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Resumen

La estimación de las medidas de riesgo es un área de gran importancia en la industria
financiera. Las medidas de riesgo juegan un papel principal en la gestión del riesgo y en el
cálculo del capital requerido. El documento Basilea III [13] ha sugerido medir el riesgo en
condiciones de tensión mediante la Pérdida Esperada (ES), en lugar del Valor en Riesgo
(VaR), a un nivel de confianza del 97.5%. Este cambio viene motivado por las atractivas
propiedades teóricas del ES como medida de riesgo y por las limitaciones del VaR. En
particular, el VaR no captura el ”riesgo de cola”. En esta transición, el principal reto al
que se enfrentan las instituciones financieras es la falta de disponibilidad de herramientas
sencillas para la evaluación de las predicciones del ES, esto es, backtesting del ES.

El objetivo de la tesis es comparar la performance de una variedad de modelos para la
estimación del VaR y del ES para un conjunto de activos de diferente naturaleza: ı́ndices
de mercado, acciones, bonos, tipos de cambio y materias primas. A lo largo de la tesis,
entendemos por “modelo” VaR o por “modelo” ES una especificación dada por un modelo
de volatilidad condicional combinado con una distribución de probabilidad que suponemos
siguen las innovaciones estandarizadas.

En concreto, el Caṕıtulo 1 considera el concepto de insesgadez en la estimación del VaR.
Francioni y Herzog (2012) [FH] [20] demuestran que existe una corrección anaĺıtica del
sesgo del VaR cuando los rendimientos siguen una distribución Normal. En este caṕıtulo,
el análisis FH se extiende a la distribución t-Student aśı como a la Mixtura de dos Nor-
males, utilizando el algoritmo bootstrapping propuesto por FH. El uso de medidas VaR
insesgadas en probabilidad evita la infraestimación sistemática del riesgo como resultado
del sesgo que presentan las medidas VaR estándar. La magnitud de la distorsión necesaria
para pasar del cuantil del VaR estándar al del VaR insesgado en probabilidad depende
del tamaño de la muestra y del supuesto de distribución de los rendimientos. Debido a
que la distribución de los rendimientos financieros tiene colas más gruesas que la Normal,
a menor tamaño muestral y menor grosor de las colas de la distribución supuesta en la
estimación, mayor es la distorsión necesaria para obtener un estimador insesgado. Este
ajuste del VaR nos permite trabajar con muestras pequeñas con la tranquilidad de que
se obtendrá una buena performance del VaR. Además, los resultados obtenidos en la tesis
demuestran que las muestras pequeñas permiten obtener estimaciones del VaR más exac-
tas que las muestras grandes según la Probabilidad en Exceso y la Desviación Absoluta
Observada por año (media de las diferencias absolutas entre el número esperado de exce-
sos y el número observado de excesos respecto del VaR). La buena performance del VaR
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insesgado en probabilidad viene del hecho de que las muestras cortas permiten capturar
mejor los cambios estructurales que se producen a lo largo del tiempo en las rentabilidades
financieras debido al comportamiento del mercado.

El Caṕıtulo 2 analiza como la eficiencia del VaR depende de la especificación de volatil-
idad y del supuesto acerca de la distribución de probabilidad para las innovaciones de las
rentabilidades. Esta cuestión es crucial para los gestores de riesgo debido a la existencia
de un gran número de posibles elecciones de modelos de volatilidad y de distribuciones de
probabilidad, siendo conveniente establecer algunas prioridades al modelar los rendimien-
tos para estimar el riesgo. Consideramos diferentes modelos VaR condicionales para ac-
tivos de diferente naturaleza, utilizando distribuciones simétricas y asimétricas para las
innovaciones y modelos de volatilidad con y sin efecto apalancamiento. El VaR estimado
se calcula siguiendo el enfoque paramétrico. La capacidad para explicar los momentos
muestrales de las rentabilidades podŕıa considerarse una condición natural para obtener
una buena performance del VaR. Sin embargo, aunque hay normalmente un esfuerzo sig-
nificativo para seleccionar una combinación apropiada de distribución de probabilidad
y especificación de volatilidad en la estimación del VaR, la capacidad para explicar los
momentos muestrales de las rentabilidades rara vez se examina. Tras la utilización de
métodos de simulación para calcular los momentos de las rentabilidades impĺıcitos a par-
tir de los modelos estimados, comparamos los niveles impĺıcitos de asimetŕıa y curtosis
de las rentabilidades con sus momentos muestrales análogos. Se observa que la capacidad
para explicar los momentos muestrales está, de hecho, ligada a la performance del VaR.
Dicha performance es examinada a través de contrastes estándar: el contraste de cober-
tura incondicional de Kupiec (1995) [78], el de cobertura condicional y de independencia
de Christoffersen (1998) [27] y el Dynamic Quantile de Engle y Manganelli (2004) [39],
aśı como, a través de funciones de pérdida propuestas por Lopez (1998, 1999) [85] [86] y
Sarma et al. (2003) [113] y por Giacomini y Komunjer (2005) [47].

Respecto a una literatura cada vez más abundante, contribuimos de diferentes formas:
i) considerando un conjunto de distribuciones de probabilidad que recientemente han

sido consideradas apropiadas para capturar la asimetŕıa y la curtosis de datos financieros,
pero cuya performance para las estimaciones del VaR no ha sido comparada previamente
para una base de datos común: distribución t-Student asimétrica [41], Error Generalizada
asimétrica [41], Johnson SU [70], t-Generalizada asimétrica [123] y t-Student asimétrica
Hiperbólica Generalizada [1], junto con las distribuciones Normal y t-Student como bench-
mark,

ii) considerando tres especificaciones de volatilidad con apalancamiento, GJR-GARCH,
APARCH y FGARCH, aśı como el modelo estándar simétrico GARCH como benchmark.
Los modelos FGARCH y APARCH son cada vez más apreciados al ser adecuados para las
rentabilidades financieras ya que su especificación considera una potencia en la desviación
estándar de las innovaciones lo que proporciona mayor flexibilidad a la dinámica de la
volatilidad,

iii) evaluando expĺıcitamente el ajuste de las rentabilidades y relacionando esa capaci-
dad de ajuste con la performance del VaR e

iv) introduciendo un criterio de dominancia para establecer un ranking de modelos en
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base al comportamiento de los mismos en los contrastes estándar de validación del VaR y
en las funciones de pérdida.

Obtenemos los siguientes resultados:
i) los modelos VaR que asumen distribuciones de probabilidad asimétrica para las in-

novaciones, como la t-Student asimétrica, la Error Generalizada asimétrica, la Johnson SU
y la t-Generalizada asimétrica proporcionan un mejor ajuste de los momentos muestrales
de las rentabilidades que las distribuciones simétricas y logran una mejor performance del
VaR,

ii) los modelos de volatilidad con apalancamiento, como el APARCH y el FGARCH,
muestran una mejor performance del VaR que las especificaciones de volatilidad más
estándar como el GARCH y el GJR-GARCH,

iii) los resultados de nuestras simulaciones fuera de muestra sugieren que el supuesto
importante para la performance del VaR es el de la distribución de probabilidad de las
innovaciones de las rentabilidades, jugando un papel secundario la elección del modelo de
volatilidad,

iv) la consideración de la potencia de la desviación estándar condicional como un
parámetro libre es una importante caracteŕıstica de las especificaciones de volatilidad
APARCH/FGARCH, al sugerir nuestras estimaciones, para un número considerable de
activos, que la especificación de la desviación condicional al cuadrado es inapropiada,

v) un buen ajuste de los momentos de las rentabilidades normalmente conlleva una
buena performance del VaR. Los modelos APARCH o FGARCH con distribuciones Error
Generalizada asimétrica, t-Generalizada asimétrica y Johnson SU son preferidos a aquellos
con otras distribuciones asimétricas, como la t-Student asimétrica y la t-Student asimétrica
Hiperbólica Generalizada, o con distribuciones simétricas, como la t-Student y la Normal
y

vi) modelos VaR alternativos parecen proporcionar distinta performance del VaR para
las diferentes clases de activos.

En el Caṕıtulo 3 estimamos el ES condicional basado en el enfoque de la Teoŕıa de
Valores Extremos (EVT) utilizando distribuciones de probabilidad asimétricas para las in-
novaciones de las rentabilidades y examinamos la exactitud de nuestras estimaciones antes
y durante la crisis financiera de 2008 utilizando datos diarios a horizontes 1 d́ıa y 10 d́ıas.
Tenemos en cuenta los efectos de los agrupamientos de volatilidad y de apalancamiento
en la volatilidad de las rentabilidades al utilizar un modelo APARCH con diferentes dis-
tribuciones de probabilidad para las innovaciones estandarizadas: Gaussiana, t-Student, t-
Student asimétrica, Error Generalizada asimétrica y Johnson SU , aśı como, con el enfoque
EVT siguiendo el procedimiento de dos pasos de McNeil y Frey (2000) [75]. Este pro-
cedimiento en dos pasos ajusta la distribución Pareto Generalizada a los valores extremos
de los residuos estandarizados generados por los modelos APARCH. Posteriormente, com-
paramos la performance de las predicciones del ES fuera de muestra un d́ıa hacia adelante
de todos estos modelos para diferentes niveles de significación (α). Previamente, los con-
trastes de backtesting existentes para ES han demostrado tener serias limitaciones, como
son el contraste de McNeil y Frey (2000) [75], de Berkowitz (2001) [15], de Kerkhof y Me-
lenberg (2004) [65] y de Wong (2008) [95]. Tales limitaciones son superadas por algunas
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de las propuestas más recientes de backtesting para ES las cuales utilizamos para la evalu-
ación del ES: el contraste de Righi y Ceretta (2013), los dos contrastes de Acerbi y Szekely
(2014) [4], que son sencillos pero requieren análisis de simulación (como el contraste de
Righi y Ceretta), el contraste de Graham y Pál (2014) [57], que es una extensión del
enfoque Lugannani-Rice de Wong, el contraste de cobertura incondicional de Costanzino
y Curran (2015) [26] para la familia de medidas de riesgo espectrales, de la cual el ES es
miembro y, finalmente, el contraste condicional de Du y Escanciano (2015) [36].

Este caṕıtulo contribuye a la literatura de diferentes maneras:
i) considerando la especificación de volatilidad APARCH en modelos EVT utilizando

Simulación Histórica Filtrada (FHS), lo que permite considerar los agrupamientos de
volatilidad y la asimetŕıa de los rendimientos,

ii) comparando modelos EVT condicionales que incorporan modelos condicionales con
distribuciones de probabilidad asimétricas apenas utilizadas en la literatura financiera para
la estimación del ES,

iii) analizando la performance de las estimaciones del VaR y del ES a horizonte 10
d́ıas, tal y como proponen los requerimientos de capital de Basilea,

iv) centrándonos en la exactitud de nuestros modelos de riesgo para estimar el VaR
y el ES durante los periodos de pre-crisis y de crisis, aśı como, para diferentes niveles de
significación (α) y

v) evaluando la performance del ES con las propuestas más recientes de backtesting
para ES, considerando todas en el mismo estudio.

Obtenemos las siguientes conclusiones:
i) la Teoŕıa de Valores Extremos produce una buena estimación del ES independiente-

mente de la distribución de probabilidad supuesta en la estimación para las innovaciones
de las rentabilidades. Esto es debido al hecho de que la cola, para todos estos casos, es
modelizada con una distribución Pareto Generalizada,

ii) si consideramos modelos condicionales sin el enfoque EVT, observamos que la dis-
tribución Error Generalizada asimétrica y la Johnson SU juegan un papel importante en
la captura del ”riesgo de cola” a horizontes 1 y 10 d́ıas. Esto se debe a que los hechos
estilizados de las rentabilidades financieras tales como agrupamientos de volatilidad, colas
pesadas y asimetŕıa son capturados adecuadamente por las mismas,

iii) incluso durante el periodo de crisis, los modelos EVT condicionales son más ade-
cuados y fiables para predecir las pérdidas generadas por riesgo de los activos que los
modelos condicionales que no incorporan el enfoque EVT y

iv) los modelos EVT condicionales producen, en algunos casos, sobreestimación del
ES.
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Summary

The estimation of risk measures is an area of highest importance in the financial industry.
Risk measures play a major role in the risk-management and in the computation of regula-
tory capital. The Basel III document [13] has suggested to shift from Value-at-Risk (VaR)
into Expected Shortfall (ES) as a risk measure and to consider stressed scenarios at a new
confidence level of 97.5%. This change is motivated by the appealing theoretical proper-
ties of ES as a measure of risk and the poor properties of VaR. In particular, VaR fails to
control for “tail risk”. In this transition, the major challenge faced by financial institu-
tions is the unavailability of simple tools for evaluation of ES forecasts (i.e. backtesting ES)

The objective of this thesis is to compare the performance of a variety of models
for VaR and ES estimation for a collection of assets of different nature: stock indexes,
individual stocks, bonds, exchange rates, and commodities. Throughout the thesis, by a
VaR or an ES “model” is meant a given specification for conditional volatility, combined
with an assumption on the probability distribution of return innovations.

Specifically, Chapter 1 considers the concept of unbiasedness in VaR estimation. Fran-
coni and Herzog (2012) (FH) [20] showed that there exists an analytical bias correction for
VaR when returns are Normally distributed. In this chapter the FH analysis is extended
to the Student-t distribution as well as to Mixtures of two Normal distributions, using a
bootstrapping algorithm proposed by FH. The use of the probability-unbiased VaR avoids
the systematic underestimation of risk implied by the bias of standard VaR measures. The
magnitude of the distortion that needs to be exerted on the quantile to move from the
standard VaR to the probability-unbiased VaR depends on the sample size and on the
distribution assumption on returns. Since financial returns usually have thick tails, the
smaller the sample size and the lower the heaviness of the tail of the assumed distribution
in estimation, the higher will be the distortion to be applied to achieve unbiasedness. This
VaR adjustment allows us to work with small samples knowing that the estimated VaR
will generally display a good performance. Furthermore, the results in the thesis show that
using a small sample may easily lead to more accurate VaR estimates than longer samples
according to the Exceedance Probability and to the Observed Absolute Deviation per year
(mean of the absolute differences between the expected number of exceedances and the
number of observed exceedances). The good performance of the probability-unbiased VaR
follows from the fact that a short sample size allows for capturing better the structural
changes that arise over time in financial returns due to trading behaviour.
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Chapter 2 analyzes how the efficiency of VaR depends on the volatility specification
and the assumption on the probability distribution for return innovations. This question
is crucial for risk managers, since there are so many potential choices for volatility model
and probability distributions that it would be very convenient to establish some priorities
in modelling returns for risk estimation. We consider different conditional VaR models for
assets of different nature, using symmetric and asymmetric probability distributions for
the innovations and volatility models with and without leverage. We calculate VaR esti-
mates following the parametric approach. The ability to explain sample return moments
might be considered a natural condition to obtain a good VaR performance. However,
even though significant effort is usually placed in selecting an appropriate combination
of probability distribution and volatility specification in VaR estimation, the ability to
explain sample return moments is seldom examined. After using simulation methods to
calculate implied return moments from estimated models, we compare the implied levels
of skewness and kurtosis of returns with the analogue sample moments. We show that
the ability to explain sample moments is in fact linked to performance in VaR estimation.
Such performance is examined through standard tests: the unconditional coverage test
of Kupiec (1995) [78], the independence and conditional coverage tests of Christoffersen
(1998) [27], the Dynamic Quantile test of Engle and Manganelli (2004) [39], as well as the
loss functions proposed by Lopez (1998, 1999) [85] [86] and Sarma et al. (2003) [113] and
that of Giacomini and Komunjer (2005) [47].

Relative to an ever increasing literature, we contribute in different ways:
i) considering a set of probability distributions that have recently been rendered to be

appropriate for capturing the skewness and kurtosis of financial data, but whose perfor-
mance for VaR estimation has not been compared previously on a common dataset: Skewed
Student-t [41], Skewed Generalized Error [41], Johnson SU [70], Skewed Generalized-t [123]
and Generalized Hyperbolic Skew Student-t [1] distributions, with the Normal and sym-
metric Student-t distributions as benchmark,

ii) considering three volatility specifications with leverage, GJR-GARCH, APARCH
and FGARCH, as well as the standard symmetric GARCH model as benchmark. FGARCH
and APARCH are increasingly being appreciated as being adequate for financial returns
because they are specified for a power of the conditional standard deviation of the inno-
vations, which provides more flexibility to the dynamics of volatility,

iii) explicitly evaluating the fit to return data, relating that fitting ability to VaR
performance, and

iv) by introducing a dominance criterion to establish a ranking of models on the basis
of their behavior under standard VaR validation tests and loss functions.

