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Abstract 

Non-desalinated and desalinated fragments of Iberian, Italic and Tarraconensian amphorae sherds, 

found in different underwater marine environments, were compared to determine both their state of 

conservation and the decay caused by salt crystallization. Polarizing light and fluorescence optical 

microscopy, scanning electron microscopy coupled to energy dispersive X-ray spectroscopy, X-ray 

diffraction, ion chromatography and mercury intrusion porosimetry tests were conducted on the 

samples. Non-desalinated samples or samples in which desalination was not wholly effective 

exhibit a variety of signs of degradation, especially in those samples fired at lower firing 

temperature. Sherds fired at higher temperatures have lower surface area and less connected 

porosity, which entail a lower absorption of soluble salts containing water and eventually less 

decay. The composition and texture reached with the firing temperature is a key factor on salt 

crystallization decay and hence on the durability of these artifacts. This should be taken into 

account during desalination procedures that have to be optimized in order to be successful. 

Keywords: Underwater ceramics; amphorae; salt crystallization; decay; firing temperature. 

mailto:plopezar@geo.ucm.es


2 
 

1. Introduction 

The recover of archaeological artifacts allows studying their provenance, technologies of 

manufacture and understanding the lack of connection of some parts of the history of the human 

being. In the conservation of waterlogged artifacts, due to the large amount of material and lack of 

scientific knowledge on their physico-chemical properties, the efficiency of methods and products 

for desalination and consolidation is still unclear. Accurate methods for each specific object depend 

on composition and texture and these must be taken into account in order to select the most 

effective procedures. 

Archaeological objects made of stone or fired clay are exposed to a number of processes, 

mechanisms and causes of decay; some are closely related to the intrinsic properties and nature of 

the materials, such as their mineralogy and texture (pores and cracks), while others are induced by 

outside agents such as microclimate, environmental pollution or the anthropogenic or natural 

surrounding environment (air, water, soil). Salt crystallization in porous materials is one of the 

primary causes of stone and ceramic decay, especially in marine environments.
1-4

 While salt 

crystallization-mediated decay in stone materials has been extensively studied,
5-9

 this type of decay 

has been less thoroughly analysed in archaeological ceramics, despite the abundance and variety of 

such materials found at archaeological sites.
10

 Studies conducted on salt crystallization-induced 

decay in ceramics
11

 show that the surface finishes and the presence or absence of temper or 

degreasing components, barely affect salt crystallization. These components are added to the clay 

mainly to provide the paste a better resistance, to support the temperature changes during firing, to 

accelerate drying, to decrease the retraction suffered during the drying of the paste or to reduce 

excess of plasticity or shrinkage.
12,13

 Temper or degreasing components could be quartz, 

plagioclase, potassium feldspar, rock fragments, sand, powder or fragments of ceramics (grog), 

straw, feathers, shales, granulated slags or crushed shells. O´Brien, 1990, concluded that firing 

temperature is the main determinant in decay, since ceramics fired at high temperatures are less 

porous and consequently less permeable and more durable. However, after conducting his 



3 
 

experimental study on accelerated ageing induced by salt crystallization, the question of whether the 

long-term effects would be the same for ceramics fired at low or high temperatures was left 

unanswered. 

In another vein, the conservation and decay of archaeological objects vary widely depending on 

environmental conditions. Marine environments are characterised by physical (abrasion, transport, 

deposition), chemical (dissolution-precipitation, oxidation-reduction) and biological (bacterial or 

benthic organism growth) processes. In addition to the prevailing environmental conditions (degree 

of salinity and acidity, temperature and thermal variations, type and concentration of soluble salts, 

eroding fluid movement, microorganisms, fauna and flora), archaeological remains are affected by 

the characteristics of the underlying substrate (soft or hard, type of sediment or rock and the 

associated organisms).
14 

Seawater contains different types of salts, most prominently sodium, 

magnesium, calcium, potassium and strontium cations and chloride, sulfate, bromide and 

bicarbonate anions. These soluble salts in the sea water are absorbed through the pores of the 

ceramic artifacts. After centuries immersed in this salty underwater environment, these artifacts 

pass to the aerial environment with totally different physico-chemical conditions when are extracted 

from the water. Fluctuations of relative humidity and temperature mobilize the absorbed soluble 

salts, modify the composition and texture and eventually the salt crystallization process accelerates 

weathering
15,16 

endangering durability of these ceramics. 

