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ABSTRACT The so-called Renewal Theory is a frequently used 
methodology in applied mathematics. Renewal Theory is mainly 

focussed on solving a Volterra integral equation of the second kind 
known as Renewal Integral Equation: 

<I>(u) = h(u) + l' <I>(u-x)dxF(x) 

An interesting problem arises when choosing the appropriate 
numerical tool in order to approximate the solution of the former 
integral. The decision will be based on the degree of knowledge of 

function F(x) and some properties of <I>(u). 
Three methods based in classical methodologies (simulation, product 
integration and inverting Laplace transform) will be presented and 

applied to the calculation of ultimate ruin probabilities in the classical 
case of Risk Theory. 

The first one is an original simulation scheme, based on the 
importance sampling technique, that leads to tight interval 

estimations of the solution of the Renewal equation. 
In the second one, the use of the so-called Product Integration 

teClmique will be considered and compared with other techniques 
based on the Newton-Cotes methodology. 

The last method considered is the Gaver-Stehfest algorithm of 
inverting Laplace transformo This last one, under certain conditions, 

could be considered as a very fast and accurate method. 

1. MONTE CARLO SIMULATION APPROACH 

Feller ([81- pg. 183) proved that the solution of a renewal equatíon could 
be expressed using the following convolutíon: 

<1l(u) = R * h(u) 

where R(x) is the renewal functíon: 

00 

R(x) = LF*n(x) 
t=O 

and F*t(x) the t-fold convolutíon of functíon F(x) (F(O)=O). 
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In many situations the function F(x) could be approximated for certain 
values of its argument and even random numbers could be obtained but the 
first derivative can be hard to find. 

In order to solve the renewal equation we will focus our attention on the 
evaluation of the renewal function. 

Let us express the t-fold convolution of the function F(x) using a multiple 
integral: 

J cp (8) = F*t(x) = 
:R(X) 

- ¡X ¡re ... ¡re F (x - St-l) dSt_1 F (St_l - St-2) ... 
o lSl }St-2 

... dS2 F (S2 - SI) dS,F (SI) 

Citing Fishman ([9]. Chapter 2.), "... the convergence of deterministic 
methods seems clearly better ( specially if the dimension of the iri:tegral, t, is 
not large ) when they can be applied. Nevertheless, the applicability matters 
make Monte Carlo teclmiques competitive because the verification of the con­
ditions we cited for deterministic methods becomes very difficult as t increases 
or very restrictive for function cp (X). Monte Carlo methods can be applied 
considerably more broadly to functiG,ns that merely satisfy f¡¡¡ cp2 (X) < oo. 
Also, the Monte CarIo error depends on cp only through this integral, and in 
no way on the continuity and variational properties of cp. Another interesting 
fact is that Monte Carlo methods ailow one to estimate error from generated 
data, whereas one needs to rely in considerably more global measures of error 
when employing deterministic techniques. Finally, the Monte Carlo conver-

\gence is always O (n-~) regardless the dimension of the integral t, this is an 

interesting aspect when t is large because in the deterministic methods this 
convergence worsen as t increases." 

It is clear that when we work with approximations of function F(x), the 
restrictive conditions for deterministic methods are reaily difficult to prove, 
that is an important statement to introduce Monte CarIo simulation methods. 

In Usábel ( [22} [23J), a method based in Monte Carlo simulation is de­
signed to solve a general type of multiple integrals frequently used in Risk 
Theory that models the probability that the paths of an discrete stochastic 
process {St} wiil be bounded by vector X = (Xl, X2, . .. ,Xt) and O : 

J cp(8) = 
:R(X) 
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and: 

Zi ~ o 
i=l 

where Zi i = 1, ... , t are independent random variables with p.d.fs. gi (x) , 
c.d.fs. Gi(x) and Eg, {Zi} = ¡ti < oo. 

The t-fold convolution of a function, F*t(x), is a particular case of these 
family of integrals.Let us define now an estimator using an importance sam­
pling scheme for F*t(x): 

n 

2: F¡t (x) 
Wt (x,n) = i=1 n -

n 
2: F (x - SL) F (x - S1-2) ... F (x - S1) F (x) 

_~i-~1 ________________________________ ___ 

n 

where S} are random numbers generated from the p.e.fs. for i = 1, ... , n 
and j = 1, ... , t - 1 : . , 

Si ----t (Ji (Si) =1<' (SD 
1 1 1 F (x) Si E [O,x] 

F (8', - 8', 1) 
S~ ----t (Ji. (S.) = 3 3-

3 JJ F(X-Si) 
J-1 

j>l 

\ and {Fr (x)} ~=1 is a sample of independent estimators 

F¡t (x) = F (x - sL) F (x - S;_2) ... F (x - SD F (x) 

