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Thermal conductivity of one-dimensional Fibonacci quasicrystals

Enrique Macia´*
GISC, Departamento de Fı´sica de Materiales, Facultad de Fı´sicas, Universidad Complutense, E-28040 Madrid, Spain

~Received 11 February 1999; revised manuscript received 8 October 1999!

We consider a general Fibonacci quasicrystal~FQC! in which both the masses and the elastic constants are
aperiodically arranged. Making use of a suitable decimation scheme, inspired by real-space renormalization-
group concepts, we obtain closed analytical expressions for the global transfer matrix and transmission coef-
ficient for several resonant critical normal modes. The fractal structure of the frequency spectrum significantly
influences both the cumulative contribution of the different normal modes to the thermal transport and the
dependence of the thermal conductivity with the temperature over a wide temperature range. The role of
resonant effects in the heat transport through the FQC is numerically and analytically discussed.
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I. INTRODUCTION

The discovery of thermodynamically stable quasicrys
line alloys of high structural quality in icosahedral1 and
decagonal2 systems has opened promising avenues in
study of the physical properties of quasicrystals~QCs!,3,4

allowing for detailed experimental studies of their relat
transport properties.

The thermal conductivityk(T) of several QC samples
covering different temperature ranges, has been meas
and the following general conclusions can be drawn from
collected data. In the first place, the heat transport is unu
ally low. For example, in AlPdMn icosahedral phases
thermal conductivity at room temperature is comparable
that of zirconia (1 W m21 K21), and this value decrease
to about 1024 W m21 K21 below 0.1 K.5 In the second
place, the contribution of electrons to the thermal transp
is, at least, one order of magnitude lower than that due
phonons over a wide temperature range (0.1 K<T
<200 K).6 In the third place, the overall behavior of th
thermal conductivity is quite sensitive to the microstructu
of the sample. Thus, for polygrained samples, the lat
thermal conductivity monotonically increases withT, show-
ing a marked tendency to saturation for temperatures ab
10–20 K, and exhibiting a characteristic plateau extend
from about 25 to 55 K.7 On the contrary, the lattice therma
conductivity of single-grained samples first increases w
increasingT, it reaches a shallow maximum at about 20
and then smoothly decreases with further increasingT.7,8

At first glance, it would be tempting to say that the the
mal behavior of polygrained QCs is similar to that observ
in amorphous materials; meanwhile the thermal conducti
curve of single-grained QCs resembles that observed in c
talline materials. However, a closer scrutiny of the obtain
experimental curves reveals the existence of signific
quantitative differences. In fact, the thermal conductivity
most amorphous materials is characterized by two main
tures:~a! Below 1 K the thermal conductivity can be fitted b
a power lawk5ATd, with 1.8<d<2.0, and~b! around 10 K
one finds a plateau exhibiting a constant valuek
.0.1–0.2 W m21 K21.9 Keeping these facts in mind, w
realize that, in polygrained QCs, the plateau occurs at s
stantially higher temperatures than those typically obser
PRB 610163-1829/2000/61~10!/6645~9!/$15.00
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for amorphous solids. Furthermore, in the low-temperat
regime the thermal conductivity drops below the correspo
ing amorphous value, obeying a power law given by an
ponentd.2.5.6 In addition, the thermal conductivity curv
of single-grained QCs exhibits a well-defined maximum
about 20 K, but this maximum is followed by a shallo
minimum, located between 50 and 90 K, which is not o
served in the usual crystalline samples.7,10

Consequently, experimental results indicate the existe
of both common features and significant differences in
thermal conductivity among polygrained QCs and am
phous solids, on the one hand, and single-grained QCs
crystalline solids, on the other hand. From a theoretical po
of view the fundamental question concerning whether
purported anomalies in QC transport properties should
mainly attributed~or not! to the characteristicquasiperiodic
order of their structure is still awaiting a definitive answe
Thus, it has been argued that the thermal conductivity beh
ior observed in polygrained QCs at the low-temperat
range (0.35 K<T<1.6 K), may be attributed to the pho
non scattering by tunneling states, whose possible existe
in AlPdMn QCs has been recently claimed from ultrasou
experiments.11 On the other hand, in the regime of interm
diate temperatures, the plateau-type feature in the lat
thermal conductivity has been justified by invoking a gen
alization of the umklapp process to describe the scatte
among phonons and the quasilattice structure.10 Finally, at
higher temperatures, a phonon-assisted hopping mecha
has been proposed to act over hierarchically distributed h
ping distances.12 However, a general consensus on the re
tive importance of the different proposed mechanisms,
well as on their respective range of applicability, is still mis
ing.

