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We consider a general Fibonacci quasicry§f)C) in which both the masses and the elastic constants are
aperiodically arranged. Making use of a suitable decimation scheme, inspired by real-space renormalization-
group concepts, we obtain closed analytical expressions for the global transfer matrix and transmission coef-
ficient for several resonant critical normal modes. The fractal structure of the frequency spectrum significantly
influences both the cumulative contribution of the different normal modes to the thermal transport and the
dependence of the thermal conductivity with the temperature over a wide temperature range. The role of
resonant effects in the heat transport through the FQC is numerically and analytically discussed.

I. INTRODUCTION for amorphous solids. Furthermore, in the low-temperature
regime the thermal conductivity drops below the correspond-

The discovery of thermodynamically stable quasicrystaling amorphous value, obeying a power law given by an ex-
line alloys of high structural quality in icosahedraand  ponents=2.5° In addition, the thermal conductivity curve
decagondl systems has opened promising avenues in thef single-grained QCs exhibits a well-defined maximum at
study of the physical properties of quasicrysta®Cs,>*  about 20 K, but this maximum is followed by a shallow
allowing for detailed experimental studies of their relatedminimum, located between 50 and 90 K, which is not ob-
transport properties. served in the usual crystalline samplés.

The thermal conductivityx(T) of several QC samples, Consequently, experimental results indicate the existence
covering different temperature ranges, has been measuresf, both common features and significant differences in the
and the following general conclusions can be drawn from thehermal conductivity among polygrained QCs and amor-
collected data. In the first place, the heat transport is unusishous solids, on the one hand, and single-grained QCs and
ally low. For example, in AlIPdMn icosahedral phases thecrystalline solids, on the other hand. From a theoretical point
thermal conductivity at room temperature is comparable twf view the fundamental question concerning whether the
that of zirconia (1 Wm?' K™1), and this value decreases purported anomalies in QC transport properties should be
to about 10 Wm™! K1 below 0.1 K> In the second mainly attributed(or noy to the characteristiquasiperiodic
place, the contribution of electrons to the thermal transporbrder of their structure is still awaiting a definitive answer.
is, at least, one order of magnitude lower than that due t@’hus, it has been argued that the thermal conductivity behav-
phonons over a wide temperature range (0.%7TK ior observed in polygrained QCs at the low-temperature
<200 K)?® In the third place, the overall behavior of the range (0.35 KT<1.6 K), may be attributed to the pho-
thermal conductivity is quite sensitive to the microstructurenon scattering by tunneling states, whose possible existence
of the sample. Thus, for polygrained samples, the latticén AIPdMn QCs has been recently claimed from ultrasound
thermal conductivity monotonically increases wikhshow-  experiments! On the other hand, in the regime of interme-
ing a marked tendency to saturation for temperatures abowdiate temperatures, the plateau-type feature in the lattice
10-20 K, and exhibiting a characteristic plateau extendinghermal conductivity has been justified by invoking a gener-
from about 25 to 55 K.On the contrary, the lattice thermal alization of the umklapp process to describe the scattering
conductivity of single-grained samples first increases withamong phonons and the quasilattice structfirginally, at
increasingT, it reaches a shallow maximum at about 20 K, higher temperatures, a phonon-assisted hopping mechanism
and then smoothly decreases with further increa3ing has been proposed to act over hierarchically distributed hop-

At first glance, it would be tempting to say that the ther- ping distances? However, a general consensus on the rela-
mal behavior of polygrained QCs is similar to that observedive importance of the different proposed mechanisms, as
in amorphous materials; meanwhile the thermal conductivitywell as on their respective range of applicability, is still miss-
curve of single-grained QCs resembles that observed in crysnag.
talline materials. However, a closer scrutiny of the obtained In this work, we will propose a general Fibonacci QC
experimental curves reveals the existence of significantFQC) in order to investigate the influence of the singular
quantitative differences. In fact, the thermal conductivity of phonon spectrum structure on the thermal properties of one-
most amorphous materials is characterized by two main feadimensional(1D) quasiperiodic systems. In this way, we
tures:(a) Below 1 K the thermal conductivity can be fitted by complement some of the few results previously obtained on
a power lawk=AT?, with 1.8< §<2.0, and(b) around 10 K  the subject? providing substantial support to the thermody-
one finds a plateau exhibiting a constant value namical implications associated with the peculiar nature of
=0.1-0.2 Wm?! K12 Keeping these facts in mind, we fractal energy spectd. To this end, we first discuss the
realize that, in polygrained QCs, the plateau occurs at sulmajor features of our general model as compared to previous
stantially higher temperatures than those typically observedhodels considered in the literature. Afterward, we report on
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the general structure of the frequency spectrum, showing that
its overall fragmentation scheme can be properly described
in terms of resonant coupling effects. Next, we consider the
physical nature of the phonon states, reporting on the rich-
ness of the physical behaviors exhibited by the different
kinds of critical normal modes present in the quasilattice.