As it is proved in Usábel ([23] ), N't (x,n) is an unbiased and eonsistent 
estimator with variance bounds (in the non trivial case): 

V {
,,*t( )} Var{pt(x)} F*t(x)_[F*t(X)]2 

ar " x,n = < 
n n 

Var{Wt(x,n)} ~ (F(x))t F*t(x) - [F*t(x)]2 
n 

In the numerical illustrations presented in the former referenee,' the per­

centage of the true varianee with respect to the first upper bound (direct 
simulation variance) ranged from 2% to 47%. 
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---------- ------

Under fairly general conditions that include J~ <p4 (X) < 00 (Fishman) : 

Var{pt (x)} 
n 

and the interval estimation \Vith a confidence level1-a : 

[wt (x,n) :¡: cp (1 - a) 
n 

\Ve can use an estimator of the variance of the ;pt (X) : 

as recornmended in Fishman([9] pg 68), k is a strongly consistent estimator 
. ofVar {,:r*t (x)} ,then an asymptotically valid confidence interval can be: 

pt (x) E [wt (x,n):¡: cp (1 - a) ~ 

One of the main features of this method is the fact that if \Ve increase the 
dimension t, \Ve do not have to start again the simulation process as should be 
done in direct sinmlation. When \Ve get the estimator and store these pairs of 
values: 

then: 

n 

í = 1, ... ,n 

n 
¿ J=;'t+l (x) 

l-t*t+l (x,n) = :.:i-='l'--___ _ 

n 

¿F(x - StlF(x- SL) F(x- SL) ... F(x- SÜF(x) 
i-l 

n 

n 
¿F(x-St)J=¡t(x) 

_ ::i="'l'---_____ _ 

n 
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using: 

Si ____ ?oí (S) = F (S: - S:-I) . [. ] 
t Vt t F (X _ S:-I) S; E S;_I'X i= 1, ... ,n 

'Ibis last resu1t means that increasing one unit the dimension of the multip1e 
integral only imp1y generating n random numbers more and the total amount 
of random numbers required is n( t - 1), where t is the dimension considered. 
The save of number of steps - random numbers in our case - become even more 
obvious when we need to evaluate the integral F ot (x) for t = 1, 2, ... , l , one 
by one up to a certain integer 1, as the convo1utions in the solution of a renewa1 
equation, in these cases the total amount of steps still remains n (l - 1): 

1 

R(x) ~ ¿pon(x) 
1=0 

.As an application to Risk Theory the probability of ultimate surviva1 with 
initial reserves U could be written as a compound process(see for examp1e 
Grandell ([11J ): 

00 

<I> (U) = ¿ <I> (O) (1 - <I> (O))t pot (U) 
t=O 

solution of- the renewal equation: 

<I>(u) = <I> (O) + [ <I>(u - x)dx (1 - <I> (O)) F(x) u~O 

The infinite SUlllS were calculated up to a certain number of terms (1) for 
which the rest of the terIns of the SUlllS were smaller than 10-10 and F*t (U) 
is the t-fo1d convo1ution of the distribution of the record heights of the risk 
process random walk. This 1ast distribution could be approximated using a 
sample ofrecord heights and then use the former method as stated in Usábel 
( [21}). In order to compare results with other methods we will test examp1es 
in the Classical case of Risk Theory ( although an exp1icit formula for F(x) 
can be found in this very case): 

F(x)= ["'l-lt.(t)dt 
Jo PI 

and It. (x) is the c.dJ. of the claim size , E, {x} = PI and e the security 10ading. 
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The t-fold convolution pt (U) could be expressed : 

h 

¿ F (U - SL) F (U - SL) ... F (U - SD F (U) 
f'V i-l 

n 
This approach was tested for Pareto claim size and different mues of () 

and the initial reserves(u), 
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1 Table 1. 
ence rntervals tor 8lITVlval proba lhty. a U. JI n • b.UUU I 

q,(u) = + I~" q,(u - x)d", (1- q, (O)) F(x) u>O 1q,(0) - 61 

~{~)=fo'" (¡;TtY-¡-' dt f.1 = 1 Pareto Claim 8izej 

Security Loading initial reserve8(U) 10wer limit upper limit terms of the 8mn(l) 

