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Abstract

I review the main results leading to Factorization of QCD amplitudes in momentum space and, in view 
of the analogue results in coordinate space, the one-loop jet function in coordinate space is computed and 
Landau’s equations for the Abelian radiative corrections to it are studied. Furthermore, two of these radiative 
corrections are reduced in quadrature.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In Quantum Field Theory (QFT), Green’s functions are the mathematical entities used to re-
late the theoretical framework to physical processes. In principle, if all the Green’s functions of 
a particular theory are known, then the theory is solved completely (since these functions are 
introduced to solve the quantum equations of motion for the fields). Usually, the computation of 
Green’s functions is performed in momentum space due to mathematical simplicity. Furthermore, 
scattering and collider experiments, which are among the main methods and tools to unravel 
the structure of elementary particles, are formulated and studied in momentum space. Here, the 
requirement of unitarity (forcing conservation of probabilities) naturally arises as the optical the-
orem and helps identifying resonances or bound states that the theory possesses. Moreover, huge 
efforts were made at the end of last century to justify the consistent use of perturbation theory in 
Quantum Chromodynamics (QCD). These resulted in the factorization theorems for amplitudes 
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in momentum space, which, by means of Resummation, ensured the convergence of the pertur-
bation series in the weak coupling regime (see [1] or [2]). On the other hand, analogue results 
in coordinate space only appeared in recent years [3], signaling the little attention that the coor-
dinate space description has received in high-energy physics research. Seeking new perspectives 
and interpretations, I will review several aspects of QCD Amplitudes from the coordinate space 
viewpoint.

This paper is organized as follows: Section 2 is devoted to offer a concise introduction to the 
topics regarding Leading Power (LP) factorization of QCD amplitudes in the perturbative regime. 
Here Landau’s equations are introduced as a condition for having an unavoidable singularity in 
a momentum space Feynman amplitude. These equations for the one-loop quark electromag-
netic form factor, together with the Coleman-Norton picture, elucidate the all-order structure of 
divergences in the γ qq vertex, i.e. a hard function, two jets and a soft function which will be 
explained. After power counting the possible singularities, factorization of the vertex is possible. 
The momentum space factorization results were translated to coordinate space amplitudes in O. 
Erdogan’s work [3] and are summarized in Section 3. Using these results I compute in Section 4
the one-loop jet function in coordinate space.

In recent years, within the community of QCD phenomenologists, interest has grown in the 
all-order structure of the so called subleading regions. These kinematical regions can enhance 
non-analyticites in certain observables such as cross sections (see f.e. the first equation in [4]), 
usually related to the emission of soft and collinear gluons. Explicitly, at Next-to-Leading Power 
(NLP) in the soft and collinear expansion, one treats with the so-called “radiative jets” (intro-
duced for the first time in [5]). Given that the study of radiative jet functions in coordinate space 
could give interesting insights on the still incomplete NLP all-order factorization of QCD (many 
recent developments show how rich and complicated is the structure of these subleading regions 
[6–10]), in Section 4.3 I will reduce to Feynman parameter integrals two contributions to the 
radiative one-loop jet function in coordinate space. I also analyze Landau’s equations for all 
contributions to the abelian one-loop radiative jet function in coordinate space.

2. Landau’s equations and Leading Power factorization

Amplitudes in QFT encode the probabilities of certain processes contributing to a particu-
lar outcome of a collider experiment with known initial conditions. Usually, amplitudes present 
singularities (which contain all the relevant information of it since finite terms depend on the 
regularization scheme), and the characterization of these is important to identify their associated 
kinematical configurations. Each contributing process to an amplitude is represented by a Feyn-
man diagram or graph. A general momentum space Feynman diagram in d ≡ 4 − 2ε spacetime 
dimensions G(p1, ..., pn) is given by (leaving out coupling constants for now)

G(p1, ..., pn) =
L∏

i=1

∫
ddki

(2π)d

I∏
j=1

N({ki}, {pr})
l2
j + m2

j − iη
, (1)

where the {pr} are the external momenta, {ki} the loop momenta, {lj } the line momenta (which 
are linear combinations of the loop and external momenta) and mj is the current mass for the 
particle propagating in line j . L is the number of loops, N({ki}, {pr}) is an arbitrary polynomial 
in the momenta and I the number of internal lines. Introducing Feynman’s parametrization in 
eq. (1) we obtain
2
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G =(I − 1)!
L∏

i=1

∫
ddki

I∏
j=1

1∫
0

dαj δ(1 −
I∑

j=1

αj )
N({k}, {p})

(D({α}, {k}, {p}))I . (2)

The graph G will be infrared (IR) divergent if its denominator vanishes unavoidably, D ≡∑I
j=1 αj (l

2
j + m2

j ) = 0. To see what unavoidably means notice that D is a quadratic function 
in the momenta and therefore it has no more than two zeroes in any momentum component lμi . 
If these zeroes are at real values of lμi we will encounter singularities of the integrand in eq. (2). 
However, if the contour of integration can be deformed in each of the integration variables’ com-
plex plane, then, by virtue of Cauchy’s theorem, the integral will be well defined and will not 
present singularities.

There can be two cases where deforming the integration contour will not be possible:

• If the two zeroes in kμ
i merge at the same point and “pinch” the contour of integration. This 

condition amounts to,

∂D(pr, ki, αj )

∂k
μ
i

∣∣∣
D=0

= 0 , (3)

which by the definition of D means

∑
j=1

αj

∂l2
j (pr , ki)

∂k
μ
i

=
∑

j∈loop i

αj l
μ
j εj,i = 0 . (4)

Where the incidence matrix element εj,i is +1 if the line momentum lj in the loop i flows 
in the same direction as the loop momentum ki , −1 if in the opposite direction and zero 
otherwise. The sum runs over all the edges in loop i.

• If the singularity is at the endpoints of the contour of integration then we will not be able to 
apply Cauchy’s theorem: we cannot modify the endpoints of integration without affecting the 
result of the integral. Since kμ

i ∈ R this type of singularities corresponds to Ultraviolet (UV) 
divergences and are taken care by renormalization. For αj integrations these singularities are 
important when αj = 0 or, if D does not depend on αj (meaning that l2

j = −m2
j , i.e. the line 

is on-shell). Either one of these two conditions on all of the αs has to apply in order to have 
an unavoidable singularity.

Hence, we can condense the necessary conditions for unavoidable divergences in Landau’s equa-
tions ⎧⎪⎨

⎪⎩
∑

j∈loop i

αj l
μ
j εj,i = 0 ∀μ, i

αj (l
2
j + m2

j ) = 0 ∀j .

(5)

The proof that these conditions are necessary but not sufficient can be found in [11] (pg. 98). 
To verify that the solutions are indeed unavoidable singularities we have to resort to the method 
of power counting, i.e. count the divergence of the integrand and the volume of integration, to 
see if they give indeed a power or logarithmic divergence when approaching certain divergent 
kinematical configurations. Furthermore, in the next section we will see that these configurations 
must be allowed by classical free-particle propagation of the internal lines.
3
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2.1. Coleman-Norton picture in momentum space

Finding solutions to Landau’s equations (5) by hand is not an easy task, especially for higher-
order diagrams. However, owing to Coleman and Norton (C-N) [12], there is a much easier and 
intuitive procedure to solve the equations.