The main objective of this research is to show the influence of firing temperature on decay caused 

by salt crystallization in non-desalinated and desalinated archaeological ceramic amphorae from 

underwater marine environments. 

2. Materials and methods  

2.1. Samples  
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The underwater marine ceramic amphorae fragments analysed in this study varied in origin and 

some of them were subjected to post-extraction desalination process. Samples A-Ibe-1, A-Ita-15 

and A-Tar-24 were taken from the Cala de Aiguablava classic era anchorage ground at Begur, in the 

Spanish region of Catalonia (Fig. 1). All the samples from this site have been subjected to a 

desalination process after their extraction from the archaeological site. The desalination process was 

carried out in the laboratory of the Centre d’Arqueologia Subaquàtica of Catalunya in Girona, by 

submerging them in tap water and measuring the conductivity of the water with a conductivity 

meter until the readings stabilized.
17

 By other hand, samples A-Ibe-31, A-Ita-33 and A-Tar-32 are 

non desalinated underwater sherds, with an unknown location since these were extracted in the 

1970s by fishermen and divers. In this case, these fragments of amphorae have the same historical 

provenance than the former mentioned desalinated samples, and these were used in this research in 

order to carry out comparative studies. All the samples were exposed to the environmental room 

conditions of the lab warehouse where these were stored until the current research.  

The approximate age and provenance of the sherds were studied by archaeologists using historic 

and archaeological sources.
17-19

 The sherds denominated samples A-Ibe-1 and A-Ibe-31 were made 

by Iberian potters, whose production sites were located primarily on the east and south of what is 

now Catalonia (Fig. 1). They date from the second or first century BC and were possibly used to 

store wine or beer. Their main features are the red color, fine texture and the very thin walls of the 

vessels (Fig. 2a) and hence their fragility and the importance of the ratio between capacity and 

weight of the container. The no desalinated sample A-Ibe-31 displays thin flakes on the outer 

surface due to salt crystallization decay/processes. 

Samples A-Ita-15 and A-Ita-33 are sherds of Italic origin. These were made in or around the Italian 

region of Campania and date from the mid-second to the mid-first centuries BC (Fig. 1). These 

display pale red color and plenty of calcareous concretions on the surface (Fig. 2b). The main 

characteristic of these vessels manufactured in the south of Italy was their strength due to their thick 

walls able to resist important tractions. Their main problem is the container-content ratio, since 
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some shapes could be 1:1, e.g. same weight for the container and same for the content. This ratio in 

the world of transport and commerce is very undesiderable.
18

 

Samples A-Tar-24 and A-Tar-32 are an example of Tarraconensian amphorae. This type of pottery 

was made primarily on the Catalonian coast, with the most active production sites located in the 

Maresme region near Barcelone (Fig. 1). These fragments date from the mid-first century BC to the 

mid-first century AD. The shape is a copy of the Italic amphorae that precede them. The non 

desalinated sample A-Tar-32 displays thick flakes on the surface due to salt crystallization (Fig. 2c). 

These types of amphorae still had thick walls with large dimensions and high weight.
18

 

Both Italic and Tarraconensian amphorae were used for wine transport. One important aspect is the 

the use of waterproofing materials to cover the internal surfaces of the amphorae to provide an 

impermeable inner surface, as can be observed in Fig.2b by the presence of a black color product on 

the inner surface of the sherd. The use of waterproofing materials was necessary because the high 

porosity of the pottery made them permeable and unsuitable to transport liquids, thus providing 

information about the pottery manufacture and the transported materials like wine or oil due to the 

remains found in the coatings.
20-23

 

2.2. Analytical techniques  

Polarizing light optical microscopy (PLOM) was carried out mainly to the study of main 

mineralogical constituents, physico-chemical weathering patterns and ratio aggregates:paste of the 

samples. A digital Micrograph software™ Gatan Inc. was used to measure grain sizes of the 

aggregates. Fluorescence light optical microscopy (FLOM) was carried out on the same microscope 

and the same samples to observe the porosity on the same areas pictured with PLOM. The samples 

were impregned with epoxy resin mixed with flouresceine and the porosity was filled with it. Then, 

thirty-micron thin sections of the samples were prepared and dyed with alizarin red to distinguish 

calcite from dolomite. These thin sections were studied with an Olympus BX51 polarized light 
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microscope fitted with an Olympus DP 12 (6V/2.5Å) digital camera and a fluorescence illumination 

system.  