20 0.4994 0.5058 38 
100 0.8305 0.8369 89 

() = 0.10 500 0.9742 0.9756 189 
1000 0.9878 0.9889 226 

20 0.7532 0.7585 35 
100 0.9469 0.9492 70 

() = 0.25 500 0.9913 0.9915 100 
1000 0.9956 0.9959 103 

20 0.8792 0.8823 30 
100 0.9766 0.9775 50 

() = 0.50 500 0.9957 0.9959 57 
1000 0.9979 0.9979 57 

20 0.9230 0.9249 27 
100 0.9853 0.9857 39 

() = 0.75 500 0.9972 0.9973 41 
1000 0.9986 0.9986 42 

\" 20 0.9448 0.9460 24 
() = 1.00 100 0.9890 0.9894 32 

500 0.9979 0.9979 34 
1000 0.9989 0.9989 34 
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2. PRODUCT INTEGRATION APPROACH 

Let us consider the case now when the function f(x) is known explicitly, 
then the renewal equation could be written: 

q,(u) = h(u) + 1"q,(u - x)f(x)dx u~O 

that it is a Volterra integral equation of the second kind. In many applications 
of renewal Theory the value of the function at u=O is the only initial conditionj 
this last fact means that the quadrature rules of the methods used should be tif 
lower order. In this context, the rate of convergence of the methods could be 
significantly slow when f(x) is a heavy-tailed or bad-behaved function, specially 
when u is large. Under these constraints, a reasonable approach to test in 
order to improve the rate of convergence, could be a numerical tecnique that 
includes more information about the function f(x) than merely its values in 
certain points of the domain. .. 

The so-called product integration uses a quadrature rule whose weights are 
define as integrals of the function f( x). 

Following Delves and Mohamed ( [7] ) we disq)¡:l1pose the interval [O,u] 
into n subintervals {hi} where: 

i = 0,1, ... , n - 1 

and O = So < S1 < ... < Sn = u. 

Product integration proceeds by approximating the renewal equation for 
s=s;, i = 1,2, ... , n using a quadrature rule of the form 

where ti = Si for i = 0,1,2, ... , n. The weights are determined by insuring 
that the rule of the former expression is exact when q,(t) is a polynon:rial in 
t of degree ::::; d. Product integration is only applicable if the following (d+l) 
moments ftij exist and can be calculated for each i, where 

¡Si 
ftij = Jo tj 

f(Si - t)dt, j=O,l, ... ,d. 

We will also assume that q,(t) is linear (d=l) in t, i.e., 
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it follows that: 

[' q,(s; - t)/(t)dt = [' q,(t)/(s; - t)dt ~ 

where: 

i 

= ¿Wijq,(tj ) 
j~O 

¡ tI (t¡ - t) 
WiO = h I(s; - t)dt 

to O 
lar j=O 

Wij _ ¡ti+! (ti+l - t) I(si _ t)dt + ¡ti (t - t j_¡) I(si _ t)dt 
Jti hj Jtj_1 hj - 1 

j - 1,2, ... ,í-1 

101' j i 

it is obvious that the weights include much more information about the 
function f(x) than apure Newton-Cotes based method for integral equations. 

Thus, the approximate solution of the renewal equation is determined re­
cursiveIy using 

i 

q,a(Si) = h(Si) + ¿ Wijq,a(tj) 
j~ 

for i = 1,2, ... , n, with 
q,a(SO) = h(O) 

the resulting estimate of q,(-u) is q,a( sn). 
AB stated in Ram.say([17J) the convergence could be accelerated using 

Richardson extrapolation tecnique. 

'Ibis method was tested in solving the ultintate non-ruin probability fimo­
tion in the classical case of risk theory, Ramsay and UsábeI([21]). An exam­
pIe is included considering Pareto claim size, obtaining arate of convergence 
significantly better than other Newton-Cotes based methods used in actuarial 
literature. 
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I Table II 

I cp(u) = cp (O) + Jo" cp(u - x) (1 - cp (O)) f(x)dx u~O I 
1iI> (O) mi um value oí ho ;f.fr¡, I 

• x ( y+1 Pa:l'eto Claim size F (x) = 10 ¡!t¡ dt ¡..t=1 

IlSigníticant digits (j-~ 
Security Loacling initial reserves( u) iI>(u) 

20 0.501858 
100 0.835140 

() = 0.10 500 0.974877 
1000 0.988659 

20 0.754740 
100 0.947773 

() = 0.25 500 0.991293 
1000 0.995806 

20 0.880726 
100 0.977161 

() = 0.50 500 0.995835 
1000 0.997954 

20 0.924092 
() = 0.75 100 0.985483 

" 500 0.997263 " 
1000 0.998647 

20 0.944951 
() = 1.00 100 0.989370 

500 0.997962 
1000 0.998989 
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3. NUMERICAL INVERSION OF LAPLACE TRANSFORM APPROACH 

'I'he former approach when f(x) is known, although it can be considered 
outstanding, it is not the most accurate and fast for functions that fullfil 
somerequirements (not very restrictive in applied mathematics models). The 
last method of solving renewal equations is devoted to numerical inversion of 
Laplace transforms. 