Recall that, in a solution to Landau’s equations, for off-shell lines we have αj = 0 while for an 
on-shell internal line we will have that αj �= 0 and ∂D/∂k

μ
i = 0. Now, if we identify the products 

αj lj for each on-shell line with a spacetime vector (introducing a parameter λ)


x
μ
j ≡ λαj l

μ
j , (6)

and λαj = 
x0
j / l0

j as the Lorentz invariant ratio of the time component of 
x0
j to the energy l0

j , 
then we have that


x
μ
j = 
x0

j v
μ
j , (7)

with the four-velocity vμ
i = (1, �lj / l0

j ). Notice that the parameter λ has dimensions of length 
squared to keep the Feynman parameter dimensionless and its introduction has a subtle meaning. 
For collinear divergences it can be set to unity but it is necessary in the soft case to keep the dis-
placement 
xμ finite even when all components of lμ go to zero. Since soft gluons have almost 
infinite wavelength, it is natural to think that they will have a finite displacement as classical 
particles.

Summarizing, 
x
μ
j may be thought of as a four-vector describing the free propagation of a 

classical on-shell particle with momentum lj . In this way, Landau’s Equations become⎧⎪⎨
⎪⎩

∑
j∈loop i


x
μ
j εj,i = 0 if l2

j = −m2
j


x
μ
j = 0 if l2

j �= −m2
j .

(8)

This means that the “pinch” condition for on-shell lines amounts to the requirement that every 
loop made out of these lines is a closed classical path and that off-shell lines are shrunk to a point 
(i.e. they do not propagate a finite distance). We hence construct all the possible displacement 
configurations inside the loops (shrinking or taking the lines as soft) and then decide if these are 
allowed by the C-N picture. We will regard these as reduced diagrams. To illustrate this method 
we now turn to an example.

2.1.1. One-loop quark electromagnetic form factor reduced diagrams
Let’s now work on an illustrative example of the application of the Coleman-Norton trick to 

find possible “pinched” singularities. In Feynman gauge, the only relevant diagram contributing 
to the QCD one loop correction to the quark-quark-photon (qqγ ) vertex is

≡ −ie �
μ

(1)(p+,p−)

p−−p+

.

4



A. Salas-Bernárdez Nuclear Physics B 985 (2022) 116024
(a)

sof t

(b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Reduced diagrams for the one-loop QCD correction to the qqγ vertex.

In physical gauges, there are extra contributions to the form factor coming from pinch surfaces 
in self energy diagrams. There are several phenomenological uses of this vertex, some examples 
can be found in [13,14].

Which reduced diagrams (i.e. diagrams with shrinked lines or with soft lines) of the diagram 
above are allowed by classical free propagation between vertices?

We can see all the reduced diagrams in Fig. 1, each corresponding to an a priori solution 
to Landau’s equations. Thanks to the Coleman-Norton Trick we can immediately rule out the 
diagrams (e)-(g) since a particle that leaves a vertex cannot come back to the same vertex in 
classical free flight. Diagram (d) is also ruled out since the photon is taken to be off-shell and 
hence the particles leaving the vertex must have different directions and can never meet again 
in free-flight (here we assume that the quarks are massless). Diagram (h) corresponds to having 
all the internal particles off-shell, meaning that this solution to Landau’s equations represents an 
UV divergence. In this way we are left only with diagrams (a)-(c) as possible candidates to IR 
soft and collinear divergences.

Already with this example it is possible to start picturing the all-order structure of the IR and 
UV pinched singularities for the electromagnetic quark form factor. In Fig. 1, (a) represents the 
first order contribution to what will be called the Soft function, (b) and (c) are each the first order 
contribution to the two jet functions, and (h) corresponds to the Hard function encoding the UV 
singularities.

2.2. Power-counting and factorization

Thanks to the picture of reduced diagrams, we can study the IR and UV divergences in the 
electromagnetic form factor to all orders in perturbation theory without explicitly considering 
Landau’s equations. It turns out that the structure of singularities we have already studied at 
one-loop is also present at higher orders. The possible reduced diagrams associated with pinch 
surfaces are all of the form shown in Fig. 2.

The reduced diagram in Fig. 2 corresponds to physical processes in which the photon decays 
into two jets J+ and J− each with the total momenta of the two final state particles, p1 and 
p2. Between these two jets the only interaction is via zero-momentum soft particles, labeled S. 
This is due to the fact that once the jets are formed, they travel in different directions at the 
speed of light and hence no finite momentum transfer can occur between the two. These inter-
5
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p+

p−
J−

J+

H S|

Fig. 2. Representation of the hard (H), the soft (S), and jet J(±) pinch surfaces for the quark electromagnetic vertex 
at all orders before power counting (see below). The dotted lines represent all the possible lines (fermionic or gluonic) 
connecting different pinch surfaces.

actions result on possible phase shifts on the final states due to the inter-quark potential (see 
[15]). Higher order off-shell, short-distance contributions coming from shrunk lines are encoded 
in the subdiagram H . The full derivation of this characterization of general pinch surfaces to all 
orders in perturbation theory is presented in [16]. The term pinch surface is introduced to illus-
trate the fact that the singularity configurations constrain loop momenta, defining a hypersurface 
in the ({α}, {k}) space where the singularity pinches the contour of integration and makes the 
singularity unavoidable.

The next step towards the factorization of the qqγ amplitude is to power-count (this amounts 
to just counting the power of the so called normal variables, i.e. the ones whose vanishing defines 
the pinch surface, in the numerator and in the denominator of the integrand) and find the most 
divergent solutions to Landau’s equations. In [16] it is proven that in any covariant gauge, the 
divergences are logarithmic at worst and the general pinch surface is of the form presented in 
Fig. 3 in d = 4 dimensions. Where the jet functions J± are only connected to the hard function H
through one fermion line and longitudinally polarized gluons, the jets are connected to each other 
through soft gluons attached to the soft function S [1]. In all physical gauges the divergences are 
also logarithmic at worst and furthermore no lines except for the fermionic lines connect H to 
the jets J± [2].

Our goal now is to factorize the general pinch surface in Fig. 3 into contributions where in each 
of the regions (H , J± and S) the loop momenta are not restricted anymore in a gauge independent 
way (recall that in the soft and jet subdiagrams all the lines are soft and collinear respectively). 
This is performed through the introduction of the so called Wilson lines, which are related with 
the parallel transport in fibre bundles and the uniqueness of the so called “horizontal lift” [17] of 
a spacetime curve γ (t) with t ∈ [t1, t2] between the two points y = γ (t1) and z = γ (t2)

�(t2, t1) ≡ P
{

exp
(

− igμε

t2∫
dt

dγ μ

dt
Aμ(γ (t))

)}
, (9)
t1

6
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p+

p−
J−

J+

H S|

Fig. 3. General pinch surface corresponding to logarithmic divergences. Only gluons connecting the hard and soft to the 
jet surfaces can be present to give this divergence.

where the symbol P is the path ordering operator which orders the Aμ(γ (t)) so that the ones 
with higher t stand to the left (remember that the A’s are matrices). Basically, the Wilson lines 
help in building gauge-invariant objects between two different points in space-time.

The Wilson lines are introduced because they reproduce order by order the so called eikonal 
Feynman rule of soft gluon emissions. This is so because soft gluons only couple to the color and 
the direction of the jet they attach to. For this reason we will regard their interaction as eikonal.

