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INTRODUCTION

Many tests of goodness-of-fit can be reduced to testing a hypothesis
about the parameter ?=(?1 , ..., ?M)t from a multinomial random variable
X=(X1 , ..., XM)t of parameters (n ; ?1 , ..., ?M)t. This is possible when we
group the model into M mutual classes A1 , A2 , ..., AM with corresponding
probabilities ?1 , ?2 , ..., ?M . In this case, the general goodness-of-fit problem
reduces to testing a hypothesis H0 which describes the generally unknown
class probability vector ?=(?1 , ..., ?M)t, i.e.,

H0 : ?=?0=(?01 , ..., ?0M)t # T, (1)

where T/2M=[( p1 , ..., pM)t��M
i=1 p i=1, pi�0, i=1, ..., M] is the null

model space of probability vectors. The null hypothesis (e.g., a simple
hypothesis) may completely specify ?, in which case T is simply a one-point
set. Otherwise the null hypothesis is composite, specifying ? as a function
of a smaller number of unknown parameters (i.e., ? lies in the subset T of
2M) which needs to be estimated from the experimental data.

To test the general null hypothesis (1), multinomial goodness-of-fit tests
measure the discrepancy between the observed proportions X�n and the
hypothesized proportions ?0 . If the discrepancy is ``too large'' the null
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hypothesis is rejected. The key is the choice of a good statistic to measure
the discrepancy between X�n and ?0 .

The most commonly used statistic is Pearson's X 2 (Pearson [27]),

X 2= :
M

i=1

(Xi&n?̂i)
2

n?̂i
,

which is asymptotically distributed as a chi-squared with M&1 degrees of
freedom when ?̂i=?0i , i=1, ..., M. In the case where the ?̂ i's depend on
parameters that need to be estimated, Pearson argued that using the chi-
squared distribution with M&1 degrees of freedom would still be adequate
for practical decisions. This case was finally settled by Fisher [13], who
gave the first derivation of the correct degrees of freedom, namely,
M&M0&1 when M0 parameters are estimated efficiently from the data.

Cressie and Read [9] and Read and Cressie [30] proposed a
generalized statistic which they called the power divergence statistic or
power divergence family of statistics and which is defined as

2nI *(X�n, ?̂)=
2

*(*+1)
:
M

i=1

X i\\ Xi

n?̂i+
*

&1+ , &�<*<�, (2)

where ?̂ is a BAN estimator of ?0 under the null hypothesis (1). Here
* is a parameter indexing which member of the family is to be used for
goodness-of-fit testing. It can easily be seen that Pearson's X 2 (*=1),
the loglikelihood ratio statistic (*=0), the Freeman�Tukey statistic
(*=&1�2), the modified loglikelihood ratio statistic (*=&1), and the
Neyman modified X 2 (*=&2) are all special cases. Furthermore, this
generalization provides a family of competitors to the well-known statistics
which might prove to be superior in some situations. These authors show
that under the same regularity conditions each member of the power
divergence family (2) follows the same asymptotic distribution (a
/2

M&M0&1).
But there is a more general family of statistics that contains the above

family, namely

T.(X�n, ?̂)=
2n

."(1)
D.(X�n, ?̂),

where D.(X�n, ?̂) is the Csisza� r .-divergence [10] between the observed
proportions and the hypothesized proportions, defined by

D.(X�n, ?̂)= :
M

i=1

?̂i . \ Xi

n?̂i+ ,
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for every convex function . : [0, �) � R _ [�], where 0.(0�0)=0 and
0.( p�0)=limu � � .(u)�u. (See Csisza� r [10] and Ali and Silvey [1] or the
book of Liese and Vajda [21] devoted to the .-divergences.) For .*(x)=
(*(*+1))&1 (x*+1&x), *{0, &1, we have the power divergence family of
statistics. Under the simple hypothesis, Zografos et al. [35] established
that T.(X�n, ?̂) is asymptotically distributed as chi-squared with M&1
degrees of freedom. Morales et al. [23], under the composite hypothesis,
proved that

T.(X�n, ?̂) ww�L
n � � /2

M&M0&1 ,

where

?̂=arg min D.(X�n, ?)

and M0 is the number of unspecified parameters of ?.
In any case we can observe that implicitly or explicitly the goodness-

of-fit tests are based on distances, dissimilarities, or simply divergences.
For this reason, we can use measures of divergences different from the
.-divergences. For example, there is an important family of divergences, the
Jensen differences of R,-divergences introduced and studied by Rao [28],
Burbea and Rao [4, 5], and Burbea [6], which can be used for this
proposal. This family is defined, for two probability distributions ?1 and ?2,
as

R,(?1, ?2)=H, \?1+?2

2 +&
1
2

[H,(?1)+H,(?2)],

where H,(?)=�M
i=1 ,(?i) is the ,-entropy, , : (0, �) � R being a

continuous concave function and ,(0)=limt a 0 ,(t) # (&�, �]. Some
interesting properties of the ,-entropies can be seen in Vajda and Vasek
[34]. The convexity of the R, -divergence is obtained if the function ,(x)
is concave and ,"(x)&1 is convex.

An important family of R, -divergences is obtained if we consider the
entropies of degree : due to Havrda and Charva� t [16], with

,:(x)={(1&:)&1 (x:&x),
&x log x,

:{1
:=1.