We obtain the following results:
i) VaR models that assume asymmetric probability distributions for the innovations,

like the Skewed Student-t distribution, Skewed Generalized Error distribution, Johnson
SU distribution, and Skewed Generalized-t distribution provide a better fit to sample re-
turn moments than symmetric distributions and achieve a better VaR performance,

ii) volatility models with leverage, like APARCH and FGARCH, show a better VaR
performance than more standard GARCH and GJR-GARCH volatility specifications,
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iii) our out-of-sample simulation results suggest that the important assumption for
VaR performance is that of the probability distribution of return innovations, with the
choice of volatility model playing a secondary role,

iv) dealing with the power of the conditional standard deviation as a free parameter
is an important feature of the APARCH/FGARCH volatility specifications because our
estimates suggest that for a number of financial assets the squared conditional deviation
specification is inappropriate,

v) a good fit to return moments usually leads to a good VaR performance. APARCH
or FGARCH models with Skewed Generalized Error, Skewed Generalized-t and Johnson
SU distributions are preferred to other asymmetric distributions, like Skewed Student-t
and Generalized Hyperbolic Skew Student-t, and symmetric distributions, like Student-t
and Normal distributions, and

vi) alternative VaR models seem to provide a distinct performance for different classes
of assets.

In Chapter 3 we estimate the conditional Expected Shortfall based on the Extreme
Value Theory (EVT) approach using asymmetric probability distributions for return inno-
vations, and we analyze the accuracy of our estimates before and during the 2008 financial
crisis using daily data for 1- and 10-day horizons. We take into account volatility cluster-
ing and leverage effects in return volatility by using the APARCH model under different
probability distributions assumed for the standardized innovations: Gaussian, Student-t,
skewed Student-t, skewed generalized error and Johnson SU and under EVT methods,
following the two-step procedure of McNeil & Frey (2000) [75]. This two-step procedure
fits a Generalized Pareto Distribution to the extreme values of the standardized residuals
generated by APARCH models. Then, we compare the one-step-ahead out-of-sample ES
forecast performance of all these models for different significance levels (α). Previously
existing backtesting tests for ES have been shown have serious limitations [as McNeil &
Frey (2000) [75] test, Berkowitz (2001) [15] test, Kerkhof and Melenberg (2004) [65] test
and Wong (2008) [95] test]. Such limitations are overcome by some recent ES backtesting
proposals that we use for ES evaluation: the Righi & Ceretta (2013) [83] test, two tests by
Acerbi & Szekely (2014) [4] that are straightforward but require simulation analysis (like
the Rigui & Ceretta test), the test of Graham & Pál (2014) [57], which is an extension of
the Lugannani-Rice approach of Wong, the quantile-space unconditional coverage test of
Costanzino & Curran (2015) [26] for the family of Spectral Risk Measures, of which ES is
a member and, finally, the conditional test of Du & Escanciano (2015) [36].

This chapter contributes to the literature in different ways:
i) considering the APARCH volatility specification in an EVT model using Filtered

Historical Simulation (FHS) [11] [12] to take into account volatility clustering and asym-
metric returns,

ii) comparing conditional EVT models that incorporate conditional models with asym-
metric probability distributions rarely used in the financial literature for ES estimation,

iii) by analyzing the performance of VaR and ES estimates over 10-day horizons for
risk liquidity management, as proposed in Basel capital requirements [13],

iv) by focusing on the accuracy of our risk models for VaR and ES estimation during
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the pre-crisis and crisis periods as well as under different significance levels (α), and
v) by evaluating ES performance using the most recent ES backtesting proposals in

the same study.

We obtain the following conclusions:
i) Extreme Value Theory produces a good ES performance regardless of the probabil-

ity distribution assumed for return innovations in estimation. This is due to the fact that
the tail is modeled with a Generalized Pareto Distribution not only with 1-day but also
10-day horizons,

ii) if we consider conditional models without the EVT approach, we observe that the
Skewed Generalized Error distribution and the Johnson SU distribution play an important
role in capturing tail risk in 1-day and 10-day horizons. This is because the stylized facts
of financial returns such as volatility clusters, heavy tails and asymmetry are suitably
captured by these asymmetric distributions,

iii) even during the crisis period, conditional EVT models are more accurate and re-
liable for predicting asset risk losses than conditional models that do not incorporate the
EVT approach, and

iv) sometimes conditional EVT models produce a ES overestimation.
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Chapter 1

Probability-unbiased VaR
estimator

Abstract

The Probability unbiasedness of a Value at Risk (VaR) estimator guarantees that the
numerical VaR estimate obtained from a finite amount of data will be exceeded by the
next observation drawn from the same distribution with an expected probability α. In the
special case of a Normal distribution, closed-formed solutions for probability unbiased VaR
estimators are known. For the general case, we use a bootstrapping algorithm to illustrate
the outcomes obtained by estimating VaR from simulated random samples of different
length generated from Normal, Student-t and Mixtures of two Normal distributions. Using
the empirical distribution derived for the VaR estimate, we compute in short samples the
probability-unbiased VaR as well as its confidence bands. Our results show that short
samples may yield good VaR estimates. In fact, we show the probability unbiased VaR
estimator to display a better performance than the standard VaR estimator obtained under
different models, all of which are much more complex.





1.1 Introduction

The parametric or variance-covariance approach to the estimation of VaR in two steps:
first, the distribution is estimated by statistical methods; in the second step, the estimated
distribution is considered as the true distribution and VaR is computed. In the parametric
case this is achieved by using the mathematical expression for VaR in each specific model
and inserting the estimated parameters. This VaR estimator is called plug-in estimator.
It is well-known that the highly nonlinear mapping from the model parameters to the
risk-measure introduces biases and some statistical experiments show that this bias leads
to a systematic underestimation of risk.

VaR performance is usually assessed by comparing the observed number of violations
of the quantile estimator threshold with the theoretical frequency. Francioni and Herzog,
“Probability-unbiased Value-at-Risk estimators” [20] suggest the use of probability unbi-
asedness as a criterion to judge the quality of VaR estimates. Probability unbiasedness
means that the VaR estimator should be unbiased regarding the relative frequency of vio-
lations of the quantile. They show how the α-quantile may be modified so that the implied
VaR estimate is unbiased.

We use the non-parametric method (bootstrapping) for the calculation of the unbi-
ased VaR estimator introduced by Francioni and Herzog for the Normal distribution. We
extend their approach to other distributions such as Student-t and mixture of Normals,
while using the parametric approach to calculate probability-unbiased VaR in the Normal
case. We show that the use of probability-unbiased VaR avoids the systematic underes-
timation of risk implied by the bias of standard VaR measures in small samples. The
magnitude of the distortion that needs to be exerted on the quantile to move from the
standard VaR to the probability-unbiased VaR depends on the sample size and on the
distribution assumption on returns. Our results suggest that using a small sample may
easily lead to more accurate VaR estimates than a historical estimator based on long sam-
ples according to the exceedence probability and to the Observed Absolute Deviation per
year. Short samples are more robust to the structural changes that may arise over time
in financial returns due to trading behavior.

The remainder of the chapter is organized as follows. In Section 1.2, we present a
review of literature. In Section 1.3, we describe the concept of quantile or VaR estima-
tor. In Section 1.4, we introduce the difference between parametric and non-parametric
methods used to calculate probability-unbiased VaR. In Sections 1.5, 1.6 and 1.7, we ex-
plain and calculate probability-unbiased VaR with Normal, Student-t and Mixture of two
Normal distributions, respectively. In Section 1.8, we report the results of an empirical
application. Finally, Section 1.9 concludes the chapter.

1.2 A review of literature

The estimation of risk measures is an area of highest importance in the financial industry.
Risk measures play a major role in the risk-management and in the computation of regu-

11
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latory capital. [For an in-depth treatment of the topic, see textbooks of McNeil, Frey and
Embrechts (2005) [75] and of Alexander (2009) [2]]. In particular, Embrechts and Hofert
(2014) [37] highlight that a major part of quantitative risk management is actually of sta-
tistical nature, and the statistical aspects in the estimation of risk measures have recently
raised a lot of attention [see Acerbi and Szekely (2007) [4], Davis (2014) [10], Emmer et al.
(2015) [39], Du and Escanciano (2015) [36], Costanzino and Curran (2015) [26], Fissler et
al. (2015) [45] and Ziegel (2016) [97]]. Surprisingly, it turns out that statistical properties
of risk estimators have not yet been analyzed thoroughly. Some of the existing analysis
show that standard risk estimators may be biased, and they systematically underestimate
risk. Unfortunately, while the classical (statistical) definition of bias is always desirable
from a theoretical point of view, it is not considered a priority by financial institutions or
regulators, for whom the backtests are the main source of estimation accuracy.

Not surprisingly, the occurrence of biases in risk estimation plays an important role
in practice. The Basel III document [13] has suggested to shift from Value-at-Risk into
Expected Shortfall as a risk measure and to consider stressed scenarios at a new confi-
dence level of 97.5%. In fact, such a correction may reduce the bias, but only in the right
scenarios. Our goal is to obtain probability-unbiased estimators that pass the standard
backtesting procedure proposed by Basel. That amounts to having an expected failure
rate close to the theoretical VaR level α.

Francioni and Herzog (2012) [20] (FH) have shown how to distort the α quantile
used in VaR estimation so that the implied VaR estimator is unbiased in probability, in
a sense to be defined below. Our goal is to extend the concept of probability unbiased
estimation introduced by FH to distributions different from Normal. In this line, Pitera
and Schmidt (2016) [26] propose an unbiased bootstrapping estimator under Normality
obtained by distorting the estimated parameters of the distribution instead of distorting
the VaR confidence level as FH suggest. The FH strategy is the one we follow in this
chapter.

1.3 Quantile or VaR estimator

In this section we describe the concepts associated to the probability unbiased estimation
of Value at Risk.

Let us suppose that X is an absolutely continuous random variable with distribution
function Fθ, where θ is a parameter vector. The α quantile Qα of X is defined as

Qα = F−1
θ (α)

By definition, the quantile has the property that

Fθ(Qα) = α

This equation represents the intuitive concept of the quantile as a threshold that is
exceeded with probability α. The quantile Qα of the distribution of returns of a given
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financial asset or portfolio is known as the Value-at-Risk (VaR) at the level α or at the
confidence level 1− α.

We assume that the parameter vector θ can be estimated by any method like Maximum
Likelihood, Generalized Method of Moments or others in such a way that the observed
data are well described. We will assume that estimator to be at least consistent.

In a general estimation setup, a plug-in estimator for a function g(θ) is an estimator
obtained by replacing the parameter θ in the function by an estimate, that is

ĝ(θ) = g(θ̂)

The quantile Qα can be seen as a function of the parameter vector and the significance
level:

Qα = g(θ, α)

The plug-in VaR estimator is the only method to estimate VaR under a parametric
approach:

V̂ aRα = Q̂α = g(θ̂, α)

We aim at estimating the risk of the future position where θ ∈ Θ are unknown. If θ
were known, we could directly compute the corresponding VaR as a function of θ, g(θ),
specifically with Fθ, and we would not need to consider the family of VaR, (g(θ))θ∈Θ.

Our aim is to estimate Qα in such a way that the estimator satisfies this probabilistic
’threshold property’ in the mean for a Fθ-distributed random variable X for all θ, i.e.

Eθ[Fθ(Q̂α)] = α

where Eθ denotes the expectation operator under probability measure Fθ.
This is a standard unbiasedness condition on the probability of exceeding the VaR

estimate Q̂α. That probability is usually checked by backtesting. Unbiasedness would
imply that the VaR estimate Q̂α will be exceeded with an expected probability equal to
α.

Definition 1 An estimator ĝ(θ), obtained with sample observations (X1, ..., Xn) ∼ Fθ of
g(θ), is said to be probability unbiased with respect to a random variable Z with distribution
function FZ , if

FZ(g(θ)) = Eθ[FZ(ĝ(θ))]

holds for all θ.

In the case of a quantile/VaR estimation where all Xi ∼i.i.d Fθ, i = 1, ..., n, g(θ) is
the α-quantile Qα, Z is the next sample observation Z = Xn+1, and FZ is the probability
distribution from which the sample has been obtained. Hence, a probability-unbiased VaR
estimator with respect to Z = Xn+1 must satisfy:

Eθ[P (Xn+1 < Q̂α)] = α (1.1)

Unfortunately, under nonlinear mappings of the parameter vector θ, as it is the case of
the quantile, the plug-in procedure generally introduces a small sample bias: E(P (Xnew <
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V̂ aRα) 6= α. The reason is that it treats the estimated parameter vector as deterministic,
even though θ̂ is a random variable, a fact that must be incorporated into the estimation
procedure in order to obtain probability-unbiasedness. As a consequence, the equation:

Q̂α = F−1

θ̂
(α)

where θ̂ is an estimator of the parameter θ, is only true asymptotically, i.e. as the number
of observations goes to infinity, provided the plug-in estimator is consistent.

V̂ aRα ≡ Q̂α
n→∞−→ V aRα ≡ Qα = F−1

θ (α)

almost surely for each θ ∈ Θ, so that it is asymptotically unbiased.

To obtain a probability-unbiased estimator for the quantile there are two approaches,

1. Estimating a probability αpu to modify the quantile from the estimated distribution
for which the VaR is estimated. The VaR estimator will be

Q̂αpu = V̂ aRαpu = g(θ̂, αpu) = F−1

θ̂
(αpu)

where αpu is chosen so that equation (1.1) is fulfilled.
For example, if F is a Normal distribution, the VaR estimator can be written:

V̂ aRα = µ̂+ σ̂zαpu

where µ̂ and σ̂ are the estimated mean and standard deviation, respectively, and
zαpu is the inverse cumulative distribution function of the standard Normal(0,1) for
αpu.

2. Modifying the estimate of the parameter vector θ̂ of the distribution F to θ̂pu when
computing the plug-in estimator

Q̂α = F−1

θ̂pu
(α)

If F is a Normal distribution: θ̂pu = (µ̂pu, σ̂pu), and the VaR estimator would then
be written as follows:

V̂ aRα = µ̂pu + σ̂puzα

On the other hand, the plug-in estimator, which has been used in the calculation of
quantile / VaR is:

V̂ aRα = µ̂+ σ̂zα

In this chapter we follow the first of these two approaches to calculate the probability-
unbiased VaR, and we use the second approach, whenever possible, to graph an approx-
imation of the function F distorted by modifying the parameter θ̂. Thus, we will be
computing a probability-unbiased estimator of VaR, that is, an estimator:

Q̂α = F−1

θ̂
(αpu)

where αpu is chosen so that equation (1.1) is fulfilled.
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1.4 Parametric and Non-Parametric methods

We can use parametric or non-parametric methods to find αpu. On the one hand, paramet-
ric methods, or classical statistical methods, have the basis for making inferences about
the population in the theoretical sampling statistical distribution, whose parameters can
be estimated from the observed statistical sample. On the other hand, there are different
procedures based on non parametric methods. Those procedures generate samples from
a set of observations constructing a sample distribution that can be used for parameter
estimation and confidence intervals. Among them, probably the best known and most
commonly used is the bootstrap method. The first mention of this method under this
name is due to Efron (1979) [13], although the same basic ideas came handling for at least
a decade ago (Simon, 1969 [29]). Efron conceived the bootstrap method as an extension
of “jackknife techniques”, which usually consist in extracting samples ever constructed
by removing one element of the original sample to assess the effect on certain statistical
(Quenouille, 1949 [28]; Tukey, 1958 [125] and Miller, 1974 [25]).

The bootstrap method, unlike classical estimation methods, does not make any distri-
bution assumptions for the theoretical statistical. Instead, the distribution of the statistic
is determined by simulating a large number of random samples constructed directly from
the observed data. That is, the original sample is used to generate new samples from that
as a basis for estimating inductively the sampling distribution of the statistic, rather than
deriving it from a theoretical distribution assumed a priori. This method has an imme-
diate predecessor in the techniques of Monte Carlo simulation, consisting in extracting
a large number of random samples from a known population to calculate from them the
value of the statistic whose sampling distribution is intended to be estimated. However,
in practice the population is not known and the information we have is a sample drawn
from it.

Definition 2 The bootstrapping (bootstrap) is a resampling method or algorithm that con-
sists in generating a large number of resamples using sampling with replacement from an
original random sample of size n which represents the population from which it was ex-
tracted. Each resample is the same size as the original random sample. The resamples
serve as population samples.

