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Abstract: Any linear phase sampling algorithm can be described as a linear 
filter characterized by its frequency response. In traditional phase sampling 
interferometry the phase of the frequency response has been ignored 
because the impulse responses can be made real selecting the correct sample 
offset. However least squares methods and recursive filters can have a 
complex frequency response. In this paper, we derive the quadrature 
equations for a general phase sampling algorithm and describe the role of 
the filter phase. 
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1 Quadrature phase detection 

Phase sampling interferometry (PSI) [1] is an experimental technique for phase measurement 
based on the introduction of a linear phase shift between a set of interferograms. In the 
temporal case, if we describe the interferogram as a rectangular 2D matrix, the measured 
intensity at every pixel can be described as a set of temporal samples given by 

     0cos 1... ,g t b m t t t N      (1) 

where b is the background or DC term, m the modulation or AC term, and 
0  the carrier 

frequency. In PSI, the main objective is the computation of the modulating phase  t  for 

every sample. 
All linear phase sampling algorithms (PSAs) can be described as linear quadrature filters 

characterized by their impulse response  th  or their frequency response  H  [2]. In our 

case, the temporal interferogram can be considered as an aperiodic signal and the impulse and 
frequency responses are related by the discrete time Fourier transform and its inverse given by 
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The interferogram spectrum is given by 
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where     i t
C FT e


  . If  C  is narrowband,  C  will be a side-lobe contained in 

an interval 0  with    . The objective of any PSA is the filtering of one of the lobes 

of  G  so that the output signal spectrum is given by 

          0

1
.
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Q H G mH C         (4) 

Transforming back Eq. (4) in the temporal domain, we obtain the analytical signal 
associated with g 
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Finally, from the angle of  tq we can obtain the modulating phase  t . From this 

analysis the minimal conditions that a quadrature filter must fulfil are [2] 

      00 0,  0,H H H       (6) 

where 0  represents the interval   for negative frequencies. In Eq. (6) by   00 H  

we indicate that the frequency response is different form cero for the frequency interval 0 , 

and we use the same notation for   0H   . The condition  0 0H   is not properly a 

quadrature condition but it is necessary to filter the DC term. Equations (5) and (6) present, in 
terms of linear systems, the classical results of PSI demodulation. However, as we will show 
in the next section, they are only valid in the case of a real frequency response and do not take 
into account the effects of the PSA filter phase. Obviously we have been using linear PSAs for 
the last thirty years without taking into account any filter phase effects. One applies the PSA 
formula (the typical arctan calculation) and obtains the phase. This has been possible because 
all classical linear PSAs have symmetrical impulse responses and therefore their frequency 
responses can be always expressed as a real function. However, recently there have appeared 
more sophisticated PSAs with complex frequency responses, like the least squares [3] [4] and 
recursive techniques [2]. These kinds of PSAs have much more interesting properties than 
classical ones with respect to noise rejection, missing samples and border processing. With 
complex frequency responses the filter phase has to be taken into account to fully understand 
how the corresponding PSA works. Additionally, we are going to clarify an apparently trivial 
question about classical PSAs: at which sample do we measure the phase when we use a 
PSA? 

2 The role of the filter phase in quadrature phase detection: the group delay 

We are going to start by analysing the effect of a PSA with non-linear phase tuned at 

frequency 
0  on the next signal 

      0cos .s t p t t  (7) 

In (7) we assume that the envelope  tp  is narrowband. If we factorize the filter frequency 

response in terms of amplitude and phase,       ieAH , near 0  we can always 

approximate the filter phase as 
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When we apply the PSA to  tg , taking into account the quadrature conditions (6) and 

that the envelope  p t  is narrow-band, we will obtain 
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where     tpFTP  . Expression (10) can be rewritten as 
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where * denotes the convolution product. And, using the convolution and modulation 
properties of the FT we obtain 

       0
1

.
2

i it
f t e A p t e
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That is, the filter phase introduces a time delay τ in the signal envelope. In signal 
processing, the time delay τ as given by (9) is denominated group delay [5]. The physical 
interpretation of τ is that the different packets of a signal will have different delays after 
passing through a linear system. For this reason, a desirable property for any digital filter is to 
have a linear phase for all ω so that the group delay is constant. In the case of quadrature 

phase detection, it is enough to have a linear phase around the tuning frequency 0  given that 

the interferogram is quasi-monochromatic. 
Now we are ready to go forward and analyse the effect of the filter phase on a PSI 

temporal signal like (1). First, we must rewrite  g t  as 

      0 0cos cos sin sin .g t b m t t m t t       (13) 

We can see that  tg  is composed by two narrowband signals like (7). Taking into account 

that     cos sint t       , the application of the PSA will yield the next analytic 

signal 

       0
1

.
2

i t ti
q t me A e

  


  

  (14) 

Again, we can compute the phase   t  from the angle of  q t . Equation (14) is the 

generalization of the classical result given by Eq. (5) and it is the main result of this paper: the 
PSA filter phase determines the sample where we are measuring the modulating phase, and 
the time-shift is the group delay given in Eq. (9). Another interesting result is that if around 

the tuning frequency the phase is not linear,   , the recovered phase will be distorted by 

the variable group delay. 
In conclusion, the filter phase determines the temporal origin of the PSA and adds an 

additional requirement to the usual quadrature conditions. That is, the group delay must be 

constant around 0 ,  0 0 .     
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3 Two illustrative examples 

