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Canonical transformations to action and phase-angle variables and phase operators
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The well-known difficulties of defining a phase operator of an oscillator are considered Rom the
point of view of the canonical transformation to action and phase-angle variables. This transfor-
mation turns out to be nonbijective, i.e., it is not a one-to-one onto mapping. In order to make
passible the unitarity of its representations in quantum optics we should enlarge the Hilbert space
of the problem. In this enlarged space we find a phase operator that, after projection, reproduces
previous candidates to represent a well-behaved phase operator in the quantum domain.

PACS number(s): 42.50.Dv, 03.65.—w

I. INTRODUCTION

The correct definition of phase in quantum mechanics
encounters basic difficulties and has provoked a host of
discussions and controversies. It seems that there is no
simple and satisfactory translation of the Poisson bracket

(j, P} = 1, where j and P are the action and phase-angle
variables for a harmonic oscillator, into an equivalent
commutation relation in quantum mechanics [n, P] = i
in terms of the corresponding number and phase opera-
tors [1].

There are essentially two basic sources for these diffi-
culties: the periodicity of the phase and the existence of a
lower bound to the energy. However, given the relevance
of such variables there have been many attempts to solve
the problem, and certainly very interesting progress has
been done in the past years [2].

Perhaps one of the best known solutions of the prob-
lem is that of Susskind and Glogower [3], that using the
notions introduced in the pioneering work of Dirac [4],
constructed the cosine and sine operators of the phase,
which have been extensively used by many years, since
they give reasonable physical results, at least in the clas-
sical limit.

More recently, Newton [5] overcame some of the dif-
ficulties due to the semibounded nature of the number
operator by doubling the Hilbert space and formally iden-
tifying n with the angular momentum component 1~ re-
stricted to the subspace wherein L, ) 0. However, he
dismissed the existence of a phase operator due to the
periodicity of the wave functions in the phase-angle vari-
able.

Garrison and Wong [6], and later Galindo [7], intro-
duced a self-adjoint phase operator canonically conju-
gated to the number operator on some dense set of the
Hilbert space. However, this operator has not attracted
much attention in the quantum opticians community due
to its rather complex structure that made it impractical
in many senses.

Recently, the attempts of Pegg and Barnett [8] to con-
struct a Hermitian phase operator have excited consider-

able interest. Their approach starts from the existence of
states of well-defined phase. They ascribe the obstacles
to defining a satisfactory phase operator to the use of an
infinite Hilbert space from the start, and propose to work
with a finite but arbitrarily large Hilbert space of s+ 1
dimensions. With the aid of the phase states, they are
able to define a Hermitian phase operator. Then, after
measurable quantities are calculated, the limit s —+ oo is
taken.

The predictions of the Pegg-Barnett formalism for
phase Buctuations have been compared with the exper-
imental measurements of the phase Buctuations in a
monomode laser beam, finding good agreement [9—11].

After the success of this approach, two interesting
and sound papers due to Bergou and Englert [12] and
Gantsog, Miranowicz, and Tanas [13] have raised the
question of comparing its predictions with those of Gar-
rison and Mong. Both approaches give the same results
for semiclassical states, but there are essential differences
for states with few photons.

On the other hand, from the classical point of view, the
question of the phase is nothing but a canonical trans-
formation froin position and momentum to action and
phase-angle variables. Moshinsky and Seligman [14] have
addressed this question in great detail, showing that this
transformation is nonlinear and in fact nonbijective, i.e.,
it is not a one-to-one onto mapping. To recover the bijec-
tivity they arrived at the need to introduce an additional
variable called ambiguity spin.

In some previous works [15—17], we have analyzed the
representations of these nonbijective canonical transfor-
mations in quantum optics. To get a unitary represen-
tation, it is necessary to add to the Hilbert space a new
space to completely describe the system.

The aim of the present paper is just to show how the
ambiguity spin can be used to unitarize the transforma-
tion and then to find a possible description of the phase
in the quantum world.