Then, we study the contribution of the different normal

modes to the thermal energy transport, and report on the
presence of resonant effects in the thermal coefficient behav-
ior. Finally, we consider the temperature dependence of the
thermal conductivity curve, and compare the obtained curves

with suitable experimental results of high-quality quasicrys-

talline samples. FIG. 1. Overall structure of the frequency spectrum for a
Fibonacci quasicrystal wittN=610, «=2, andy=1.2, as given
by the IDOS and the Lyapunov coefficient.

Il. MODEL

In our study we consider a harmonic chain composed oFinally, we will evaluate the integrated density of states
two kinds of massesm, and mg, which are arranged ac- (IDOS) by node countiné?’
cording to the Fibonacci sequence, and two kinds of springs,
Kaa andK ,g=Kga, depending on the type of joined atoms.
In this way, the quasiperiodic distribution of masses in the lll. FREQUENCY SPECTRUM
systeminducesan aperiodic(non-Fibonacciandistribution We have studied in detail different realizations of the
of spring constants in the chain. This characteristic feature i QC by varying the number of constituent atorh, their
physically sound since, generally speaking, one expects thaass ratioa=mg/m,, and the spring constants ratip
the nature of the chemical bonding between the different /K .. Without loss of generality we have fixad,
atoms(and thereof the value of the spring constant represent=1 angK ,,=1 as reference values, and have explored the
ing the bong will depend on the nature of the involved at- parameter space within the intervals<SM<1597, ka
oms. In this sense, our FQC model is both mgeaeraland <5 and 0.5<y<3. The overall structure of the frequency
simplerthan most of the systems previously discussed in th%pectrum corresponding to the FQC is illustrated in Figs. 1

B 15-21
literature. and 2 in terms of the parametrized frequency

Making use of the transfer-matrix formalism the equationEmszlKAB: ?. From these figures we can draw the follow-

of motion can be cast in the form ing conclusionsi(i) The frequency spectrum shows a pen-
tafurcation scheme, characterized by the presence of five

u an B Knn-1 u u main subbands separated by well-defined gaps. Therefore,
( ”+1): Knn+1 Knn+1 ( " )Epn< " ) the overall structure of the FQC phonon spectrum differs
Un 1 0 n—-1 Un-1 from those observed both for transfer modélsree main

(1) subbandsand on-site model¢four main subbands (ii) At

low and intermediate frequencies€0.<2), the minima of
whereu,, is the displacement of theth atom from its equi-  the Lyapunov coefficient take significantly low values. Con-
librium position; m,, with n=A,B, is the corresponding versely, starting abouk=2 we realize that these minima
mass K -1 denotes the strength of the harmonic couplingmonotonically increase with. Such a behavior suggests that
between neighbor atoms, is the vibration frequency, and the high-frequency phonons are more localized than the low-
an=Kpn_1+ Kn,nﬂ—mnwz. The allowed regions of the frequency onegiii) Most of the low-frequency phonons ex-
frequency spectrum are determined from the usual spectrélibit transmission coefficients close to unity. On the con-
conditiorf?  |[TrM(N,w)|=|Tr(II}_ P,)|<2, where trary, starting abouk ~ 1.5, we observe that, as the phonon
M(N,w) is the global transfer matrix, anbl=F, is the frequency increases, the values of the corresponding trans-
number of atoms in the chain, whefg is a Fibonacci num- mission coefficients progressively decrease. Nevertheless,
ber obtained from the recursive law,=F,_;+F,_,, with
Fo=F;=1. From knowledge of the global transfer-matrix
elementsM;; , we can obtain the transmissiafN,»), and
Lyapunov, I'(N, ), coefficients through the standard ex-
pressiong (N, ) =4 sirfkiD(N, ), with

ibos

DE [ M 12— M 21+ (M 11~ M 22)COSk]2+ (M 11+ M Zz)zsinzk,

2
where cok=1—m,w?/2K 5 gives the dispersion relation for
a periodic chain composed éf sites, and