How to relate this fact to the Wilson line? Recall that internal lines in reduced diagrams are 
in free-flight so that their velocity vμ = dγ μ(t)/dt is constant along their trajectory and we can 
hence write (9) for these particles as

�v(t2, t1) = P
{

exp
(

− igμε

t2∫
t1

dtvμAμ(tv)
)}

. (10)

The usual assumption in QFT is that the interaction (the qqγ vertex in our case) occurs inside the 
collider experiment (set at the origin) and the final state particles travel out to infinity where they 
are detected. Hence we will treat with the special Wilson line �(∞, 0) and, expressing Aμ(x) as 
the sum of its Fourier coefficients, we see that it equals

�v(∞,0) = P
{

exp
(

− igμε

∞∫
0

dtvμ

∫
ddk

(2π)d
Ãμ(k)eitk·v)}

. (11)

To carry out the integration in t we will Wick rotate k0 → ik0 so that the contribution from 
t = ∞ vanishes. In this way, after going back to real energy, we obtain

�v(∞,0) = exp
(
gμε

∫
ddk

(2π)d

vμ

k · v Ãμ(k)
)

, (12)

which reproduces order by order the eikonal soft gluon emission Feynman rule from a fermion 
line (which is vμ/k · v).
7
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Thanks to the introduction of the Wilson lines, the so called eikonal identity (which represents 
the fact that at leading order in softness soft emissions factorize and are expressed in terms of 
independent emissions with eikonal vertices), and the use of Ward identities, it is possible to 
factorize the all order quark EM form factor [1]. This will lead to express the general pinch 
surface in Fig. 3 in the factorized form in Fig. 4.

To get an idea how factorization will come about, notice that the interaction between two jets 
through soft gluons can be completely encoded in the soft function, defined as

S(β+ · β−, αs(μ
2), ε) ≡ 〈0|�β+(∞,0)�β−(∞,0) |0〉 , (13)

where β+ and β− are velocities proportional to the jet momenta p+ and p− respectively, μ2 is 
a renormalization scale, ε the dimensional regulator, and αs(μ

2) is the renormalization-scale-
dependent strong-force coupling-constant.

Now we want to describe how a fermion travels to the final state while interacting through 
soft gluons with the other fermion and hence define each jet leg as

J±
( (p± · n±)2

n2±μ2
, αs(μ

2), ε
)
u(p±) = 〈0|�n±(∞,0)ψ(0) |p±〉 , (14)

where ψ is the fermion field operator and ni is the direction of the Wilson line. To avoid spu-
rious collinear singularities it is customary to choose n2

i �= 0 (although there are considerable 
computational advantages in setting n2 = 0 with an easy fixing of the spurious singularities [4]).

Now we need to take into account the overlap of the soft and collinear regions to avoid double 
counting of divergences and also cancel graphs with eikonal self interactions. The overlapping 
can be seen as a jet function whose collinear gluons become soft or a soft function whose gluons 
become collinear. In either case, it can be described by the eikonal jet function defined as

Ji

( (βi · ni)
2

n2
i μ

2
, αs(μ

2), ε
)

≡ 〈0|�ni
(∞,0)�βi

(∞,0) |0〉 . (15)

Since we will divide the jet function (14) by (15), the eikonal self interactions of the Wilson lines 
�ni

and �βi
in (14) and (13) are canceled out. Defining the hard function H as the result of 

dividing the form factor � by S
∏

i (Ji/Ji ), we can finally write the formula for the factorized 
form factor

�
( μ2

Q2 , αs(μ
2), ε

)
= H

( μ2

Q2 , αs(μ
2), ε

)
S(β+ · β−, αs(μ

2), ε)×

×
∏
i=±

Ji

(
(pi ·ni)

2

n2
i μ

2 , αs(μ
2), ε

)
Ji

(
(βi ·ni)

2

n2
i μ

2 , αs(μ2), ε
) . (16)

Here it is implied that, since the soft and jet functions present in (16) can generate spurious UV 
divergences, UV counterterms are introduced to cancel them. Note that the functions defined to 
obtain (16) depend only on general properties of the external particles like spin, charge or color, 
and collect all soft and collinear divergences. This dependence and some issues concerning the so 
called cusp anomaly are studied in detail in [18]. The factorization formula (16) can be extended 
to more generic amplitudes. In cases with more legs, the color dependence of the amplitude is 
non-trivial but remains tractable. The presence of the so called Glauber gluons (see [1] in pg. 
14 for details) might spoil factorization. This is still an open topic of research (see for example 
[19,20] for more recent and refined results). Al things said, for fixed-angle scattering and the 
8
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H S

J−/J−

J+/J+

|

Fig. 4. Factorized quark EM form factor corresponding to equation (16). The double lines represent Wilson lines.

form-factor discussed here it is always possible to deform contours away from the Glauber region 
[1].

3. Coordinate space factorization

The momentum space results presented above were extensively studied from the early 1980’s 
to the present day, however, the coordinate space analogue results appeared only recently thanks 
to O. Erdogan’s work [3]. There, Erdogan presents a precise derivation of the factorization for-
mulas for the quark EM form factor at LP using the same steps as presented above.

First, the unavoidable singularities of coordinate space Feynman graphs,

I ({xμ
i }) =

∏
vertices

k

∫
ddyk

∏
lines

j

F ({xi}, {yk})
[z2

j + iη]pj
, (17)

are identified using again the Coleman-Norton interpretation (here the {yμ
k } are the position of 

internal vertices and {xμ
i } the positions of external points, and zμ

j denotes the argument of the 
denominator in propagator of line j . F({xi}, {yk}) is a numerator factor containing all color 
factors, constant and numerator factors (such as vertex derivative terms), and pj depends on 
whether the line is fermionic or bosonic).

For a general massless diagram, the pinched vanishing of the denominator of eq. (17) defines 
Landau’s equations in coordinate space⎧⎪⎪⎨

⎪⎪⎩

∑
lines j

at vertex k

αj z
μ
j εkj = 0 and

αj z2
j = 0 .

(18)

It is of course intended that these equations must be satisfied together with the vanishing of 
the overall denominator obtained after Feynman parametrization. To connect with the Coleman-
Norton picture, identify the product αjz

μ
j with a momentum vector lμ ≡ λαj z

μ
j and λαj ≡ l0

j /z
0
j . 

Note that in the coordinate space picture the λ parameter is interpreted in the inverse way as in 
the momentum space picture. This means that the soft singularities will have αj = 0 or λ going to 
zero. For a hard singularity, i.e. z0

j = |�zj | → 0, the Landau’s Equations are satisfied automatically 
and λ helps the α parameters remain finite. In this way we can see that each pinch singularity 
9
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Fig. 5. Diagrams contributing to the first-order momentum space jet function. The solid dots represent UV counterterms 
and the double line is a Wilson line.

corresponds to massless particles propagating a finite distance on the lightcone between vertices 
with their momenta satisfying momentum conservation at each vertex. On the other hand off-
lightcone particles have zero displacement when in divergent configurations [3].

If one studies the pinch surfaces for the γ qq vertex one can easily recognize the same surfaces 
as in the momentum picture [3]: two jets, one soft and one hard surface. Using power-counting 
techniques it is possible to see that the singularities of the vertex are, at worst, logarithmic in 
d = 4 dimensions and they correspond to the coordinate space analogue of Fig. 3, where only 
gluons connect the hard and soft with jet surfaces respectively [3].