We are going to clarify the former discussion by analysing two PSAs. The first example is a 
filter with impulse response given by 

    1 1, 2 , 2, 2 , 1 .h t i i     (15) 

Its frequency response is 

      
5

3

1

1

2 4sin cos 2 .it i

t

H h t e e    
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In this case    1 1 0 0H H      and  . This means that 1h  represents a 5 samples 

PSA method tuned at   and constant group-delay of 3 samples. For this PSA the 

modulating phase will be obtained from 

  
 
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 
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The reader will recognise this equation as the standard form of the Hariharan 5 step PSA 
[6]. In general, in classical linear PSAs, if the filter length is K and the first sample start in 

1t  the group delay is   2/1round  K , where round(.) represents the rounding to the 

closest integer operation. 
The second example we present is more interesting from the point of view of the group 

delay. We are speaking of the first order recursive PSI filter presented in [2] given by 

                1 1 2 1 * .
i i i

q t q t e g t e g t g t e t t
       

          (18) 

This filter is a combination of a five step PSA tuned at   (indeed, for   is the 

Hariharan PSA), with a first order low pass recursive filter with gain η. The practical interest 
of this recursive filter is the flexibility increasing in terms of noise rejection with respect to 

classical PSAs. In this recursive filter, the analytical signal at every sample,  q t , is 

computed recursively from the previous sample and a filtered version of the interferogram g. 
The spectral response of this filter is [2] 

  
    

  2

4 sin cos 1
.

1 exp

i
H

i

  

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

 

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 (19) 

It is easy to verify that  2H  fulfills the quadrature conditions (6) and therefore 

represents a true PSA. As before, we measure the instantaneous phase determining the angle 

of the analytical signal  q t . However, in this case the question is: at which sample are we 

measuring the phase? As we have shown, the answer depends on the group delay. In Fig. 1 we 

show the amplitude and the group delay of the PSA represented by  2H  with 75.0  and 

      rad/sample. As can be seen, due to the non-linear phase, the group delay has a 

strong dependence with the frequency. As   4  samples, if we apply the recursive PSI 

filter to a carrier interferogram with   we will obtain a demodulated phase with a 

delay of 4 samples with respect to the input signal, that is 

  
   
   

2

2

Im
tan 4 .

Re
r
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t
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Fig. 1. Amplitude and phase delay for the recursive filter of Eq. (18) for 75.0  and 
 

rad/sample. 

To show the effect of this delay on the phase, Fig. 2 shows the demodulation of a temporal 

interferogram given by     100 50cos 2cos 4 0.5g t t / N t     with 100N  samples, 

using the PSA represented in Fig. 1. Figure 2a shows a plot of the input temporal signal and 

Fig. 2b shows the demodulated phase,  tr  together with the actual input phase. As expected 

there is a 4 samples delay between both phases. 

 

Fig. 2. Demodulation results using the recursive filter of Eq. (18). a) input signal, b) 
demodulation results (red) and actual phase (blue). In this figure there is a marker every four 
samples to make easier the observation of the 4 samples delay between both signals. 

An undesired effect of the nonlinear filter phase is the distortion induced by the different 
group delays of the spectral components of the interferogram. Practically, one consequence is 
that the filter response to an edge is not symmetrical, and depends on the edge direction. 
Figure 3 shows the demodulation results for a 100 samples temporal interferogram with a 
rectangular pulse of 2 rad. Figure 3a shows the interferogram and Fig. 3b shows the 
demodulation results using the same filter represented in Fig. 1. As can be seen, there is clear 
asymmetry in the recovered phase. This is a well-known effect and can be suppressed if the 
interferogram can be stored. In this case, the solution is to process back the output of the 

recursive filter in reverse order:     tqHtqT  *

2 . In digital signal processing this method 

is referred as bidirectional filtering. Mathematically, this is equivalent to demodulating back 
the signal with the same impulse response but time-inverted and complex conjugated. 

Therefore, if  th2  is the impulse response of the recursive PSA, the total impulse response of 

the bidirectional filtering will be 

      *

2 2* ,Th t h t h t   (21) 

from which it is easy to see that total frequency response is real and given by 

        
2* .TH t H H A     (22) 
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Fig. 3. Recursive filter demodulation results with a discontinuous rectangular phase. a) 
temporal interferogram, b) demodulated phase in the forward-time pass, c) demodulated phase 
after the bidirectional filtering. 

The resulting PSA has zero-phase as desired, and all the flexibility of a recursive filter. In 
Fig. 3c we show the demodulation results for the bidirectional filtering version of the 

recursive filter represented in Fig. 1. In Figs. 2 and 3 we have used 75.0 . For smaller 

values, typically  0  we have practically a linear PSA with some noise rejection thanks to 

the recursive averaging. On the other side, for 0.9   we have a recursive filter with a highly 

non-linear phase. To test this behaviour, the MATLAB code to run all the examples presented 
in this paper can be downloaded from [7] 

4 Conclusions 

In this work, we have demonstrated the importance of the filter phase for the correct 
interpretation of the output of a general PSA. We have shown how the group delay determines 
the sample at which we are actually measuring the phase. We have analyzed under this new 
perspective a classical PSA and a more sophisticated recursive filter. Finally, in the case of a 
non-constant group delay we have shown how the bidirectional filtering can be used to 
compensate the filter phase effects. 
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