In this case the R,:
-divergence is convex if and only if : # [1, 2], for M>2,

and if only if : # [1, 2] or : # [3, 11�3], for M=2. Rao [28] used the
family of ,:-entropies in genetic diversity between populations. In the par-
ticular case of :=2 we obtain the Gini�Simpson index. This measure of
entropy was introduced by Gini [14] and by Simpson [32] in biometry
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and, its properties have been studied by various authors. Note that if we
consider the Gini�Simpson index, then the associated R, -divergence is
proportional to the square of the Euclidean distance,

R,2
(?1 , ?2)= 1

4 :
M

i=1

(?1
i &?2

i )2.

Another important family of R, -divergences is obtained if we consider
the Bose�Einstein entropy (introduced by Burbea and Rao [4]) or the
Fermi�Dirac entropy (Kapur [20]), among others.

On the basis of the R, -divergence one can introduce a new statistic for
the goodness-of-fit problem which will be denoted by R,(X�n, ?̂). For
,=,: and ?̂i=?0i=1�M, i=1, ..., M, we have

T.:
(X�n, ?0)=

&8Mn
,:"(1�M)

R,:
(X�n, ?0),

where

.:(x)={
4

&2( 1
2x+ 1

2):+x:+1
:(:&1)

,

4 \x ln
2x

x+1
+ln

2
x+1+ ,

:{1

:=1.

In the following we put

S,(X�n, ?0)=
&8Mn

,"(1�M)
R,(X�n, ?0).

It is interesting to observe that for ?̂i=?0i=1�M, i=1, ..., M,

T.2
(X�n, ?0)=S,2

(X�n, ?0)= :
M

i=1

(Xi&n�M)2

n�M

is the classical Pearson statistic.
A question is whether for any , associated to a R, -divergence there

exists a function . associated to a .-divergence such that T.(X�n, ?0)=
S,(X�n, ?0). The answer is negative. An interesting counter example is
,(x)=&1�x&x, where T.(X�n, ?0)=S,(X�n, ?0) for .(x)=2(x&1)2�
x(x+1), which is not convex in the domain x>0. Therefore in this example
we cannot apply the result given by Zografos et al. [35] and Morales et
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al. [23]. So the family of statistics S,(X�n, ?0) provides new possibilities
although there are many important statistics included in the family
T.(X�n, ?0) but not in the family S,(X�n, ?0). In this sense we can refer to
the result established in Pardo and Vajda [25], according to which the
condition

1
t

, \t
u+v

2 +&
,(tu)+,(tv)

2t
=, \u+v

2 +&
,(u)+,(v)

2
,

valid for all positive t, u, v, implies the identity

D.(X�n, ?0)=R,(X�n, ?0)
for

.(x)=, \x+1
2 +&

,(x)+,(1)
2

.

For example, the function ,(x)=&x log x satisfies the above condition.
In Section 2 we obtain that the asymptotic distribution of the statistic

S,(X�n, ?0) under the equiprobable null hypothesis is X2
M&1 . Furthermore,

the members of the family S,:
are compared by means of two criteria, using

the methodology introduced by Cressie and Read [9]. The statistic corre-
sponding to ,: with :=13�7 emerges as a good competitor of the classical
Pearson statistic. Note that the power divergence statistic corresponding
T.*

to *=2�3 is also a good competitor of the Pearson statistic (Cressie
and Read [9]).

In Section 3 we obtain the asymptotic distribution of the statistic
8nR,(X�n, ?̂) under composite hypotheses as well as the asymptotic power
of the goodness-of-fit test based on the statistic S,:

. Here it is possible to
estimate ? by maximum likelihood method but we propose to use the mini-
mum R, -divergenc estimate ([26]) defined as

?̂=arg min R,(X�n, ?).

2. SIMPLE NULL HYPOTHESIS. OPTIMALITY

Pardo et al. [24] proved that if , : (0, �) � R is a twice continuously
differentiable concave function, under the simple null hypothesis

8nR,(X�n, ?0) ww�L
n � � :

r

i=1

;iZ 2
i ,
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where r=rank(7?0
D(?0) 7?0

), ;1 , ..., ;r are the nonzero eigenvalues of
D(?0) 7?0

, and Zi , i=1, ..., r, are independent random variables with
standard normal distribution. In this case

7?0
=diag(?0)&?0 ? t

0 , and D(?0)=diag(&,"(?01), ..., &,"(?0M)).

From this result we have that the corresponding # size goodness-of-fit test
would reject the null hypothesis if 8nR,(X�n, ?0)>t# where t# verifies that
P(�r

i=1 ; iZ 2
i >t#)=#.