II. PHASE OPERATORS

In his original work on the quantized electromagnetic
field, Dirac [4] proposed the existence of an exponential of
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phase defined via a polar decomposition of the amplitude
of the one-mode photon field in the form

a=Eon, (2.1)

for all integers —oo ( n ( oo, and then it is a truly
unitary operator. The eigenstates of E, which we shall
denote by g), are now

where n is the number operator. The operator E, nowa-
days known as the Susskind-Glogower phase operator,
which may be written as

) in/i
—

)/2vr

and form an orthonormal basis on H.
The number operator in R

(2.10)

is unfortunately not unitary, since

EEt —1

(2.3)

(n o

( 0 (n+—1) )i (2.11)

E'E= i —P„ is formally a self-adjoint operator verifying the right com-
mutation relation

where Po = lo) (ol is the projection on the vacuum. The
action on the number basis is just as a ladder operator

[E,n] =E. (2.i2)

Eln) = (1 —b„,o) ln —1),

Etln& = in+ i&.

(2 4)

In the p representation, generated by the eigenstates of
E, their action becomes

E=e'&,

Although it does not allow the existence of a truly phase
operator, their non-normalized eigenstates A 2 ~ )

(2.13)

v'2z „o (2.5)

d4 I4)e'(41 (2.6)

where Po is some arbitrary reference phase.
Newton [5) has overcome some of the difFiculties due to

the one-sided nature of the spectrum of the number op-
erator by a very ingenious doubling of the Hilbert space.
I et us denote by 'H this doubled space obtained by in-
troducing a spinlike variable with two values. We define
an orthonormal basis on Vt' as

' t'i
)n&i

/ra)=i )
(i —n —1)) '

n&0
(2.7)

are usually considered as states of well-defined phase [18].
Such states are not orthogonal, but they allow for the
resolution of the identity and for an expression of E as

Pp+2m

Pp+2~
d4 14) 4 (41, (2.14)

then either it has to be made discontinuous at
Po + 2m' or else, as Pf(P) is not periodic if f(P) is,
the operator is ill defined. So, Newton dismisses the ex-
istence of the phase operator as being precluded by the
periodicity of the wave functions in the phase-angle vari-
able.

However, in spite of these difficulties, let us consider

so the operators E and n may be considered as canon-
ically conjugate in an extended sense. The method of
Newton is therefore tantamount to identifying the num-
ber operator with the angular momentum componentI,. Finally, in order to recover physical results, we must
project on 'M; that is, L, ) 0. Note that states contain-
ing a negative number of photons are inaccessible to any
physical measurement, so their existence in this doubled
space does not predict any new phenomena.

If we define a phase operator in 'H as

and now —oo & n & oo.
The operator E can be extended to 'M as

I'E Oi
(2.8)

-[n f&&(ol] = — —(l&&(41)

to Qnd, in a formal sense, that

1 ——
—.[n C'] =1 —l&o)(&ol
Z

(2.i5)

(2.16)
and one easily finds that

Ein) = in —1),
(2.9)

So, on the dense set of states i@), characterized by
(Poi@) = 0, the second term on the right-hand side van-
ishes, giving

X ln) = in+1), [n, o] =i. (2.17)
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$0+2~
d4 14)4 (41 (2.1s)

Thus, in this dense set, a bounded self-adjoint phase op-
erator canonically conjugate to n does exist, which is an-
other confirmation that the representation of canonical
commutation relations is certainly a touchy business.

Since the states 1$) are orthonormal, we have
oo 2 A

(AC) = —— ) —= —+ )
A:=n+1 k=1

(2.26)

state all the phases are equally probable, which feeds the
expectation A4 = vr/~3, agrees with the calculation us-
ing the Garrison-Wong operator only for suKciently large
values of n, since one easily obtains

and the unitary operator E can be expressed as The Garrison-Wong phase operator can be expressed
in terms of the Susskind-Glogower one as

iCE = e'
4o+2

d4 14)e'(41. (2.19)
OO

C' = $0 + vr + ) — e '"~'E" —e'"~'Et (2.27)
kk=1

PC P $ (PC P)", (2.20)

for k & 1. In this fashion, if we project the exponential
of the phase

To recover physical results we must finally project on
'H. However, this must be done with some care, since if
P is the projector on 'H, we have

or, as expressed by Popov and Yarunin [20]