In this work, we will propose a general Fibonacci Q
~FQC! in order to investigate the influence of the singu
phonon spectrum structure on the thermal properties of o
dimensional~1D! quasiperiodic systems. In this way, w
complement some of the few results previously obtained
the subject,13 providing substantial support to the thermod
namical implications associated with the peculiar nature
fractal energy spectra.14 To this end, we first discuss th
major features of our general model as compared to prev
models considered in the literature. Afterward, we report
6645 ©2000 The American Physical Society
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6646 PRB 61ENRIQUE MACIÁ
the general structure of the frequency spectrum, showing
its overall fragmentation scheme can be properly descri
in terms of resonant coupling effects. Next, we consider
physical nature of the phonon states, reporting on the r
ness of the physical behaviors exhibited by the differ
kinds of critical normal modes present in the quasilatti
Then, we study the contribution of the different norm
modes to the thermal energy transport, and report on
presence of resonant effects in the thermal coefficient be
ior. Finally, we consider the temperature dependence of
thermal conductivity curve, and compare the obtained cur
with suitable experimental results of high-quality quasicr
talline samples.

II. MODEL

In our study we consider a harmonic chain composed
two kinds of masses,mA and mB , which are arranged ac
cording to the Fibonacci sequence, and two kinds of sprin
KAA andKAB5KBA , depending on the type of joined atom
In this way, the quasiperiodic distribution of masses in
systeminducesan aperiodic~non-Fibonaccian! distribution
of spring constants in the chain. This characteristic featur
physically sound since, generally speaking, one expects
the nature of the chemical bonding between the differ
atoms~and thereof the value of the spring constant repres
ing the bond! will depend on the nature of the involved a
oms. In this sense, our FQC model is both moregeneraland
simplerthan most of the systems previously discussed in
literature.15–21

Making use of the transfer-matrix formalism the equati
of motion can be cast in the form

S un11

un
D 5S an

Kn,n11
2

Kn,n21

Kn,n11

1 0
D S un

un21
D[PnS un

un21
D ,

~1!

whereun is the displacement of thenth atom from its equi-
librium position; mn , with n5A,B, is the corresponding
mass,Kn,n61 denotes the strength of the harmonic coupli
between neighbor atoms,v is the vibration frequency, and
an[Kn,n211Kn,n112mnv2. The allowed regions of the
frequency spectrum are determined from the usual spe
condition22 uTr M (N,v)u[uTr()n5N

1 Pn)u<2, where
M (N,v) is the global transfer matrix, andN5Fn is the
number of atoms in the chain, whereFn is a Fibonacci num-
ber obtained from the recursive lawFn5Fn211Fn22, with
F05F151. From knowledge of the global transfer-matr
elementsMi j , we can obtain the transmission,t(N,v), and
Lyapunov, G(N,v), coefficients through the standard e
pressionst(N,v)54 sin2k/D(N,v), with

D[@M122M211~M112M22!cosk#21~M111M22!
2sin2k,

~2!

where cosk512mAv2/2KAA gives the dispersion relation fo
a periodic chain composed ofA sites, and

G~N,v!5
1

N
ln~M11

2 1M12
2 1M21

2 1M22
2 !. ~3!
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Finally, we will evaluate the integrated density of stat
~IDOS! by node counting.23