One decision to take on this type of tests is the choice of the lengths of
the class intervals in which the range of the variable is divided. In this
paper we choose equiprobable intervals:

H0 : ? i=?0i=1�M, \i=1, ..., M. (3)

Several reasons that justify this choice. On one hand, Cohen and Sackrowitz
[8] proved that for hypothesis (3) a rejected region of the form �M

i=1 hi (xi)>c,
where c is a positive constant, hi , i=1, ..., M, are convex functions, and
xi�0, i=1, ..., M, is unbiased. In our case if we choose , so that R, is
convex, the tests proposed are unbiased for equal cell probabilities. On
the other hand, Bednarski and Ledwina [2] established that for every
fixed number of observations, every continuous and reflexive function
h : 2M_2M � R+, and every 0<c<sup[c�P(h( p, x)�c)<1, p # 2M],
there is q # 2M such that the test with rejected region h(q, x)>c is biased
for testing H0 : p=q. Here the statistic proposed is a continuous function
in 2M_2M&[(0, 0)] and thus it is not unbiased in general for the un-
equal cell probabilities case. Finally, as we will prove in Theorem 1, the
statistical asymptotic distribution under hypothesis (3) is chi-squared with
M&1 degrees of freedom independent of the , function.

Theorem 1. Let , : (0, �) � R be a twice continuously differentiable
concave function and let the second derivative ,"(1�M) be negative. Under
hypothesis (3),

S,(X�n, ?0)=&
M

,"(1�M)
8nR,(X�n, ?0) ww�L

n � � /2
M&1 .

Proof. Under the null hypothesis (3), the D(?0) 7?0
matrix of the above

result can be written as &,"(1�M) A�M where A=I&1�M(1) i, j, ..., M , I
being the identity matrix.

Now, as the eigenvalues of A are 0 with multiplicity 1 and 1 with multi-
plicity M&1; then, the eigenvalues of &,"(1�M) A�M are 0 with multi-
plicity 1 and &,"(1�M)�M with multiplicity M&1.
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Consequently,

8nR,(X�n, ?0) ww�L
n � � &,"(1�M)

1
M

/2
M&1 .

Thus the desired result holds. K

By the above theorem we have that

P(S,(X�n, ?0)>/2
M&1, # | H0) ww�n � � #,

where /2
M&1, # verifies that P(/2

M&1>/2
M&1, #)=#. So, for large n sample

size and M fixed, the corresponding # size goodness-of-fit test would reject
the null hypothesis (3) if S,(X�n, ?0)>/2

M&1, # .

2.1. Pitman Efficiency

So far we have compared the large-sample distributions of the
R,-divergence family when the hypothesized model (3) is true. An acceptance
of this model based on the S, test statistic is accompanied by some
possibility of having made an incorrect decision. The question we must ask
now is the following: How efficient is the test statistic at distinguishing the
hypothesized null model from some alternative ``true'' model for the
sampled population?

The power function of the S, family of statistics quantifies the chance of
accepting the alternative model when it is true. It is used to compare the
members of the family as the closer the function is to 1, the better the test.

Under fixed alternatives the power function of the family S, converges to
1 as n � �. However, it is possible for the alternative probability vector to
converge to the null vector as n � � at such a rate that the limiting power
is less than one (and greater than the test size #). We call this limiting value
the asymptotic efficiency of the test.

To produce some less trivial asymptotic powers that are not all equal to
1, Cochran [7] describes using a set of local alternative hypotheses,

H1, n : ?=?0+n&1�2c, (4)

where c=(c1 , ..., cM)t with �M
i=1 ci=0, which converges to (3).

The power function of the family of statistics S,(X�n, ?0) is then defined
as

; (n)
, (?0+n&1�2c)=P(S,(X�n, ?0)>/2

M&1, # | H1, n).
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Thus the Pitman asymptotic relative efficiency for comparing two tests
based on, say, S,1

and S,2
is defined to be the ratio of their respective

efficiencies, i.e., e,1
�e,2

, where

e,= lim
n � �

; (n)
, (?0+n&1�2c). (5)

In order to evaluate e, , it is necessary to obtain the asymptotic distribution
of S, under H1, n . It is not difficult to establish, under the same conditions of
Theorem 1, that S,(X�n, ?0) with ?0i=1�M, \i=1, ..., M is asymptotically
distributed, under H1, n , as a non-central chi-squared with M&1 degrees of
freedom and non-centrality parameter $=M �M

i=1 c2
i . From this result it

follows that Eq. (5) can be rewritten independent of ,. That is,

e,=P(/2
M&1($)>/2

M&1, #)

and the Pitman asymptotic relative efficiency for any two members S,1
and

S,2
is one. This implies that no discrimination between family members is

possible using Pitman asymptotic relative efficiency.
In any case the above relevant alternatives help to solve the important

problem of finding the sample size required to obtain a fixed power at a
fixed alternative for a given level of significance. To solve this problem we
need only use the tables of the non-central chi-squared in a convenient
way.

2.2. Comparison of Family Members via Moments

It is also possible to compare arbitrary goodness-of-fit tests (S,(X�n, ?0),
/2

M&1, #), 0<#<1, from the point of view of how the first three moments
of the test statistic S,(X�n, ?0) match the first three moments of the limiting
chi-squared random variable /2

M&1 . The method used here is similar to the
method given by Read and Cressie [30]. The proximity is interpreted as a
coincidence between moments. The Taylor series expansion of S,(X�n, ?0)
around ?0i=1�M, \i=1, ..., M is considered. Thus the statistic only
depends on powers of a multinomial variable. So the moments of
S,(X�n, ?0) are obtained using the moments of a multinomial variable. For
the moment +;(S,(X�n, ?0))=E[(S,(X�n, ?0)) ;] of given order ; with
?0i=1�M, i=1, ..., M, the asymptotic expansion is given by