The mineralogical composition of the ceramic samples and the type of salts were determined, and 

their firing temperature estimated from mineral paragenesis obtained by X-ray diffraction (XRD), 

conducted on a Phillips PW-1710 CuKα radiation powder diffractometer. The scanning conditions 

were 2 angles of 2º to 68º, scan step size 0.02º, scanning rate 2º/min, continuous mode, and beam 

intensity of 40 kV and 30 mA.  

Ion chromatography (IC) was performed to identify soluble salts in all the samples by determining 

some anions (Cl
-
, NO3

-
, SO4

2-
) and cations (Na

+
, K

+
, Mg

2+
 and Ca

2+
). The method used for 

extracting soluble salts was based on an alternative to the method described in the NORMAL 

standard
24

 with some additional modifications. Approximately 0.1 g samples were dissolved in 10 

ml of Milli-Q ultrapure water and placed for 45 min in an ultrasonic bath at room temperature. They 

were subsequently centrifuged for 5 min. at 3,500 rpm and a centrifugal force of 3,400 rfc. The 

soluble salts (anions and cations) in the extracted sample were quantified on a Metrohm 761 

Compact IC ion chromatograph. 

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were used 

to identify the possible existence of salt subefflorescences under the surface flakes on some of the 

samples. The SEM microscope was a JEOL JSM 6400 and the analyses conditions were 0.2-40 kV 

accelerating voltage, 6x10
-10

 A current, 10
-5

 Torr vacuum, 35 Å resolution, 8 mm and 35 kV 

working distance and 20 kV accelerating voltage for image acquisition. The spectrometer was a 

microanalyser Oxford instruments analytical Inca with a 133 eV-5.39 kV nominal resolution. 

Graphite-sputtered flakes taken from the samples were studied in secondary electrons mode. The 

elemental composition of some selected components was qualitatively determined by means of EDS 

microanalyses.  
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Mercury intrusion porosimetry (MIP) was used to assess sample pore structure, i.e., total porosity 

(P), pore size distribution (PSD) and tortuosity. Readings were taken at pore diameters of 0.005 to 

400 µm under measuring conditions ranging from atmospheric pressure to 60,000 psia (228 MPa) 

on a Micromeritics Autopore IV 9500 MIP.  

3. Results and discussion 

3.1. Polarizing light and fluorescence optical microscopy  

There are clear differences among the studied thin sections from the three types of amphorae. The 

Iberian samples display the smallest size of aggregates and much more quantity of these compared 

to the other samples, being the aggregate:paste ratio 3:1 approximately. The main component of the 

aggregates is quartz with a fine (min. size 23 µm and max. size 185 µm approx.) and a monomodal 

clast grain size (Fig. 3a). As it has been already noted, this may indicate its adition and mixture with 

the clay to improve the mechanical properties of the paste.
12,13

 Fine veins fill with calcite and 

sulfates are observed close to the outer surface of the amphorae. The matrix displays a brown-

reddish color, probably due to the hematite developed during the firing of the pastes
25

 from both 

iron oxides and oxyhydroxides present in the clayey raw material.
26

 In sample Ibe-1, this reddish 

color is masking the paste and part of the aggregates. The contact between aggregates and paste is 

quite blurred, which may denote a high firing temperature. Some gehlenite crystals can be observed 

surrounding the plagioclase crystals in sample A-Ibe-1 and this denotes firing temperatures above 

800ºC. Both Iberian samples display a foliation or penetrative planar fabric notably marked in A-

Ibe-31 (Fig. 3a) where the aggregates and the matrix are oriented in alignment. By other hand, 

sample A-Ibe-31 displays calcite and phyllosilicates, besides quartz, feldspar, hematite and limonite 

gels. The contacts between aggregates and the paste are sharper and the color of the matrix or paste 

is more golden brown compared with the blurry contacts and dark red brown matrix of sample A-

Ibe-1, which denotes lower firing temperature in the former and higher in the latter.
27

 At lower 

firing temperatures (800ºC) the individual mineral temper grains are easily distinguishable from the 
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clay matrix; at higher firing temperatures (1000º-1050ºC) the sintering process produces an increase 

in the interconnection among these grains and the matrix and the porosity decrease.
28,29

 

The clast grain size distribution is mainly bimodal in Italic and Tarraconensian samples (Fig. 3b and 

3c, respectively) with prevalence of both larger and smaller quartz aggregates. This indicates the 

presence of clasts deriving from the original clay, the smaller ones, and from the added temper, the 

larger ones,
30

 added to improve the mechanical properties of the pastes. The bimodal grain size 

distribution may also indicates the variable crystal nucleation and growth rates, affected by the 

temperature, fluids interactions and critical activation energy that needs to be overcome for 

nucleation and growth to ocurr.
31

  