III. FREQUENCY SPECTRUM

We have studied in detail different realizations of t
FQC by varying the number of constituent atoms,N, their
mass ratioa[mB /mA , and the spring constants ratiog
[KAA /KAB . Without loss of generality we have fixedmA
[1 andKAB[1 as reference values, and have explored
parameter space within the intervals 34<N<1597, 1<a
<5, and 0.5<g<3. The overall structure of the frequenc
spectrum corresponding to the FQC is illustrated in Figs
and 2 in terms of the parametrized frequencyl
[mAv2/KAB5v2. From these figures we can draw the follow
ing conclusions:~i! The frequency spectrum shows a pe
tafurcation scheme, characterized by the presence of
main subbands separated by well-defined gaps. There
the overall structure of the FQC phonon spectrum diff
from those observed both for transfer models~three main
subbands! and on-site models~four main subbands!. ~ii ! At
low and intermediate frequencies (0<l<2), the minima of
the Lyapunov coefficient take significantly low values. Co
versely, starting aboutl52 we realize that these minim
monotonically increase withl. Such a behavior suggests th
the high-frequency phonons are more localized than the l
frequency ones.~iii ! Most of the low-frequency phonons ex
hibit transmission coefficients close to unity. On the co
trary, starting aboutl;1.5, we observe that, as the phono
frequency increases, the values of the corresponding tr
mission coefficients progressively decrease. Neverthel

FIG. 1. Overall structure of the frequency spectrum for
Fibonacci quasicrystal withN5610, a52, andg51.2, as given
by the IDOS and the Lyapunov coefficient.

FIG. 2. Overall structure of the frequency spectrum for a
bonacci quasicrystal withN5610, a52, andg51.2, as given by
the IDOS and the transmission coefficient.
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PRB 61 6647THERMAL CONDUCTIVITY OF ONE-DIMENSIONAL . . .
superimposed onto this general trend, we also find a
high-frequency phonon states exhibiting transmission coe
cients significantly close to unity. We will study some
these states in more detail in Sec. IV.

We have confirmed that the overall structure of the f
quency spectrum, as determined by the three features
described, does not significantly depend on the val
adopted for the different model parameters. In addition,
have measured the heights of the characteristic steps ap
ing in the IDOS for a wide range ofN, a, andg parameters.
The measured heights yield the same values for all the m
parameters considered. These values agree within an
less than 0.1% with the seriest3:t4:t3:t4:t3, ordered ac-
cording to growing frequencies, wheret5(A521)/2 is the
inverse golden mean. This result agrees well with the
labeling theorem which states that at any gap of the ene
spectrum in a quasiperiodic system the IDOS takes a v
equal to the wave number of one of the Fourier compone
of the modulation potential.24,25

Now, from a physical perspective the fragmentati
scheme of the frequency spectrum can be interpreted
terms of resonant coupling effects involving an appropri
set of normal modes. In fact, in the light of previou
works,26,27 the original Fibonacci chain will be decompose
into a series oftrimers and tetramersof the formBAB and
BAAB. The number of trimers present in the chain,nBAB ,
equals the number of isolatedA atoms. Analogously, the
number of tetramers coincides with the number ofAA pairs.
Then, in the thermodynamic limit we have the well-know
limits lim(nBAB /N)5t4 and lim(nBAAB/N)5t3.

Now, neglecting the trivial translation modesl050, each
trimer, if considered as an independent dynamical syst
contributes with two different normal vibration mode
whose respective frequencies are given by

lb5a21, ld521a21, ~4a!

and, analogously, each tetramer contributes with three dif
ent normal modes given by

lc511a21, le,a5g1h6A~h2g!212g, ~4b!

whereh[(11a21)/2. Hence, we havefive normal modes
describing thefundamentaldynamical state of the FQC. I
we assume that these normal modes are resonantly cou
in a way analogous to that discussed in the study of
electronic problem,26,27 we can asign the origin of ever
main subband appearing in the frequency spectrum to a
cific normal mode belonging to the set given by the expr
sions ~4!. Such a procedure is illustrated in Fig. 3 and w
realize that the lower-frequency region of the spectruml
,1) contains two main contributions: the lowest-frequen
contribution (l<0.5), which is related to the tetramers no
mal modela ~contributing witht3 states!, and the frequency
interval 0.5<l<1, which is related to the trimers norma
modelb ~contributing with t4 states!. Therefore, although
w
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both subbands are separated by a quite narrow gap,
origin can be traced back to the dynamics of quite differ
vibrating blocks in the FQC.