+;(S,(X�n, ?0))=m;, 0(,)+
m;, 1(,)

n
+o(n&1),
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where the parameters m;, i (,), i=0, 1, are given by

m1, 0(,)=M&1,

m2, 0(,)=M 2&1,

m3, 0(,)=M 3+3M2&M&3,

m1, 1(,)=
,$$$(1�M)
2,"(1�M) \

2
M

&3+M++
7,IV(1�M)
16,"(1�M) \

1
M 2&

2
M

+1+ ,

m2, 1(,)=&2M+2+\10
M

&13+2M+M 2+ ,$$$(1�M)
,"(1�M)

+
1
4 \

,$$$(1�M)
,"(1�M)+

2

\ 12
M 2&

18
M

+6++
7,IV(1�M)
8,"(1�M) \

3
M 2&

5
M

+1+M+ ,

and

m3, 1(,)=26&24M&2M 2+
,$$$(1�M)
2,"(1�M) \

210
M

&243+3M+27M 2+3M 3+
+

7,IV(1�M)
16,"(1�M) \

45
M 2&

66
M

+18M+3M 2+
+

1
4 \

,$$$(1�M)
,"(1�M)+

2

\180
M 2&

234
M

+36+18M+ .

According to this criterion, for optimal values of , we take the set R; of
roots of the equations m;, 1(,)=0, ;=1, 2, 3. Thus we have proved the
following result:

Theorem 2. The moment +;(S,(X�n, ?0)) matches +;(/2
M&1) up to terms

of order n&1 if and only if , satisfies the equations m;, 1(,)=0, ;=1, 2, 3.

The equations system given in the above theorem is not easy to solve in
general, but if we consider functions , depending on a parameter, for
instance ,:(x)=(x:&x)�(1&:) and M � � we have that the roots,
irrespective of ;, are the solution of the equation 7:2&27:+26=0. That
is to say we get :=2 and :=13�7. We must not forget that with this
method Read and Cressie [30] got *=1 (the chi-squared statistic) and
*=2�3. Therefore, these authors propose the statistic corresponding to
*=2�3 as a good alternative to the chi-squared statistic. Observe that in
our case S,2

(X�n, ?0) is the chi-squared statistic and it is reasonable to
think that S,13�7

(X�n, ?0) is also a good competitor to the classical chi-
squared statistic.

73DIVERGENCE BASED GOODNESS-OF-FIT TESTS



TABLE I

Roots of m;, 1(,)=0, ;=1, 2, 3 (:1<:2)

M 2 3 4 5 10 20 40 50 100 200 500

m1, 1(,) :1 3.0 2.42 2.23 2.14 2.0 2.0 2.0 2.0 2.0 2.0 2.0
:2 2.0 2.0 2.0 2.0 2.98 1.91 1.88 1.88 1.86 1.86 1.85

m2, 1(,) :1 3.34 2.52 2.31 2.21 2.07 2.02 2.0 2.0 2.0 2.0 2.0
:2 1.65 1.68 1.7 1.71 1.76 1.8 1.83 1.83 1.84 1.85 1.85

m3, 1(,) :1 3.69 2.62 2.37 2.27 2.10 2.04 2.01 2.01 2.0 2.0 2.0
:2 1.3 1.41 1.47 1.51 1.62 1.72 1.78 1.79 1.82 1.84 1.85

The above result is for large M. For smaller M, Table I shows the roots
of the equations m;, 1(,)=0, ;=1, 2, 3 for M<� fixed. For M>20 all
roots are very near to the limiting roots :=2 and :=13�7. Therefore for
M>20 choosing :=13�7 or 2 results in the fastest convergence of the first
three moments to those of a chi-squared random variable with M&1
degrees of freedom. For M�20, it would be reasonable to choose
: # [1.5, 2].

2.3. Exact Power Comparisons

In the above subsection an optimality criterion to choose the best mem-
bers of the R, -divergence family of statistics is given. Now, the most
important criterion for comparing tests, namely the power function, is for
finite samples often mathematically intractable. However, for given specific
choices of sample size, class size, equiprobable null hypothesis, and
specified alternative hypothesis,

H1 : ? i={
M&1&$
M(M&1)
1+$

M

if i=1, ..., M&1

if i=M,

where &1�$�M&1 is fixed, it is possible to calculate the exact power
on a computer. Read and Cressie [30] first proposed this alternative,
which results from the M th probability being perturbed by $�M, while the
rest are adjusted so that they still sum to one.

First, it is necessary to choose a test size # and calculate the asociated
critical region. If we rely on the chi-squared approximation studied then it
is clear that the magnitude of the approximation errors in calculating a
level # test will depend on : parameter value. Any such consistent over-
or under-estimate of the true size of the test will confound the power
comparisons with : dependent approximation errors. So we calculate the
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critical region of the exact size # test. However due to the discrete nature
of the critical regions for exact tests based on S,:

(X�n, ?0), the attainable
levels for these test statistics will also be discrete. Therefore it is unlikely
that for any given #, we would be able to match sizes for every :. To over-
come this problem the appropriate randomized test of size # has been used
for each :.