The Laplace transform of a renewal equation is expressed, 

finally: 

where: 

+00 

ij¡* (8) = je-S"'ij¡ (X) dx = H*(8) + ij¡* (8) F* (8) 
O 

ij¡* (8) = H*(8) 8> O 
l-F*(8) 

+00 

H* (8) - J e-s"'h (X) dx 

O 

+00 

F* (8) = ¡e-S'" f (X) dx 

O 

8>0 

8>0 

when the former two integrals exist, the solution of a renewal equation can be 
obtained by inversion of ij¡* (8) . 

Exact inversion of Laplace transforms using complex analysis can be con­
sidered a difficult task in many cases, that is the reason we consider more 
reliable, for applied mathematics purposes, the use of a numerical tecnique of 
inversion. 

It is clear that many numerical techniques can be used for our goal, see for 
example Davies and Martin ([5J), and that accuracy and applicability rely 
on the properties of ij¡* (8) and ij¡ (8). Nevertheless, when the solution of the 
Laplace transform ij¡* (8) is a continuous function, with neither salient points 
nor rapid oscillations, the Gaver-Stehfest algorithm of inverting Laplace trans­
form could be considered as "very reliable" in terms of number of calculations 
vs. significant digits compared with other numerical techniques of inverting 
Laplace transforms. Stehfest ([20]). 

Citing Davies and Martin, an approximate inversion algorithm for the 
Laplace transform can be obtained by computing a sample, 
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where In(t) tends to q, (x) with increasing n, using the function 

ón(t,x) = (2n)! (n!(n - 1)!) a(l - e-a"'re-nax 

Gaver([lOJ) proved that In(t) - q, (x) may be expanded in an asymptotic 
expansion in inverse powers of nj consequently the result may be improved 
using extrapolation. The most useful extrapolation formula has been derived 
by Stehfest to give the algorithm: 

where: 

N 

q, (u) ~ z I>;:q,* (nz) 
n=l 

In (2) 
z=-­

u 

Min(n,~) N 
kN _ ( )n+1'1 L i2 (2i)! _ -1 2 

n (N _ i)!i! (i - 1)! (n - i)! (2i - n)! 
._[(n+ll] 2 
.- 2 

and N is even. 
Theoretically the method becomes more accurate with increasing N, but the 

result may not be very accurate when q, (u) is not a "well-behaved" function 
with discontinuities or rapid oscillations. Another advantage of the method is 
that q,* (8) is only evaluated for real values of its argumento 

The functions included in the models of Risk Theory usually fulfill the 
"well-behaved" condition and with an example we will prove that the use of 

. the Gaver-Stehfest algorithm of inverting Laplace transforms is a very powerful 
··tool to consider when solving renewal equations. 

Let us consider the same illustration presented in the former two method­
ologies. 

4. CONCLUSIONS 

The former three methods presented are designed to deal with three differ­
ent degI·ees of knowledge about function F(x). As it was expected, the more 
information about F(x) the more accurate the approximation of the solution 
of the renewal equation is, for a fixed computational time. 

Properties of the estimator W t (x,n) , presented in the first section, make 
Monte Carlo simulation a suitable method when the values of function F(x) 
can only be approximated and samples are obtained from these "truncated" 
distribution functions: 

?J; (Sj) = -;F¿,(;-,S3,---' -----;;'S3'---· -=¿-1) 
F(x - S;-1) 

12 



In order to make the approach efficient we should choose the optimal method 
for sample generation. For a detailed review on sample generation see Fish­
man ([9]) or Bratley, Fox and Schrage ([2j). 

When the first order derivative of function f(x) exist and the following 
"moments" can be obtained or approximated up to Si=U, 

Pi = ¡Si t I(Si - t)dt 

we show in section 2 that the use of product integration can certainly lead us to 
very accurate results with much less computations than Newton-Cotes based 
methods, as it was suppose to be, due to the optimal use of the information 
about f(x). 

Finally, when these two integrals exist and can be calculated or approxi­
mated: 

+00 

H* (8) - J e-Bxh (x) dx 

o 
+00 

F*(s) = Je-SXI(x)dX s>O 
o 

we can get the Laplace transform of the solution of a renewal equation: 

<p* (s) = H*(s) 
1-F*(s) 

and use the Gaver-Stehfest algorithm of inverting Laplace transforms. Under 
constrains of continuity and smooth behavior for function <P (u), not very 
restrictive for Risk Theory models, this approach can be considered highly 
reliable in terms of the ratio accuracy-number of computations. We should 
bear in mind that we use more information about f(x) than in the second 
approach because the limits of the integral of the Laplace transform are O to 
infinity. 
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