1 FIG. 2. Overall structure of the frequency spectrum for a Fi-
(N, 0)= —In M2+ M2+ M2+ M2.). 3 bonacci quasicrystal withh=610, «=2, andy=1.2, as given by
(N.w) N (Mi+ M1+ Myt M2) ©® the IDOS and the transmission coefficient.
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superimposed onto this general trend, we also find a few 1.2
high-frequency phonon states exhibiting transmission coeffi-

cients significantly close to unity. We will study some of 1.0
these states in more detail in Sec. IV.

We have confirmed that the overall structure of the fre-
guency spectrum, as determined by the three features jus
described, does not significantly depend on the values,,
adopted for the different model parameters. In addition, we@ 0.6 -
have measured the heights of the characteristic steps appea—
ing in the IDOS for a wide range ™, «, andy parameters.

The measured heights yield the same values for all the mode
parameters considered. These values agree within an errc
less than 0.1% with the series: 7*: 7% 7%: 7%, ordered ac- 0.2
cording to growing frequencies, where= (\5—1)/2 is the

inverse golden mean. This result agrees well with the gap 0.0 . . . T
labeling theorem which states that at any gap of the energy 0 1 2 3 4 5
spectrum in a quasiperiodic system the IDOS takes a value
equal to the wave number of one of the Fourier components
of the modulation potentigf*2° _ _

Now, from a physical perspective the fragmentation FIG. 3. Correspondence betvyeen the main s_ubbands in the fre-
scheme of the frequency spectrum can be interpreted jAYENCY Spectrum of a Fibonacci quasicrystal witk 610, =2,
terms of resonant coupling effects involving an appropriateand v=2, _and the no.rmal modes as_socnlated with the trimers and
set of normal modes. In fact, in the light of previous tetramers introduced in our renormalization scheme.
works2%?’ the original Fibonacci chain will be decomposed
into a series otrimers and tetramersof the formBAB and
BAAB. The number of trimers present in the chaig,g,
equals the number of isolatedl atoms. Analogously, the
number of tetramers coincides with the numbeA& pairs.
Then, in the thermodynamic limit we have the well-known

limits lim(ngag/N)= 7" and lim(ngaag/N) = 7°. From a mathematical point of view the nature of a state is
_Now, neglecting the trivial translation mode§=0, each  determined by the measure of the spectrum to which it be-
trimer, if considered as an independent dynamical systemgngs. Consequently, since it has been proved that Fibonacci
contributes W|th two diffe.rent nor.mal vibration mOdeS, lattices have pure'y Singu|ar continuous Spearwe can
whose respective frequencies are given by properly state that all the states are critical in these systems.
However, this fact does not necessarily imply that all these
critical states behave in exactly the same way from a physi-
Np=a l Ag=2+a71 (4a) cal viewpoint. In fact, the possible existence aitical ex-
tendedstates in several kinds of aperiodic systems, including
both quasiperiodf®>! and nonquasiperiodic oné%,has
and, analogously, each tetramer contributes with three diffefo€en discussed in the last few years, spurring interest in the
ent normal modes given by precise nature of critical wave functions and their role in the
physics of aperiodic systems.
From a physical viewpoint, states can be classified ac-
. . cording to theitransport propertiesThus, conducting states
ANe=1+a " Nea=y+nEN(n—y)"+2y, (4b)  jn crystalline systems are described by periodic Bloch states,
whereas insulating systems exhibit exponentially decaying
wave functions corresponding to localized states. In this
where = (1+a 1)/2. Hence, we havéive normal modes sense, since the amplitudes of critical states in a Fibonacci
describing thefundamentaldynamical state of the FQC. If Ilattice do not tend to zero at infinity, but are bounded below
we assume that these normal modes are resonantly coupléstoughout the systerif,one may expect their physical be-
in a way analogous to that discussed in the study of théiavior to be more similar to that corresponding to extended
electronic problent®?’ we can asign the origin of every states than to localized ones. In fact, in the case of the elec-
main subband appearing in the frequency spectrum to a speron dynamics, we have shown that critical states belonging
cific normal mode belonging to the set given by the expresto a subset of the spectrum of a general Fibonacci chain are
sions (4). Such a procedure is illustrated in Fig. 3 and weextended from a physical point of vietw.
realize that the lower-frequency region of the spectram ( In this section we will study the transport properties of
<1) contains two main contributions: the lowest-frequencyphonon states belonging to the frequency spectrum of the
contribution (. <0.5), which is related to the tetramers nor- FQC as measured by their related transmission coefficients.
mal mode , (contributing with7> state$, and the frequency Our approact?—’is based on the transfer-matrix technique,
interval 0.5<A <1, which is related to the trimers normal where the dynamical equatigh) is described by the follow-
mode A, (contributing with 7* state$. Therefore, although ing transfer matrices:

0.8

both subbands are separated by a quite narrow gap, their
origin can be traced back to the dynamics of quite different
vibrating blocks in the FQC.

IV. NATURE OF THE PHONON STATES
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The key point of our procedure consists in the fact that
we renormalize the entire set of transfer matrices instead
of the lattice itself. Making use of these matrices, and
imposing cyclic boundary conditions, we c#émanslate the

atomic sequenceABAAB. .. describing the topological FIG. 4. Overall structure of the frequency spectrum for a Fi-

order of the FQC to the transfer-matrix sequencenonacci quasicrystal with=610, anda=y=13/3, as given by
XZY XZY XWXZY XW. . describing the phonon dynamics. the transmission and Lyapunov coefficients.

By renormalizing this transfer-matrix sequence according to

the plocking sghemQAEZYX and Rg=WX, we get the Y2+ (y— 1)m

considerably simplified sequend®@zRARARgRA.... The = 501

renormalized transfer-matrix sequence is also arranged ac- Y

cording to the Fibonacci sequence and, consequetiiyy, with y+#1/2. The conditiol\* =\ can only be fulfilled in

topological order present in the original FQC is preserved the trivial periodic caser=1. As a suitable illustrative ex-

by the renormalization proces3he R matrices areunimo-  ample, in Fig. 4 we show the overall structure of the fre-

dular (i.e., their determinant equals unjtgnd they commute quency spectrum for a FQC with=610 anda=y=3/3

for certain frequency values. In fact, after some algebra wen terms of the transmission and Lyapunov coefficients. By

get inspecting this figure one can realize that a significant frac-

\ 1 0 tion of the allowed states exhibit high values of the transmis-

_ sion coefficient. In addition, the presence of these states is

[Ra:Re]= ;{Zy_l_a[lﬂ\("_ 1)]}(2—a)\ —1)’ not restricted, as is usual, to the lower-frequency region of

(6) the spectrum X=<1), but they are also present in the

. . . . ._intermediate- (£A<2.5) and even at the high-frequency

which vanishes for the frequencies given by the expressmn()\z‘l) regions. Let us consider the cak&=\,=143 in
ot more detail. According to the Cayley-Hamilton theorem, we

(] Y .
A* :a(l——y)' (7) can express the global transfer matrix in the closed form

(M*=Xea), (80

cos¢+qsing —2gsing

i i M(N,\*)=
For these frequencies the global transfer matrix of the (N,AY) —2sine cosp—qsing)’

systemM (N)=R}*RE®, with ny,=F,_3 andng=F,_,, can

be explicitly evaluated in terms of Chebyshev polynomialswhere gq=+3-2 and ¢(N)=(N—7ng)#/6, and plugging

of the second kind® In this way, given any arbitrary FQC, the matrix coefficients given in E9) into Eq.(2) we obtain

we are able to obtain a subset of its frequency spectrum

whose eigenstates can be analytically studied. A detailed N 1

study of the critical normal modes corresponding to the par- tNAF) = _ ; ' (10

; . _ 1+8(16—9/3)sir?¢(N)

ticular casey=1/2 has been recently discussédh this case

the commutation frequency becomes independent of the val- Several conclusions can be drawn from expressio).