Finally, after using the so called hard-collinear and soft-collinear approximations it is also 
possible to see that the jets are connected to the soft and hard surfaces only by longitudinally 
polarized gluons (also known as scalar gluons) in Landau Gauge. Due to this fact, Ward identities 
are used to factorize the coordinate space vertex function as in Fig. 4 [3].

These results help to factorize in the same fashion cross sections for partonic processes such 
as Drell-Yan (see [21]). In [22] it is demonstrated how, given Hermiticity of the interaction and 
using the Largest Time Equation [23], the cancellation of IR divergencies in inclusive cross 
sections comes to the fore in coordinate space.

4. Coordinate space explicit computations

Next we will turn to compute some contributions to the jet function in coordinate space. To 
be able to compare our results we present here the results from momentum space calculations:

4.1. Momentum space results for the one-loop jet function

For the jet function at one loop we will have the contributions from a self energy correction 
J

(1)
p of the quark line and a gluon exchange vertex correction J (1)

V between the Wilson and the 
fermion line. All these contributions including the UV counterterms are presented in Fig. 5. The 
eikonal self interaction graphs do not appear due to the fact that we divided the jet function by 
the eikonal jet function in (15).

The first diagram in Fig. 5 vanishes in dimensional regularization since it is scaleless (remem-
ber the external momentum is lightlike, p2 = 0) and there is no available quantity with non-zero 
mass dimension. This comes from a cancellation of UV and IR poles. Therefore, after introduc-
ing the UV counterterm in the third diagram of Fig. 5, we will obtain that J (1)

p = 1/εUV (here 
I make explicit the UV nature of the pole in ε). The vertex correction in the second diagram in 
Fig. 5 amounts to

J
(1)
V = 2iμ2εg2

∫
ddk

(2π)d

(/k − /p)/n

(k2 − iη)(k2 − 2p · k − iη)(2n · k − iη)
, (19)
10
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•
yx

tn

≡ J
(1)
CS

(x)

•

·

Fig. 6. Diagram representing the one-loop jet function (without UV conterterms) in coordinate space.

where n is the direction of the Wilson line and n2 = 0. In the MS scheme, by using Dirac’s 
equation on the spinor in the LHS of eq. (14), adding the appropriate MS counterterm in the 
fourth diagram in Fig. 5 to eq. (19) results in (see eq. (3.2) in [4]),

J
(1)
V r ≡ J

(1)
V + J

(1)
V ,CT = 2

( αs

4π

)[ 1

ε2 + 1

ε

(
1 − γE + log

4πμ2

(−2p · n)

)
+O(ε0)

]
. (20)

Now we turn to reproduce this result in coordinate space.

4.2. One-loop jet function in coordinate space

Once we have seen that factorization of the vertex function in coordinate space comes along 
pretty much as in the momentum space picture (see [3]), let us now compute the one-loop jet 
function in coordinate space and see if, using the LSZ reduction formula, we can recover the 
results known in momentum space.

Reading from Fig. 6 we have that, taking the Wilson line to be lightlike (n2 = 0),

J
(1)
CS (x) = (−igT aγμ)

�(1 − ε)�2(2 − ε)

(2π2−ε)24π2−ε

∫
ddy

−(/x − /y)

((x − y)2 + iη)2−ε

−/y

(y2 + iη)2−ε
×

×
+∞∫
0

dt
(−igT a)nμ

((y − tn)2 + iη)1−ε
. (21)

We can introduce Feynman parameters in two steps combining firstly the second and third de-
nominators in the integrands of (21) and secondly the resulting denominator with the first one of 
(21) to identify the different configurations giving rise to unavoidable divergences. We will also 
employ this Feynman parametrization to solve the whole integral. In this case, using the delta 
functions in the Feynman parameters, Landau’s equations read

α2(x − y)2 + (1 − α2)α1y
2 + (1 − α2)(1 − α1)(y

2 − 2tn · y) = 0 , (22)

α2(x − y)μ + (1 − α2)α1y
μ + (1 − α2)(1 − α1)(y

μ − tnμ) = 0 . (23)

To study the case when the gluon line becomes soft we take α1 = 1. In this case we do not expect 
the gluon to change the direction of the external line since it carries no momentum. This is indeed 
the case because the solution to Landau’s equations tells us that

yμ = α2

2α2 − 1
xμ , (24)

and that x and y must lie in the lightcone for α2 �= 0, 1. For the end-point singularities in the α
parameters we see that for α2 = 1 the vertex y migrates to the external point x. This makes sense 
since the fermion line from 0 to y will be carrying all the momentum while the fermion line from 
11
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y to x shrinks. Taking α2 = 0 means that the y vertex migrates to the origin, signaling that we 
are dealing with an UV divergence. However in both cases there is not restriction to y or x to lie 
on the lightcone.

For the case when α1 = 0, so that the exchanged gluon is not soft, Landau’s equations tell us 
that

yμ = (1 − α2)tn
μ − α2x

μ

(1 − 2α2)
. (25)

As we will see below, the only contribution to this amplitude will come when t = 0 so that we 
will have a collinear pinch surface with the vertex y obeying (24) but this time the gluon emerges 
from the Wilson line cusp (the origin), making the gluon collinear. Both the fermion external line 
and gluon line are lightlike for α2 �= 0, 1. Again if α2 = 1 the internal vertex y coincides with the 
external point x and if α2 = 0 we will have that yμ = tnμ signaling again a UV divergence for 
t = 0.

To carry out the whole integral we will introduce Feynman parameters in two steps as above, 
first combining the second and third denominators and then the resulting denominator with the 
first one in (21). In this way

J
(1)
CS (x) = −g2CF

�(1 − ε)�2(2 − ε)

16π6−3ε

�(5 − 3ε)

�2(2 − ε)�(1 − ε)
×

×
∫

ddy

+∞∫
0

dt×

×
1∫

0

dα1dα2
(/x/n/y − /y/n/y)α1−ε

1 (1 − α1)
−εα1−ε

2 (1 − α2)
2−2ε

(y2 − 2y · (α2x + (1 − α1)(1 − α2)tn) + α2x2 + iη)5−3ε
. (26)

Now we shift the integration variable y → y − (α2x + (1 − α1)(1 − α2)tn) and, by parity, drop 
odd powers of the new y in the numerator. This yields

J
(1)
CS (x) = − g2CF

�(5 − 3ε)

16π6−3ε

∫
ddy

+∞∫
0

dt×

×
1∫

0

dα1dα2
(α2(1 − α2)/x/n/x − /y/n/y)α1−ε

1 (1 − α1)
−εα1−ε

2 (1 − α2)
2−2ε

(y2 + α2(1 − α2)x2 − 2(1 − α1)(α2 − α2
2)tn · x + iη)5−3ε

. (27)

At this point, it is possible (taking n · x �= 0) to carry out the integration in t (giving only a 
contribution at t = 0). This gives

J
(1)
CS (x) =g2CF

�(5 − 3ε)

16π6−3ε

∫
ddy×

×
1∫

0

dα1dα2
(α2(1 − α2)/x/n/x − /y/n/y)α1−ε

1 (1 − α1)
−1−εα−ε

2 (1 − α2)
1−2ε

(4 − 3ε)2n · x(y2 + α2(1 − α2)x2 + iη)4−3ε
.