IV. NATURE OF THE PHONON STATES

From a mathematical point of view the nature of a state
determined by the measure of the spectrum to which it
longs. Consequently, since it has been proved that Fibon
lattices have purely singular continuous spectra,22 we can
properly state that all the states are critical in these syste
However, this fact does not necessarily imply that all the
critical states behave in exactly the same way from a ph
cal viewpoint. In fact, the possible existence ofcritical ex-
tendedstates in several kinds of aperiodic systems, includ
both quasiperiodic28–31 and nonquasiperiodic ones,32 has
been discussed in the last few years, spurring interest in
precise nature of critical wave functions and their role in t
physics of aperiodic systems.33

From a physical viewpoint, states can be classified
cording to theirtransport properties. Thus, conducting state
in crystalline systems are described by periodic Bloch sta
whereas insulating systems exhibit exponentially decay
wave functions corresponding to localized states. In t
sense, since the amplitudes of critical states in a Fibon
lattice do not tend to zero at infinity, but are bounded bel
throughout the system,34 one may expect their physical be
havior to be more similar to that corresponding to extend
states than to localized ones. In fact, in the case of the e
tron dynamics, we have shown that critical states belong
to a subset of the spectrum of a general Fibonacci chain
extended from a physical point of view.35

In this section we will study the transport properties
phonon states belonging to the frequency spectrum of
FQC as measured by their related transmission coefficie
Our approach35–37 is based on the transfer-matrix techniqu
where the dynamical equation~1! is described by the follow-
ing transfer matrices:

FIG. 3. Correspondence between the main subbands in the
quency spectrum of a Fibonacci quasicrystal withN5610, a52,
and g52, and the normal modes associated with the trimers
tetramers introduced in our renormalization scheme.
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6648 PRB 61ENRIQUE MACIÁ
X[S 22al 21

1 0 D , Y[S 11g21~12l! 2g21

1 0 D ,

Z[S 11g2l 2g

1 0 D , W[S 22l 21

1 0 D . ~5!

The key point of our procedure consists in the fact t
we renormalize the entire set of transfer matrices inst
of the lattice itself. Making use of these matrices, a
imposing cyclic boundary conditions, we cantranslate the
atomic sequenceABAAB. . . describing the topologica
order of the FQC to the transfer-matrix sequen
XZYXZYXWXZYXW. . . describing the phonon dynamic
By renormalizing this transfer-matrix sequence according
the blocking schemeRA[ZYX and RB[WX, we get the
considerably simplified sequenceRBRARARBRA . . . . The
renormalized transfer-matrix sequence is also arranged
cording to the Fibonacci sequence and, consequently,the
topological order present in the original FQC is preserve
by the renormalization process. The R matrices areunimo-
dular ~i.e., their determinant equals unity! and they commute
for certain frequency values. In fact, after some algebra
get

@RA ,RB#5
l

g
$2g212a@11l~g21!#%S 1 0

22al 21D ,

~6!

which vanishes for the frequencies given by the express

l* 5
a22g11

a~12g!
. ~7!

For these frequencies the global transfer matrix of
system,M (N)[RA

nARB
nB , with nA[Fn23 andnB[Fn24, can

be explicitly evaluated in terms of Chebyshev polynomi
of the second kind.38 In this way, given any arbitrary FQC
we are able to obtain a subset of its frequency spect
whose eigenstates can be analytically studied. A deta
study of the critical normal modes corresponding to the p
ticular caseg51/2 has been recently discussed.39 In this case
the commutation frequency becomes independent of the
ues assigned to the mass distribution in the FQC. If
choose the values for the masses in such a way that
ratio satisfies the relationshipa5Fn21 /Fn22, we get a
transparentstate with t51. Nonetheless, the power spe
trum of this extended critical normal mode reveals that itstill
preserves a significant degree of quasiperiodic orderin its
inner structure.

Another set of interesting particular cases is obtain
when the resonance frequency given by expression~7! coin-
cides with some of the normal modes of the different trim
or tetramers given by expressions~4!. The resonance condi
tions we are interested in are satisfied by those FQCs wh
parameters verify one of the following relationships:

a5g ~l* 5lb!, ~8a!

a5
g

2g21
~l* 5ld!, ~8b!
t
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a5
g26~g21!Ag212g21

2g21
~l* 5le,a!, ~8c!