In the Italic samples some of the aggregates come from rocks with a basic igneous geological 

source (basaltic and andesitic) and calcium plagioclases. The presence of diopside crystals is quite 

common, and comes from the raw materials. It is not formed during firing as is also common in 

other cases from the transformation of dolomite and silicates.
27

 However, the diopsides display 

coronitic reaction rims due to its amphibolization (hornblende) (Fig. 3b) with their cleavage planes 

parallel to the foliation, indicating that these have been affected by the firing temperature. The 

amphibolitization of the pyroxene could be produced by changes in oxygen fugacity and changes in 

temperature,
32

 producing pseudomorphing. Furthermore, it could be associated to disequilibrium by 

retrograde reactions.
31

 In this case, not in all the cases, the reaction rims could be identified, 

however, this reflects the variable degree of fluid infiltration and illustrates the important role that 

fluids play in promoting reactions.
31

 Associated to diopside, agregates of columnar crystals of 

wollastonite are ocassionally identified. They display the cleavage planes parallel to new orientated 

diopside crystals, suggesting that a reaction process has taken place during firing.
32

 The 

wollastonite is the result of the reaction CaCO3 + SiO2  CaSiO3 + CO2 , where the silica from the 

matrix is reacting with oxides and hydrous gels and calcium carbonates which break down on 

heating to yield wollastonite.
33

 Locally, gehlenite crystals and pyrite sulfides are also identified. The 
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presence of gehlenite associated to wollastonite is also common. The size of the aggregates ranges 

from min. 82 µm up to 500 µm in sample A-Ita-33 and up to 800 µm in A-Ita-15. 

There is a bimodal distribution especially clear in the Tarraconensian amphorae (Fig. 3c) which 

could mean another level of manufacture technology. Also the shape of the degreasing agents has a 

significant effect on some physical properties, such as the ceramic toughness or impact resistance, 

especially if the objects had been fired at high temperatures;
34

 higher firing temperatures and finer 

fabrics containing less temper material (as the sample A-Ibe-1) would be advantageous as well as 

platy-shape temper preferable over bulky one. Toughness was a particularly important physical 

property in amphorae, which were generally stacked during shipping and thus had to withstand both 

the load exerted by the rest of the crocks in the pile and the pressure generated by the content during 

transport.
34

 

The Tarraconensian samples have largest grain size of aggregates compare to the other samples, 

with minimum sizes of 53 µm and 25 µm and maximum sizes of 80 µm and 1390 µm for A-Tar-24 

and A-Tar-32, respectively. The presence of preserved (fresh) biotite can be observed in the dark 

brown color paste of these tarraconensian amphorae together with calcite. The sample A-Tar-24 

display quartz, Na-K feldspars and Na-Ca plagioclases inside a matrix rich in iron oxides and 

oxyhydroxides. Two preferential orientations can be observed in the thin sections; one where there 

is an alignment of mica minerals and sulfates filling veins parallel to this foliation. A second 

orientation of the minerals can be observed overimposed to the first one, where the mica minerals 

cut to the first alignment direction. Sample A-Tar-32 displays potassium and sodium (K-Na) 

feldspars, anorthite and quartz with crystallographically controlled embayments caused by 

corrosion effects
35

 (Fig. 3c). Pre-heating textures are preserved from the geological source area such 

as the presence of potassium feldspar twinned crystals which are not redirected by the flow 

direction. Illite-muscovite inclusions as a product of serizitation are present in the anorthite 

aggregates. Gehlenite is developed by nucleation and progressive aggregation to the grain 

boundaries of calcite. Occasional fibrolite needles of gypsum forming elongated segregations along 
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the foliation are present. Iron sulphurs are present as disseminated crystals along the matrix.  