(28)
12
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Using standard Dimensional Regularization formulas we carry out the integral in y and identify 
the Euler Beta functions in the Feynman parameters integrations to get

J
(1)
CS (x) = −iπ

d
2 g2CF (x2)2ε−2

(2x · n)16π6−3ε

�(1 − 2ε)�(2 − ε)�(−ε)

�(2 − 2ε)

(�(ε)(1 + ε)

�(2 + ε)

)
×

×
(

2x · n/x(1 − 2ε) + ε/nx2
)

. (29)

The consequence of expanding in powers of ε the result in eq. (29) is,

J
(1)
CS (x) = iαsCF

4π

−/x

2π2(x2 + iη)2

(
− 2

ε2 + 2(1 − 2γE)

ε
− (/x)−1 /nx2

n · x
1

ε

)
+O(ε0) . (30)

This is a very nice result since the most divergent part is proportional to a Fermion propagator 
S(x) (one can think of this result as follows: the gluon merges collinearly with the fermion 
producing the divergence times the fermion propagator) and this will allow us to use the LSZ 
formula to get the momentum space expression in a very simple manner. This formula relates the 
jet function in momentum space, JMS , with the one in coordinate space as

JMS(p) = −i

∫
ddxe−ip·x(i /∂)J

(1)
CS (x) . (31)

By using the Dirac equation /∂S(x) = iδ(d)(x) we find that the most divergent part of the jet 
function is

lim
ε→0

JMS(p) = lim
ε→0

αsCF

4π

( 2

ε2

)
. (32)

So that we recover the same leading pole structure as the one-loop gluon exchange vertex cor-
rection J (1)

V r of eq. (20). The last subleading term inside the brackets (30) must contain the 
dependence on the collinear scale p · n after LSZ reduction (which is not straightforward to 
perform).

4.3. Abelian radiative one-loop jet function

As stated in the introduction, the study of subleading regions (also called NLP regions, i.e. 
kinematical configurations that give rise to divergent subleading terms in observables, usually 
coming from emission of soft gluons) has gained attention in recent years [6–10]. For this reason, 
we will now turn on to analyze some features of the radiative one-loop jet function in coordinate 
space and try to reduce in quadrature the contributing diagrams. The contributions to the one-
loop radiative jet function in the abelian case are listed in Fig. 7. Here I do not include external 
leg corrections.

In the interest regarding the study of NLP regions, we will also analyze Landau’s equations 
for each diagram contributing to the radiative jet function. This will help us again to identify the 
configurations giving rise to collinear divergences and their overlapping with soft divergences 
of the emitted gluon (highlighted in the text below). To see this, as an oversimplified exam-
ple, imagine that, after reducing to Feynman parameters a contribution to the radiative jet, one 
identifies through Landau’s equations that α1 = 0 entails a collinear divergence and α2 = 1 a 
soft one. By separating the divergent part from the finite one on each of the two Feynman pa-
rameters (through the usual multiplication by 1 = αi + (1 − αi)), one would get four terms 
α1α2 + α1(1 − α2) + α2(1 − α1) + (1 − α1)(1 − α2) encoding a collinear-finite, a collinear-
soft overlapping, a finite-finite, and a finite-soft region respectively. This example shows the 
13
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• •

•

•

(a)

·
(b)

• •

•

•

·

(c)

• ••

•

•

(d)

• • •

•

•

Fig. 7. Diagrams contributing to the one-loop radiative jet function in coordinate space. No external leg corrections are 
included.

• •

•

w

z

x

y

tn

≡ J
(1)μb
rad (x, y)

•

·

Fig. 8. Diagram representing the one-loop internal gluon emission from a jet.

potentiality of the present treatment concerning the factorization and overlapping of divergent 
kinematical regions.

One should however be careful when analyzing divergences on a diagram by diagram basis, 
since results may suffer from artefacts due to the specific integral representation under treatment. 
All things said, the direct identification of individual Feynman diagrams with certain physical 
processes is a well established practice in theoretical particle physics. On the other hand, if one 
has access to the fully integrated final result in coordinate space, the soft and collinear limits can 
be studied by taking these in the values of the external momenta for the outgoing fermion and 
gluon (after performing LSZ reduction of the coordinate space, UV finite, result).

4.3.1. One-loop jet function with internal gluon emission in coordinate space
The first contribution to the abelian one-loop radiative jet function in Fig. 7 is depicted in 

detail in Fig. 8. We consider a lightlike Wilson line, i.e. n2 = 0. I will keep the non-abelian 
numerical factors (such as the fundamental Casimir of the gauge group, CF ).

This diagram amounts to

J
(1)μb
rad (x, y) = (ig3T aT bT a)

(�(2 − ε)

2−ε

)3(�(1 − ε)

2−ε

)2
∫

ddzddw×

2π 4π

14
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×
∞∫

0

dt
−(/y − /w)

((w − y)2 + iη)2−ε

−/n( /w − /z)

((w − z)2 + iη)2−ε
×

× γ μ −/z

(z2 + iη)2−ε

1

((w − tn)2 + iη)1−ε

1

((x − z)2 + iη)1−ε
. (33)

The color structure above is easily computable, it gives T aT bT a = −T b/(2N) for SU(N). This 
factor is also easily computed for SO(N), where is just T b/4 (giving no suppression of the dia-
gram for large number of colors), and for Sp(N) where it amounts to −T b/4 (see the Appendix 
in [24] for a detailed derivation).

Analysis of Landau’s equations. We will analyze Landau’s equations for this diagram by an-
ticipating the way we will use Feynman parameters to solve eq. (33). For the integration in z we 
will first combine the second and third denominators and subsequently the resulting denominator 
with the last denominator in eq. (33). Landau’s equations for the resulting denominator read

z2 − 2z · (α1α2w + (1 − α2)x) + α1α2w
2 + (1 − α2)x

2 = 0 , (34)

zμ = α1α2w
μ + (1 − α2)x

μ . (35)

Let us analyze the case when α2 = 1 , which corresponds to the case of a soft emitted gluon
(since the Feynman parameter of the external gluon line is 1 −α2). In this case eq. (35) amounts 
to zμ = α1w

μ so that the emitted gluon indeed does not change the direction of the fermion. 
Using this result in eq. (34) for a lightlike external point, x2 = 0, one obtains α1(1 − α1)w

2 = 0
which sets w on the lightcone except for the endpoints of the integration in α1, these endpoints 
correspond to UV divergences (in two distinct fermion lines) zμ = 0 for α1 = 0 and zμ = wμ for 
α1 = 1. Next, let us take α2 = 0 , this gives the UV condition that xμ = zμ so that the emitted 
gluon travels no distance.