ues assigned to the mass distribution in the FQC. If werjrst, we observe that the transmission coefficient remains

choose the values for the masses in such a way that thediways bounded below faany value of the lattice length, a

ratio satisfies the relationship=F, 1/F, ,, we get a fact which proves the extended nature of the corresponding

transparentstate witht=1. Nonetheless, the power spec- state in the quasiperiodic limit. Second, we can make use of

trum of this extended critical normal mode reveals thatiit expression(10) to evaluate the transmission coefficient for

preserves a significant degree of quasiperiodic orafeits  different lattice lengths. The obtained results are summarized

Inner structure. in Table I. By inspecting this table it can be readily noticed
Another set of interesting particular cases is obtainedhat the transmission coefficiefi) can only take on four

when the resonance frequency given by expres&ipeoin-  different possible valuesii) these values repeat according to

cides with some of the normal modes of the different trimersa 12-fold period, andiii) it is possible to find FQCs able to

or tetramers given by expressio@. The resonance condi- support states satisfying the transparency conditioth. To

tions we are interested in are satisfied by those FQCs whosgis end the system length should satisfy the condition

9

parameters verify one of the following relationships: sirf$(N)=0, which impliesN=7ng+6l, | being an arbi-
trary integer. It can be rigorously proved that Fibonacci sys-
a=y (N"=\p), (8a  tems satisfying that condition are determined by the se-
quenceN=F,, 1, with k=0,1, ... 40
- Y (M =0y) 8b) In this way, we realize that the transport properties of a
2vy—-1 d/» normal mode vibrating at the resonance frequenty= 3
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TABLE |. Dependence of the transmission coefficient of the ‘»
resonant stata* = \/3 with the lattice length for a Fibonacci qua- rod N ﬁ o
sicrystal witha= y= \/3/3. Ve 'm ;‘*l T
| ! - ‘ e —
nON=F, ne=Fy.  HNAY) f .w‘ ‘ | f
5 8 1 0.548 . . . = ] MW ;‘ 11 (-
6 13 2 0.548 . .. ' I LR M I
7 21 3 1.0000 1 J i “ ‘
8 34 5 0.548 ... ARl |l (R
9 55 8 0.548 . .. i
10 89 13 0.288. .. _ o
11 144 21 0232 . FIG. 5. Comparison between the thermal coeffl_CIEnand_ the _
overall structure of the frequency spectrum for a Fibonacci quasic-
12 233 34 0.548. .. . . .
rystal withN=610, a«=1.2, andy=0.9 as given by the transmis-
13 377 55 0.288... sion and the Lyapunov coefficients. TRgcurve is given in arbi-
14 610 89 0.548... trary units, and it has been properly scaled to make the comparison
15 987 144 0.232... with the other magnitudes easier.
16 1597 233 0.288. ..
17 2584 377 0.548. .. erties of FQCs, in this section we shall study the thermal
18 4181 610 0.548. .. conductivity by considering the contribution of the different
19 6765 987 1.0000 modes to the energy transport. To this end, we will consider
20 10946 1597 0.548. .. the lattice in thermal contact with two reservoirs at different

temperaturesT,; and Ty (Ty>Ty). The thermal flow
through the lattice can be described by means of the
significantly depend on the lattice length. In fact, the value ofexpressiof?

its transmission coefficienbscillates periodicallybetween

the extreme values, 5= 1 andt,;,=0.232F . .. . Afamily J=—c(Ty—ToK, (129

of states exhibiting a similar behavior has been recentl)(N
found in the electronic energy spectra of Koch fractal
lattices®® In that work these kinds of states were tentatively
referred to aglmost transparenbnes, and it was argued that
their related transport properties may be more similar to

those corresponding to the usual transparent states than to ICEE (§;f+ g;ﬁ)‘l, (12b)
localized ones. The finding of analogous states in the fre- v

guency spectra of the FQCs considered in this work provideﬁ,hereg = \/ﬁnu ., andu,,; andu,  are the amplitudes
another example of the richness and diversity of the physicalt the yth mode at the lattice ends. By comparing expres-
behaviors associated with critical states in aperiodic SyStem§ions(11) and(12) we observe that the coefficieft is pro-