According to the main idea of bootstrap, the procedure involves using the sample itself
since we consider that it contains basic information about the population. Therefore,
the suitability of this method will be greater when the sample contributes with more
information about the population. A direct consequence is that the longer the sample
size, the better the estimation about the sample distribution of a statistic. However,
even with small samples, between ten and twenty observations, the bootstrap method can
provide correct results (Bickel and Krieger, 1989 [6]) while being unsuitable for samples
with less than five (Chernick, 1999 [8]).
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1.5 Normal Distribution

The VaR calculated by the parametric approach for a Normal distribution is Qα = µ+σzα
where the parameter vector θ = (µ, σ). To obtain the plug-in V̂ aRα the parameters of the
Normal distribution are replaced by their Maximum Likelihood estimates Q̂α = x̄ + zαs
where zα is the inverse cumulative distribution function of a Normal(0,1), x̄ is the sample
mean and s is the sample standard deviation. These statistics are independent since the
sample comes from a distribution N(µ, σ2)

x̄ =
1

n
ΣXi

s =

√
1

n− 1
Σ(Xi − x̄)2

For the Normal distribution, the statistical distributions are known, where the distri-
bution of sample mean is a Normal distribution,

x̄ ∼ N
(
µ,
σ2

n

)
and the distribution of variance is calculates as follows,

If we start from a simple random sample with distribution N(µ, σ2), then

n− 1

σ2
s2 ∼ χ2

n−1

Using the previous proposition, we can obtain the distribution of s2 through a trans-
formation of random variable. It is obtained as

s2 ∼ χ2
n−1

(
n− 1

σ2
s2

)
n− 1

σ2

Note that the distributions of the two estimators depend on the size of the sample n.
The estimator x̂ is unbiased, and s2 is consistent (Casella and Berger, 2002 [7]).

To obtain
E(P (Xn+1 < V̂ aRα)) = α

we have,

P (Xn+1 < x̄+ zαs) =

∫ x̄+zαs

∞
N
(
x | µ, σ2

)
dx = P

(
Xn+1 − µ

σ
<
x̄+ zαs− µ

σ

)
= Φ

(
x̄− µ
σ

+ zα
s

σ

)

E
(

Φ

(
x̄− µ
σ

+ zα
s

σ

))
=

∫∫
Φ

(
x̄− µ
σ

+ zα

√
s2

σ

)
N

(
x̄ | µ,

σ2

n

)
χ2
n−1

(
n− 1

σ2
s2
)
n− 1

σ2
dx̄ds2 (1.2)

where we have calculated the expectation of a two random variables continuous func-
tion:

E(g(x̄, s2)) =

∫∫
g(x̄, s2)fx̄s2dx̄ds

2



Chapter 1. Probability-unbiased VaR estimator 17

where fx̄s2 is the joint density function of two random variables. As x̄ and s2 are inde-
pendent, the joint density function is just the product of the density functions of each
variable

N

(
x̄ | µ, σ

2

n

)
χ2
n−1

(
n− 1

σ2
s2

)
n− 1

σ2

In (1.2) we do the following change of variable

X =
x̄− µ
σ

dx̄ = σdX

Y =
n− 1

σ2
s2 ds2 =

σ2

n− 1
dY

The density function of the sample mean after the change of variable is

N

(
x̄ | µ, σ

2

n

)
=

√
n

σ

1√
2π
e−

n
2σ2 (x̄−µ)2

=

√
n

σ

1√
2π
e−

n
2
X2

=
1

σ
N

(
X | 0, 1

n

)
Therefore, the equation that defines αpu with Maximum Likelihood estimator for the

Normal distribution is∫∫
Φ

(
X + zαpu

√
Y

n− 1

)
N

(
X | 0, 1

n

)
χ2
n−1(Y )dXdY = α (1.3)

Notice that equation (1.3) only depends on α and n, but it does not depend on θ,
i.e. on µ and σ. Non-dependence on θ arises under the Normal distribution because of
its strong invariance structure. Being a location-scale distribution, we can reduce it to a
standard Normal distribution that does not depend on these parameters. This property
is important because in estimating the parameter θ, the VaR estimator obtained is only
an approximation to the probability-unbiased VaR.

In this case, the αpu is unique for each sample size (n) and for each probability α
and it does not vary from one sample to another of equal size because the function (1.3)
does not depend on the distribution parameters. The VaR obtained with each of these
αpu will be probability-unbiased, that is, E(V̂ aR) = V aR.

To sum up, if the probability distribution from which we draw independent sample
realizations belongs to the location-scale family, then we will be able to find an αpu such
that the VaR is unbiased.

Table 1.1 lists the probabilities αpu obtained from equation (1.3), as a function of
the sample size n and the value of α. We can see that αpu → α when n → ∞. For
instance, under the estimated probability distribution for a sample size n = 20, the 3.82%
percentile has a 5% probability of being exceeded by a future observation drawn from the
full distribution of returns. As we can see, for small sample sizes the estimated distribution
function from a Normal sample is much heavier tailed than the Normal distribution associ-
ated to the plug-in estimator. As a consequence, the plug-in VaR estimator underestimates
risk.
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α(%)

n 0.5 1 5 10

10 0.033 0.154 2.727 7.345

15 0.105 0.336 3.445 8.239

20 0.169 0.463 3.821 8.683

25 0.217 0.552 4.051 8.948

50 0.340 0.757 4.520 9.476

100 0.415 0.874 4.759 9.738

150 0.442 0.915 4.839 9.826

200 0.456 0.936 4.879 9.869

Table 1.1: Probabilities αpu(%) to be used to obtain the probability-unbiased V aRα for
different values of α and n in the i.i.d. Normal distribution case.

Table 1.2 presents the reverse question: What is the α associated to a given αpu? Now,
at 5% significance and n = 20, the pu-VaR estimate would have a 6.25% probability of
being exceeded by a future sample observation from the full distribution of returns. We
observe that the differences are greater when we have small sample sizes and we can also
observe that α→ αpu when n→∞.

Figure 1.1 graphs the distortion function for different sample sizes (red line). It corrob-
orates the fact that, as we have more observations, the correction in the probability level is
smaller and the distortion function converges to the identity (black line). This distortion
function describes how probabilities need to be changed in the plug-in quantile estima-
tor such that the plug-in estimator becomes probability-unbiased. Figure 1.2 shows the
distortion of the quantiles of the standard Normal distribution function which describes
how the plug-in estimate of the cumulative density function has to be changed for a given
sample size n such that the estimate becomes probability-unbiased. In both figures, we
only represent the left extreme quantiles, but it would be possible to enlarge the graph
to represent the entire distribution. In Figure 1.2. we observe that for more extreme
quantiles the distortion is greater, i.e. the differences between α and αpu are larger. Also,
αpu is always lower than α, in other words, probability-unbiased VaR is greater (in absolute
value) than plug-in VaR. The latter underestimates the extreme events and, therefore, is
not an appropriate method to estimate risk measure with small samples.

1.5.1 Parametric probability-unbiased VaR estimator for a Normal dis-
tribution.

We now turn to the estimation of VaR itself. We apply the first approach described in
Section 1.3 to estimate the probability-unbiased VaR, which implies a modification of the
quantile, replacing α by αpu. Table 1.3 shows the probability-unbiased V̂ aRα (V aRpu) and
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αpu(%)

n 0.5 1 5 10

10 1.820 2.686 7.563 12.639

15 1.288 2.043 6.678 11.752

20 1.056 1.751 6.247 11.312

25 0.928 1.585 5.992 11.048

50 0.697 1.277 5.490 10.523

100 0.594 1.134 5.243 10.261

150 0.562 1.089 5.162 10.174

200 0.546 1.066 5.121 10.130

Table 1.2: The shortfall probabilities α(%) with which the next observation is lower than
the plug-in VaR estimate zαpu for the Normal distribution case.

Figure 1.1: Distortion function for the Normal distribution calculated with the parametric
method. The diagonal (black line) represents no distortion.
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Figure 1.2: The quantiles of the Normal cdf versus the quantiles of the distorted Normal cdf
calculated with the parametric method. The diagonal (black line) represents no distortion.

the plug-in V̂ aRα (V aRplug−in) obtained for different sample sizes and α‘s. We can see

that plug-in V̂ aRα underestimates risk, indicating smaller losses than we should really
expect with α% probability. Thus, for instance, for a random sample of size 25, the max-
imum expected loss with 95% probability or, equivalently, the minimum loss with a 5% is
not 1.844, but 1.949.

The calculation of probability-unbiased VaR is particularly relevant for small sample
sizes, when the difference in the estimation of VaR is higher than for large samples, for
which the probability-unbiased V̂ aRα and the plug-in V̂ aRα are very similar.

Now, we follow the second approach described in Section 1.3, to obtain the probability-
unbiased VaR estimator by calculating the standard deviation σ̂pu of the distorted distri-
bution function F .

If F is a Normal distribution, the probability-unbiased VaR estimator can be written
in two alternative ways:

V̂ aRα = µ̂pu + σ̂puzα = µ̂+ σ̂zαpu

that illustrate the two equivalent approaches to probability-unbiased VaR estimation: ei-
ther we distort the quantile and use the estimated parameters or we maintain the original
quantile while distorting the estimated parameters. This equation also shows that once
we have calculated αpu we can obtain σzαpu and viceversa.
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V aRpu V aRplug−in

n 0.5 1 5 10 0.5 1 5 10

10 -3.227 -2.786 -1.768 -1.305 -2.409 -2.165 -1.496 -1.139

15 -2.796 -2.440 -1.570 -1.150 -2.309 -2.065 -1.400 -1.045

20 -3.206 -2.866 -2.011 -1.587 -2.839 -2.582 -1.880 -1.506

25 -3.117 -2.789 -1.949 -1.527 -2.825 -2.562 -1.844 -1.461

50 -2.925 -2.624 -1.827 -1.415 -2.783 -2.513 -1.775 -1.382

100 -2.546 -2.307 -1.666 -1.329 -2.488 -2.262 -1.645 -1.316

150 -2.621 -2.374 -1.705 -1.352 -2.581 -2.342 -1.690 -1.343

200 -2.393 -2.165 -1.547 -1.220 -2.365 -2.143 -1.537 -1.213

Table 1.3: Probability-unbiased V̂ aRα versus plug-in V̂ aRα in the case of Normal(0,1).

Since the mean of the distribution is very low in high frequency returns and it is
estimated with very low precision, we can consider it to be the same for the distorted
distribution as for the original distribution, i.e. µ̂pu = µ̂. Then, we will calculate the stan-
dard deviation σ̂pu of the distorted distribution function implicitly so that the previous
equation holds. That standard deviation will be different for every α and for each sample
size (n) because V̂ aRα also changes with α and with n.

Table 1.4 shows the σ̂pu values obtained for different α and n. Notice that σ̂pu is
greater for small sample sizes suggesting the heavier tails of the distorted distribution.
For a given sample size, we obtain larger differences between σ̂ and σ̂pu for the more
extreme quantiles. For a given α, we obtain greater differences between σ̂ and σ̂pu for
small sample sizes. Finally, for n = 200 we can see that the σ̂pu’s are closer to the sample
standard deviation (σ̂ = s) for any α and, therefore, closer to the population standard
deviation, 1.

Figure 1.3 shows the true density function of a random variable N(0,1) (blue line),
the density function of the Normal distribution with the parameters estimated from a
random sample of size 15 extracted from a N(0,1) (red line), and the density function
of the distorted estimated distribution function using the σ̂pu estimate (green line). We
can see that the distorted distribution function has heavier tails, which should allow for
a better fit to a distribution of most asset returns. The probability-unbiased V̂ aR (green

point) indicates higher losses than plug-in V̂ aR (red point). In other words, the plug-in
estimator underestimates risk, particularly in small size samples. Furthemore, the smaller
the sample the greater the correction or adjustment needed on the probability distribution.
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α(%)

n 0.5 1 5 10

10 1.299 1.248 1.147 1.111

15 1.165 1.137 1.079 1.058

20 1.172 1.152 1.109 1.093

25 1.167 1.151 1.118 1.105

50 1.138 1.130 1.114 1.108

100 0.928 0.925 0.919 0.916

150 0.972 0.970 0.966 0.964

200 0.901 0.899 0.8965 0.895

Table 1.4: Estimated standard deviations for the distorted distribution function.

Figure 1.3: The true N(0,1) pdf (blue line), the plug-in pdf (red line) and the pdf of the

unbiased cdf (green line). Points on the horizontal axis show the true V̂ aR5% (blue point),

the plug-in V̂ aR5% (red point) and the unbiased V̂ aR5% (green point).
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Figure 1.4 shows the cumulative distribution function of N(0,1) (blue line), the plug-in
cumulative distribution function (red line) and the probability-unbiased cumulative distri-
bution function (green line). It also displays VaR estimates at 5% significance level.

Figure 1.4: The true N(0,1) cdf (blue line), the plug-in cdf (red line) and the unbiased cdf

(green line). Points on the horizontal axis show the true V̂ aR5% (blue point), the plug-in

V̂ aR5% (red point) and the unbiased V̂ aR5% (green point) .

Figures 1.5 and 1.6 show pdf’s and cdf’s, respectively, for different sample sizes. We
also show the plug-in V̂ aR5% and the probability-unbiased V̂ aR5%. These Figures show the
convergence of the plug-in distribution and the probability-unbiased distribution to the true
distribution as the sample size increases. The pdf’s and the cdf’s have been represented
based on a random sample of size 15, where the distortion can be easily appreciated, since
the smaller the size sample the larger the distortion in the plug-in distribution function.

1.5.2 A comparison of probability-unbiased VaR and plug-in VaR under
Normality

We want to compare the exceedance probabilities obtained from probability-unbiased VaR
and plug-in VaR. According to the argument we used in the previous section to calculate an
approximate alphapu we expect to obtain a number of exceedances for probability-unbiased
VaR to be very close to the theoretical α regardless of the sample size considered. For
this, we simulate the estimation of the plug-in VaR estimator and the probability-unbiased
VaR estimator and calculate the exceedance probabilities.

The Monte-Carlo exercise with S simulations is performed using the following steps:

1. Set the counter of the simulation s = 0.

2. Increment the counter of the simulation s = s+ 1.
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Figure 1.5: The true N(0,1) pdf (blue line), the plug-in pdf (red line) and the pdf of the
unbiased cdf (green line) for different sample sizes (enlargement of the left tail). Points on

the horizontal axis show the true V̂ aR5% (blue point), the plug-in V̂ aR5% (red point) and

the probability-unbiased V̂ aR5% (green point) .

Figure 1.6: The true N(0,1) cdf (blue line), the plug-in cdf (red line) and the unbiased
cdf (green line) for different sample sizes (enlargement of the left tail). Points on the

horizontal axis the data points show the true V̂ aR5% (blue point), the plug-in V̂ aR5% (red

point) and the unbiased V̂ aR5% (green point) .
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3. Simulate normally distributed data with n+ 1 observations and predefined values of
µ and σ.

4. Calculate the mean and the standard deviation based on the first n data points.

5. Calculate the plug-in VaR estimator. CAlculate the probability-unbiased VaR esti-
mator using the αpu from Table 1.1 for the µ and σ estimates in step 4.

6. Check if the n+1 data point is smaller than the plug-in V̂ aR and the probability-
unbiased estimator. When the data point is smaller (VaR exceedance) record a 1,
otherwise a 0.

7. Return to step 2 while s < S.

8. Calculate the exceedance probability by summing the recorded values and dividing
them by the number of simulations S.

The results in Table 1.5 for samples of size 10, 15, 20 and 25, for V̂ aR1% and V̂ aR5%,
with µ = 0, σ = 1 and S = 100000, show that the probability of a VaR exceedence from
the probability-unbiased estimator is close to the theoretical values of 1% and 5%. How-
ever, the probability of a VaR exceedence for the plug-in VaR differs than the theoretical
probability. This confirms the results presented in Table 1.1. As the sample size increases,
the probability of an excess from the plug-in VaR estimator calculated from the simula-
tions approaches the theoretical value. For the probability-unbiased VaR estimator, that
probability remains similar to the theoretical probability for all sample sizes.

n 1%plug − in 1%pu 5%plug − in 5%pu

10 2.674 0.985 7.567 5.015

15 2.063 0.953 6.748 5.047

20 1.825 1.028 6.268 5.038

25 1.608 0.999 5.978 4.930

Table 1.5: Shortfall probabilities α% that the next observation will be lower than the plug-
in V̂ aR and the probability unbiased V̂ aR in the Monte-Carlo simulation for the Normal
distribution.

1.5.3 Bootstrapping estimation of probability-unbiased VaR

When sampling from a Normal distribution function (Fθ), FH [20] propose an algorithm
to replace the level α by a suitably chosen level αpu so as to minimize the average distance
between the bootstrapped estimators and α. The αpu obtained through resampling will
change with the sample size (n), the confidence level α and the observed values in the
sample. The algorithm approximates the αpu level and achieves an approximation to the
probability-unbiased VaR through a modification of the confidence level. The change from
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α to αpu corrects for the fact that we do not observe infinite realizations. For a large num-
ber of observations the plug-in estimator and the probability-unbiased estimator become
very similar. The plug-in estimator has good properties only asymptotically, while the
probability-unbiased estimator is a good estimator even in short samples.