C = $0+~+i ln(1 —e '~'E) —ln(1 —e'~'Et)

(2.2s)

Note that since the phase states (2.5) are not orthogonal,
we have now that

PEP =
$0+2m

&& 14)e'(4
l

Pp+ 2'.
(2.29)

we get the Susskind-Glogower phase operator. However,
if we rather focus of the operator C itself, we obtain

for k ) 1, and for the expectation values of field states

4= PCP=
go+2m

d4 14)4(41 (2.22) (&Ic'"I@)W d4 0 "I(&l@)I' (2.30)

which is just the phase operator introduced by Garrison
and Wong [6], and independently by Galindo [7], leading
to the number-phase commutation

[n, C] = i (2.23)

on the dense domain of states A = (I@):(Polg) = 0).
Without embarking on mathematical subtleties, two re-
marks seem in order. First, the operators n and 4 define
a Heisenberg pair, but as demonstrated by Rocca and
Siruge [19], they do not define a Weyl pair in the sense
that they do not verify

ao.n ar9C iP4 inn io.P (2.24)

for any n and P reals. Second, from (2.23) the uncer-
tainty relation

(2.25)

follows, but it clearly holds true only on the domain 0,
but not everywhere.

Unfortunately, when approximating even simple phys-
ical states in this dense set, one recognizes rather unde-
sirable properties. As clearly pointed out by Bergou and
Englert [12], when number states are approximated in
0, the better approximation is, the larger the spread of
n, which is certainly unexpected from our physical intu-
ition. Moreover, the standard concept that in a number

which clearly means that 1($1@)1 cannot be viewed
here as a phase distribution function. To find the true
Garrison-Wong phase distribution for the state 1$) we
should compute the quantity

OO 2

PGw(C') = I(C'I&)l' = ):@(C'I&)
n=0

(2.31)

) ) e~~4'em Iii)
1

gs+ 1
(2.32)

where

27'=$0+ m,s+1 (2.33)

where 14) is the eigenstate of the Garrison-Wong opera-
tor. The function (C ln) has a quite complex structure,
but can be computed either numerically or from the re-
cursive relations derived in Ref. [6].

The Pegg-Barnett formulation of the phase can be
viewed in this context as a kind of orthogonalization
of the Susskind-Glogower phase states. Their way to
accomplish this program starts by considering a finite-
dimensional Hilbert space 'R, spanned by In), where now
n runs the non-negative integers up to an arbitrary but
finite value of s. In this space they define a complete
orthonormal set of phase states by
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with m = 0, 1, . . . , s; and then define a phase operator as

(2.34)

Bergou and Englert [12] and Popov and Yarunin [20]
claimed that this phase operator represents a twofold ap
proximation to the Garrison-Wong operator, inasmuch
as the integral in (2.22) is replaced by a sum and the
Susskind-Glogower phase states are projected on the sub-
space Q, . However, the Pegg-Barnett prescription is to
compute the expectation value of any observable of in-
terest in '8, and, only after that, take the limit s ~ oo.

Note that in 'M„ the phase states lg~) are orthonor-
rnal, so we can write

(2.35)

and the expectation values in '6, can be expressed as

Then, although the Pegg-Barnett and Garrison-Wong
operators may appear superficially to approximate each
other, there are very important difFerences in the two
approaches which lead to quite difFerent predictions, be-
cause the results obtained depend critically on the order
in which this limit is taken.

Recently Gantsog, Miranowicz, and Tanas [13] have
compared in detail the predictions of the Garrison-
Wong with the Pegg-Barnett approach. Their conclusion
is that the Garrison-Wong formalism introduces some
anisotropy in the phase distribution function which seems
to be inconsistent with the symmetry showed by the
Wigner and Q functions of the corresponding field states.
The Pegg-Barnett formalism does not suffer from this
"symmetry-breaking" problem. So, really there is a qual-
itative difference between the two formalisms in predict-
ing phase properties of the fields, although in the limit of
high excitation numbers all the phase operators discussed
here give the same predictions.