portional to x, and provides us with pertinent information
V. THERMAL CONDUCTIVITY about the contribution of each vibration mode to the thermal
conductivity value. The applicability of expressi¢h2b) to
Mhe study of the lattice thermal transport periodic one-
dimensional chains has been recently reviewed by Frizzera
et al,* concluding that both low- and high-frequency modes
do not appreciably contribute to the thermal transport.
wherelJ is the heat flowx« is the thermal conductivity, and _. Our results for thequa5|per|od|cFQC are presented in
VT is the temperature gradient. The question as to Wheth&'g' 5 whgre we compare the behavior of the thermal coet-
ficient IC with the overall structure of the phonon frequency

the heat conduction of a one-dimensional system obeys Fou-

rier's heat law is yet an open problem. As a general appregpectrum. The curve fo€ displays the cumulative contribu-

ciation, it can be said that the validity of Fourier's law can- tions to the thermall (_:onductiyity as a function of the mode

not be guaranteed priori, although it accurately describes frequency and exhibits a Series of steps _separated by well-
the thermal behavior of certain particular systémshus, it defined plateaus, corresponding to the main gaps of the pho-
has been reported that the heat conduction through 200 spectrum. The slope of the steps is determined by the

Fibonacci-Toda lattice obeys Fourier's [&Consequently, SUCCessive contributions of the different modes comprised

we will assume, as a suitable working hypothesis, that FouWithin the corresponding allowed subbands. In this way, we

rier's law provides an adequate phenomenological descri __ealize that the fragmented nature (_)f the frequency spectru_m
tion of hezﬂ transfer in FQgs. P ¢ F{s reflected by the stepped behavior of the thermal coeffi-

cient. In addition, we observe that the main contribution to
the final value of the thermal coefficient is provided by the
modes comprised in the intervals &62<<1.1 and 1.2\

In order to ascertain the influence of the fragmented na<<2.3; meanwhile the contribution due to both lowex (
ture of the phonon spectrum on the thermal transport prop<0.5) and higher X>2.6) frequencies is only a subsidiary

herec<1 is an appropriate factor measuring the time in-
terval between collisions at the reservofeiffective viscos-
ity), and

enological relationshigFourier’s law

J=—«VT, (12

A. Contribution of the different modes
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FIG. 6. Comparison among the thermal coefficiektscorre-
sponding to different Fibonacci quasicrystals witk- 1597 and(a)
a=13,y=1+3/3 (\*=\,=1—3/3); (b) a=y=+3/3 (\* v
=)\b=\/§); and(c) a=1.2, y=0.5, and\*=2. The curves are ™~ b \a
given in arbitrary units and they have been properly scaled to fa- o
cilitate the comparison. The vertical dashed lines indicate the values 0.00 0.02 0.04 0.06 0.08 0.10
of the different resonance frequencies. /6

one, in qualitative agreerr.\en't with thr?\ general beha}vior. Pr€- FIG. 7. Temperature dependence of the thermal conductivity in
viously purported for periodic systerfi&.In our quasiperi-  Eiponacci quasilattices witN =987 atoms corresponding ta) the

odic case, the significant level off of theé curve for high-  on_site model withe=1.2, y=1.0 and(b) our general model with
frequency modes clearly indicates that these modes shoulg=1.2, andy=0.9.

not play a significant role in the thermal transport of FQCs,
even if one takes into account the relatively high values of Making use of Eq(13) we have obtained the temperature
their related transmission coefficients, as reported in Fig. Sdependence of the thermal conductivity by numerical inte-

We shall now consider the behavior of the thermal coefgration. In Fig. 7 we compare the thermal conductivity for
ficient under the resonance conditions discussed in the prewo kinds of Fibonacci quasilattices. In both cases we appre-
vious section. Such a behavior is illustrated in Fig. 6 forcjate a similar behavior, defining four different temperature
three different FQCs, exhibiting the resonance frequenciefanges: a low-temperature regiai) characterized by a
N*=2, N*=\,=1—3/3, and\* =\,= /3, respectively. steeped increase afwith T and a well-defined thermal con-
The overall stepped structure of the curves is similar to thaguctivity maximum in region Il, followed by a marked de-
shown for a typical FQC in Fig. 5. However, a closer inspec-crease in thermal conductivity in the intermediate tempera-
tion reveals that thé curve significantly grows and steepens ture region(lll), which tends to an asymptotic behavior in
around the values corresponding to the resonance frequethe high-temperature limifV). We also note that the overall
cies (vertical dashed lines in Fig.)6This feature indicates thermal conductivityas measured by the area under the cor-
that, under resonance conditions, the value of the thermaksponding curveis significantly higher for the simplest on-
flow through the lattice is significantly influenced by the nor- site model than for the more realistic FQC. This result is in
mal vibration modes located around the resonance frequefine with the purported low thermal conductivity observed in
cies\*. guasicrystalline samples.