Suppose we have a random sample of size n drawn from a distribution Fθ. Then,
we generate B resamples of the same size n. These resamples are obtained by sampling
with replacement. The steps to be performed are:

1. From observed values X1, ..., Xn ∼i.i.d. Fθ

2. Calculate θ̂ = θ̂(X1, ..., Xn)

3. For i=1:B
Samples X∗1 , ..., X

∗
n from F

θ̂
1

Calculate θ̂∗i
Find the αpu that minimizes the following objective function

αpu = argminγ

∣∣∣∣∣ 1

B

B∑
i=1

F
θ̂
(F−1

θ̂∗i
(γ))− α

∣∣∣∣∣ (1.4)

The level of αpu is chosen so that equation (1.1) is satisfied. Substituting α for αpu we
obtain the probability-unbiased VaR estimator.

We start with a random sample of size n generated from a Normal distribution with
mean 0 and standard deviation 1. From this original random sample we obtain 10,000
resamples of size n. As we increase the sample size, the Maximum Likelihood estimates
of mean and standard deviation of the original random sample, µy and σy, tend to the
population average (µx = 0) and the population standard deviation (σx = 1). For each
resample we estimate the mean and the standard deviation, obtaining 10000 means and
10000 standard deviations. These estimates are used to find the αpu that minimizes the
objective function (1.4). Table 1.6 shows the αpu probabilities obtained under the boot-
strap algorithm proposed by FH. They change with sample size (n) and with the value

1Even though this is unclear in FH, we understand that these samples are resamples of the original
sample (our observed values) for three reasons: 1) if the samples were generated from the distribution
function estimated with the original sample, we would obtain from each resample very different values
of θ̂∗i , especially with small sample sizes, and we would have to draw many samples to obtain suitable
results. Indeed, even performing 100000 samples from Fθ̂ we have not obtained the expected results, and
αpu does not tend to α when n tends to ∞, 2) we have just one random sample, possibly of small size,
and we cannot use classical statistical inference to find the sampling distribution because we do not know
the parameters of the population distribution and we cannot take the estimated parameters as population
parameters. Therefore, to find the sampling distribution, at least approximately, we create many resamples
by repeatedly sampling with replacement from the original random sample. Each resample has the same
size as the original random sample, and 3) a bootstrap algorithm as mentioned by FH is based on a large
number of new samples obtained by sampling from the original sample, not by simulation.
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of α 2. Notice that αpu −→ α as n −→ ∞. Comparing Table 1.1 with Table 1.6, we can
see that the αpu values obtained by parametric approach and the bootstrap algorithm are
very similar. In Table 1.6 these values change with the sample. The αpu values from both
tables differ from each other just for small sample sizes. As n −→ ∞ both αpu values
converge towards the theoretical α.

α(%)

n 0.5 1 5 10

10 0.021 0.091 2.167 6.402

15 0.049 0.122 2.536 7.010

20 0.154 0.425 3.613 8.362

25 0.169 0.453 3.652 8.365

50 0.319 0.715 4.358 9.245

100 0.405 0.854 4.686 9.635

150 0.429 0.892 4.775 9.740

200 0.457 0.936 4.864 9.839

Table 1.6: Probabilities αpu to be used to obtain a probability-unbiased V aRα for different
values of α and n in the i.i.d. Normal distribution case using bootstrapping proposed by
FH.

At the beginning of Section 1.5 we have shown that for a Normal distribution it is
possible to obtain a closed-form solution for probability-unbiased VaR. But in this sub-
section we have reproduced the FH argument using a Monte Carlo simulation algorithm
to calculate αpu for a Normal distribution and we have compared the results obtained
from the analytical and the numerical approaches. For other distributions for which the
probability distributions of estimated parameters are either unknown or they are difficult
to obtain, we suggest using this same bootstrap algorithm. In particular, we will use the
above routine to calculate probability-unbiased VaR for Student-t distributions a well as
for a mixture of two Normal distributions.

1.5.4 Approximate probability-unbiased confidence intervals for VaR
under Normality

The numerical value of an estimator provides a point estimate of the statistical parameter
under study. It is often preferred to estimate by a probability/confidence interval, since

2From the αpu obtained by the bootstraping algorithm proposed by FH, we obtain probability-unbiased
VaR and the distortion functions, and we can check by Monte-Carlo simulation the probability of an
excess obtained with the probability-unbiased VaR and compare it with that obtained with plug-in VaR for
different sample sizes. Since these analysis are just a reproduction of the simulation analysis in FH, we
leave them to Appendix A.
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the amplitude of the interval provides information about the possible estimation error
(or about the level of uncertainty on the true value of the parameter, under a Bayesian
interpretation).

In this section we construct a confidence interval for the VaR estimate. We want
to estimate the confidence interval (1 − 2αCI) of the form I = [CIlow, CIup]. The exact
coverage probability indicates that

P (g(θ) ∈ I) = 1− 2αCI

FH propose again using the bootstrap method to calculate the confidence interval:

1. From observed values X1, ..., Xn ∼i.i.d Fθ

2. Calculate θ̂ = θ̂(X1, ..., Xn)

3. For i=1:B
Sample X∗1 , ..., X

∗
n of F

θ̂

Calculate θ̂∗i = θ̂∗i (X
∗
1 , ..., X

∗
n)

Calculate g(θ̂∗i )

4. Calculate an estimate Ĝ∗ of G, the distribution of g(θ̂), with the help of the bootstrap
samples g(θ̂∗1), ...g(θ̂∗B)

5. Calculate Î with the help of the distribution Ĝ∗

ĈI low = (Ĝ∗)−1(αCI), ĈIup = (Ĝ∗)−1(1− αCI)

for a symmetric confidence interval.

The bootstrap distribution (Ĝ∗) of the estimator g(θ̂) based on many resamples ap-
proximates the sampling distribution of the estimator that we could obtain based on many
samples, if they were available. The bootstrap distribution of VaR is obtained from VaR
estimates from many resamples and provides information about the sampling distribution
of VaR when it is unknown. The original sample represents the population from which it
was drawn. So resamples from this sample represent what we would get if we took many
samples from the population. As we increase the number of resamples B, interval estima-
tion converges to the plug-in estimates rather than to the probability-unbiased estimates
because the plug-in estimators were used in step 3.

Both bounds are estimated separately to obtain the probability-unbiased confidence
interval. We calculate the upper bound CIup as

P (CI < g(θ)) = αCI

The respective lower bound CIlow can be found by replacing αCI by 1− αCI .

The aim is to calculate a probability-unbiased estimator for CI with respect to g(θ),

P (ĈI < g(θ)) = αCI
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We thus replace again αCI by αCI,pu and we obtain the estimator

ĈI = (Ĝ∗)−1(αCI,pu)

where Ĝ is the estimate of G.

To estimate an approximation to αCI,pu a bootstrap algorithm is used, following the
steps:

1. Repeat B2 times steps 2 and 3 of the bootstrap algorithm to obtain realizations
Ĝ∗1, ..., Ĝ

∗
B2

de Ĝ

2. Find αCI,pu such that

αCI,pu = argminγ

∣∣∣∣∣ 1

B2

B2∑
i=1

1
(Ĝ∗i )−1(γ)<g(θ̂)

− αCI

∣∣∣∣∣ (1.5)

where 1
(Ĝ∗i )−1(γ)<g(θ̂)

is the indicator function taking the value 1 if the VaR falls

outside the interval and it takes the value 0 if the VaR is inside the interval. In
other words, g(θ̂) is exceeded in mean with probability approximately 1 − αCI by
the αCI,pu quantile of Ĝi, i = 1, ..., B.

It is important to note that for the respective lower bound, we cannot just take the
1 − αCI,pu quantile of the estimated distribution Ĝ∗, because the distribution G is non-
symmetric. We need to repeat the above algorithm for CIlow replacing αCI for 1 − αCI .
That will yield an interval estimate with a confidence level of 1−2αCI where, for example,
αCI = 0.05.

Using the bootstrap algorithm, we obtain the distribution of V̂ aR5% on which we
calculate the confidence interval within which the true VaR will be find. Table 1.7 shows
the plug-in interval range for a 90% confidence level. We observe that as the sample size
increases, the confidence interval narrows. This table shows the distortions for probability-
unbiased confidence intervals in the case where we use the plug-in VaR estimator in the
objective function (1.5) of the bootstrap algorithm.

To calculate the probability-unbiased confidence interval, we need to obtain the αCI,pu.
The αCI,pu is the value that minimizes the objective function (1.5). This is the upper
bound of the interval. For the lower bound we should perform the bootstrap algorithm
again, in this case replacing αCI for 1− αCI .

Table 1.8 shows the distortions for probability-unbiased confidence intervals in the
case where we use the plug-in VaR estimator in step 3 of the bootstrap algorithm, i.e.
α
V̂ aR

= α. For example, the lower bound of the 90% confidence level estimated from
20 data points is the 1.40% sample percentile. It will be exceeded with a probability of
5%. If this result is subtracted from the upper bound exceedence probability, we obtain
a coverage probability for the interval of (62.33% − 1.40% = 60.93%). We can see that
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n αCI 1− αCI CIlow CIup

10 5 95 -3.1084 -0.5513

15 5 95 -1.8305 -0.7546

20 5 95 -1.5809 -0.6599

25 5 95 -1.8869 -1.0263

50 5 95 -1.6890 -1.0249

100 5 95 -2.0458 -1.3302

150 5 95 -1.6067 -1.2543

200 5 95 -1.6666 -1.3640

Table 1.7: Probability αCI(%), 1− αCI(%) and quantiles corresponding to the lower and
upper bounds of confidence interval 90% for a Normal distribution.

n αCI,low,pu αCI,up,pu CIlow,pu CIup,pu

10 1.14 45.11 -3.5659 -2.1695

15 1.12 58.32 -2.0367 -1.2789

20 1.40 62.33 -1.6703 -1.0033

25 1.01 70.58 -2.0454 -1.3337

50 1.42 81.06 -1.7473 -1.1800

100 1.76 91.45 -2.0905 -1.4472

150 1.01 94.07 -1.6191 -1.2546

200 1.42 90.35 -1.7220 -1.4018

Table 1.8: Probabilities αCI,pu(%) such that αCI = P (ĈI < V aR) with α
V̂ aR

= α = 5%

in the V̂ aR and quantiles corresponding to the lower and upper bounds of confidence
interval 90% in the case of the Normal distribution.
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the confidence interval is shifted to the left relative to the standard (plug-in) confidence
interval but not symmetrically because almost all exceedances occur at the lower bound.

As the sample size increases the distortion of the confidence interval is smaller and the
range narrows.

1.6 Student-t Distribution

1.6.1 Probability-unbiased VaR estimator for a Student-t distribution

Let us assume that we have a finite-short sample from a Student-t distribution function
(Fθ). Since we do not know the distribution of the number of degrees of freedom, we will
use the bootstrap algorithm proposed by FH and defined in subsection 1.5.4.

Following the first approach described in section 1.3, the VaR estimator can be ob-
tained using a modification on the α-quantile from the estimated distribution. If F is a
Student-t distribution, the VaR estimator can be written

V̂ aRα = t−1(αpu)

where αpu is chosen so that the equation Eθ[P (Xn+1) < Q̂α)] = α is satisfied. The αpu
approximation is obtained by a bootstrap algorithm. The change of α for αpu corrects for
the fact that we do not observe infinite realizations. The probability-unbiased estimator
satisfies the unbiasedness condition by construction for any sample size, including small
samples, while the plug-in estimator is probability-unbiased only when n −→∞

We start with a random sample of size n generated from a Student-t distribution
with 2 degrees of freedom. This will be the original random sample from which 10,000
resamples of size n will be generated. The parameter to be estimated in this distribution
is the number of degrees of freedom. We have used the method of moments estimator:

ν =
2σ2

σ2 − 1

because of its simplicity, although it requires that the distribution has a variance greater
than 1. For each resample, we estimate the number of degrees of freedom, which is then
used to find the αpuby solving the optimization problem:

αpu = argminγ

∣∣∣∣∣ 1

B

B∑
i=1

F
θ̂
(F−1

θ̂∗i
(γ))− α

∣∣∣∣∣
Our estimates in Table 1.9 show that αpu −→ α as n −→ ∞. The convergence to the

plug-in VaR estimator under the Student-t distribution is faster than under the Normal,
and for small sample sizes we obtain an αpu closer to the theoretical α than under the
Normal distribution. This is because the higher kurtosis of the Student-t distribution
makes more likely the occurrence of extreme events, so that the correction needed on α is
smaller.
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α(%)

n 0.5 1 5 10

10 0.071 0.332 3.865 8.903

15 0.227 0.639 4.470 9.490

20 0.357 0.798 4.663 9.668

25 0.363 0.804 4.656 9.654

50 0.373 0.821 4.701 9.706

100 0.389 0.833 4.784 9.776

150 0.450 0.926 4.862 9.858

200 0.445 0.919 4.855 9.853

Table 1.9: Probabilities αpu(%) to be used to obtain a probability-unbiased V aRα for
different values of α and n in the i.i.d. Student-t distribution case.

Table 1.10 shows the probability-unbiased V̂ aRα (V aRpu) and the plug-in V̂ aRα (the

standard VaR estimator) for different sample sizes and α’s. Notice that the plug-in V̂ aRα
underestimates risk for any probability level α%. As with the Normal distribution, the
calculation of probability-unbiased VaR is specially relevant for small sample sizes although
in this case, differences between both VaR estimates are much greater than under a Nor-
mal distribution.

The distortion function in Figure 1.7 (red line) shows the decrease in the size of the
VaR correction needed for unbiasedness as the number of sample observations increases,
eventually converging to 1 (black line). The same evidence arises from the distortion of
the quantiles of the Student-t distribution function in Figure 1.8.

Table 1.11 presents the reverse question of Table 1.10: What is the α associated to a
given αpu? Now, at 5% significance and n = 20, the pu-VaR estimate would have a 5.34%
probability of being exceeded by a future sample observation from the full distribution of
returns. We observe that differences are greater when we have small sample sizes and we
can also observe that α→ αpu when n→∞.

We can now use the second approach described in Section 1.3 for the computation of
the probability-unbiased VaR estimator, distorting the estimated parameter instead of the
level of α. Since the probability-unbiased VaR estimator can be written:

V̂ aRα = t−1
ν̂pu

(α)

the, once we have the probability-unbiased VaR estimate, we can solve for ν̂pu. Estimates
differ for every α and for each sample size (n), as shown Table 1.12. We observe that for
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V aRpu V aRplug−in

n 0.5 1 5 10 0.5 1 5 10

10 -17.102 -8.949 -2.975 -1.885 -7.515 -5.564 -2.609 -1.752

15 -14.275 -8.533 -3.078 -1.940 -9.650 -6.808 -2.887 -1.872

20 -7.928 -5.716 -2.612 -1.750 -6.919 -5.205 -2.522 -1.714

25 -9.530 -6.635 -2.815 -1.838 -8.247 -5.997 -2.709 -1.796

50 -7.437 -5.448 -2.556 -1.727 -6.634 -5.031 -2.479 -1.695

100 -8.666 -6.198 -2.736 -1.805 -7.762 -5.711 -2.643 -1.767

150 -8.372 -6.054 -2.715 -1.798 -7.990 -5.846 -2.674 -1.781

200 -8.512 -6.128 -2.728 -1.804 -8.078 -5.898 -2.686 -1.786

Table 1.10: Probability-unbiased V̂ aRα versus plug-in V̂ aRα in the case of Student-t dis-
tribution.

Figure 1.7: Distortion function for the Student-t distribution. The diagonal (black line)
represents no distorsion.
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Figure 1.8: Quantiles of the Student-t cdf versus the quantiles of the distorted Student-t
cdf. The diagonal (black line) represents no distortion.

αpu(%)

n 0.5 1 5 10

10 1.248 1.895 6.149 11.068

15 0.838 1.404 5.532 10.504

20 0.666 1.221 5.339 10.329

25 0.658 1.215 5.347 10.344

50 0.645 1.193 5.301 10.294

100 0.628 1.183 5.319 10.322

150 0.553 1.077 5.139 10.141

200 0.558 1.083 5.145 10.146

Table 1.11: Shortfall probabilities α(%) for the next observation being lower than the
plug-in VaR estimate t−1(αpu).
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a given sample size, we obtain a lower number of degrees of freedom for the most extreme
quantile, due to the fact that the estimated distribution function has thicker tails than
the plug-in estimator.

α(%)

n 0.5 1 5 10

10 1.526 1.696 1.947 2.001

15 1.653 1.745 1.858 1.879

20 2.316 2.350 2.403 2.416

25 2.049 2.074 2.114 2.124

50 2.428 2.457 2.504 2.516

100 2.178 2.190 2.215 2.222

150 2.229 2.234 2.244 2.246

200 2.204 2.211 2.224 2.227

Table 1.12: Degrees of freedom estimated for the distorted distribution function.

Figure 1.9 shows the true density function of a random variable t(2) (blue line), the
density function of the Student-t distribution estimated from a random sample of size 15
extracted from a t(2) distribution (red line), and the density function of the distorted es-
timated distribution function (green line). As with the Normal, the distorted distribution
function has thicker tails than the density function of the random variable of size 15 (the
plug-in pdf).