Now, setting α1 = 1 , eq. (35) tells us that z must lie in the line connecting x and w since 
it equals zμ = α2w

μ + (1 − α2)x
μ. Using this in eq. (34) one obtains the condition α2(1 −

α2)(w − x)2 = 0 which sets w on the lightcone of x except for the UV gluon with α2 = 0 and 
hence zμ = xμ or the UV fermion with α2 = 1 and zμ = wμ. For the case α1 = 0 one has that 
zμ = (1 − α2)x

μ which gives α2(1 − α2)x
2 = 0, which is automatically fulfilled if the external 

point is taken on the lightcone.
Landau’s equations for the other vertex w in eq. (33), after the steps taken to reach eq. (40)

below, read

αw2 + 2w · θ + κ2 = 0 (36)

αwμ + θμ = 0 . (37)

Here α = α3α4α5 + α5(1 − α3)α1α2(1 − α1α2) + α5(1 − α4), θμ = −(1 − α5)n
μ − α1α2(1 −

α2)x
μ − α5(1 − α4)y

μ, and κ2 = α5(1 − α3)α2(1 − α2)x
2 + α5(1 − α4)y

2.
We will set the external vertices to be on the lightcone x2 = y2 = 0, which means κ2 = 0. 

For the case α �= 0 we will obtain that θ2 = 0 which gives the condition on the external vertices 
(1 − α5)n · (−α1α2(1 − α2)x − α5(1 − α4)y) + α1α2(1 − α2)α5(1 − α4)x · y = 0. Which can 
be solved for a collinear gluon emission with x ∝ y and α5 = 1. Another solution has the quarks 
and the gluon emitted from the vertex all traveling in the same direction, i.e. x, y ∝ n. The case 
α = 0 as seen from the result in eq. (41) entails several UV divergences arising from the fact 
that there is a Jacobian of α−2+ε (UV divergences are regulated for ε > 0). Some of them have 
α4 = α5 = 1, α3 = 0 and α1 = α2 = 1, α1 = α2 = 0 or α1 = 0 and α2 = 1.
15
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Computation. As in the previous subsection we introduce Feynman parameters in two steps for 
combining the second, the third, and last denominators above such that

J
(1)μb
rad (x, y) = Fb

∫
ddw

∫
ddz

∞∫
0

dt×

×
1∫

0

dα1dα2
(α1−ε

1 (1 − α1)
1−εα3−2ε

2 (1 − α2)
−ε)

((w − y)2 + iη)2−ε((w − tn)2 + iη)1−ε
×

× (/y − /w)/n(/zγ μ/z − /wγ μ/z)

(z2 − 2z · (α1α2w + (1 − α2)x) + α1α2w2 + (1 − α2)x2)5−3ε
, (38)

where Fb encodes the color structure and numerical factors. Now, to compute the integral in z, 
we shift it as z → z − (α1α2w + (1 − α2)x) and then drop odd powers of z in the numerator due 
to parity. This integration results in

J
(1)μb
rad (x, y) =F ′b

∫
ddw

∞∫
0

dt

1∫
0

dα1dα2
α1−ε

1 (1 − α1)
1−εα3−2ε

2 (1 − α2)
−ε

((w − y)2 + iη)2−ε((w − tn)2 + iη)1−ε
×

×
(
Kμ − (/y − /w)/nγ μ(m2)/2

)
(m2)2ε−3 , (39)

where m2 = α1α2(1 −α1α2)w
2 +α2(1 −α2)x

2 −2α1α2(1 −α2)x ·w and Kμ = (/y − /w)/n[((1 +
α1α2) /w + (1 − α2)/x)γ μ(α1α2 /w + (1 − α2)/x). Next we combine the second denominator above 
with the last one again (the one proportional to m2) with Feynman parameters and then compute 
the integral in t assuming we are not integrating w in the time-like region where w · n ≥ 0. From 
this integration we will obtain a denominator factor and a −2n · w. We will combine these with 
the last propagator denominator left in two steps of Feynman parametrization, which gives

J
(1)μb
rad (x, y) = F ′′b

∫
ddw

1∫
0

dα1...dα5α
1−ε
1 (1 − α1)

1−εα3−2ε
2 (1 − α2)

−ε×

× α−1−ε
3 (1 − α3)

2−2ε×

× α2−3ε
4 (1 − α4)

1−εα4−4ε
5

(αw2 + 2w · θ + κ2)6−4ε

(
Kμ − (/y − /w)/nγ μ(m2)/2

)
. (40)

Finally we shift the integration variable as w → wα
1
2 + θα− 1

2 and carry out the w integration 
finding

J
(1)μb
rad (x, y) = ig3π3ε−6T b

28N(3 − 3ε)
×

1∫
0

dα1...dα5α
1−ε
1 (1 − α1)

1−εα3−2ε
2 (1 − α2)

−εα−1−ε
3 ×

× (1 − α3)
2−2εα2−3ε

4 (1 − α4)
1−ε×

× α4−4ε
5 α−2+ε

(
αgρσ Aμ

ρσ �(3 − 3ε)(M2)/2 + Bμ�(4 − 3ε)
)
(M2)3ε−4 ,

(41)

for SU(N). The expressions for the Aμ
ρσ , Bμ, and M2 are shown next (here βμ ≡ α− 1

2 θμ):
16



A. Salas-Bernárdez Nuclear Physics B 985 (2022) 116024
• •

•

•

· ≡ J
(1)μb
ext, rad(x, y)

z

w

x

y

tn

Fig. 9. Diagram representing the one-loop external gluon emission from a jet.

M2 = κ2 − β2 , (42)

Bμ =(/y − /β)/n
[(

(1 + α1α2)/β + (1 − α2)/x
)
γ μ

(
α1α2 /β + (1 − α2)/x

)−
− γ μ

(
α1α2(1 − α1α2)β

2 + α2(1 − α2)x
2 − 2α1α2(1 − α2)β · x)

/2
]
, (43)

Aμ
ρσ =(/y − /β)

(
(1 + α1α2)α1α2γργ μγσ − α1α2(1 − α1α2)γ

μgρσ /2
)−

− γρ/n
[
(1 + α1α2)γσ γ μ

(
(1 − α2)/x + α1α2 /β

)+
+ α1α2

(
(1 + α1α2)/β + (1 − α2)/x

)
γ μγσ − α1α2γ

μ
(
(1 − α1α2)βσ − (1 − α2)xσ

)]
.

(44)

This result is rather cumbersome and will be left for a future work to fully solve the inte-
grations over Feynman parameters in eq. (41). Nonetheless, by inspection, one straightforward 
possible divergence is identified by noticing that in eq. (41) there is a α−1−ε

3 factor that will pro-
duce a divergence whenever α3 = 0. Since α3 multiplies the denominator ((w − tn)2 + iη)1−ε , 
this limit can be identified with the configuration where the internal gluon line goes soft (in-
deed it is regulated for ε < 0). This is always the case for gluon lines, due to the power of their 
propagator. This happens too for the external gluon, which produces a soft divergence whenever 
α2 = 1 and overlaps with a possible collinear singularity whenever α5 = 1 at the same time.

As already stated above, the Jacobian α−2+ε in eq. (41) encodes several UV divergences 
(regulated for ε > 0). Also, the appearance of the M2 term in eq. (41) also helps identifying 
further divergent configurations: for example, M2 vanishes for lightlike and collinear external 
points, x2 = y2 = x · y = 0, (in this case one needs to set also α5 = 1).