with gÞ1/2. The conditionl* 5lc can only be fulfilled in
the trivial periodic casea51. As a suitable illustrative ex-
ample, in Fig. 4 we show the overall structure of the fr
quency spectrum for a FQC withN5610 anda5g5A3/3
in terms of the transmission and Lyapunov coefficients.
inspecting this figure one can realize that a significant fr
tion of the allowed states exhibit high values of the transm
sion coefficient. In addition, the presence of these state
not restricted, as is usual, to the lower-frequency region
the spectrum (l<1), but they are also present in th
intermediate- (1<l<2.5) and even at the high-frequenc
(l.4) regions. Let us consider the casel* 5lb5A3 in
more detail. According to the Cayley-Hamilton theorem, w
can express the global transfer matrix in the closed form

M ~N,l* !5S cosf1q sinf 22q sinf

22 sinf cosf2q sinf D , ~9!

where q[A322 and f(N)[(N27nB)p/6, and plugging
the matrix coefficients given in Eq.~9! into Eq.~2! we obtain

t~N,l* !5
1

118~1629A3!sin2f~N!
. ~10!

Several conclusions can be drawn from expression~10!.
First, we observe that the transmission coefficient rema
always bounded below forany value of the lattice length, a
fact which proves the extended nature of the correspond
state in the quasiperiodic limit. Second, we can make us
expression~10! to evaluate the transmission coefficient f
different lattice lengths. The obtained results are summari
in Table I. By inspecting this table it can be readily notic
that the transmission coefficient~i! can only take on four
different possible values,~ii ! these values repeat according
a 12-fold period, and~iii ! it is possible to find FQCs able to
support states satisfying the transparency conditiont51. To
this end the system length should satisfy the condit
sin2f(N)50, which impliesN57nB16l , l being an arbi-
trary integer. It can be rigorously proved that Fibonacci s
tems satisfying that condition are determined by the
quenceN5F7112k , with k50,1, . . . .40

In this way, we realize that the transport properties o
normal mode vibrating at the resonance frequencyl* 5A3

FIG. 4. Overall structure of the frequency spectrum for a
bonacci quasicrystal withN5610, anda5g5A3/3, as given by
the transmission and Lyapunov coefficients.
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PRB 61 6649THERMAL CONDUCTIVITY OF ONE-DIMENSIONAL . . .
significantly depend on the lattice length. In fact, the value
its transmission coefficientoscillates periodicallybetween
the extreme valuestmax51 andtmin50.232 97 . . . . A family
of states exhibiting a similar behavior has been rece
found in the electronic energy spectra of Koch frac
lattices.36 In that work these kinds of states were tentative
referred to asalmost transparentones, and it was argued tha
their related transport properties may be more similar
those corresponding to the usual transparent states tha
localized ones. The finding of analogous states in the
quency spectra of the FQCs considered in this work provi
another example of the richness and diversity of the phys
behaviors associated with critical states in aperiodic syste

V. THERMAL CONDUCTIVITY

Heat transport can be described in terms of the phen
enological relationship~Fourier’s law!

J52k¹T, ~11!

whereJ is the heat flow,k is the thermal conductivity, and
¹T is the temperature gradient. The question as to whe
the heat conduction of a one-dimensional system obeys F
rier’s heat law is yet an open problem. As a general app
ciation, it can be said that the validity of Fourier’s law ca
not be guaranteeda priori, although it accurately describe
the thermal behavior of certain particular systems.41 Thus, it
has been reported that the heat conduction throug
Fibonacci-Toda lattice obeys Fourier’s law.42 Consequently,
we will assume, as a suitable working hypothesis, that F
rier’s law provides an adequate phenomenological desc
tion of heat transfer in FQCs.

A. Contribution of the different modes

In order to ascertain the influence of the fragmented
ture of the phonon spectrum on the thermal transport pr

TABLE I. Dependence of the transmission coefficient of t
resonant statel* 5A3 with the lattice length for a Fibonacci qua
sicrystal witha5g5A3/3.

n N5Fn nB5Fn24 t(N,l* )