We tabulated a subset of possible : values against the power of S,:
for

a given $ (see Table II).
Five $ values have been chosen to illustrate the alternative model,

$=&0.9, &0.5, 0.5, 1, and 1.5, for M=5, n=10 and 20, and test size
#=0.05.

For alternatives $<0 the power decreases with :. For alternatives $>0
the reverse occurs except for n=10, where the power stops increasing for
:>2. For fixed n, M, and : we can see that the power increases with
increasing |$|. Furthermore, the effect of increasing n from 10 to 20 is to
increase the power throughout.

TABLE II

Exact Power Functions for the Randomized Size 0.05 Test of
the Symmetric Hypothesis

(n=10, M=5)

$

: &0.9 &0.5 0.5 1.0 1.5

0.3 0.1619 0.0797 0.0721 0.1414 0.2618
0.5 0.1521 0.0760 0.0733 0.1423 0.2622
0.7 0.1538 0.0765 0.0741 0.1440 0.2639
1.0 0.1582 0.0791 0.0741 0.1552 0.3039

13�7 0.1305 0.0758 0.0846 0.2078 0.4186
2.0 0.1305 0.0756 0.0872 0.2144 0.4276
2.5 0.1246 0.0735 0.0851 0.2076 0.4177
5.0 0.1199 0.0759 0.0816 0.2027 0.4131

(n=20, M=5)

0.3 0.5952 0.1289 0.0783 0.1470 0.2573
0.5 0.5952 0.1289 0.0783 0.1470 0.2577
0.7 0.5689 0.1244 0.0797 0.1566 0.3063
1.0 0.5627 0.1281 0.0886 0.2204 0.4705

13�7 0.2839 0.1081 0.1218 0.3677 0.6950
2.0 0.2684 0.1063 0.1229 0.3725 0.7007
2.5 0.1958 0.0965 0.1255 0.3897 0.7236
5.0 0.1432 0.0860 0.1294 0.4091 0.7484
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If we are interested in choosing a test with reasonable power against
this family of alternatives, Table II indicates that one should choose
: # [13�7, 2.5]. (Although not reported, powers for other values of n and M
were calculated and the same conclusion is obtained.)

3. COMPOSITE NULL HYPOTHESIS

In this section, we consider the composite hypothesis

H0 : ? # T/2M , (6)

where T=[Q(%), % # 3] being Q(%)=(q1(%), ..., qM (%))t and %=(%1 , ..., %M0
)t

# 3�RM0 the unspecified parameters vector.
This goodness-of-fit test requires estimation of the unspecified

parameters, i.e., choice of one value Q(%� ) # T that is ``most consistent'' with
the observed proportions x�n. The best-known method to choose Q(%� ) con-
sists of estimating % by maximum likelihood, but another sensible way to
estimate ?0 is to choose the Q(%� ) # T that is closest to x�n with respect to
the measure R,(P� , Q(%)). This leads to the minimum R, -divergence
estimate (Pardo [26]), defined as a %� , # 3 that verifies

R,(P� , Q(%� ,))= inf
% # 3

R,(P� , Q(%)).

Therefore, it is necessary to obtain the asymptotic distribution of
R,(P� , Q(%� )) under H0 , where P� =( p̂1 , ..., p̂M)t is the relative frequencies
vector and Q(%� )=(q1(%� ), ..., qM (%� ))t, %� being the maximum likelihood or
minimum R, -divergence estimator.

Through the paper we abbreviate (&,"(q1(%)), ..., &,"(qM (%))) by
&,"(Q(%)). Before the asymptotic distribution of R,(P� , Q(%� )) is calculated,
the following general result is established.

Lemma 3. Let P� =( p̂1 , ..., p̂M)t and Q� =(q̂1 , ..., q̂M)t be cn-consistent
estimates of the unknown distribution ?=Q(%0) for some cn A �. If Q(%0)
satisfies ?i=qi (%0)>0 for i=1, ..., M then, for all R, -divergence with ,
concave and twice continuously differentiable on (0, �),

c2
nR,(P� , Q� )r

1
8c2

n(P� &Q� )t D(%0)(P� &Q� ),

where

D(%0)=diag(&,"(Q(%0))).
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Proof. Consider the random vector W� =(ŵ1 , ..., ŵ2M)t=(P� , Q� ) and the
vector variable W=(w1 , ..., w2M)t=(P, Q), where P=( p1 , ..., pM)t and
Q=(q1 , ..., qM)t are probability distributions pertaining to 2M . Further,
define

�(W )=R,(P, Q) and W 0=(Q(%0), Q(%0)).

By the mean value theorem

�(W� )=�(W 0)+(W� &W 0)t a(W 0)+ 1
2 (W� &W 0)t K(W*)(W� &W 0),

where the 2M-vector function a(W )=(aj (W )) j=1, ..., 2M is defined by

aj (W )=
��(W )

�wj
,

the 2M_2M-matrix function K(W )=(kjr(W )) j, r=1, ..., 2M is defined by

kjr(W )=
�2�(W )
�wj �wr

,

and W* is a random vector satisfying the condition

&W*&W 0&�&W� &W 0&. (7)

Further, the continuity of ," implies that all functions k jr(W ) are con-
tinuous in W. Therefore the consistency of P� and Q� together with (7)
implies that the matrix K(W*) tends elementwise to K(W 0) in probability.