Besides, an epidotization process is locally affecting the calcium plagioclases. Epidote is one of the 

most frequent alteration mineral occurring in processes implying thermal activity. Among them, 

factors controlling the chemical composition such as temperature, CO2 and O2 fugacities act 

modifying the Fe, Al, Ca and H ratio in water by changes in partial pressure of CO2 gas or 

temperature.
36 

Moreover, it is associated to changes in chemistry of aqueous solutions and 

mineralogy during sea water/ceramic interaction, similar to the interaction sea water/ rock.
37

 It is 

very common to find the association epidote-hematite coexisting with iron sulphides as pyrite, 

generating enrichments in iron oxides, which have been explained as a result of differences in 

oxygen fugacity.
36

 

The presence of different preferential orientations reveals different stages of mineralization. The 

first one is associated to the early compactation stage, including compositional bedding due to 

different mineralogical associations or different grain sizes. After that, several stages are observed, 

such as slight deformation pressure during compactation or crystallographic re-arrangements 

associated to heating producing earlier or contemporaneous mineralogical segregations. These 

processes act modifying the foliation, such in the case of phyllosilicates developing preferential 

orientations.
32

 Moreover, the presence of new mineralizing fluids (for instance sulphides and other 

mineral salts) are implied in local deformation processes, mechanical rotation of pre existing grains, 

dissolution and new mineral growth.
31

 

The images obtained with fluorescence light on these samples show the porosity of the samples in 

green (bright) colour (Fig. 3d-f). It can be seen the difference in the pore size and shape that differ 

among the samples and also between samples fired at different firing temperatures. In Ibe-1 and 

Ibe-31, some big and elongated pores that are left by the decomposition of carbonates can be 

observed (Fig. 3d). The Italic samples display more differences compared to the other samples, they 

show a skin serpert shape as a sign of beginning of sinterization (Fig. 3e) whereas tarraconensian 

samples still show the evidence of phyllosilicates in their matrix (Fig. 3f). The components of 
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ceramic materials are the “fingerprints” of the stable/or metastable solid phase formed during firing 

and the production processes of antique ceramics and pottery can be derived from their 

assemblage.
38

 

3.2. X-ray diffraction (XRD)  

Minerals such as quartz, K-Na feldspard and plagioclase are present in almost all the samples (Fig. 

4). By other hand, the identification of hematite in all the samples indicates the presence of iron 

oxides in the clay used as raw material. Iron-rich minerals could also be generated during firing of 

clay pastes in an oxidising atmosphere, since iron oxides from the raw material may generate in turn 

hematite crystals.
25

 However, it must be taken into account that calcareous lumps in calcium-rich 

clay prevent iron fixation in the network of neoformed calcareous silicate and aluminosilicate 

lattices and, consequently, inhibit the nucleation of new hematite crystals.
39

 

The main difference between the two Iberian amphorae samples (Fig. 4a-b) lays in the absence in 

sample A-Ibe-1 of illite, biotite and calcite and the presence of the gehlenite (Ca2Al2SiO7)-

akermanite (Ca2MgSiO7) series of minerals, along with a higher hematite content (Fig. 4a). These 

findings may be indicative of a firing temperature of over 900ºC.
27,40-42

 The presence of micas 

(biotite and muscovite), illite and some calcite in A-Ibe-31 (Fig. 4b), in turn, would denote much 

lower firing temperatures, under 800ºC
5,27,43

. The Italic amphorae (Fig. 4c-d) exhibit high diopside 

content (Fig. 4c) which may denote firing temperatures above 900ºC.
27,29,44-46

 However, as was 

mentioned before, in this case diopside seems to come from the raw material and not developed 

during firing. The absence of illite and the presence of gehlenite, wollastonite and, in a lower extent, 

anorthite and diopside in the samples is a consequence of the reactions occurring when calcium or 

magnesium-rich clays are fired above 900ºC.
27,42,43,45,47 

Because gehlenite starts to be developed 

from 800ºC,
48

 its coexistence with illite, micas and calcite on both Tarraconensian sherds (Fig. 4e-

f), suggests firing temperatures of around 800ºC.  
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Traces of gypsum (CaSO4·2H2O) for both the desalinated and the non-desalinated Tarraconensian 

amphora sherds (Fig. 4ef) were identified. Salts such as, sodium-potassium chloride was also 

detected (also called, potassium halite, K0.2Na0.8Cl) in the non desalinated Italic amphorae (A-Ita-

33, Fig. 4d). Presence of other salts could not be disregarded since the detection limit of this 

equipment only detects amounts of compounds above 5%. However, taking into account that the 

main soluble salts in seawater are chlorides followed by sulfates, as anions, and sodium followed by 

magnesium and calcium and potassium, as cations,
49

 the gypsum and halite detected in these 

samples are some of the main salts that might precipitate from calcium sufate and sodium chloride 

dissolved in the seawater and absorbed by the sherds during centuries. Due to the lower solubility of 

gypsum compared to others salts,
50

 its presence may indicate that it has not been totally removed 

during the desalination process in the case of the Tarraconensian sherds. 