5 8 1 0.5485 . . .
6 13 2 0.5485 . . .
7 21 3 1.0000
8 34 5 0.5485 . . .
9 55 8 0.5485 . . .
10 89 13 0.2882 . . .
11 144 21 0.2329 . . .
12 233 34 0.5485 . . .
13 377 55 0.2882 . . .
14 610 89 0.5485 . . .
15 987 144 0.2329 . . .
16 1597 233 0.2882 . . .
17 2584 377 0.5485 . . .
18 4181 610 0.5485 . . .
19 6765 987 1.0000
20 10946 1597 0.5485 . . .
f

ly
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-
p-

erties of FQCs, in this section we shall study the therm
conductivity by considering the contribution of the differe
modes to the energy transport. To this end, we will consi
the lattice in thermal contact with two reservoirs at differe
temperaturesT1 and TN (TN.T1). The thermal flow
through the lattice can be described by means of
expression43

J52c~TN2T1!K, ~12a!

wherec!1 is an appropriate factor measuring the time
terval between collisions at the reservoirs~effective viscos-
ity!, and

K[(
n

~jn,1
221jn,N

22 !21, ~12b!

wherejn,n[Amnun,n , andun,1 andun,N are the amplitudes
of the nth mode at the lattice ends. By comparing expre
sions~11! and~12! we observe that the coefficientK is pro-
portional to k, and provides us with pertinent informatio
about the contribution of each vibration mode to the therm
conductivity value. The applicability of expression~12b! to
the study of the lattice thermal transport inperiodic one-
dimensional chains has been recently reviewed by Frizz
et al.,44 concluding that both low- and high-frequency mod
do not appreciably contribute to the thermal transport.

Our results for thequasiperiodicFQC are presented in
Fig. 5, where we compare the behavior of the thermal co
ficient K with the overall structure of the phonon frequen
spectrum. The curve forK displays the cumulative contribu
tions to the thermal conductivity as a function of the mo
frequency and exhibits a series of steps separated by w
defined plateaus, corresponding to the main gaps of the p
non spectrum. The slope of the steps is determined by
successive contributions of the different modes compri
within the corresponding allowed subbands. In this way,
realize that the fragmented nature of the frequency spect
is reflected by the stepped behavior of the thermal coe
cient. In addition, we observe that the main contribution
the final value of the thermal coefficient is provided by t
modes comprised in the intervals 0.5,l,1.1 and 1.2,l
,2.3; meanwhile the contribution due to both lower (l
,0.5) and higher (l.2.6) frequencies is only a subsidiar

FIG. 5. Comparison between the thermal coefficientK and the
overall structure of the frequency spectrum for a Fibonacci qua
rystal with N5610, a51.2, andg50.9 as given by the transmis
sion and the Lyapunov coefficients. TheK curve is given in arbi-
trary units, and it has been properly scaled to make the compar
with the other magnitudes easier.
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6650 PRB 61ENRIQUE MACIÁ
one, in qualitative agreement with the general behavior p
viously purported for periodic systems.44 In our quasiperi-
odic case, the significant level off of theK curve for high-
frequency modes clearly indicates that these modes sh
not play a significant role in the thermal transport of FQC
even if one takes into account the relatively high values
their related transmission coefficients, as reported in Fig

We shall now consider the behavior of the thermal co
ficient under the resonance conditions discussed in the
vious section. Such a behavior is illustrated in Fig. 6
three different FQCs, exhibiting the resonance frequen
l* 52, l* 5la512A3/3, andl* 5lb5A3, respectively.
The overall stepped structure of the curves is similar to t
shown for a typical FQC in Fig. 5. However, a closer inspe
tion reveals that theK curve significantly grows and steepe
around the values corresponding to the resonance freq
cies ~vertical dashed lines in Fig. 6!. This feature indicates
that, under resonance conditions, the value of the ther
flow through the lattice is significantly influenced by the no
mal vibration modes located around the resonance freq
ciesl* .

B. Finite-temperature effects

In order to obtain realistic outcomes from the model it
convenient to include finite-temperature effects. To this e
we will make use of the following expression for the therm
conductivity ~expressed inkB

2/\ units!:45

k~N,T!5
1

2pT

3

E
0

v* S 2
]n

]v Dv2dvE
0

v* S 2
]n

]v Dv2t~N,v!dv

E
0

v* S 2
]n

]v D @12t~N,v!#v2dv

,

~13!

wherekB is the Boltzmann constant,v* is a threshold fre-
quency related to the Debye temperature asQ
5\v* /kB , n(v,T) is the Bose-Einstein distribution, an
t(N,v) is the transmission coefficient.