Letting K(W 0)= 1
4K with

K=\ D(%0)
&D(%0)

&D(%0)
D(%0) + ,

it follows that

(W� &W 0)t K(W� &W 0)

=(P� &Q(%0))t D(%0)(P� &Q(%0))&2(P� &Q(%0))t D(%0)

_(Q� &Q(%0))+(Q� &Q(%0))t D(%0)(Q� &Q(%0))

=(P� &Q� )t D(%0)(P� &Q� ).

Finally, taking into account the identity

�(W 0)=0 and a(W 0)=(0) i=1, ..., 2M
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we obtain that, for every random variable X and every sequence cn

|c2
nR,(P� , Q� )&X|�| 1

2c2
n(W� &W 0)t K(W 0)(W� &W 0)&X|

+ | 1
2c2

n(W� &W 0)t (K(W*)&K(W 0))(W� &W 0)|.

The first term equals

| 1
8c2

n(P� &Q� )t D(%0)(P&Q� )&X|,

so that it suffices to prove that the second term tends in probability to zero.
The second term is upper-bounded by

(cn &P� &Q(%0)&)2+(cn &Q� &Q(%0)&)2

2
max

j, r
|kjr(W*)&k jr(W 0)|.

In this bound the cn -consistency of P� and Q� implies

(cn &P� &Q(%0)&)2+(cn &Q� &Q(%0)&)2

2
�Op(1).

Hence the elementwise convergence of K(W*) to K(W 0) established pre-
viously implies that max |kjr(W*)&kjr(W 0)| tends to 0 in probability.
Thus the desired convergence to zero holds. K

The following theorem obtains the asymptotic distribution of
R,(P� , Q(%)) under H0 , when % is estimated by minimum R, -divergence.
We restrict ourselves to unknown parameters %0 satisfying the regularity
conditions introduced by Birch [3].

1. %0 is an interior point of 3.

2. ?i=qi (%0)>0 for i=1, ..., M. Thus ?=(?1 , ..., ?M)t is an interior
point of T.

3. The mapping Q : 3 � 2M is totally differentiable at %0 so that the
partial derivatives of qi with respect to each %j exist at %0 and Q(%) has a
linear approximation at %0 given by

qi(%)=qi (%0)+ :
M

j=1

(%j&%0
j )

�qi (%0)
�%j

+o(&%&%0&) as % � %0.
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4. The Jacobian matrix

\�Q(%)
�% +%=%0

=\�q i (%0)
�%j + i=1, ..., M

j=1, ..., M0

is of full rank.

5. The inverse mapping Q&1 : T � 3 is continuous at Q(%0)=?.

Condition 1 ensure the existence of an estimator belonging to 3. Condi-
tion 2 merely ensures that there really are T cells in the multinomial and
not fewer. Conditions 3 and 4 combine to ensure that the model really does
have M0 parameters and not fewer. Condition 5 ensures the consistency of
the estimates of %0.

Theorem 4. Let ,* : (0, �) � R be a twice continuously differentiable
concave function. Let P� be the relative frequencies vector, Q : 3 � 2M a
function with continuous second partial derivatives in a neighborhood of %0,
and Q� ,=Q(%� ,); then under the Birch regularity conditions [3] we have that

8nR,*(P� , Q� ,) ww�L
n � � :

r

i=1

;i Z 2
i ,

where r=rank(71D(%0) 71), the Zi are independent random variables with
standard normal distribution and the ;i are the eigenvalues of the matrix
D(%0) 71 , where

D(%0)=diag(&,*"(Q(%0)))

and

71=(I&J(%0) B(%0)) 7Q(%0)(I&J(%0) B(%0))t

with

B(%0)=(A(%0)t A(%0))&1 A(%0)t diag(- &,"(Q(%0))),

J(%0)=\�qj (%0)
�%r + j=1, ..., M

r=1, ..., M0

, A(%0)=diag(- &,"(Q(%0))) J(%0)

and

7Q(%0)=diag(Q(%0))&Q(%0) Q(%0)t.
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Proof. By Lemma 3, for P� and Q� , - n-consistent estimates, we have
that

8nR, V (P� , Q� ,)rn(P� &Q� ,)t D(%0)(P� &Q� ,).

By Theorems 1 and 2(b) of Pardo [26] we know that

- n(Q� ,&Q(%0))r- n J(%0) B(%0)(P� &Q(%0)),

so

- n (P� &Q� ,)=- n (P� &Q(%0))+- n(Q(%0)&Q� ,)

r- n(I&J(%0) B(%0))(P� &Q(%0)).

Consequently,

- n(P� &Q� ,) ww�L
n � � N(0, 71),

where

71=(I&J(%0) B(%0)) 7Q(%0)(I&J(%0) B(%0))t,

so by Corollary 2.1 of Dik and Gunst [11], 8nR,*(P� , Q(%� ,)) is asymptoti-
cally distributed as �r

i=1 ; iZ 2
i , where r=rank(71D(%0) 71), ;1 , ..., ;r are

the nonzero eigenvalues of D(%0) 71 , and Zi , i=1, ..., r, are independent
standard normal random variables. K

Remark 1. By the above theorem for large n and significance level # the
proposed test rejects the null hypothesis if 8nR,*(P� , Q(%� ,))>t# , where t#

satisfies the condition

sup
%0 # 3

P \ :
r

i=1

;i (%0) Z 2
i >t#+�#.