The presence of rozenite (FeSO4·4(H2O) has been detected in both tarraconensian samples (Fig. 4e) 

but mainly in the non desalinated sample A-Tar-32 and in the Iberian A-Ibe-31 (Figs. 4e-f and 4b). 

Is relatively frequent the presence of sulfate salts found on the artifacts from shipwrecks, like the in 

the Vasa, where gypsum (CaSO4·2H2O), natrojarosite (NaFe3(SO4)2(OH)6) and melanterite 

(FeSO4·7H2O) were identified; or in the Mary Rose, with oxides like magnetite (Fe3O4) or iron 

sulfates like jarosite (KFe3(SO4)2(OH)6).
51

 Ferrous sulfates (such as melanterite and rozenite) are 

common weathering products formed during abiotic chemical pyrite oxidation and their 

precipitation is dependent on relative humidity and time.
52

 

3.2. Ion chromatography (IC) 

The IC findings showed that the total soluble salt content in all the samples ranged from 0.16 to 

2.35 wt% (Table 1 and Fig. 5). As a rule, the desalinated samples had lower total soluble salt 

contents than the non desalinated ones. The sole exception was the Tarraconensian sherds, in which 

sample A-Tar-24 had a marginally higher content (0.74%) than the respective non-desalinated 

sample, A-Tar-32 (0.65%) and these exhibit very similar percentages of sulfates: 0.42 and 0.38%, 
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respectively. The greatest difference between desalinated and non-desalinated samples was 

exhibited by the two Iberian sherds. The former (A-Ibe-1), with a firing temperature of above 

900ºC, had 0.53% salt content, while the percentage in its non-desalinated counterpart, with a firing 

temperature below 800ºC, was 2.35%. Desalination-based differences were likewise observed for 

the Italic materials, with A-Ita-15, which was desalinated, containing just 0.16%, compared to 

0.83% in the non-desalinated A-Ita-33. The highest percentage of chloride ions (Cl
-
) was 

determined in the Italic amphora sample A-Ita-33 (0.30%). The high Na
+
 cation content in this 

sample (0.20%) would appear to indicate the presence of sodium chloride (NaCl), identified by 

XRD as halite (Fig. 4d). This sample also contained a low but nonetheless higher level (0.02%) of 

nitrates (NO3
-
) than the others, whereas it, along with its desalinated counterpart, A-Ita-15, had the 

lowest sulfate (SO4
2-

) contents (0.04%). The non-desalinated Iberian sample, A-Ibe-31, had a very 

high sulfate content (1.95%), which declined substantially (0.29%) in desalinated sherd A-Ibe-1. 

This can correspond to calcium sulfate but also to magnesium sulfate due to the high amount of 

Mg
2+

 (0.19%). The high sulfate content in almost all the samples is not totally balanced with the 

Ca
2+

 and Mg
2+

 content. Other cations might be present in the samples, such as soluble Fe
2+

, which 

would require a special detector coupled to the ion chromatographer in order to be identified, or the 

use of other techniques such as the tritation method.   

The low firing temperature estimated for samples A-Ibe-31 (<800ºC), A-Tar-24 (800ºC) and A-Tar-

32 (800ºC), may have played a role in the greater absorption of soluble salts and the less elimination 

of these ions during desalination. The higher firing temperature (>900ºC), estimated for both Italic 

amphorae and desalinated sample A-Ibe-1, seems to have led to a lower salt content. 

3.3. Scanning electron microscopy (SEM-EDS) 

The only two samples with flakes were A-Ibe-31 and A-Tar-32 (both non desalinated). So, some 

flakes from these samples were chosen to study their inner surfaces by SEM-EDS. The SEM images 

and EDS analyses of sample A-Ibe-31 revealed the presence of gypsum crystals (Fig. 6a-c), as well 
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as incrusted ceramic particles that were pulled off during the crystal growth of gypsum 

subefflorescences underneath the flakes (Fig. 6b).  