The probability-unbiased V̂ aR (green point) indicates higher losses than the plug-in

V̂ aR (red point), a result that is consistent with the fact that plug-in VaR underestimates
risk.

Figure 1.10 shows the distribution function of t(2) (blue line), the plug-in distribution
function (red line) and the probability-unbiased distribution function (green line). We also
show their 5% VaR estimates.

Figures 1.11 and 1.12 show pdf’s and cdf’s, respectively, for different sample sizes.
We also present plug-in V̂ aR5% and the probability-unbiased V̂ aR5%. These figures show
the convergence of the plug-in distribution and the probability-unbiased distribution to the
true distribution when increasing the size of the random sample. As discussed above, such
convergence is faster than with the Normal, i.e. the distortion needed by the Student-t
distribution for each n and for each α is smaller than for the Normal distribution.
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Figure 1.9: The true t(2) pdf (blue line), the plug-in pdf (red line) and the pdf of the
probabilty-unbiased cdf (green line). On the horizontal axis the data points show the true

V̂ aR5% (blue point), the plug-in V̂ aR5% (red point) and the probability-unbiased V̂ aR5%

(green point) .

Figure 1.10: The true t(2) cdf (blue line), the plug-in cdf (red line) and the probability-

unbiased cdf (green line). On the horizontal axis the data points show the true V̂ aR5%

(blue point), the plug-in V̂ aR5% (red point) and the probability-unbiased V̂ aR5% (green
point).
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Figure 1.11: The true t(2) pdf (blue line), the plug-in pdf (red line) and the pdf of the
unbiased cdf (green line) for different sample sizes (enlargement of the left tail). On the

horizontal axis the data points show the true V̂ aR5% (blue point), the plug-in V̂ aR5% (red

point) and the unbiased V̂ aR5% (green point).

Figure 1.12: The true t(2) cdf (blue line), the plug-in cdf (red line) and the unbiased cdf
(green line) for different sample sizes (enlargement of the left tail). On the horizontal axis

the data points show the true V̂ aR5% (blue point), the plug-in V̂ aR5% (red point) and the

unbiased V̂ aR5% (green point).
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1.6.2 A comparison of probability-unbiased VaR and plug-in VaR under
Student-t

In order to test our theoretical calculations in a controlled simulation, we simulate the
estimation of the plug-in VaR estimator and the probability-unbiased VaR estimator and
calculate the exceedence probabilities. The results in Table 1.13, for samples of size 10,
15, 20 and 25, V̂ aR1% and V̂ aR5%, with gl = 2 and S = 100000, show that the VaR
exceedence of the probability-unbiased estimator is close to the theoretical values of 1%
and 5%. However, the VaR exceedence of the plug-in VaR differs more than the theoretical
probability.

As the sample size increases, the probability of an excess for the plug-in VaR esti-
mator calculated by simulation approaches its theoretical value. However, in the case
of probability-unbiased VaR estimator, that probability remains broadly similar to the
theoretical probability for all sample sizes. However, the number of exceedances is not
as close to the theoretical number as in the case of the Normal distribution when the
probability-unbiased VaR was calculated.

n 1%plug − in 1%pu 5%plug − in 5%pu

10 2.615 1.489 7.459 6.221

15 2.498 1.909 7.159 6.627

20 2.431 2.109 7.073 6.735

25 2.296 1.965 7.091 6.732

Table 1.13: Shortfall probabilities α% that the next observation is always lower than the
plug-in V̂ aR and the probability probability-unbiased V̂ aR in the Monte-Carlo simulation
for Student-t distribution.

1.6.3 Approximate probability-unbiased confidence intervals for VaR
under Studen-t

In this section we construct an interval estimate with a confidence level of 1− 2αCI using
the bootstrap methodology. We present results for αCI = 0.05. Table 1.14 shows the
plug-in range of values at a confidence level of 90%. This is the standard confidence
interval.

To calculate the probability-unbiased confidence interval we should obtain the αCI,pu
that minimizes the objective function

αCI,pu = argminγ

∣∣∣∣∣ 1

B2

B2∑
i=1

1
(Ĝ∗i )−1(γ)<g(θ̂)

− αCI

∣∣∣∣∣
where 1

(Ĝ∗i )−1(γ)<g(θ̂)
is the indicator function that signals whether the VaR is out the

confidence interval. This way, we obtain the upper bound of the range. For the lower
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n αCI 1− αCI CIlow CIup

50 5 95 -2.6304 -2.4079

75 5 95 -2.7098 -2.5021

80 5 95 -2.8457 -2.3540

90 5 95 -2.7791 -2.3202

100 5 95 -2.6606 -2.3685

200 5 95 -2.7659 -2.3314

Table 1.14: Probability αCI(%), 1−αCI(%) and quantiles corresponding to the lower and
upper bounds of a 90% plug-in confidence interval in the case of the Student-t distribution.

bound we must perform again in its entirety the bootstrap algorithm replacing αCI by
1− αCI .

Table 1.15 shows the 90% probability-unbiased confidence interval. The confidence
interval is again shifted to the left relative to the plug-in confidence interval but not sym-
metrically because almost exceedances occur at lower bound. In this case the leftward
shift of the confidence interval is smaller than for the Normal distribution. We can see
again that the confidence interval narrows when we increase the sample size.

n αCI,low,pu 1− αCI,up,pu CIlow,pu CIup,pu

50 1.03 33.71 -2.6470 -2.5466

75 1.06 50.23 -2.7220 -2.6171

80 1.26 3.25 -2.8610 -2.8501

90 1.15 9.83 -2.7880 -2.7493

100 1.37 50.52 -2.6826 -2.5288

200 1.07 13.02 -2.8052 -2.7332

Table 1.15: Probabilities αCI,pu(%), αCI = P (ĈI < V aR), with α
V̂ aR

= α = 5%.
Columns 4 and 5 show the quantiles corresponding to the lower and upper bounds of
the 90% confidence interval in the case of the Student-t distribution.
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1.7 Mixture of two Normal distributions

Definition 3 A distribution is a mixture of two probability distributions when its distri-
bution function can be written as:

F (x) = pF1(x) + (1− p)F2(x)

where F1 and F2 are distribution functions and p is a value between zero and one repre-
senting the probability that the element x comes from the distribution F1.

The mean of the mixture is

mmix = pm1 + (1− p)m2

And the variance

• If m1 = m2

σ2
mix = pσ2

1 + (1− p)σ2
2

• If m1 6= m2

σ2
mix = pσ2

1 + (1− p)σ2
2 + p(1− p)(m1 −m2)2

Strictly speaking, any distribution observed in practice may be regarded as a mixed
distribution. Unlike the linear combination of two Normal distributions, the mixture of
two Normal distributions, does not follow a Normal distribution, since it is obtained by
taking data at random from the first Normal distribution with probability p and from the
second one with probability 1− p.

A mixture could be understood as the modification produced on a distribution (the
second distribution used in the mixture, in this chapter) due to the influence of another
one (the first distribution). When we increase the value of the mixing parameter p, we
increase the influence of the the first distribution on the second one 3.

1.7.1 Casuistry of Mixture of two Normal distribution

Different distributions may be obtained according to the Normal distributions used in the
mixture and according to the mixing parameter used. We consider four mixture distribu-
tion from two Normal distributions with different means and different standard deviation.
The four mixture distributions generated are: a mixture of two Normal with equal µ and
similar σ, with equal µ and different σ, with different µ and similar σ and with different
µ and different σ. We show here the last one, while the rest are described in Appendix B.

Mixture of two Normal distributions with different µ and different σ.

We take as an example a mixture of a Normal distribution with mean -5 and standard
deviation of 10 and a Normal distribution with mean 0 and standard deviation 1. When

3We provide more description about mixtures in Appendix B.
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the mixing parameter is p = 0.1, this mixture has more extreme values in the left tail
than other mixtures that we consider in Appendix B. This is because the first Normal
distribution has a smaller mean and a higher standard deviation.

As we increase the mixing parameter we raise the influence of the second Normal
distribution on the first one. When we reach p = 0.9 we obtain a mixture distribution
that is similar to the first Normal distribution modified by a few values taken from the
second Normal distribution. These few values will mainly affect the right side of the dis-
tribution because the mean of the second Normal distribution is to the right of the mean
of the first Normal distribution (see Figure 1.13).

Figure 1.13: Density function of the mixture of N1 (-5,10) and N2 (0,1) (red line), density
function for N1 (-5,10) (blue line) and density function for N2 (0,1) (black line) for different
values of the mixing parameter.

Figure 1.14 clearly shows that the mixture distribution is not a Normal distribution.
The mixture has less central values than the Normal distributions that are mixed, espe-
cially for intermediate p values, when most values fall at the extremes.

1.7.2 Probability-unbiased VaR estimator for Mixtures of Normal dis-
tributions

In this section we estimate the probability-unbiased VaR estimator for four different mix-
tures of Normal distributions introduced in the previous section.

We begin with a mixture of two Normal distributions with equal mean and similar
standard deviation, specifically a mixture of a Normal(0,2) and a Normal(0,1) with a mix-
ing parameter p = 0.1. We use a small p to obtain a mixture distribution not too different
from a Normal distribution, although the mixture will incorporate some atypical data from
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Figure 1.14: Distribution function of the mixture of N1(-5,10) and N2(0,1) (red line),
distribution function for N1(-5,10) (blue line) and distribution function for N2 (0,1) (black
line) for different values of the mixing parameter. The black horizontal line indicates
α = 0.05.

the first Normal distribution. Sample sizes are 100, 200, 300 and 400 observations. The
quantiles of a mixture distribution do not accept a closed form solution but rather, they
require solving an implicit equation. Therefore, to calculate the VaR we cannot use the
parametric approach. We then need to work with samples larger than in the case of Nor-
mal and t-Student distributions because both plug-in VaR and probability-unbiased VaR
are now calculated as a sample percentile. For example, if we want to compute the 1%
percentile, we must compute it from a sample of considerable size to avoid that it might
fall outside the data range. For instance, the prctile function of MatLab would return the
first value of the sample, in spite of the fact that the first value might be significantly
larger than the 1% percentile.

Table 1.16 shows the main sample moments from this mixture distribution. Notice
that the standard deviation and the kurtosis of the mixture is higher than those of the
second Normal distribution used in the mixture because of the influence of the first Normal
distribution, specially when larger sample sizes allow for higher precision in estimation.
However, the mixture has a virtually Normal distribution because the two Normal distri-
butions that have been used for mixing are very similar.

Once again, to obtain the probability-unbiased VaR estimator, for each given α we
calculate the quantile corresponding to the probability level αpu. The mixture of two
Normal distributions is a parametric distribution, with parameters depending on the pa-
rameters of the two mixing Normal and the mixing probability. Table 1.17 shows the
probability-unbiased VaR, αpu, that satisfies equation (1.1). Notice that the 1% and 5%
plug-in VaR underestimate the level of risk. We can also see that in a larger sample size
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MIXTURE OF N(0,2) and N(0,1)

n µmix σmix skewnessmix kurtosismix

100 -0.0111 1.0427 -0.2318 2.5156

200 0.1246 1.1602 0.0827 3.2897

300 -0.0229 1.2119 0.4906 4.8465

400 0.0946 1.1553 -0.1329 4.8632

Table 1.16: First four moments for samples of size 100, 200, 300 and 400 of a mixture
distribution of N(0,2) and N(0,1) with a mixing parameter p = 0.1.

the probability-unbiased VaR approaches the plug-in VaR.

α = 1% α = 5%

n αpu V aRpu V aRplug−in αpu V aRpu V aRplug−in

100 0.6431 -2.6599 -2.4817 4.5353 -2.0092 -1.9267

200 0.7106 -2.6183 -2.5894 4.6221 1.8305 1.8256

300 0.8947 -2.7030 -2.6819 4.9033 -1.9933 -1.9875

400 0.8774 -2.5118 -2.5005 4.9113 -1.7869 -1.7762

Table 1.17: Probabilities αpu(%) needed to obtain probability-unbiased V̂ aRα for samples
of size 100, 200, 300 y 400 of a mixture distribution of a Normal(0,2) and of a Normal(0,1)
with mixing parameter p = 0.1 and respective probability-unbiased VaR and plug-in VaR
for α = 1% and α = 5%.

Figures 1.15 and 1.16 show density and distribution functions, respectively, for the
mixture and for the two mixed Normal distributions with a mixing parameter p = 0.1
and sample size 100. Also shown on the horizontal axis are the 5% plug-in VaR and the
unbiased in probability VaR.

The second mixture considers two Normal distributions with equal mean and different
standard deviations, Normal(0,10) and Normal(0,1), with a mixing parameter p = 0.1, and
random samples of size 100, 200, 300 and 400. This mixture distribution is more similar
to a Student’s t distribution than the previous one, because of the different standard
deviations of the two mixing Normal distributions. So, this case is more relevant than the
previous one. Table 1.18 shows the first four sample moments of the mixture for different
sample sizes. The mixture distribution can be interpreted as the distribution obtained
by substituting 10% of the data from the second Normal distribution with data from the
first distribution. The mixture has higher standard deviation and higher kurtosis than
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Figure 1.15: The mixture density function (red line), the density function of N(0,2) (blue
line) and the density function of N(0,1) (black line). Points on the horizontal axis indicate

plug-in V̂ aR5% (red dot) and probability-unbiased V̂ aR5% (green dot).

Figure 1.16: The mixture distribution function (red line), the distribution function of
N(0,2) (blue line) and the distribution function of N(0,1) (black line). Points on the hor-

izontal axis indicate the points plug-in V̂ aR5% (red dot) and probability-unbiased V̂ aR5%

(green dot).
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the N(0,1) distribution, both to a greater degree than in the previous case, because of the
ratio of the standard deviations of the two Normal distributions. Furthermore, the level
of kurtosis obtained in the mixture for different sample sizes suggests a distribution closer
to an asymmetric Student-t than to a Normal.

MIXTURE of N(0,10) and N(0,1)

n µmix σmix skewnessmix kurtosismix

100 -0.1630 1.5950 1.8959 10.7701

200 0.1145 3.0345 -1.6851 28.7797

300 0.2841 3.2635 1.2468 18.2806

400 -0.0734 3.7079 -0.3584 22.2558

Table 1.18: First four moments for samples of size 100, 200, 300 and 400 of a mixture
distribution of N(0,10) and N(0,1) with mixing parameter p = 0.1.

Table 1.19 displays the probability-unbiased αpu obtained by bootstrapping. It is less
than α for all sample sizes, indicating that plug-in VaR again underestimates risk. As
the sample size increases, αpu tends to α. We also present the comparison between the
probability-unbiased and the plug-in VaR estimates.

α = 1% α = 5%

n αpu V aRpu V aRplug−in αpu V aRpu V aRplug−in

100 0.5000 -8.2684 -7.3471 4.7367 -2.3926 -2.3618

200 0.8304 -10.5555 -10.0159 4.8514 2.0401 -1.9588

300 0.8330 -13.2550 -12.8525 4.9213 -1.9506 -1.9471

400 0.8744 -14.5035 -14.3003 4.9522 -2.3772 -2.3749

Table 1.19: Probabilities αpu(%) needed to obtain the probability-unbiased V̂ aRα for
samples of size 100, 200, 300 y 400 of a mixture distribution of a Normal(0,10) and of
a Normal(0,1) with mixing parameter p = 0.1. The table also presents the associated
probability-unbiased VaR and plug-in VaR estimates for α = 1% and α = 5%.

Figure 1.17 shows the density functions for the mixture, the N(0,10) and N(0,1) distri-
butions, while Figure 1.18 presents the respective cumulative distribution functions. The
plug-in V aR5% and probability-unbiased V aR5% are shown in both Figures.

The third mixture is made up by Normal distributions with different mean and sim-
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Figure 1.17: Mixture density function (red line), density function of N(0,10) (blue line)
and density function of N(0,1) (black line). poionts on the horizontal axis indicate plug-in

V̂ aR5% (red dot) and probability-unbiased V̂ aR5% (green dot).

Figure 1.18: Mixture distribution function (red line), N(0,10) distribution function (blue
line) and N(0,1) distribution function (black line). Points on the horizontal axis indicate

plug-in V̂ aR5% (red dot) and probability-unbiased V̂ aR5% (green dot).
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ilar standard deviation, N(-5,2) and N(0,1) and a mixing parameter p = 0.1 for random
samples of size 100, 200, 300 and 400. The left tail (tail relevant for the VaR) is now more
distorted than in the previous cases.

In practice, it is important to detect that a time series from a mixture distribution
rather than from a more standard distribution, in order not to distort the estimates. When
mixing two Normal distributions, such detection will be easier if both distributions are
very different and p is small. Then, the values generated by the first distribution Normal
will be atypical compared to the second one, which might produce some data with entirely
different conditions from the rest. That might produces some asymmetry and rather high
kurtosis, but it will generally not be too simple to distinguish that from other asymmetric
probability distributions with thick tails.