Note that we write ;i (%0) instead of ;i because it depends on the true
value of %. From a practical point of view we have two ways to carry out
the test:

(i) Given %0 fixed we can find the value t#(%0) verifying

P \ :
r

i=1

; i (%0) Z 2
i >t#(%0)+�#

and then we can define t#=sup%0 # 3 t#(%0).
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(ii) Given a value of the statistic we can calculate for each %

P(%)=P \ :
r

i=1

;i (%) Z 2
i >8nR,*(P� , Q(%� ,))+

and if sup%0 # 3 P(%0)<# then we have evidence to reject the null hypothesis.
We ought to have to calculate a probability of a linear combination of

chi-squared distributions for each %. One may feel a little worried but after
reading the papers of Rao and Scott [29] and Modarres et al. [22] that
feeling disappears. They give some ideas on how to overcome this situation.
In fact, a variety of problems in statistical inference and applied probability
require either percentiles or probabilities from the distribution of a
combination of chi-squares per se; see Jensen and Solomon [18].

Corollary 1 of Rao and Scott [29] propose to consider the statistic

( ;*(%0))&1 8nR,*(P� , Q(%� ,))� :
r

i=1

Z 2
i &/2

r ,

where ;*(%0)=max[ ;1(%0), ..., ;r(%0)]. In this case if we consider the
statistic

a(%*) 8nR,*(P� , Q(%� ,))

with a(%*)=inf%0 # 3 ;*(%0)&1, we have \%0 # 3

P(8na(%*) R,*(P� , Q(%� ,))>/2
r, #)�P \ 8n

;*(%0)
R,*(P� , Q(%� ,))>/2

r, #+=#

and then we would reject the null hypothesis with a significance level # if

8na(%*) R,*(P� , Q(%� ,))>/2
r, #

or if

P(/2
r >8na(%*) R,*(P� , Q(%� ,)))<#.

It is clear that in this case we get an asymptotically conservative test.
Another simple approach to the asymptotic distribution of the statistic

8nR,*(P� , Q(%� ,)) is the modified statistic

( ;� (%0))&1 8nR,*(P� , Q(%� ,))� :
r

i=1

Z 2
i &/2

r
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with ;� (%0)=�r
i=1 ;i (%0)�r as a /2

r random variable under H0 . We can
observe that

E[( ;� (%0))&1 8nR,*(P� , Q(%� ,))]=r=E[/2
r ],

V[( ;� (%0))&1 8nR,*(P� , Q(%� ,))]=2r+2 :
r

i=1

( ;i (%0)&;� (%0))2

;� (%0)2 >V[/2
r ]

Note that, if we denote by 4=diag( ;1(%0), ..., ;r(%0)) we get

E _ :
r

i=1

;i (%0) Z 2
i &= :

r

i=1

;i (%0)=trace 4=trace(D(%0) 71)

=& :
r

i=1

sii (%0)
,"(qi (%0))

,

where sii (%0) are the diagonal elements of the matrix 71 . Then we can
calculate ;� (%0) by

;� (%0)=&
1
r

:
r

i=1

sii (%0)
,"(qi (%0))

.

Now in a similar way to the previous approximation we would reject the
null hypothesis if 8nb(%*) R,*(P� , Q(%� ,))>/2

r, # with b(%*)=inf%0 # 3 ;� (%0)&1.
Satterthwaite [31] presented an approximation based on the statistic

c8nR,*(P� , Q(%� ,))+d such that c and d are chosen to get that its expecta-
tion and variance coincide with the expectation and variance of a /2

r .
Jensen and Solomon [18] presented a normal approximation and employed
a Wilson�Hilferty type scheme to accelerate the rate of convergence to
normality. Imhof [17] considered a nonstatistical approximation based
directly on the numerical inversion of the characteristic function. Apart
from the above approximations it is possible to consider tables of the
cumulative distribution of �k

i=1 aiZ 2
i in the case of small k (see Solomon

[33], Johnson and Kotz [19], Eckler [12], and Gupta [15]).

Note that the proposed tests are asymptotically consistent. Since

R,(P� , Q(%� ,)) ww�P
n � � R,(?, Q,)>0 as n � �,

it follows that

P(8nR,(P� , Q(%� ,))>t#)=P(R,(P� , Q(%� ,))>t# �8n) � 1 as n � �.

This holds true for R,*(P� , Q(%� ,)).
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If some alternative ?{Q(%0) is the true value of the parameter, then the
probability of rejecting H0 , using the above test with a fixed :, tends to 1
as n � �. It is important, in the same way that in the simple hypothesis,
to obtain an approximation to the power by considering a sequence of
alternatives hypothesis instead of a fixed alternative. In this sense, we now
investigate the following alternatives hypotheses

H1, n : Q=Q(%0)+n&1�2d,

d being a fixed vector in RM with d=(d1 , ..., dM)t and �M
i=1 di=0. We

know that

- n(P� &Q(%0))=- n(P� &Q)+d and - n(P� &Q� ,) ww�L
n � � N(K(%0) d, 71)

with K(%0)=J(%0) B(%0). Therefore, applying Corollary 2.1 of Dik and
Gunst [11], we have the following result.