In the sample A-Tar-32 signs of crystallization processes can be observed (Fig. 7a) and the EDS 

analyses show the presence of sulfur (S) and iron (Fe) (Fig. 7b), indicating the precipitation of 

pyrite (FeS2). Analyses of marine archaeological wood from shipwrecks in the Baltic Sea area also 

show accumulation of sulfur compounds, pyrite and Fe
2+

 sulfides, together with elemental sulfur, 

which easily oxidise in aerobic conditions with high humidity.
53

 

Further indications of dissolution-re-crystallization appear in some areas; the analyses of which 

revealed the presence of S, Fe and oxygen (Fig. 7c-d), a possible sign of the existence of iron 

sulfates. In other areas where these components were less altered, only the presence of S and Fe was 

identified in the EDS spectrums (Fig. 7a-b). Based on their morphology and EDS analyses, such 

components seem to have been pyrite (FeS2), whose alteration may have given rise to the formation 

of iron sulfate salts. As it was mentioned before, ferrous sulfates (melanterite and rozenite) are 

common weathering products formed during abiotic chemical pyrite oxidation.
52

 

Rozenite (FeSO4·4H2O) is the main sulfate salt detected by XRD in A-Tar-24 and A-Tar-32 and A-

Ibe-31 amphorae samples (Fig. 4b-e-f) and seem to be those morphologies observed under SEM 

(Fig. 7c) and analyzed with EDS (Fig. 7d). Sulfate-reducing bacteria, metabolising organic matter 

under anaerobic conditions, transform sulfate ions in seawater to dissolved sulfidric acid (H2S). 

Wrecked ships contain iron from corroded iron bolts, nails and other metallic archaeological 

objects. On the seabed, soluble Fe
2+

 may react with hydrogen sulfide (H2S) to form iron sulphides 

(Fe2O3 + 4H2S → 2FeS2 + 3H2O + H2, such as as pyrrhotite (FeS) and pyrite (FeS2).
54

 

Pyrite is unstable with moisture and oxygen and produces sulfuric acid together with sulfates 

(FeS2(s) + 7/2O2 + (n+1) H2O → FeSO4·n(H2O)(s) + H2SO4(aq) or oxyhydroxides (FeS2(s) + 

15/4O2 + 5/2H2O → FeOOH(s) + 2H2SO4(aq)). 
55-57
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3.5. Mercury intrusion porosimetry (MIP) 

The pore size distribution (PSD) is polymodal and very similar in amphorae samples of the same 

type but very different from one type to another (Fig. 8). These differences are mainly due to the 

different composition, aggregate:paste ratio, grain size of the aggregates and firing 

temperatures.
45,58 -60

 Most of the porosity observed in the sherds above 800ºC depends on the type 

of clays, the size and concentration of temper minerals, and the presence of carbonates, organic 

matter and volatils.
46 

Even though, Iberian samples display a similar polymodal PSD (Fig. 8a), one 

sample (A-Ibe-1) has most of their pores in the range 0.1-3 µm and the other (A-Ibe-31) most of 

their pores are in the range 0.1-1 µm. In this case, A-Ibe-31 is no desalinated and was fired at much 

lower temperature (<800ºC) compared to the other sample (A-Ibe-1), desalinated but fired at higher 

temperature (>900ºC). The PSD of the other samples are quite similar comparing between 

desalinated and non-desalinated specimens. The Italic samples, which were fired at temperatures 

higher than 900ºC, display most of their pores between 10 and 50 µm (Fig. 8b), while the 

Tarraconensian samples, fired at lower temperatures (800ºC), show most of their pores in the range 

0.01 and 1 µm, but mainly between 0.1 and 1 µm (Fig. 8c), like the Iberian sample also fired at ca. 

800ºC (A-Ibe-31).  

As a result of salt precipitation and crystal growth, the non-desalinated samples exhibit lower total 

porosity accessible to Hg than the desalinated sherds (Table 2), in part maybe because the salt 

crystals are blocking the pores. The non-desalinated samples had a lower bulk density than the 

desalinated fragments, perhaps due to the degradation induced by salt crystallization in the interiors 

of the former. The two Tarraconensian fragments and the non-desalinated Iberian sherd (samples A-

Ibe-31, A-Tar-24 and A-Tar-32), whose firing temperatures were estimated to be the lowest, have 

lower total porosity accessible to Hg (between 23 and 26%), the greatest specific surface area (SSA) 

(9 and circa 20 m
2
/g) and smaller pore mean diameter (between 0.02 and 0.06 µm). These samples 

also display the largest desalination / non-desalination differences. This may indicate more intense 

alteration, inferred by the lower firing temperature (800 or <800ºC) and higher clay detected by 
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XRD (Fig.4) and sulfate content detected by IC (Table 1). The higher SSA the greater the area 

exposed to weathering agents and more condensation can take place inside the pores of the 

materials. SSA may be used as a durability estimator because high SSA values mean that a greater 

surface area of the material will be decayed.
61

 

The non-desalinated sherds exhibit greater tortuosity than the desalinated fragments, except in 

desalinated sample A-Tar-24 whose tortuosity is intense. The tortuosity value of this sample is 

ca.15 (Table 2) meaning that pores are not straight following longer lengths with irregular paths 

compared to the other samples with lower values and hence straighter pores. As the results achieved 

in A-Ibe-31 and A-Ita-33, the pores in the non-desalinated samples are consequently curvier than 

the pores in the desalinated fragments. This may have been due to salt crystallization-induced pore 

narrowing and rupture, which would lead to a more tortuous and complex pore network.  