4.3.2. One-loop jet function with external gluon emission in coordinate space
We will continue by reducing in quadrature the second contribution to the abelian one-loop 

radiative jet function in Fig. 7.
The diagram in Fig. 9 equals

J
(1)μb
ext, rad(x, y) = (ig3T bCF )

(�(2 − ε)

2π2−ε

)3(�(1 − ε)

4π2−ε

)2
∫

ddzddw×

×
∞∫

0

dt
−(/y − /z)

((z − y)2 + iη)2−ε

−γ μ(/z − /w)

((z − w)2 + iη)2−ε
×

× /n
− /w

2 2−ε

1
2 1−ε

1
2 1−ε

. (45)

(w + iη) ((w − tn) + iη) ((x − z) + iη)

17
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Analysis of Landau’s equations. We will analyze Landau’s equations for this diagram by an-
ticipating the way we will use Feynman parameters to solve eq. (45). For the integration in z we 
will first combine the first and second denominator and subsequently the resulting denominator 
with the last denominator in eq. (45). Landau’s equations for the resulting denominator for the z
integration read

z2 − 2z · (α2(α1y + (1 − α1)w) + (1 − α2)x) + α2(α1y
2 + (1 − α1)w

2) + (1 − α2)x
2

= 0 (46)

zμ = α2(α1y
μ + (1 − α1)w

μ) + (1 − α2)x
μ (47)

Let us analyze the case when α2 = 1 , which corresponds to the case of a soft emitted gluon
(since the Feynman parameter of the external gluon line is 1 −α2). In this case eq. (47) amounts 
to zμ = α1y

μ + (1 − α1)w
μ so that the emitted gluon does not change the direction of the 

fermion traveling from w to y as we expect from the momentum space picture. Using this result 
in eq. (46) for lightlike external points, x2 = y2 = 0, one obtains α1(1 −α1)(w − y)2 = 0, which 
sets w − y on the lightcone except for the endpoints of the integration in α1, these endpoints 
correspond to UV divergences (in two distinct fermion lines) zμ = wμ for α1 = 0 and zμ = yμ

for α1 = 1. Next, let us take α2 = 0 , this gives the UV condition that xμ = zμ so that the emitted 
gluon travels no distance. For general α2 and α1 = 0, 1 we will have that z will lie in the line 
connecting x to w and y respectively.

Landau’s equations for the other vertex, after the steps taken to reach eq. (51) below, read

αw2 + 2w · θ + κ2 = 0 , (48)

αwμ + θμ = 0 . (49)

Here α = α4α5 + (1 − α1)α2(1 − (1 − α1)α2), θμ = −(1 − α4)α5n
μ − α1α2(1 − α1)y

μ − (1 −
α1)(1 −α2)y

μ, and κ2 = α1α2(1 −α1α2)y
2 +α2(1 −α2)x

2 − 2α1α2(1 −α2)x · y. Taking light-
like and collinear external points, one finds similar conclusions as in the previous example by 
following the same logic.

Computation. As in the previous example we will use sequential Feynman parameters to per-
form the integration in z. We will first combine the first and second denominator and the resulting 
denominator with the last one in eq. (45), after shifting z → z − (α2(α1y + (1 − α1)w) + (1 −
α2)x), dropping odd powers and integrating in z yields

J
(1)μb
ext, rad(x, y) =Cb

∫
ddw

∞∫
0

dt

1∫
0

dα1dα2
α1−ε

1 (1 − α1)
1−εα3−2ε

2 (1 − α2)
−ε

(w2 + iη)2−ε((w − tn)2 + iη)1−ε
×

×
(
Kμ − γ μ/n/w(m2)/2

)
(m2)2ε−3 , (50)

where Cb is a color constant, m2 = α1α2(1 −α1α2)y
2 + (1 −α1)α2(1 − (1 −α1)α2)w

2 +α2(1 −
α2)x

2 − 2(α1α2y · ((1 −α1)w + (1 −α2)x) + (1 −α1)(1 −α2)w · x), and Kμ = (α2(α1/y + (1 −
α1) /w) +/y)γ μ(α2(α1/y+(1 −α1) /w) + /w)/n /w. Next we combine the first and second denominators 
in eq. (50) and compute the integral in t in the spacelike region w · n < 0. We combine the 
resulting two denominators with the last denominator left in two steps to get
18
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J
(1)μb
ext, rad(x, y) = C′′b

∫
ddw

1∫
0

dα1...dα5α
1−ε
1 (1 − α1)

1−εα3−2ε
2 (1 − α2)

−εα1−ε
3 ×

× (1 − α3)
−1−ε

α1−2ε
4 α2−2ε

5 (1 − α5)
2−2ε

(αw2 + 2w · θ + κ2)6−4ε

(
Kμ − γ μ/n/w(m2)/2

)
. (51)

We are now ready to compute the integral in w by shifting w → wα
1
2 + θα− 1

2 to obtain

J
(1)μb
rad (x, y) = ig3T bCF

215−4επ14−7ε

1∫
0

dα1...dα5α
1−ε
1 (1 − α1)

1−εα3−2ε
2 (1 − α2)

−εα−1−ε
3 ×

× (1 − α3)
2−2εα2−3ε

4 (1 − α4)
1−ε×

× α4−4ε
5 α−2+ε

(
αgρσ Aμ

ρσ �(3 − 3ε)(M2)/2 + Bμ�(4 − 3ε)
)
(M2)3ε−4 .

(52)

The expressions for the Aμ
ρσ , Bμ, and M2 are shown next (here βμ ≡ α− 1

2 θμ):

M2 = κ2 − β2 , (53)

Bμ =
[
− (α2(α1/y + (α1 − 1)/β) + /y)γ μ(α2(α1/y + (α1 − 1)/β) − /β)+

+ γ μ
(
α1α2(1 − α1α2)y

2+
+ (1 − α1)α2(1 − (1 − α1)α2)β

2 + α2(1 − α2)x
2 − 2[α1α2y · ((1 − α2)x − β)−

− (1 − α1)(1 − α2)x · β])/2
]
/n/β , (54)

Aμ
ρσ =(α2(α1/y + (α1 − 1)/β) + /y)γ μ(1 + α2(1 − α1))γρ/nγσ +

+ (1 − α1)α2γργ μ
[
(α2(α1/y + (α1 − 1)/β) − /β)/nγσ −

− (1 + α2(1 − α1))γσ /n/β
] + γ μ/n

[
(1 − α1)α2(1 − (1 − α1)α2)/βgρσ /2+

+ γρ

(
(1 − α1)α2(1 − (1 − α1)α2)βσ +

+ α1α2(1 − α1)yσ + (1 − α1)(1 − α2)xσ

)]
. (55)

The result in eq. (52) has the same form as eq. (41) and could be combined to produce a more 
tractable result, although the inclusion of the other two diagrams in the abelian case is needed for 
gauge invariance. We will leave this for a future work. For completeness, we now turn to analyze 
Landau’s equations for the self energy corrections to the one-loop radiative jet function.

4.3.3. Landau’s equations for the internal-emission self-energy correction to the one-loop 
radiative jet function

Next, I will analyze Landau’s equations for the self-energy contributions to gain some intu-
ition on some of their divergent configurations. The first one is depicted in Fig. 10 and, after 
Feynman parametrization, equals

J
(1)μb
SE, int, rad(x, y)

= (ig3T aT bT a)
�(10 − 6ε)

2−ε 4 2−ε 2

∫
ddzddw×
(2π ) (4π )
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Fig. 10. Diagram representing the one-loop self energy with internal gluon emission from a jet.