It is worthwhile to mention that the qualitative behavior
B. Finite-temperature effects of these curves is remarkably similar to that recently reported
i . _ . for some high-quality icosahedral, monograined GCs.

In orQer to (_)btaln re_alllstlc outcomes from the mod(_al it is However, this analogy should not be pushed too far. In fact,
convenient to include finite-temperature effects. To this endy, ¢y stalline specimens the characteristic low-temperature
we will make use of the follzowmg_ex%essmn for the thermal o 1" arises from the competition between the exponential
conductivity (expressed irkg/7 units): decay of umklapp processes with decreasing temperature and

the onset of boundary scattering at very low temperatures.

Since none of these physical mechanisms have been explic-
7T itly included in our treatment, the behavior of the thermal

conductivity curves shown in Fig. 7 should more properly be
o a_n 2 ot ‘9_” 2t(N. »)d attributed to the fractal structure of the frequency spectrum.
. awwwo aww(,w)w

1
K(N,T)=2—

X

’ C. Analytical expressions

Jw*(—&—n)[l—t(N w)]w?dw
dw '

0 In order to ascertain such a possibility analytically we will

assume that, in the quasiperiodic limii% 1), the transmis-
sion coefficient can be roughly approximated byself-
similar Dirac combgiven by the expressiéh

13

wherekg is the Boltzmann constan@* is a threshold fre-
quency related to the Debye temperature &3 N
=hw*/kg, n(w,T) is the Bose-Einstein distribution, and t(N w):E 80— o)) (14)
t(N,®) is the transmission coefficient. O = .
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where 7; measures the strength of thié transmission peak NAD
and w; gives its position in the frequency spectrum. Making Trax= ke
use of Eq.(14) in Eqg. (13), and taking into account that in B
the quasiperiodic limit +t(N,w)=1, we get

12
Kag
Ma

(20

Although this expression is just a rough approximation,
" by plugging the valuesK,g=10°dyn cm!, and mj,
kg =10 2 g as representative ones, we Fgl,=40 K. This

w(M=4 Zfl Fo, (W), (19 figure compares well with the experimental values obtained
for high-quality, monograined quasicrystalline samgles.

where we have explicitly assumed that only the modes asso-

ciated with high values of the transmission coefficient ( VI. CONCLUSIONS
—1) significantly contribute to the thermal conductivity ] ]
(henceN’ <N), and we have defined In this work we have considered the thermal transport

properties of FQCs, paying special attention to the possible

U2w2euei influence of the singular nature of their phonon frequency
fw_(u)zl—z, (16)  spectrum on the thermal conductivity. With this goal in
' (e"i—1) mind, we have studied in detail the physical mechanisms