4. Conclusions 

This study show that both soluble salts absorption and their elimination after the desalination 

procedure is closely related to ceramic firing temperature and, hence, to the surface area and 

porosity generated during firing. Therefore, ceramics fired at temperatures over 900ºC show small 

amounts of soluble salts (anions and cations characteristic of marine environments), while the 

materials fired at 800ºC or lower have more soluble salts and gypsum sub-efflorescences, even in 

the desalinated samples. Sherds fired at higher temperatures have lower surface area and less 

connected porosity, which entail a lower absorption of soluble salts. The amphorae fired at lower 

temperatures display lower total porosity but higher surface area, smaller pore mean diameter and 

more connected pores, so these are more prone to decay and less durable against weather.  

The composition and texture reached with the firing temperature is a key factor on salt 

crystallization decay and hence on the durability of these artifacts. Therefore in order to optimize a 

desalination procedure is necessary to previously know the intrinsic characteristics of the artifacts, 

since their pore network can make difficult the desalination. The use and effectiveness of 
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desalination treatments are keys to the future conservation of ceramics artifacts. The environmental 

control, keeping constant temperature and relative humidity in suitcases can be an alternative 

conservation method if desalination treatment can not be done or if this was not successful. 
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Figure captions  

Figure 1. Location of samples of archaeological ceramic amphorae and the areas where these were 

manufactured. 

Figure 2. Pictures of amphora fragments. a) Iberian sample A-Ibe-31 (non-desalinated); b) Italic 

sample A-Ita-15 (desalinated), showing the interior wall of the amphora where calcareous 

concretions and rests of waterproofing material (black color) can be observed; c) Tarraconensian 

sample A-Tar-32 (non-desalinated). 

Figure 3. Polarizing light microscopy (PLOM) and Fluorescence optical microscopy (FLOM) of 

ceramic amphorae. a) PLOM image (crossed nicols, XN) of thin section of Italic amphora A-Ibe-31 

fired <800ºC; b) same image under FLOM; c) PLOM image (XN) of thin section of Italic amphora 

A-Ita-15 fired >900ºC; d) same image under FLOM. e) PLOM image (XN) of thin section of 

Tarraconensian amphora A-Tar-32 fired 800ºC; f) same image under FLOM. Qtz: quartz; An: 

anorthite; Di: diopside; Hb: hornblende; Fd: K-Na feldspar 

Figure 4. X-ray diffraction patterns (XRD) of the archaeological ceramic amphorae. Iberian 

amphorae a) desalinated; b) Non desalinated; Italic amphorae: c) desalinated; d) non desalinated; 

Tarraconensian amphorae: e) desalinated; f) Non desalinated.  

Figure 5. Concentration of soluble salts (%) obtained with ion chromatography. a) sal concentration 

(%) in desalinated and non desalinated amphorae. b) Concentration of chlorides, sulfates and 

nitrates (mg/l) in desalinated and non desalinated amphorae. 

Figure 6. SEM-EDS analyses of the inner side of the flakes over the ceramic amphorae: a) SEM 

image of gypsum crystals on sample A-Ibe-31; non desalinated Iberian amphora; b) SEM image of 

gypsum crystals with fragments of ceramic on the tips of the crystals in sample A-Ibe-31; (c) EDS 

analyses of calcium, sulphur and oxygen (gypsum).  
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Figure 7. SEM-EDS analyses of the inner side of the flakes over the ceramic amphorae: a) signs of 

crystallization processes on sample A-Tar-32; b) EDS analyses of iron and sulphur (pyrites); c) 

signs of dissolution processes on sample A-Tar-32; non desalinated Tarraconensian sample; d) EDS 

analyses of iron, sulphur and oxygen (iron sulfates).  

Figure 8. Pore size distribution curves obtained with mercury intrusion porosimetry in the Iberian 

(a); Italic (b) and Tarraconensian (c) ceramic amphorae fragments.  

 