The mixture distribution has a mean which is shifted to the left: mmix = 0.1(−5) +
(1−0.1)(0) = −0.5. Sample moments are shown in Table 1.20, with a sample mean around
the theoretical value. The standard deviation of the mixture is greater than that exhibited
by the N(0,1), because the distortion from the N(-5,2) distribution. The mixture distribu-
tion also presents negative skewness due to the mixing of two Normal distributions with a
different mean. The kurtosis of the mixture is well above 3 due to the different mean and
standard deviation of the mixing distributions. This mixture presents a left tail thicker
than the right tail because the mean of the distorting Normal distribution falls to the left
of the mean of the second Normal distribution and we use a small mixing parameter p.

MIXTURE of N(-5,2) and N(0,1)

n µmix σmix skewnessmix kurtosismix

100 -0.4173 1.9107 -2.0661 7.9924

200 -0.2348 1.5175 -1.1762 6.2227

300 -0.5152 1.8328 -2.0430 8.1173

400 -0.5945 2.0769 -1.7753 6.4910

Table 1.20: First four moments for samples of size 100, 200, 300 and 400 of a mixture
distribution of N(-5,2) and N(0,1) with a mixing parameter p = 0.1.

The probability-unbiased VaR estimator is obtained as in the previous cases. Table
1.21 shows the αpu, the V aRpu and the V aRplug−in for α = 1% and α = 5%, where we
could notice similar observations to those in the previous mixtures. Figures 1.19 and 1.20
display again the density functions and cumulative distribution functions, respectively, for
this case.

Finally, we consider a mixture of Normal distributions with different mean and different
standard deviation: N(-5,10) and N(0,1) with mixing parameter p = 0.1. With so different
Normal distributions and a small p, the resulting mixture can capture potential atypical
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α = 1% α = 5%

n αpu V aRpu V aRplug−in αpu V aRpu V aRplug−in

100 0.7931 -8.0283 -7.7839 4.4389 -5.1368 -4.8630

200 0.8565 -5.4241 -5.3490 4.9500 -2.9854 -2.9849

300 0.8269 -7.3096 -7.0326 4.8311 -5.2021 -5.1947

400 0.9459 -7.9207 -7.8929 4.9980 -5.8046 -5.8040

Table 1.21: Probabilities αpu(%) needed to obtain probabily-unbiased V̂ aRα for samples
of size 100, 200, 300 y 400 of a mixture distribution of a Normal(-5,2) and of a Normal(0,1)
with mixing parameter p = 0.1 . We also show the associated probability-unbiased VaR
and plug-in VaR for α = 1% and α = 5%.

Figure 1.19: Mixture density function (red line), N(-5,2) the density function (blue line)
and N(0,1) density function (black line). Points on the horizontal axis indicate plug-in

V̂ aR5% (red dot) and probability-unbiased V̂ aR5% (green dot).
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Figure 1.20: Mixture distribution function (red line), N(-5,2) distribution function (blue
line) and N(0,1) distribution function (black line). Points on the horizontal axis indicate

plug-in V̂ aR5% (red dot) and probability-unbiased V̂ aR5% (green dot).

data much better than a Normal distribution, which may provide a better fit to some
of the statistical characteristics observed in asset returns. Table 1.22 shows moments for
sample sizes 100, 200, 300 and 400. As a result of this mixing, we obtain a distribution
having a smaller mean, greater deviation and largest kurtosis than the second Normal
distribution. This difference between the mixture and the second Normal distribution is
larger than in previous mixtures.

MIXTURE of N(-5,10) and N(0,1)

n µmix σmix skewnessmix kurtosismix

100 -0.5274 3.8400 -3.0260 18.8137

200 -0.5415 3.4229 -4.9035 34.4905

300 -0.2653 2.7198 -2.1651 29.9570

400 -0.2644 3.4468 -2.6797 27.9013

Table 1.22: First four moments for samples of size 100, 200, 300 and 400 of a mixture
distribution of N(-5,10) and N(0,1) with a mixing parameter p = 0.1.

Table 1.23 shows the αpu calculated from the bootstrap method to estimate the
probability-unbiased VaR. We again see that the 1% and 5% plug-in VaR underestimate
risk. Figures 1.21 and 1.22 show the density and cumulative distribution functions, re-
spectively.
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α = 1% α = 5%

n αpu V aRpu V aRplug−in αpu V aRpu V aRplug−in

100 0.5806 -23.2413 -19.0515 4.6457 -6.6337 -5.5756

200 0.7963 -18.4699 -17.7663 4.6833 -2.2543 -1.8864

300 0.8333 -12.6246 -12.4064 4.8733 -2.1380 -2.1126

400 0.8677 -20.5952 -18.8131 4.8821 -2.7855 -2.6125

Table 1.23: Probabilities αpu(%) needed to obtain probability-unbiased V̂ aRα for samples
of size 100, 200, 300 y 400 of a mixture distribution of a Normal(-5,10) and of a Normal(0,1)
with mixing parameter p = 0.1 . We also show the associated probability-unbiased VaR
and plug-in VaR for α = 1% and α = 5%.

Figure 1.21: Mixture density function (red line), N(-5,10) density function (blue line) and

N(0,1) density function (black line). Points on the horizontal axis indicate plug-in V̂ aR5%

(red dot) and probability-unbiased V̂ aR5% (green dot).
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Figure 1.22: Mixture distribution function (red line), N(-5,10) distribution function (blue
line) and N(0,1) distribution function (black line). Points on the horizontal axis indicate

plug-in V̂ aR5% (red dot) and probability-unbiased V̂ aR5% (green dot).

1.7.3 A comparison of probability-unbiased VaR and plug-in VaR under
Mixtures of Normal distributions

The theoretical results obtained for the plug-in VaR and probability-unbiased VaR estima-
tors are now tested through simulations, and we calculate the probability of exceeding the
VaR estimate.

We perform S = 10000 simulations for each of the four mixtures. The results shown in
Table 1.24 for different sample sizes and V̂ aR1% and V̂ aR5% significance indicate that the
probability of an excess from the probability-unbiased VaR estimator for different sample
sizes is very close to the theoretical probability of 1% and 5%, respectively. The excee-
dence probability of the plug-in VaR estimator departs from the theoretical probability
more than the probability-unbiased VaR estimator.

1.7.4 Approximate probability-unbiased confidence intervals for VaR
under Mixtures of Normal distributions

We compute an estimation interval with a confidence level of 1− 2αCI , where αCI = 0.05,
using bootstrapping. Table 1.25 shows the plug-in range for a confidence level of 90%. As
the sample size increases, the confidence intervals narrow.

To calculate the upper bound of the probability-unbiased confidence interval we must
obtain the αCI,pu that minimizes the following objective function:

αCI,pu = argminγ

∣∣∣∣∣ 1

B2

B2∑
i=1

1
(Ĝ∗i )−1(γ)<g(θ̂)

− αCI

∣∣∣∣∣
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Mixture of N(0,2) and N(0,1) Mixture of N(0,10) and N(0,1)

n 1%plug − in 1%pu 5%plug − in 5%pu 1%plug − in 1%pu 5%plug − in 5%pu

100 1.20 0.93 4.92 4.56 1.47 1.10 5.47 5.27

200 1.25 0.91 5.12 4.75 1.18 1.02 5.18 5.05

300 1.16 1.09 4.96 4.89 1.03 0.91 5.32 5.24

400 1.09 1.01 5.37 5.3 1.12 0.99 5.44 5.38

Mixture of N(-5,2) and N(0,1) Mixture of N(-5,10) and N(0,1)

n 1%plug − in 1%pu 5%plug − in 5%pu 1%plug − in 1%pu 5%plug − in 5%pu

100 1.24 1.07 5.29 4.74 1.53 1.20 5.41 5.13

200 1.23 1.12 5.05 4.99 1.29 0.94 5.47 5.08

300 1.19 1.01 5.53 5.38 1.22 1.05 5.11 4.98

400 1.14 1.08 5.11 5.11 1.05 0.98 4.97 4.97

Table 1.24: Shortfall probabilities α% that the next observation is lower than the plug-in
V̂ aR or lower that the probability probability-unbiased V̂ aR in the Monte-Carlo simulation,
for different mixture distributions.

Mixture of N(0,2) and N(0,1) Mixture of N(0,10) and N(0,1)

n αCI 1− αCI CIlow CIup αCI 1− αCI CIlow CIup

100 5 95 -2.4752 -1.4887 5 95 -5.8543 -3.9735

200 5 95 -2.3401 -1.2894 5 95 -5.1978 -2.2713

300 5 95 -2.0025 -1.6501 5 95 -6.1352 -4.6217

400 5 95 -1.9453 -1.5704 5 95 -6.5160 -4.3535

Mixture of N(-5,2) and N(0,1) Mixture of N(-5,10) and N(0,1)

n αCI 1− αCI CIlow CIup αCI 1− αCI CIlow CIup

100 5 95 -8.2934 -4.8051 5 95 -17.6472 -2.7137

200 5 95 -6.9048 -4.7741 5 95 -17.3019 -4.2875

300 5 95 -6.5033 -4.8190 5 95 -8.3347 -1.9905

400 5 95 -6.1024 -4.4760 5 95 -10.9462 -3.0907

Table 1.25: Probability αCI(%), 1−αCI(%) and quantiles corresponding to the lower and
upper bounds of confidence interval 90% for different mixture distributions.
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To obtain the lower bound of the confidence interval the bootstrap algorithm needs
to be performed again in its entirety replacing αCI by 1 − αCI . Table 1.26 shows the
90% probability-unbiased confidence interval. The range is shifted to the left and is not
symmetrical.

Mixture of N(0,2) and N(0,1) Mixture of N(0,10) and N(0,1)

n αCI,low,pu αCI,up,pu CIlow,pu CIup,pu αCI,low,pu αCI,up,pu CIlow,pu CIup,pu

100 1.03 15.15 -2.5607 -2.3087 1.62 87.14 -6.1361 -4.4374

200 1.02 72.37 -2.4649 -1.5942 1.43 90.54 -5.2439 -2.4456

300 1.07 34.57 -2.1279 -1.8756 4.14 98.11 -6.1778 -4.5701

400 1.05 63.46 -1.9509 -1.6326 1.16 19.16 -6.8459 -6.1403

Mixture of N(-5,2) and N(0,1) Mixture of N(-5,10) and N(0,1)

n αCI,low,pu αCI,up,pu CIlow,pu CIup,pu αCI,low,pu αCI,up,pu CIlow,pu CIup,pu

100 1.15 52.56 -8.8757 -6.1944 1.43 65.91 -17.7105 -9.3074

200 4.44 97.64 -6.9072 -4.1446 2.87 95.61 -18.4403 -4.1731

300 1.04 64.07 -6.5355 -5.5148 1.32 89.35 -9.2881 -2.4894

400 2.66 87.45 -6.1756 -4.6320 9.36 98.67 -9.4781 -2.0642

Table 1.26: Probabilities αCI,pu(%) such that αCI = P (ĈI < V aR) with α
V̂ aR

= α = 5%

in the V̂ aR and quantiles corresponding to the lower and upper bounds of confidence
interval 90% for the different cases of the mixture distribution.

1.8 Empirical application and comparison with other VaR
models

We follow McNeil et al. (2005, chapter 2.3.6) to test different VaR estimation methods
using 1000 data observations from a portfolio that invests 30% in the FTSE 100 index,
40% in the S&P 500 index and 30% in SMI index between 1992 and 2003. The methods
considered are,

• VC: The standard unconditional variance-covariance method assuming multivariate
Gaussian risk-factor changes.

• HS: The standard unconditional historical simulation method.

• VC-t: The standard unconditional variance-covariance method assuming multivari-
ate Student-t risk-factor changes.

• HS-GARCH: A conditional version of the historical simulation method in which
GARCH(1,1) models with a constant conditional mean term and Gaussian innova-
tions are fitted to the historically simulated losses to estimate the volatility of the
next day’s loss.
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• VC-MGARCH: A conditional version of the variance-covariance method in which a
multivariate GARCH model (a first-order constant conditional correlation model)
with multivariate Normal innovations is used to estimate the conditional covariance
matrix of the next day’s risk-factor changes.

• HS-EWMA: A conditional method, similar to HS-GARCH, in which the EWMA
method is used to estimate the conditional covariance matrix of the next day’s risk-
factor changes.

• VC-EWMA: A similar method to VC-MGARCH but a multivariate version of the
EWMA method is used to estimate the conditional covariance matrix of the next
day’s risk-factor changes.

• HS-GARCH-t: A similar method to HS-GARCH but Student-t innovations are as-
sumed in the GARCH model.

• VC-MGARCH-t: A similar method to VC-MGARCH but multivariate Student-t
innovations are used in the MGARCH model.

• HS-CONDEVT: A conditional method using a combination of GARCH modeling
and EVT (extreme value theory).

The return series show little serial correlation, to the point that it is safe to treat
returns as being i.i.d.. The characteristics of the distortion of α allows for efficiently esti-
mating the VaR quantile from a short amount of data to capture the clusters in the data.
This is relevant because extreme returns appear in clusters (McNeil et al., 2005) and if
we use the i.i.d. model with long windows we will be likely to underestimate risk. VaR
estimates would then change very slowly, being unable to capture changes that may occur
in the market as soon as they happen.

Calculation of the probability-unbiased VaR estimator from short rolling windows un-
der the i.i.d. approach has some advantages [(Francioni and Herzog, 2010): i) only a few
data points are needed to obtain a very good VaR estimate and ii) this approach outper-
forms other alternatives that need many data points to calibrate the model, e.g. EWMA,
GARCH, ... (at least 1000 data are necessary to calibrate the models, McNeil et al., 2005).
Francioni and Herzog showed how to distort the significance level α so that the resulting
VaR estimate is unbiased. They also showed that the standard plug-in VaR estimates of
a Normal population is biased.

In this section, we use the αpu values to calculate the probability-unbiased VaR es-
timator in a rolling window of size t. We start with the simpler case of the Normal
distribution, a member of the location-scale family. The Student-t has the number of de-
grees of freedom as an additional parameter, that we estimate first from portfolio return
data, to subsequently calculate αpu values. A similar procedure is followed for mixtures
of two Normals, starting with the GMM estimation of the five additional parameters, µ1,
µ2, σ1, σ2 and p, using portfolio returns. We propose mixtures of Normals as a more re-
alistic distributions to further improve the results obtained under the Normal distribution.
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Table 1.27 shows the number of annual VaR exceedences for the i.i.d. rolling window
5% VaR estimator under Normal and Student-t distributions, for different sample sizes.
Every year, that number is relatively close to its expected value of 13 (aprox. 5% · 260
days) 4. The results in Table 19 suggest that under a Student-t distribution, windows with
n = 20, 25 and 50 data points are generally outperformed by the shorter n = 15 window.
In particular, for 1993, 1994, 2000 and 2001 VaR is poorly estimated under the Student-t
distribution, with too many violations of the 95% VaR estimates. In general, 2000, 2001
and 2002 were the most difficult years to use in prediction for most models, since returns
became very volatile, with many extreme losses. In the case of the Normal distribution,
n = 15 and n = 25 perform better than n = 50.

For the mixture of two Normal distributions, the window with n = 100 outperforms
longer window sizes especially during 1996, 1997 and 1998. We again work with samples
larger than in the case of Normal and Student-t distributions for reasons explained above.

Normal Year

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
n = 10 5 (8) 5 (8) 8 (5) 8 (5) 8 (5) 6 (7) 5 (8) 4 (9) 9 (4) 3 (10) 3 (10) 3 (10)
n= 15 7 (6) 7 (6) 8 (5) 11 (2) 14 (1) 9 (4) 11 (2) 7 (6) 12 (1) 7 (6) 8 (5) 6 (7)
n = 20 7 (6) 14 (1) 11 (2) 8 (5) 12 (1) 10 (3) 15 (2) 9 (4) 14 (1) 14 (1) 6 (7) 8 (5)
n = 25 7 (6) 18 (5) 12 (1) 10 (3) 13 (0) 10 (3) 13 (0) 12 (1) 13 (0) 13 (0) 9 (4) 6 (7)
n = 50 7 (6) 13 (0) 17 (4) 11 (2) 15 (2) 12 (1) 14 (1) 11 (2) 15 (2) 18 (5) 11 (2) 9 (4)

Student-t Year

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
n = 10 8 (5) 12 (1) 10 (3) 13 (0) 13 (0) 9 (4) 10 (3) 14 (1) 17 (4) 10 (3) 11 (2) 10 (3)
n = 15 8 (5) 15 (2) 12 (1) 12 (1) 14 (2) 10 (3) 15 (2) 12 (1) 15 (2) 16 (3) 13 (0) 10 (3)
n = 20 9 (4) 19 (6) 16 (3) 10 (3) 15 (2) 14 (1) 17 (4) 12 (1) 17 (4) 18 (5) 14 (1) 8 (5)
n = 25 10 (3) 19 (6) 15 (2) 11 (2) 16 (3) 13 (0) 18 (5) 13 (0) 17 (4) 18 (5) 12 (1) 9 (4)
n = 50 9 (4) 13 (0) 18 (5) 11 (2) 15 (2) 13 (0) 16 (3) 12 (1) 17 (4) 19 (6) 12 (1) 9 (4)

Mixture Year

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
n = 100 7 (6) 13 (0) 15 (2) 9 (4) 15 (2) 14 (1) 14 (1) 8 (5) 19 (6) 15 (2) 19 (6) 8 (5)
n = 200 1 (12) 12 (1) 15 (2) 5 (8) 17 (4) 16 (3) 19 (6) 6 (7) 14 (1) 15 (2) 16 (3) 2 (11)
n = 300 0 (13) 7 (6) 20 (7) 4 (9) 22 (9) 23 (10) 19 (6) 4 (9) 17 (4) 16 (3) 20 (7) 3 (10)
n = 400 0 (13) 4 (9) 19 (6) 6 (7) 21 (8) 26 (13) 20 (7) 5 (8) 13 (0) 19 (6) 22 (9) 4 (9)

Table 1.27: Number of 5% VaR exceedences per year for the i.i.d. mixture rolling window
model with window length n. Absolute differences between the expected number of excee-
dences (13 per year) and the number of observed exceedences are reported in parentheses.