(2.36)
III. QUANTUM ACTION AND PHASE-ANGLE
VARIABLES FOR A HARMONIC OSCILLATOR

and so the quantity l(P Ig) I gives a true probability
of being found in the phase state lg ). However, when
"physical states" [8] are considered, the sum may be re-
placed in computational problems by

Pp+2m

dP P" Ppp(P), (2.37)

where the continuous phase distribution PpB(g) is de-
fined by

A canonical transformation is often interpreted as pro-
viding a new set of coordinates in phase space which are
on an equal footing with the original ones. It seems
also generally accepted that canonical transformations
are represented in quantum mechanics by unitary opera-
tors.

Thus it seems reasonable, at least in principle, to con-
sider the transformation passing from the Cartesian coor-
dinates position and momentum (q, p) in the phase plane
to the action and phase-angle variables corresponding to
an oscillator of unit mass and frequency, i.e. ,

(2.38) i = -(»i + v )
1 2 2

2
(3.la)

and P~ has been replaced by the continuous phase vari-
able P. Therefore, the PpB function is obtained by pro-
jecting the state on the corresponding Susskind-Glogower
phase states and this formalism can be derived from the
Newton approach since

(2.39)

P = arctan l-p
q

(3.lb)

Next, we could ask for a unitary representation in quan-
tum mechanics, translating the classical relations (3.1)
between c numbers into relations between operators,
which can be defined in the form

Thus, in the limit 8 —+ oo the Pegg-Barnett approaches
the Garrison-Wong operator [21], although this limit is a
delicate matter, since

UqU~ = n, (3.2a)

lim C, =C,
S~OO

lim C, $4,
which illustrates the fact that, in general

lim f(4, ) g f( lim C, ) = f(C),

which can be viewed as a consequence of (2.20).

(2.40)

(2.41)

(2.42)

(3.2b)

in units 5 = 1. Note that the quantum analog of the
classical action is now the number operator. The explicit
knowledge of this representation will provide us with a
phase-angle operator canonically conjugated to the num-
ber operator.

It is not necessary to go too far on this approach to
run into serious troubles. It can be expected that the
difBculties in the definition of a well-behaved phase op-
erator are intimately linked to the problem of Finding the
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unitary representation for the nonlinear transformation
to action and phase-angle variables [14]. So our purpose
in this section is to relate these two problems and show
how the approaches discussed in Sec. II appear in this
context. We are going to see that the requirement of a
unitary representation leads to the phase operators of the
preceding section, also showing the way in which they are
related.

The obstacles to the unitarity of U arise from the dif-
ferent spectra of the operators to be related and the pe-
riodic character of the phase, making the transformation
not only a nonlinear but also a nonbijective one. Focus-
ing on (3.2a), we can see that while the spectrum of q
runs continuously from —oo to oo, the one of the num-
ber operator is not only discrete, but also bounded from
below.

If we denote by ~q) the eigenstates of q, we can always
write the eigenvalues in the form

q=n+A, (3.3)

where 0 & A & 1 and n is an integer. The spectra of q
and n can then be identified when we restrict ourselves
to a fixed A and to the non-negative values of n.

Following Dirac's program [22], a family of operators
closer to what we are looking for could be given by [23,24]

U), = ) ~n)(q = n+ A],
n=O

(3.4)

which clearly is not unitary.
If we require a unitary transformation, the program

outlined by Moshinsky and Seligrnan goes through the
enlargement of the image space to provide a variable,
called the ambiguity spin, which can be used to equal-
ize the spectra. This enlargement must be done here in
two ways. In first place, we must include eigenstates of
the number operator with negative integer eigenvalues to
solve the problem caused by the semiboundedness of the
number operator, in much the same way as proposed by
Newton. In second place, it is necessary to add a contin-
uous variable in the interval [0, 1) as it is the A variable
in (3.3).

Then, we can consider as image space the product
H @A, where H is the extension of 'H including the neg-
ative number states, and A is a Hilbert space needed to
accommodate the new continuous variable [24]. We shall
denote by ]A) an orthonormal basis in this space A.

In this way, a unitary operator can be given in the form
U H:'Hs A,

identified as the third component of an angular momen-
tum.