×
1∫

0

dα′
1...dα′

6α
′
1

1−ε
α′

2
1−ε

α′
3

1−ε
α′

4
−ε

α′
5

1−ε
α′

6
−ε×

× δ

(
1 −

6∑
n=1

α′
n

)
×

× (/y − /w)γ ν( /w − /v)γ μ(/v − /z)γν/z(
α′

1(y − w)2 + α′
2(w − v)2 + α′

3(v − z)2 + α′
4(w − z)2 + α′

5z
2 + α′

6(x − v)2
)10−6ε

.

(56)

First of Landau’s equations for the diagram in Fig. 10 reads

α′
1(y − w)2 + α′

2(w − v)2 + α′
3(v − z)2 + α′

4(w − z)2 + α′
5z

2 + α′
6(x − v)2 = 0 ,

(57)

which as usual sets all lines on the lightcone except if the lines are hard (zj → 0) or soft (αj = 0).
Now, we will treat the integration in each vertex separately, effectively imposing conservation 

of momentum by employing Feynman parameters in separate steps (just as in the previous exam-
ples). The primed Feynman parameters in eq. (57) will be replaced later with the corresponding 
parameters after successive Feynman parametrizations. Furthermore, we will set all lines not 
connected to the vertex under analysis to be lightlike.

For the integration in z, the second Landau’s equation gives (taking α′
3 = α3(1 − α4), α′

5 =
(1 − α3)(1 − α4) and α′

4 = α4)

zμ = α3(1 − α4)v
μ + α4w

μ . (58)

If either the emitted gluon or the emitted fermion at z is soft (α′
3 = 0 and α′

4 = 0 respectively) 
then z must lie in the direction of w or v respectively. So that the emitted particle does not change 
the direction of the particle emitting it.

If α′
5 = 1 and hence α3 = α4 = 0 (soft emitted lines from z) then there is a UV solution to 

Landau’s equations with zμ = 0.
For α′

5 = 0 with α3 = 1 (so that the outgoing fermion from the Wilson line cusp is soft), zμ

will be the convex combination of the other two internal vertices (i.e. on the line connecting them) 
and yields the condition that (1 −α4)α4(v − w)2 = 0. So that if α4 �= 0, 1, then v and w must be 
lightlike separated in order to obtain a divergence in the amplitude. For the case when the emitted 
gluon is soft, α4 = 0, then the gluon does not change the direction of the fermion, zμ = α3v

μ, 
and v2 = 0 except for the UV cases where α3 = 0 (z = 0) and α3 = 1 (z = v). If α3 = 0 then it is 
the outgoing fermion from z that is soft and hence zμ = α4w

μ and hence w2 = 0 except for the 
UV cases.
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Fig. 11. Diagram representing the one-loop self energy with external gluon emission from a jet.

For the integration in v, the second Landau’s equation gives (taking α′
2 = α2(1 − α6), α′

3 =
(1 − α2)(1 − α6) and α′

6 = α6)

vμ = α2(1 − α6)w
μ + (1 − α2)(1 − α6)z

μ + α6x
μ . (59)

Let us analyze the case when the emitted gluon traveling to x becomes soft, i.e. α6 = 0. In this 
case vμ will lie on the line connecting the other two internal vertices not changing the direction 
of the fermion. Introducing eq. (59) into eq. (57) we find α2(1 − α2)(w − z)2 = 0. This means 
that, if no fermion line connected to v is soft, then the fermion lines connecting z to w must lie 
on the lightcone. If α2 or (1 −α2) are equal to zero then the fermion lines can be off the lightcone 
and there is a UV singularity since we will have that v = z or v = w respectively.

The integration in w has very similar Landau’s equations as the one in z. Hence, we will move 
on to analyze these equations for the next and last contribution to the abelian one-loop radiative 
jet function.

4.3.4. Landau’s equations for the external-emission self-energy correction to the one-loop 
radiative jet function

The last contribution to the abelian one-loop radiative jet function is shown in Fig. 11 and, 
after Feynman parametrization, amounts to

J
(1)μb
SE, ext, rad(x, y)

= (ig3T bCF )
�(10 − 6ε)

(2π2−ε)4(4π2−ε)2

∫
ddzddw×

×
1∫

0

dα′
1...dα′

6α
′
1

1−ε
α′

2
1−ε

α′
3

1−ε
α′

4
−ε

α′
5

1−ε
α′

6
−ε×

× δ

(
1 −

6∑
n=1

α′
n

)
×

× ( /w − /y)γ μ( /w − /v)(d − 2)(/v − /z)/z(
α′

1(y − w)2 + α′
2(w − v)2 + (α′

3 + α′
4)(v − z)2 + α′

5z
2 + α′

6(x − w)2
)10−6ε

. (60)

Hence, first of Landau’s equations for the diagram in Fig. 11 reads

α′
1(y − w)2 + α′

2(w − v)2 + (α′
3 + α′

4)(v − z)2 + α′
5z

2 + α′
6(x − w)2 = 0 , (61)

which again sets all lines on the lightcone except if the lines are hard (zj → 0) or soft (αj = 0). 
Notice that for the self energy piece α3 +α4 serves the purpose of being one Feynman parameter 
only.
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For the integration in w, the second Landau’s equation gives (taking α′
1 = α1(1 − α6), α′

2 =
(1 − α1)(1 − α6) and α′

6 = α6)

wμ = α1(1 − α6)y
μ + (1 − α1)(1 − α6)v

μ + α6x
μ . (62)

Giving the usual solution for the soft-emitted gluon case α6 = 0, w lying in the line connecting 
v to y and α1(1 − α1)(y − v)2 = 0. So that the fermion lines connecting y and v must lie on the 
lightcone and the soft gluon does not change the direction of the fermion. Again, UV solutions 
arise whenever α1 = 0, 1 with w = v and w = y respectively. An analogue situation happens 
for a soft emitted fermion from w to y (v) corresponding to α1 = 0 (α1 = 1) for general α6. 
To finish let us analyze Landau’s equations for one vertex in the self energy part, for example v
(the one with z is very similar). The second Landau’s equation gives (taking α′

3 = α3(1 − α2), 
α′

4 = (1 − α3)(1 − α6) and α′
2 = α2)

vμ = α2w
μ + (1 − α2)z

μ , (63)

so that v must lie on the straight line connecting w and z with the usual condition α2(1 −α2)(w−
z)2 = 0.

5. Conclusion

In this paper I have discussed the results leading to factorization of QCD amplitudes in both 
momentum and coordinate spaces and fully solved the one-loop contribution to the jet function in 
coordinate space, finding that the most divergent part of it is proportional to a fermion propagator. 
This fact was identified as a configuration where the gluon emerging from the cusp of the Wilson 
line travelled collinearly with the fermion to the external point, producing hence the divergence. 
An LSZ reduction of my result shows that we recover the correct leading divergence expected 
from the previously known momentum space results.

In view of the growing interest on NLP divergences of QCD factorized amplitudes, I have 
also reduced two radiative contributions to the one-loop jet function into a Feynman parameters 
integral. Finally, I have analyzed Landau’s equations for all contributions (without external leg 
corrections) to the abelian one-loop radiative jet function, highlighting the relevance of these 
equations in revealing the divergent (soft and collinear) configurations in the amplitudes. I have 
also studied how separating divergent terms in Feynman parameters has an interesting potential 
in factorizing different pinched regions as well as making explicit their overlapping.
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