When comparing the performance of the different models for VaR estimation we look
at estimates from 1996 through 2003, because that is the time period considered by Mc-
Neil et al. (2005) with whom we want to compare our results. Two different quantities
are calculated: i) the overall exceedence probability, defined as the number of observed
exceedences in the period divided by the number of data points, ii) the Observed Abso-
lute Deviation per year (OAD), used by McNeil et al. (2005), which was introduced by
Francioni and Herzog as the mean of the absolute difference between the expected num-

4Except for 1992, when we lost n data observations due to the rolling window
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ber of exceedences (i.e. 3 for 1% VaR and 13 for 5% VaR) and the number of observed
exceedences.

Table 1.28 clearly shows that the i.i.d. model with rolling window outperforms the
other models with respect to the overall exceedence probability and OAD. For the 1%
probability-unbiased VaR, the Normal model with window of length 25, the Student-t
model with window of length 15 and the mixture with window of length 100 show the
best overall probabilistic properties. At 5% significance, Table 1.29 shows that the i.i.d.
Student-t model with rolling window of size 15 and the Normal model with rolling window
of size 50 outperform the other models with respect to OAD and to the overall exceedence
probability, respectively. The mixture with a window of length 100 is the best within
models with mixture distribution and outperforms in VaR estimation many of the methods
proposed by McNeil et al.

Model Exc. Prob. (%) OAD

N i.i.d. n = 15 0.16 2.50
N i.i.d. n = 25 0.87 1.33
N i.i.d. n = 50 1.43 1.42
ST i.i.d. n = 15 0.83 1.25
ST i.i.d. n = 25 1.32 1.33
ST i.i.d. n = 50 1.65 1.50
NM i.i.d. n = 100 1.02 1.33
NM i.i.d. n = 200 1.29 2.00
NM i.i.d. n = 300 1.38 2.42
NM i.i.d. n = 400 1.43 2.33
VC 3.03 5.55
HS 2.02 3.00
VC-t 2.35 3.87
HS-GARCH 2.26 2.87
VC-MGARCH 2.31 2.87
HS-EWMA 2.07 2.62
VC-EWMA 2.02 2.62
HS-GARCH-t 1.68 1.62
VC-MGARCH-t 1.44 3.12
HS-CONDEVT 1.35 1.25

Table 1.28: Historical 1% VaR exceedence probabilities of the various models and historical
Observed Absolute Deviation (OAD) per year.

In general, the i.i.d. approach with short windows incorporates too little information
to produce good VaR estimates, whereas with large windows VaR estimates are too static
and they do not adapt to new information fast enough. However, the i.i.d. approach to
compute the 1% and 5% probability-unbiased VaR outperform the other models proposed
by McNeil et al., which are more complex and use the plug-in VaR estimator. Figures
1.23 and 1.24 show a plot of the probability-unbiased VaR estimates of the i.i.d. Student-t
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Model Exc. Prob. (%) OAD

N i.i.d. n = 15 3.43 4.16
N i.i.d. n = 25 4.38 2.41
N i.i.d. n = 50 4.97 2.42
ST i.i.d. n = 15 4.87 1.92
ST i.i.d. n = 25 5.5 2.83
ST i.i.d. n = 50 5.32 2.50
NM i.i.d. n = 100 5.15 2.92
NM i.i.d. n = 200 4.71 4.17
NM i.i.d. n = 300 5.48 6.50
NM i.i.d. n = 400 5.82 6.25
VC 7.36 7.88
HS 7.65 8.12
VC-t 8.46 10.25
HS-GARCH 6.11 3.38
VC-MGARCH 6.64 4.50
HS-EWMA 6.2 3.62
VC-EWMA 5.92 3.38
HS-GARCH-t 6.34 3.75
VC-MGARCH-t 6.93 5.50
HS-CONDEVT 5.77 2.75

Table 1.29: Historical 5% VaR exceedence probabilities of the various models and historical
Observed Absolute Deviation (OAD) per year.
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model with a rolling window size of 20 and 200 data points, respectively. The rolling
window with 20 data points clearly reacts extremely fast to new data, with occasional
large jumps in the VaR estimate.

Figure 1.23: Portfolio log-returns from 1992 to 2003 and i.i.d. VaR estimates for different
α based on a Student-t rolling window model with a window length of 20 observations.

Figure 1.24: Portfolio log-returns from 1992 to 2003 and i.i.d. VaR estimates for different
α based on a Student-t rolling window model with window length of 200 observations.
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1.9 Conclusions

Francioni and Herzog (2010) (FH) proposed a standard resampling bootstrap algorithm
to estimate a probability unbiased VaR in the case of Normal returns. The main idea is to
replace the level α by a suitable chosen level αpu which minimizes the averaged distance of
the bootstrapped estimators to α. In other words, their strategy consisted on modifying
the desired significance level α to obtain αpu in such a way that we obtain an unbiased
estimate of VaR at the original significance level. Their analysis suggested that VaR es-
timates based on short samples may have a good performance for Normal distributions,
often beating standard VaR estimates based on long samples.

We explore the properties of the probability-unbiased VaR proposed by FH as an inter-
esting alternative to plug-in VaR when working with short samples and a small significance
level α. It is then when the probability-unbiased VaR differs more from plug-in VaR. We
extend work by FH to Student-t distributions and mixtures of Normal distributions. Our
results suggest that for a variety of distributions the plug-in VaR estimator underestimates
risk for a given range of probabilities (α) when estimated from short samples. The smaller
the sample size, the greater the underestimation of risk by the plug-in VaR estimator. The
range of probabilities for which plug-in VaR underestimates risk depends on the sample
size and on the assumed probability distribution for returns.

In the Gaussian case we can use the parametric approach to estimate VaR in closed
form. For other cases we use an appropriate bootstrapping algorithm suggested by FH. We
show that the performance of the probability-unbiased estimators for small sample sizes is
surprisingly good also for Student-t distributions as well as for mixtures of Normals. The
reason is that the shorter the period, the more uniform will be the sample. Besides, the
conditional volatility will not change much over a short sample, making the sample almost
i.i.d.. The difference between αpu and α is larger for a Normal sample than for a Student-
t distribution. For a Mixture of Normals, the difference depends on the mixing parameters.

We also estimate probability-unbiased confidence intervals for the VaR estimator. For
the three distributions (Normal, Student-t and mixture of Normals) the probability-unbiased
confidence interval is shifted to the left, relative to the standard confidence interval cal-
culated using the plug-in VaR estimator. The leftward shift of the probability-unbiased
confidence interval is due to the fact that most exceedences occur at the lower bound.
Hence, a symmetric confidence interval would not be appropriate. The findings in this
chapter suggest that the unbiased VaR estimator is a valuable tool for estimation of risk
in practice.
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A VaRpu calculated with the bootstrap algorithm proposed
by FH for a Normal distribution

In this appendix we study the case where explicit unbiased estimators for the VaR risk
measure are not available. We use the bootstrap algorithm proposed by FH in [20] and
consider the Normal distribution. We compare the results obtained here with those ob-
tained previously in Section 1.5.

Table 30 shows the probability-unbiased V̂ aRα, (V aRpu), and the plug-in V̂ aRα (the
standard VaR estimator ) obtained for different samples sizes and α‘s. Notice that the

plug-in V̂ aRα underestimates the risk, indicating fewer losses than they really arise with
a probability α%.

As with the parametric method in the main text, calculating the probability-unbiased
VaR is relevant especially for small sample sizes, when the difference between the alter-
native VaR estimates is larger, since for large samples the probability-unbiased V̂ aRα is
similar to plug-in V̂ aRα.

V aRpu V aRplug−in

n 0.5 1 5 10 0.5 1 5 10

10 -3.233 -2.942 -1.864 -1.375 -2.409 -2.165 -1.496 -1.139

15 -3.111 -2.751 -1.701 -1.234 -2.309 -2.065 -1.400 -1.045

20 -3.229 -2.884 -2.005 -1.566 -2.839 -2.582 -1.880 -1.506

25 -3.205 -2.874 -2.033 -1.609 -2.825 -2.562 -1.844 -1.461

50 -2.947 -2.646 -1.846 -1.429 -2.783 -2.513 -1.775 -1.382

100 -2.553 -2.315 -1.673 -1.335 -2.488 -2.262 -1.645 -1.316

150 -2.632 -2.383 -1.711 -1.357 -2.581 -2.342 -1.690 -1.343

200 -2.393 -2.165 -1.548 -1.221 -2.365 -2.143 -1.537 -1.213

Table 30: Probability-unbiased V̂ aRα versus plug-in V̂ aRα in the case of Normal distribu-
tion (0,1) using bootstrapping proposed by FH.

Figure 25 shows the graphs of the distortion function for different sample sizes (red
line). It corroborates that the correction decreases as we get more sample observations,
and the distortion function converges to the identity (black line) as the sample size grows.
Figure 26 shows the distortion in the quantiles of the standard Normal distribution func-
tion.

Table 31 presents the probability α% that the next observation will exceed V̂ aR plug-in
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Figure 25: Distorsion function for the Normal distribution using bootstrapping proposed
by FH. The diagonal (black line) represents no distorsion.

Figure 26: The quantiles of the Normal cdf versus the quantiles of the distorted Normal cdf
using bootstrapping proposed by FH. The diagonal (black line) represents no distortion.
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for a given αpu and for different sample sizes. For example, if we estimate the population
parameters with a sample of 25 observations, the probability that the next observation
falls below V̂ aR5% plug-in is 6.47%.

αpu(%)

n 0.5 1 5 10

10 2.225 3.210 8.466 13.684

15 1.958 2.853 7.864 13.016

20 1.121 1.854 6.510 11.659

25 1.075 1.801 6.478 11.650

50 0.734 1.340 5.668 10.759

100 0.608 1.159 5.320 10.366

150 0.578 1.115 5.227 10.260

200 0.545 1.067 5.137 10.160

Table 31: The shortfall probabilities α(%) with which the next observation is lower than
the plug-in VaR estimate zαpu sing bootstrapping proposed by FH to calculate αpu.

Tables 30 and 31 will be different each time the bootstrap algorithm is performed, as
this is a non-parametric method that depends on the values obtained on the sample and
those obtained in the resamples. Instead, the parametric method used in subsection 1.5.1
yields unique Tables 1.3 and 1.2, providing a specific αpu for each α and n. We obtain an
unbiased estimator αpuof α and therefore an unbiased VaR.

Now, we use the second approach described in Section 1.3 to calculate the probability-
unbiased VaR estimator by calculating the standard deviation σ̂pu of the distorted distri-
bution function F . If F is a Normal distribution, the probability-unbiased VaR estimator
can be written:

V̂ aRα = µ̂pu + σ̂puzα

so that once we have the probability unbiased VaR, we can solve for σpuzα We maintain
the same mean: µ̂pu = µ̂, calculating only the standard deviation σ̂pu of the distorted
distribution function. This deviation will be different for every α and for each sample size
(n), as in Table 32.

Figure 27 shows the true density function of a random variable N(0,1) (blue line),
the density function of a random sample of size 15 from a random variable following a
distribution N(0,1) (red line), and the density function of the distorted distribution func-
tion of the random sample of size 15 of the random variable that follows a N(0,1) (green
line). Notice that the distorted distribution function has heavy tails that would allow for
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α(%)

n 0.5 1 5 10

10 1.335 1.316 1.205 1.165

15 1.254 1.271 1.159 1.123

20 1.210 1.192 1.151 1.136

25 1.172 1.155 1.122 1.110

50 1.146 1.140 1.126 1.120

100 0.931 0.928 0.923 0.921

150 0.976 0.974 0.969 0.968

200 0.901 0.899 0.897 0.896

Table 32: Estimated standard deviations for the distorted distribution function using
bootstrapping proposed by FH to calculate αpu.

a better fit of the empirical evidence.

The probability-unbiased V̂ aR (green point) indicates higher losses than plug-in V̂ aR
(red point). In other words, the it plug-in estimator underestimates risk particularly in
small size samples, i.e. the smaller the sample, the greater the correction or adjustment
needed for the distribution.

Figure 28 shows the cumulative distribution function of N(0,1) (blue line), the plug-in
cumulative distribution function (red line) and the probability-unbiased cumulative distri-
bution function (green line). We also show their 5% VaR estimates.

Figures 29 and 30 show pdf’s and cdf’s, respectively, for different sample sizes. They
also show the respective point estimates of the 5% VaR. These figures show the convergence
of the plug-in distribution and probability-unbiased distribution to the true distribution as
the size of the random sample increases.

In order to test our theoretical calculations in a controlled simulation, we simulate the
estimation of the plug-in VaR estimator and the probability-unbiased VaR estimator and
calculate their exceedence probabilities.

The results, Table 33, for samples of size 10, 15, 20 and 25, for V̂ aR1% and for V̂ aR5%,
with µ = 0, σ = 1 and S = 100000, show that the VaR exceedence of the probability-
unbiased estimator is close to the theoretical values of 1% and 5%. The VaR exceedence
of the plug-in VaR from the theoretical probability is clearly larger.
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Figure 27: The true N(0,1) pdf (blue line), the plug-in pdf (red line) and the pdf of the

probabilty-unbiased cdf (green line). Points on the horizontal axis show the true V̂ aR5%

(blue point), the plug-in V̂ aR5% (red point) and the probability-unbiased V̂ aR5% (green
point) . Here we use bootstrapping proposed by FH to calculate αpu.

Figure 28: The true N(0,1) cdf (blue line), the plug-in cdf (red line) and the probability-

unbiased cdf (green line). Points on the horizontal axis show the true V̂ aR5% (blue point),

the plug-in V̂ aR5% (red point) and the probability-unbiased V̂ aR5% (green point) . Here
we use bootstrapping proposed by FH to calculate αpu.
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Figure 29: The true N(0,1) pdf (blue line), the plug-in pdf (red line) and the pdf of the
probability-unbiased cdf (green line) for different sample sizes (enlargement of the left tail).

Points on the horizontal axis show the true V̂ aR5% (blue point), the plug-in V̂ aR5% (red

point) and the probability-unbiased V̂ aR5% (green point). Here we use the bootstrapping
algorithm proposed by FH to calculate αpu

Figure 30: The true N(0,1) pdf (blue line), the plug-in pdf (red line) and the probability-
unbiased cdf (green line) for different sample sizes (enlargement of the left tail). Points on

the horizontal axis show the true V̂ aR5% (blue point), the plug-in V̂ aR5% (red point) and

the probability-unbiased V̂ aR5% (green point) . Here we use the bootstrapping algorithm
proposed by FH to calculate αpu
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As the sample size increases, the probability of an excess for the plug-in VaR esti-
mator calculated from the simulation approaches the theoretical value. In the case of
probability-unbiased VaR estimator that probability remains broadly similar to the the-
oretical probability for all sample sizes. However, the results are not as good as those
obtained parametrically since in that case the value of αpu was not just an approximation.

n 1%plug − in 1%pu 5%plug − in 5%pu

10 2.674 0.803 7.567 4.289

15 2.063 0.553 6.748 3.907

20 1.825 0.958 6.268 4.782

25 1.608 0.772 5.978 4.635

Table 33: Shortfall probabilities α% that the next observation will be lower than the plug-
in V̂ aR and the probability probability-unbiased V̂ aR in the Monte-Carlo simulation for
Normal distribution using bootstrapping proposed by FH.





B Mixture of two distributions

The density function of a mixture of two distributions is

f(x) = pf1(x) + (1− p)f2(x)

donde f1 and f2 are density functions.

When we mix two Normal distributions, both density functions intersect at two points,
for which the density function of the mixture also intersects at those two points, except
in the following cases

• The two Normal distributions have equal standard deviation (σ) and different mean
(µ). For all values of mixture parameter (p), the two Normal density functions
intersect at a point.

