lim
←

fn : Ȟ1(HE) → Ȟ1(
∏

k∈N
S1).

It is enough to compare distances to the neutral element 0 ∈
∏

k∈N Z. Recall that a class α ∈ Ȟ1(X) is 
represented by an approximative cycle {σn} (by 2.12). By definition of the ultrametric d for HE,

d(0, α) < ε ⇔ lim
n→∞

F (0, σn) < ε

for an approximative cycle {σn} associated to the class α. Moreover, each cycle σn lies in B(HE, εn) and, 
by definition of approximative cycle,

∃n0 ∈ N such that σn ∼ 0 in B(HE, εn) for n ≥ n0 (and εn < ε).

This is equivalent to

fn(σn) ∼ 0 in B(
∏

k∈N
S1, εn) for n ≥ n0 (and εn < ε)

and, hence

lim
n→∞

F (0, {fn(σn)}) < ε,

thus d(0, f(α)) < ε for the ultrametric d for 
∏

k∈N S1.

The following result is clear:

Proposition 3.29. If X is the inverse limit of an inverse sequence of compact polyhedron {Xk, pkk+1} all of 
them with finite n-homology groups, then Ȟn(X) is compact.

We have the following criterion for compactness.
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Theorem 3.30. Let X be a compact subspace of the Hilbert cube with a fixed metric. Then, (Ȟn(X), dX) is 
compact if and only if for any compact polyhedron P and any homotopy class of maps f : X −→ P we have 
that f∗(Ȟn(X)) is a finite subgroup of Hn(P ).

Proof. If (Ȟn(X), dX) is compact, then f∗(Ȟn(X)) is a compact subgroup of Hn(P ) and then finite because 
the topology in Hn(P ) is discrete. On the other hand, suppose X is embedded in the Hilbert cube with a 
metric. Let ε > 0, consider a prism T ⊆ B(X, ε) for such metric. Then there is a finite polyhedron P with 
the same homotopy type as T . Consequently i∗(Ȟn(X)) is a finite subgroup of Hn(T ), where i : X −→ T

is the inclusion. Using Theorem 3.6 we get that (Ȟn(X), dX) is totally bounded and since (Ȟn(X), dX) is 
complete we obtain the result. See for example [12] for this description of compactness in metric spaces �
Remark 3.31. The homotopy groups are related with the shape groups, and singular (also simplicial) ho-
mology groups are related with Čech homology groups as well in a similar way.

If X is compact metrizable (considered as a closed subset of the Hilbert cube Q) and s is a singular cycle, 
we have described in 2.5 an homomorphism

ϕA : Hn(X) → HA
n (X)

from the singular homology to the approximative homology. Using 2.12, this homomorphism leads to

ϕ : Hn(X) → Ȟn(X)

which is in fact the canonical homomorphism relating singular and Čech homology groups.
On the other hand, it was observed that the map F used to define de ultrametric d is not a metric. But 

if we restrict the domain of F to cycles entirely lying on X we get a pseudoultrametric (from the properties 
of F ). This pseudoultrametric generates a topology on Hn(X) and it coincides with the initial topology on 
Hn(X) induced by ψ and the topology on Ȟn(X) induced by the ultrametric (this is the analogous result on 
the fundamental group with respect to the shape group). In the general case, the map ϕ is easy to construct 
via the induced maps in homology of the projections of an expansion, and the same result is obtained.

4. Topological Hurewicz homomorphism

Homotopy and homology groups are related via the well-known Hurewicz homomorphism (see [13,27]), 
which for any pointed space (X, x0) and each n ∈ N is a natural group homomorphism

ϕ : πn(X,x0) −→ Hn(X)

such that ϕ([α]) = α∗(Zn) where α : (In, ∂In) → (X, x0) represents an element of π1(X, x0) and Zn is the 
canonical generator of Hn(In, ∂In).

It is natural to consider the analogous homomorphism but in the case of shape groups and Čech homology 
groups instead of homotopy groups and singular homology groups.