FIG. 6. Comparison among the thermal coefficientsK corre-
sponding to different Fibonacci quasicrystals withN51597 and~a!
a5A3,g511A3/3 (l* 5la512A3/3); ~b! a5g5A3/3 (l*
5lb5A3); and ~c! a51.2, g50.5, andl* 52. The curves are
given in arbitrary units and they have been properly scaled to
cilitate the comparison. The vertical dashed lines indicate the va
of the different resonance frequencies.
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Making use of Eq.~13! we have obtained the temperatu
dependence of the thermal conductivity by numerical in
gration. In Fig. 7 we compare the thermal conductivity f
two kinds of Fibonacci quasilattices. In both cases we app
ciate a similar behavior, defining four different temperatu
ranges: a low-temperature region~I! characterized by a
steeped increase ofk with T and a well-defined thermal con
ductivity maximum in region II, followed by a marked de
crease in thermal conductivity in the intermediate tempe
ture region~III !, which tends to an asymptotic behavior
the high-temperature limit~IV !. We also note that the overa
thermal conductivity~as measured by the area under the c
responding curve! is significantly higher for the simplest on
site model than for the more realistic FQC. This result is
line with the purported low thermal conductivity observed
quasicrystalline samples.

It is worthwhile to mention that the qualitative behavi
of these curves is remarkably similar to that recently repor
for some high-quality icosahedral, monograined QCs6,7

However, this analogy should not be pushed too far. In fa
in crystalline specimens the characteristic low-temperat
peak arises from the competition between the exponen
decay of umklapp processes with decreasing temperature
the onset of boundary scattering at very low temperatu
Since none of these physical mechanisms have been ex
itly included in our treatment, the behavior of the therm
conductivity curves shown in Fig. 7 should more properly
attributed to the fractal structure of the frequency spectru

C. Analytical expressions

In order to ascertain such a possibility analytically we w
assume that, in the quasiperiodic limit (N@1), the transmis-
sion coefficient can be roughly approximated by aself-
similar Dirac combgiven by the expression46

t~N,v!.(
i 51

N

h id~v2v i !, ~14!

-
es

FIG. 7. Temperature dependence of the thermal conductivit
Fibonacci quasilattices withN5987 atoms corresponding to~a! the
on-site model witha51.2, g51.0 and~b! our general model with
a51.2, andg50.9.
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whereh i measures the strength of thei th transmission peak
andv i gives its position in the frequency spectrum. Maki
use of Eq.~14! in Eq. ~13!, and taking into account that in
the quasiperiodic limit 12t(N,v).1, we get

k~T!.
kB

h (
i 51

N8

f v i
~u!, ~15!

where we have explicitly assumed that only the modes a
ciated with high values of the transmission coefficient (h i
→1) significantly contribute to the thermal conductivi
~henceN8,N), and we have defined

f v i
~u![

u2v i
2euv i

~euv i21!2
, ~16!

with u5\/kBT. This expression is analogous to that pre
ously obtained for the thermal coefficientK, in the sense tha
it gives the thermal conductivity as a cumulative contributi
which takes into account the different normal modes pres
in the lattice. At this point it is convenient to rearrange e
pression~15!:

k~T!5
kB

h (
i 51

N8 S xi

sinhxi
D 2

, ~17!

wherexi[(Q/T)(v i /2v* ). Since the Debye temperatures
most QCs studied to date exhibit quite high values~in the
range 400<Q<500),47,48 we can confidently approximat
expression~17! by its high-temperature limit expansion

k~T!.
\

2pkB
(
i 51

N8

v i
2gv i

~T!, ~18!

where we have introduced the auxiliary functions

gv i
~T![T22e2Qv i /Tv* . ~19!

In this way, the variation of the thermal conductivity wit
the temperature is determined by the superposition of a se
of functions given by expression~19!. For a given value of
the frequencyv i , the behavior of each of these functions
completely analogous to that shown in Fig. 7, although
position of the maximum depends, in each case, on the
quency value according to the relationshipTmax5Qv i /2v* .
Therefore, expression~18! allows us to precisely analyze th
contribution of each normal mode present in the lattice to
thermal conductivity at a given temperature.