To obtain U we have used only the relation (3.2a) defin-
ing the transformation. The reason for not using (3.2b)
is that we do not want to make any assumption about
the form of P. As a consequence of this procedure, U can
not be completely determinated. It still could be added
in (3.5) a relative phase depending on n and A. However,
the main features of this procedure are independent of
this choice, and we shall use this form for U.

The problems associated. with the periodicity can be
avoided working with periodic functions of the phase.
The result for the exponential of the phase is

Ue'"Ut = ) ~n —1)(n~. (3.7)

T i2mq (3.8)

Since this operator does not form by itself a complete set,
it is necessary to add another one, a suitable and natural
choice being

It can be recognized that this is precisely the exponen-
tial of the phase operator, acting on the extended space
'H, introduced by Newton (2.9). Then, all his phase for-
malism can be obtained in this context from (3.7). Note
that in this case we have not started from any assump-
tion about the phase operator. Moreover, as we showed
in Sec. II, the Susskind-Glogower, Garrison-Wong, and
Pegg-Barnett phase operators can be derived from (3.7)
with the appropriate interpretation of the final projection
over the space 'H.

The loss of the good properties of the phase opera-
tor (3.7) after the projection can be understood here in
connection with corresponding loss of unitarity of the
transformation.

Next we brieBy introduce a basis in the original Hilbert
space that illustrates the nonbijectivity of the transfor-
mation and the introduction of the ambiguity spin.

As far as the transformation identifies p with the phase,
which must have a periodic character that p does not
have (making the transformation nonbijective), it seems
natural to classify the states in the original space 'H ac-
cording to their properties under translations by 2am of
p. This is precisely the ambiguity group introduced by
Moshinsky and Seligman.

In consequence, it is advantageous to work with a basis
of eigenvectors of the translation operator

dA ) ~n)~A)(q = n+ A~.

The final form for UqU~ is

(3.5)
(3.9)

These two operators form a complete set of commut-
ing operators [25] and we denote the associated basis by
~P, A), in such a way that

UqUt = ) n~n)(n~+ dA iA)A(Ai. (3.6) r„(y, A) = e"'~y, A),

(3.10)

We note that the image of q gives separate contributions
over the H and A spaces, and that the first term can be

Tq~g, A) = e'~~/, A),

where Pe[0, 27r) and Ae[0, 1). Denoting by ~p) an eigen-
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state of the momentum operator p, we have

i/A) =e ' ~ ) e ' ")p=2~A+P). (3.11)

dP dA ]P, A)P(P, A], (3.12)

and we have

dA ]P, A)e'~(P, Ai = e' &. (3.13)

So, in the ]P, A) representation, any 2z. periodic function
f (p) acts multiplicatively as f(P). On the other hand, in
the same representation, q acts on the form q ~ i 8~ + A.
We can see that the first term formally coincides again
with the third component of an angular momentum.

Thus, we are able to extract from the original space
a phase-angle variable and its conjugate one. Moreover,
the variable A is essential to completely describe the phys-
ical space, which reflects the fact that p is not periodic.
Then, to fulfill (3.2) with a unitary operator we need to
enlarge the image space to accommodate the A variable.
This extension solves both the difBculties associated with
the periodicity of the phase and the continuous spectrum
of q. To solve the problems caused by the semibound-

The main advantage of this basis lies in the introduc-
tion of an anglelike variable P related with p that could
be interpreted, in view of (3.11), as its periodic part, and
that can be useful dealing with the periodicity problem.
In fact, any 2z periodic function of p is only function of
P. We could also define a C„operator as

edness of the number operator we must extend also its
spectrum to the negative integers as it were an angular
momentum. The way to do these enlargements is the
same as discussed before. Finally note that the phase
operator (2.14) is the image by U of the 4~ operator
(3.12).

IV. GONCLUSIONS

The difficulties in the translation into quantum me-
chanics of the phase-angle variable have lead to the intro-
duction of several phase operators. We have found that
the same troubles arise in the representation in quantum
mechanics of the nonlinear canonical transformation to
action and phase angle.

We have shown that the solution proposed for its uni-
tary representations provides a route to define a phase
operator that does not need any previous assumption
about its form. This formalism not only contains pre-
vious approaches to the problem, but also shows their
relationships.
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