Theorem 5. Let ,* : (0, �) � R be a twice continuously differentiable
concave function. Let P� be the relative frequencies vector, Q : 3 � 2M a
function with continuous second partial derivatives in a neighborhood of %0

and Q� ,=Q(%� ,), r=rank(71 D(%0) 71), r�1 and ;1 , ..., ;r the positive
eigenvalues of D(%0) 71 . Then

8nR,*(P� , Q� ,)&(d tK(%0)t 71d+!)= :
r

i=1

;i (Zi+wi)
2,

where

w=4&1Rt(71�2
1 )t S t71K(%0) d, !=d tK(%0)t K(%0) d&wt4w,

where 4=diag( ;1 , ..., ;r) and R is the matrix of corresponding orthonormal
eigenvectors.

The comments in Remark 1 can be used in this case to find an
appropriate approach to the above linear combination of noncentral chi-
square distribution.

Corollary 6. Let P� be the relative frequencies vector and Q� 1=Q(%� 1),
where %� 1 is the minimum R-divergence (,(x)=&x ln x), then under Birch
regularity conditions [3] and assuming that Q : 3 � 2M is a function with
continuous second partial derivatives in a neighborhood of %0,

8nR(P� , Q� 1) ww�L
n � � /2

M&M0&1 .
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Proof. By Theorem 4,

8nR(P� , Q� 1) ww�L
n � � :

r

i=1

;iZ 2
i ,

where the ;i are the eigenvalues of the matrix

T=diag(Q(%0)&1�2)(7Q(%0)&J(%0) B(%0) 7Q(%0)&7Q(%0)B(%0)t J(%0)t

+J(%0) B(%0) 7Q(%0) B(%0)t J(%0)t) diag(Q(%0)&1�2).

It is easy to obtain that

T=I&(Q(%0)1�2)(Q(%0)1�2)t&A(%0)(A(%0)t A(%0))&1 A(%0)t.

This matrix is idempotent so it only has eigenvalues 0 and 1, with the
number of unitary eigenvalues as

trace(T )=trace(I )&trace((Q(%0)1�2)(Q(%0)1�2)t)

&trace(A(%0)(A(%0)t A(%0))&1 A(%0)t)=M&1&M0 .

Thus the desired result holds. K

Remark 2. Under the assumptions of Corollary 6 if we consider the
alternative hypotheses H1, n : Q=Q(%0)+n&1�2d using Corollary 2.3 in Dik
and Gunst we have

8nR(P� , Q� 1)= :
r

i=1

(Z i+wi)
2,

since in this case ;1= } } } =;r=0. That is to say, the asymptotic distribution
of the statistic 8nR,*(P� , Q� ,) is a noncentral chi-square distribution with
M&1&M0 degrees of freedom and noncentrality parameter

*=d t diag(Q(%0)&1�2)(I&A(%0)(A(%0)t A(%0))&1 A(%0)t) diag(Q(%0)&1�2) d.

The following theorem obtains the asymptotic distribution of
R,(P� , Q(%� MLE)) under H0 when % is estimated by maximum likelihood
from the discrete model.

Theorem 7. Let , : (0, �) � R be a twice continuously differentiable
concave function. Let P� the relative frequencies vector and Q� MLE=Q(%� )
where %� MLE is the maximum likelihood estimate, then under Birch regularity
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conditions [3] and assuming that Q : 3 � 2M is a function with continuous
second partial derivatives in a neighborhood of %0,

8nR,(P� , Q� MLE) ww�L
n � � :

r

i=1

; iZ 2
i ,

where the Z 2
i are independent and the ;i are the eigenvalues of the matrix

D(%0) 72 , where

D(%0)=diag(&,"(Q(%0)))

and

72=(I&J(%0) I(%0))&1 J(%0) diag(Q(%0)&1)) 7Q(%0)

_(I&J(%0) I(%0))&1 J(%0) diag(Q(%0)&1))t

where I(%0) is the Fisher Information matrix of the discrete model and
7Q(%0)=diag(Q(%0))&Q(%0) Q(%0)t.

Proof. By Lemma 3, with P� and Q� MLE - n-consistent estimates, we
have that

8nR,(P� , Q� MLE)rn(P� &Q� MLE)t diag(&,"(Q(%0)))(P� &Q� MLE).

Furthermore, from Lemma 2 of Morales et al. [23] it follows that

- n(P� &Q� MLE) ww�L
n � � N(0, 72),

where

72=(I&J(%0) I(%0))&1 J(%0) diag(Q(%0)&1)) 7Q(%0)

_(I&J(%0) I(%0))&1 J(%0) diag(Q(%0)&1))t.

Therefore, 8nR,(P� , Q� MLE) is asymptotically distributed as �r
i=1 ;iZ 2

i ,
where the Z 2

i are independent and the ;i are the eigenvalues of the matrix
D(%0) 72 . K

Corollary 8. Under Birch regularity conditions [3] and assuming that
Q : 3 � 2M is a function with continuous second partial derivatives in a
neighborhood of %0,

8nR(P� , Q� MLE) ww�L
n � � /2

M&M0&1 .

Proof. The result follows from Theorem 7. K
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