giving rise to the fractal structure of the frequency spectrum,
providing a suitable explanation on the basis of resonant cou-
pling effects among a fundamental set of normal modes.
Another interesting result of this work regards the rela-
onship between the spatial distribution of the normal modes
amplitudes and their related transport properties. The rich-
ness of the frequency spectrum associated with FQCs is il-
N’ lustrated by the existence of a great variety of critical normal
kg xi \? modes, exhibiting quite different physical behaviors, which
x(T)= h 2 (sinhxi) ' (17) range from highly conducting extended states, satisfying the
transparency conditiob=1 for any value ofN, to almost
wherex;=(0/T)(w;/2w*). Since the Debye temperatures of transparent states, whose transmission coefficient oscillates
most QCs studied to date exhibit quite high valgesthe  periodically between two extreme values depending on the
range 408<®<500);"“® we can confidently approximate system length.
expression(17) by its high-temperature limit expansion With regard to the contribution of the different normal
modes to the thermal transport through FQCs we can high-
N light the following results. In the first place, the highly frag-
k(T)=—— E wizgw.(T)- (18 mented structure of the frequency spectrum has a significant
27k =1 ' influence in the cumulative contribution of the different nor-
mal modes to the thermal transport. In the second place, we
find that the value of the transmission coefficient alone
should not be considered asdafinitive criterionwhen de-
termining the thermal transport efficiency of an arbitrary nor-
mal mode, as is conveniently illustrated by the presence of a
In this way, the variation of the thermal conductivity with set of normal modes exhibiting high transmission coefficient
the temperature is determined by the superposition of a serigglues (but a poorly conductive characjein the high-
of functions given by expressiof19). For a given value of frequency region of the spectruaee Figs. 2, 4, and)5In
the frequencyw; , the behavior of each of these functions is the third place, the sudden enhancement of the thermal coef-
completely analogous to that shown in Fig. 7, although theficicient £ around the resonance frequencies clearly indi-
position of the maximum depends, in each case, on the frezates the importance of tlwellective resonant motiodeter-
quency value according to the relationshig,,= 0 /20> . mined by the fundamental normal modes associated with the
Therefore, expressiofi8) allows us to precisely analyze the set of trimers and tetramers introduced in Sec. Il to the
contribution of each normal mode present in the lattice to thehermal conductivity of FQCs.
thermal conductivity at a given temperature. We have also introduced an analytical aproach which al-
As an example, we shall consider the case correspondingws us to properly describe the dependence of A(€)
to the resonance frequensy =2 (w=2). In that case the curve on the temperature over a wide temperature range, as a
most significant contribution to the thermal conductivity superposition of different contributions associated with each
comes from those normal modes located around the resmormal mode present in the system at a given temperature.
nance frequencysee Fig. 6. Therefore, we can confidently According to expressiofil8) all these contributions have a
expect that the position of the thermal conductivity maxi-similar mathematical dependence with temperature, but their
mum will be mainly determined by the normal mode corre-relative contribution to the final thermal conductivity of the
sponding to the resonance frequeney: 2. By taking the ~FQC is weighed by thew? factor. Since the number of al-
derivative of expressiofil8), the position of the maximum lowed states available at a given temperature is prescribed by
can be estimated in terms of physical parameters of the syshe fractal pattern of the frequency spectrum, expresdién
tem as provides a clear physical picture of the way the self-similar

with u=#/kgT. This expression is analogous to that previ-
ously obtained for the thermal coefficiefdt in the sense that

it gives the thermal conductivity as a cumulative contribution
which takes into account the different normal modes presen
in the lattice. At this point it is convenient to rearrange ex-
pression(15):

=1

where we have introduced the auxiliary functions

0., (T)=T 26”001, (19
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nature of the phonon spectrum influences the overall behakind of order present in their structufa basic point for any

ior of the thermal conductivity curve of FQCs over a wide general theory of quasicrystalline majtethe results ob-

temperature range. tained with our 1D model may be considered as quite repre-
To conclude we shall briefly consider the applicability of sentative, for such models encompass, in the simplest pos-

some of our results to decagor@D) and icosahedral3D)  sible manner, most of the novel physics attributable to the
quasicrystals. From a broad perspective, we can invoke somgjasiperiodic order.

fundamental reasons supporting the use of one-dimensional
models as a first approximation to the study of realistic qua-
sicrystalline systems. In fact, in the light of Conway’s theo-
rem, both the fractal structure of the frequency spectra and
the existence of critical states can be explained in terms of | gratefully thank Francisco Domguez-Adame for his
resonant coupling effecf€*° Therefore, the physical mecha- collaboration on these topics during these years. | also thank
nisms at work are not so dependent on the dimension of thel. Victoria Hernandez for her illuminating questions. |
system, but are mainly determined by the self-similarity ofwarmly thank Miguel Angel Gara for many interesting
the underlying structur®. Consequently, in order to ascer- conversations on Fibonacci numbers. This work was sup-
tain whether some of the purported anomalies in the thermglorted by Universidad Complutense de Madrid through
transport properties of quasicrystals are directly related to th€roject No. PR64/99-8510.
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