As an example, we shall consider the case correspon
to the resonance frequencyl* 52 (v5A2). In that case the
most significant contribution to the thermal conductiv
comes from those normal modes located around the r
nance frequency~see Fig. 6!. Therefore, we can confidentl
expect that the position of the thermal conductivity ma
mum will be mainly determined by the normal mode cor
sponding to the resonance frequencyv5A2. By taking the
derivative of expression~18!, the position of the maximum
can be estimated in terms of physical parameters of the
tem as
o-

-

nt
-

ies

e
e-

e

ng

o-

-
-

s-

Tmax.
A2\

2kB
S KAB

mA
D 1/2

. ~20!

Although this expression is just a rough approximatio
by plugging the valuesKAB5103dyn cm21, and mA
510223 g as representative ones, we getTmax.40 K. This
figure compares well with the experimental values obtain
for high-quality, monograined quasicrystalline samples.7

VI. CONCLUSIONS

In this work we have considered the thermal transp
properties of FQCs, paying special attention to the poss
influence of the singular nature of their phonon frequen
spectrum on the thermal conductivity. With this goal
mind, we have studied in detail the physical mechanis
giving rise to the fractal structure of the frequency spectru
providing a suitable explanation on the basis of resonant c
pling effects among a fundamental set of normal modes.

Another interesting result of this work regards the re
tionship between the spatial distribution of the normal mod
amplitudes and their related transport properties. The r
ness of the frequency spectrum associated with FQCs i
lustrated by the existence of a great variety of critical norm
modes, exhibiting quite different physical behaviors, whi
range from highly conducting extended states, satisfying
transparency conditiont51 for any value ofN, to almost
transparent states, whose transmission coefficient oscill
periodically between two extreme values depending on
system length.

With regard to the contribution of the different norm
modes to the thermal transport through FQCs we can h
light the following results. In the first place, the highly frag
mented structure of the frequency spectrum has a signifi
influence in the cumulative contribution of the different no
mal modes to the thermal transport. In the second place
find that the value of the transmission coefficient alo
should not be considered as adefinitive criterionwhen de-
termining the thermal transport efficiency of an arbitrary n
mal mode, as is conveniently illustrated by the presence
set of normal modes exhibiting high transmission coeffici
values ~but a poorly conductive character! in the high-
frequency region of the spectrum~see Figs. 2, 4, and 5!. In
the third place, the sudden enhancement of the thermal c
ficicient K around the resonance frequencies clearly in
cates the importance of thecollective resonant motiondeter-
mined by the fundamental normal modes associated with
set of trimers and tetramers introduced in Sec. III to t
thermal conductivity of FQCs.

We have also introduced an analytical aproach which
lows us to properly describe the dependence of thek(T)
curve on the temperature over a wide temperature range,
superposition of different contributions associated with ea
normal mode present in the system at a given temperat
According to expression~18! all these contributions have
similar mathematical dependence with temperature, but t
relative contribution to the final thermal conductivity of th
FQC is weighed by thev i

2 factor. Since the number of al
lowed states available at a given temperature is prescribe
the fractal pattern of the frequency spectrum, expression~18!
provides a clear physical picture of the way the self-simi
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nature of the phonon spectrum influences the overall beh
ior of the thermal conductivity curve of FQCs over a wid
temperature range.

To conclude we shall briefly consider the applicability
some of our results to decagonal~2D! and icosahedral~3D!
quasicrystals. From a broad perspective, we can invoke s
fundamental reasons supporting the use of one-dimensi
models as a first approximation to the study of realistic q
sicrystalline systems. In fact, in the light of Conway’s the
rem, both the fractal structure of the frequency spectra
the existence of critical states can be explained in term
resonant coupling effects.49,50Therefore, the physical mecha
nisms at work are not so dependent on the dimension of
system, but are mainly determined by the self-similarity
the underlying structure.10 Consequently, in order to asce
tain whether some of the purported anomalies in the ther
transport properties of quasicrystals are directly related to
r

s

.

:
-

,

M

s

d

M

v-

e
al
-

-
d

of

e
f

al
e

kind of order present in their structure~a basic point for any
general theory of quasicrystalline matter!, the results ob-
tained with our 1D model may be considered as quite rep
sentative, for such models encompass, in the simplest
sible manner, most of the novel physics attributable to
quasiperiodic order.
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