Given (X, x0) a pointed compact metrizable space, let {(Xm, xm), pmm+1} be an inverse sequence of 
pointed spaces such that its inverse limit is (X, x0). In this case, taking the Hurewicz homomorphism (with 
n ∈ N fixed) in each level, we obtain a sequence of homomorphisms {ϕm} such that all squares of the form

πn(Xm+1, xm+1)
ϕm+1−−−−→ Hn(Xm+1)⏐
 �

⏐

ϕm
πn(Xm, xm) −−→ Hn(Xm)
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are commutative (where vertical maps are the corresponding homomorphisms induced in homotopy and 
homology by pmm+1). The corresponding limit homomorphism of {ϕm}

ϕ̌ : π̌n(X,x0) −→ Ȟn(X)

is a homomorphism between the n-dimensional shape and Čech homology groups. It is also called the 
Hurewicz homomorphism.

It seems to be a natural question what happens when we endow these groups with the ultrametrics for 
π̌n(X, x0) and Ȟn(X), respectively. In order to answer that question, it is more convenient to consider again 
Borsuk’s viewpoint of shape, considering elements of the shape group as approximative maps (see [3]) from 
(In, ∂In) to (X, x0).

Recall that if (X, x0) is a pointed compact metrizable space in Q, a shape morphism α in π̌n(X, x0) is 
represented by a sequence {αm} of maps such that αm : (In, ∂In) → (Q, x0) satisfies that for each ε > 0
there exists m0 ∈ N such that αm 
 αm+1 in B(X, ε) for every m ≥ m0. The definition of homotopy of 
approximative maps is defined in a similar way as homotopy of fundamental sequences. Given {αm} and 
{βm} two approximative maps, they are homotopic provided for each ε > 0 there exists m0 ∈ N such that 
αm 
 βm in B(X, ε) for every m ≥ m0.

With this definition in mind, Hurewicz homomorphism can be rewritten as

ϕ̌ : π̌n(X,x0) −→ Ȟn(X)
〈α〉 = {[αm]} �−→ ϕ̌(〈α〉) = {αm∗(Zn)}

where {αm} is an approximative map representing the shape class 〈α〉 in π̌n(X, x0), and αm∗ is the in-
duced map in singular homology between Hn(In, ∂In) and Hn(Q, x0), being Zn the canonical generator of 
Hn(In, ∂In).

Remark 4.1. The sequence of cycles {αm∗(Zn)} is in fact an approximative cycle: given ε > 0, the approxi-
mative sequence {αm} gives an index m0 ∈ N such that

αm 
 αm+1 in B(X, ε) for every m ≥ m0

and, consequently,

αm∗(Zn) ∼ αm+1∗(Zn) in B(X, ε) for every m ≥ m0,

since homotopic maps induce the same homomorphism in homology.
Hence, ϕ̌(〈α〉) belongs to HA

n (X), which is isomorphic to Ȟn(X) by 2.12.

Theorem 4.2. The Hurewicz homomorphism

ϕ̌ : π̌n(X,x0) −→ Ȟn(X)

is a uniformly continuous homomorphism between topological groups. In fact, ϕ̌ is a non-expanding homo-
morphism.

Proof. The fact that ϕ̌ is an homomorphism is in [17].
Let ε > 0 and let 〈α〉, 〈β〉 be in π̌n(X, x0) respectively represented by approximative maps {αk} and 

{βk}. Let us assume that d(α, β) < ε, that is, limk→∞ F (αk, βk) = l < ε and take l < ε′ < ε. There exists
k0 ∈ N such that
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αk 
 βk in B(X, ε′) for k ≥ k0

so αk∗ and βk∗ induce the same homomorphism in homology for k ≥ m0.
Therefore,

αk∗(Zn) ∼ βk∗(Zn) in B(X, ε′) for every k ≥ k0,

so ϕ̌(α) = {αk∗(Zn)} and ϕ̌(β) = {βk∗(Zn)} are approximative cycles such that

d(ϕ̌(α), ϕ̌(β)) = lim
k→∞

F (αk∗(Zn), βk∗(Zn)) ≤ ε′ < ε,

as desired. �
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