• The two Normal distributions have equal mean (µ) and equal standard deviation (σ).
For all values of mixture parameter (p), the two Normal density functions intersect
at infinite points. The mixture distribution is a Normal.

• With mixture parameter 0 or 1, independently of the mean and standard deviation
of the Normal distributions mixed, the density function of the mixture intersects at
an infinite number of points with one of the two Normal, i.e. the mixture distribution
is a Normal distribution.

The mixtures obtained in the last two points are symmetrical, being Normal. It is also
symmetric density function of mixture in the following cases:

• When the means of the Normal distributions are equal.

• When the standard deviations of the Normal distributions are equal and mixing
probability is p = 0.5.

Mixture of two Normal distributions with equal µ and similar σ

In this case, the mixture distribution obtained is similar to Normal. The average
of the mixture will be the same as the mean of Normal distributions and the variance of
the mixture will be the weighting of the respective variances of the mixed Normal distri-
butions.

Figure 31 shows the distribution mixture obtained by mixing a Normal distribution
with mean 0 and standard deviation 2, and a Normal distribution with mean 0 and stan-
dard deviation 1.

With p = 0.1 mixed distribution is similar to the second Normal distribution. If this
mixing parameter is increased, the mixture will increasingly be alike to the first distribu-
tion, because it is weighted the first one more than the second one, arriving in p = 0.9 the
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Figure 31: Density function of the mixture of N1(0,2) and N2(0,1) (red line), the density
function N1(0,2) (blue line) and density function N2(0,1) (black line) for different values
of the mixing parameter.

mixture being very similar to the first distribution.

Figure 32 shows the respective cumulative distribution functions. It has drawn a hor-
izontal line (black line) to indicate the value α = 0.05. The plug-in VaR to a 5% is the
quantile where this line cuts the distribution function of the mixture (red line). As you
increase the mixing parameter, VaR is shifted to the left, indicating a higher expected
loss to a 95% confidence level. This is because as the mixing parameter is greater, the
distortion produces by the first Normal distribution is larger than the second one, and if
this first Normal distribution has greater variance than the second one, that introduces
into this one more extreme values, increasing the tails and shifting the VaR to the left,
i.e. VaR is more negative.

Mixture of two Normal distributions with equal µ and different σ

In this second case, we have a Normal distribution with mean 0 and standard deviation
10 and a Normal distribution with mean 0 and standard deviation 1. When distributions
are mixed with very different deviations, the mixture distribution obtained is more similar
to Student-t than a Normal, because there is higher probability in the tails due to the
extreme values introduced by the first distribution Normal.

Figure 33 shows density functions of the mixture and of the two Normal distributions
mixed.

Figure 34 represents the corresponding cumulative distribution functions. The mixture
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Figure 32: Distribution function of the mixture of N1(0,2) and N2(0,1) (red line), the
distribution function N1(0,2) (blue line) and distribution function N2(0,1) (black line) for
different values of the mixing parameter. The black horizontal line indicates the α = 0.05.

Figure 33: Density function of the mixture of N1(0,10) and N2(0,1) (red line), the density
function N1(0,10) (blue line) and density function N2(0,1) (black line) for different values
of the mixing parameter.
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is mixing the two Normal, beginning to weigh very little the second distribution and very
much the first one to reach that the second distribution weights much and the first one
only a bit.

Figure 34: Distribution function of the mixture of N1(0.10) and N2(0.1) (red line), the
distribution function N1(0.10) (blue line) and the distribution function N2(0, 1) (black
line) for different values of the mixing parameter. The black horizontal line indicates the
α = 0.05.

Mixture of two Normal distributions with different µ and similar σ

Now, mixture distribution is created from a Normal distribution with mean -5 and
standard deviation 2 and a Normal distribution with mean 0 and standard deviation 1.

It is observed that from Normal distributions with means very different, the left tail
is heavier than a Normal when mixing parameter weights little the first Normal distribu-
tion and much the second one, and the right tail is heavier than a Normal when mixing
parameter weights much the first distribution and little the second one.

In this case, unlike the previous two, we do not have Normal distributions with equal
mean, the two tails are not thicken equally but thickens one more than the other depend-
ing on whether the mean of the first Normal is located to the left or to the right on the
mean of the second Normal and the weighting given by the parameter mixing p. This
mixture is suitable when you want to get a mixed distribution with skewness.

In this example, the left tail becomes heavier (when p = 0.1) than the right tail because
the first Normal has its mean to the left of the mean of the second Normal.
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Figure 35 shows that there is a p for which the distribution is bimodal mixture (be-
tween p = 0.6 and p = 0.7).

Figure 35: Density function of the mixture of N1(-5,2) and N2(0,1) (red line), the density
function N1(-5,2) (blue line) and density function N2(0,1) (black line) for different values
of the mixing parameter.

Figure 36 represents the cumulative distribution functions.

Unlike what happened in the first two cases, the VaR is shifted to the left when we in-
crease the value of the mixing parameter because it is generated from Normal distributions
with means very different. In the first subgraph, when p = 0.1, the mixed distribution
has the left tail heavier than the second Normal distribution due to the small influence of
the first Normal distribution. In contrast, in the last subplot when p = 0.9, we observe
that the mixture distribution has the right tail heavier but less so than the left in the first
subgraph, because the second Normal distribution has lower standard deviation than the
first Normal distribution.



Figure 36: Distribution function of the mixture of N1(-5,2) and N2(0,1) (red line), the
distribution function N1(-5,2) (blue line) and the distribution function N2(0,1) (black
line) for different values of the mixing parameter. The black horizontal line indicates the
α = 0.05.



Chapter 2

Volatility specifications versus
probability distributions in VaR
estimation

Abstract

We provide evidence suggesting that the assumption on the probability distribution for
return innovations is more influential for VaR performance than the volatility specification.
Even though the more recent Basel requirements center around the Expected Shortfall
(ES), a precise estimate of VaR is needed to have a good estimate of ES. We compare 28
alternative combinations of probability distributions on return innovations and volatility
specifications on the basis of the results of a variety of VaR tests. To summarize the
results of each model on the tests we use a criterion of dominance introduced in this
paper. Our results also show that the combination of generalized skewed t distributions
and APARCH and FGARCH volatility specifications beat more standard alternatives and
should be preferred when estimating tail risk. Clear-cut conclusions on comparisons of
this type are clearly helpful for risk management.





2.1 Introduction

A traditional discussion in risk measurement analysis has been whether volatility mod-
els that incorporate a leverage effect, with negative innovations having a larger impact
on volatility than positive innovations of same size, lead to better Value-at-Risk (VaR)
estimates than symmetric volatility models. A second modeling issue refers to whether
asymmetric probability distributions for the return innovations lead to an improved VaR
model.

The contribution of this paper is to examine the relative importance of the two issues,
the volatility specification and the assumption on the probability distribution of return in-
novations, for the efficiency of VaR estimates. To that end, we have performed an extensive
analysis of VaR estimates in assets of different nature, using symmetric and asymmetric
probability distributions for the innovations on volatility models with and without lever-
age. The question is crucial for risk managers, since there are so many potential choices for
volatility model and probability distributions that it would be very convenient to establish
some priorities in modeling returns for risk estimation.

We consider three general volatility models with leverage, GJR-GARCH, APARCH
and FGARCH as well as the standard symmetric GARCH model as benchmark. We like
the FGARCH model because it includes as special cases many other volatility specifica-
tions, like the symmetric GARCH, GJR-GARCH and APARCH, i.e., it is in fact a nested
family of asymmetric GARCH models, thereby allowing for testing how simpler models
fit the data. Besides, the model is specified for a power of the conditional standard de-
viation and the innovations, like the APARCH model, which provides more flexibility to
the dynamics of volatility and it allows shifts and rotations in the news impact curve. In
principle, these two types of asymmetry are distinct, and they should not be treated as
substitutes for each other. In fact, the shift is the dominant source of asymmetry for small
shocks, while the rotation is more important for large shocks. As probability distributions
for the innovations we compare the performance of the Skewed Student-t distribution
and Skewed Generalized Error distribution as introduced in Fernandez and Steel (1998)
[41], the Johnson SU distribution [70], Skewed Generalized-t distribution (Theodossiou,
1998) [123] and Generalized Hyperbolic Skew Student-t distribution (Aas and Haff, 2006)
[1], with the Normal and symmetric Student-t distributions as benchmark. In all models
we jointly estimate by maximum likelihood the parameters in the equation for the mean
return, the equation for its conditional variance and the probability distribution for the
return innovations, except with Skewed Generalized-t distribution where we use a two-step
estimation 1. Estimated models are simulated to obtain the implied levels of skewness and
kurtosis of returns, which are compared with the analogue sample moments. An interest-
ing feature of our work is the consideration of a variety of assets of different nature: stock

1The conditional mean-volatility models are estimated first, and the parameters of the Skewed
Generalized-t distribution (SGT) in a second stage because of the difficulty of estimating all parame-
ters jointly. We estimate the parameters for the SGT using the standardized returns obtained from the
GED-AR(1)-GARCH specifications estimated in the first step. We use the Generalized Error distribution
(GED) in the fist step estimation following Bali and Theodossiou (2007) [9].
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market indices, individual stocks, interest rates, commodity prices and exchange rates.

A novel approach of our analysis is to use standard statistical tests to examine the
extent to which the estimated probability distributions fit the distribution of empirical
return innovations. Additionally, each estimated combination of volatility specification
and probability distribution for return innovations determines the distribution of returns
themselves. We use simulation methods to analyze whether our estimated models fit the
main characteristics of return distributions. These should be expected to be two natural
conditions for the good VaR performance of a model. But, in spite of the fact that sig-
nificant effort is generally placed in selecting an appropriate probability distribution and
volatility model, the ability of estimates to explain sample moments is seldom examined.

We calculate VaR estimates following the parametric approach. The performance of
VaR estimates is examined through standard tests: the unconditional coverage test of Ku-
piec (1995) [78], the independence and conditional coverage tests of Christoffersen (1998)
[27], the Dynamic Quantile test of Engle and Manganelli (2004) [39], as well as the loss
functions proposed by Lopez (1998, 1999) [85, 86] and Sarma et al. (2003) [113] and that
of Giacomini and Komunjer (2005) [46].

Our out-of-sample simulation results suggest that the important assumption for VaR
performance is that of the probability distribution of the innovations, with the choice
of volatility model playing a secondary role. Indeed, validation tests for VaR estimates
yield very similar results for a given probability distribution as we change the volatility
model. On the contrary, test results drastically change for a given volatility model when
we change the assumption on the probability distribution of the innovations. In fact, the
main difference arises when we move from symmetric to asymmetric probability distribu-
tions for the innovations. This result is relatively consistent with Gerlach et al. (2011) [44].

Relative to the ability to reproduce sample moments, different volatility models with
the same probability distribution for the innovations fit sample moments similarly. On the
other hand, while it is obviously true that asymmetric distributions are needed to explain
the skewness in returns, symmetric and asymmetric probability distributions, imposed on
the same volatility model lead to minor differences in kurtosis. The ability of estimated
models to fit the empirical distributions of returns and returns innovations seems in fact,
a necessary condition for a good VaR performance.

The remainder of the paper is organized as follows. In Section 2.2, we present the
review of literature. In Section 2.3, we introduce the volatility models and distributions
used in our analysis. In Section 2.4, we present preliminary statistics for our dataset. In
Section 2.5, we report the results of the empirical investigation of the estimated models
and in Section 2.6 we include the fit to sample moments of the probability distributions
and of the returns. In Section 2.7, we provide a description of statistical test and loss
function used and we asses VaR performance. Finally, Section 2.8 concludes the paper.
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2.2 A review of literature

In VaR estimation we can distinguish between semiparametric/nonparametric and para-
metric methods. The first group includes: historical simulation, CAViaR, nonparametric
estimators of the return distribution and extreme value theory. The historical simula-
tion is by far the most popular procedure for forecasting VaR among commercial banks
[see for example Berkowitz, Christoffersen and Pelletier (2011) [16], Pérignon and Smith
(2008, 2010b) [103] [104] and Pritsker (2006) [81]]. Pérignon and Smith (2010b) [104]
document that almost three quarters of the banks that disclose their VaR methods report
using historical simulation. The popularity of the historical simulation method emerges
from its simplicity and smoothness, but it also has serious limitations: it is based on the
assumption of independent and identically distributed (i.i.d.) returns, which is generally
not an adequate assumption. Besides, VaR estimates can exhibit predictable jumps when
large negative returns either enter into or drop out of the window used to obtain them.
Furthermore, empirical quantiles are not efficient estimators of extreme population quan-
tiles. An alternative VaR forecast procedure is CAViaR, which represents the dynamic
evolution of quantiles directly [Engle and Manganelli (2004) [39]]. However, according to
Taylor (2008a) [119], estimating expectiles is computationally more attractive than es-
timating quantiles. Many CAViaR extensions have been proposed; see Gourieroux and
Jasiak (2008) [57], De Rossi and Harvey (2009) [30], Gerlach, Chen and Chan (2011) [43],
Yu, Li and Jin (2010) [128], Chen, Gerlach, Hwang and McAleer (2012) [24], Huang et al.
(2010) [67], Jeon and Taylor (2013) [69], Rubia and Sanchis-Marco (2013) [112], Drakos,
Kouretas and Zarangas (2015) [36], Kim and Lee (2016) [75] and Nagai (2016) [96].

Alternatively, several authors have proposed nonparametric estimators of the return
distribution, to avoid the effect of potential misspecifications. These nonparametric meth-
ods are more complicated computationally, but they can result in inferential gains when
the assumptions of the parametric models are wrong. A variety of approaches have been
proposed. Chen and Tang (2005) [25] suggest implementing kernel smoothing on the em-
pirical distribution of returns. The goal is to forecast quantiles using a double kernel
smoothing estimator of the cumulative distribution (Taylor, 2008b) [120], an approach
that provides a greater accuracy for tail quantiles that are changing relatively quickly
over time. Xu (2013) [127] suggests using a fully nonparametric quantile regression model
based on a double-smoothing local polynomial estimation of the conditional distribution
function. Finally, the extreme value theory (EVT), which is a semiparametric method,
consists on modeling the tails of the distribution of returns without making any specific
assumption concerning the center of the distribution. The tail index parameter in EVT
can be estimated nonparametrically, without assuming any particular model for the tail.
There are many estimators that can be used to accomplish this task, such as Hill estimator
(Hill, 1975) [60] and Pickands estimator (Pickands, 1975) [80]. In practice, the number of
data points in the tails are limited, leading to small sample biases. To address this prob-
lem, many solutions have been proposed by Huisman, Koedijk, Kool and Palm (2001) [68],
Gomes, de Haan and Rodrigues (2008) [51], Gomes, Figueiredo, Rodrigues and Miranda
(2012) [52], Gomes, Matins and Neves (2007) [53] and Gomes and Pestana (2007) [54].
Gourieroux and Jasiak (2010a) [56] point out that the accuracy of these non-parametric
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estimators is rather poor, due to the difficulty of estimating the probability of infrequent
events. Another problem is that these estimators depend on the number of observations
in a very erratic way.

The second group includes parametric methods. Their distinguishing feature is that
they require an explicit specification of the statistical distribution from which the data
observations are drawn. To apply any parametric approach it is necessary to estimate the
parameters involved and it is important to choose an estimation method that is suitable
for the distribution we are dealing with. There are various approaches to parameter es-
timation, including least squares, maximum likelihood, semi-parametric methods, robust
estimation methods and the generalized method of moments.

For the estimation of the tail index parameter in EVT there are also two paramet-
ric approaches. The parameter of the distribution of extremes, including tail index, are
directly estimated by classical methods such as the maximum likelihood. The first para-
metric approach is the Block Maxima, which divides the sample into m subsamples of
n observations each and picks the maximum of each subsample; see for example Longin
(2000) [70], Diebold, Schuermann and Stroughair (2000) [34]. The second EVT parametric
approach is the Peak Over Threshold method, according to which any observations that
exceed a given high threshold, u, are modeled separately from non-extreme observations.
McNeil and Frey (2000) [75] show that the EVT method based on General Pareto distri-
bution gives quantile estimates that are more stable than those from the Hill estimator.
Any EVT approach entails choosing an adequate cut-off between the central part of the
distribution and the tails. When working with threshold exceedances, the cut-off is in-
duced by the number of observations in the tail, while in the block maxima procedure, it
is implied by the choice of the number of blocks. The choice of the cut-off may have severe
consequences for the risk estimates. Different authors have proposed methods for optimal
threshold selection.

Among parametric methods for VaR estimation, many authors have analyzed the im-
provement on VaR estimation provided by asymmetric volatility models. Giot and Laurent
(2003a) [48] estimated daily VaR for stock indices using different volatility models. They
stated that more complex models like APARCH performed better than RiskMetrics or
GARCH specifications (for a comparison of volatility models in VaR estimation see also
El Babsiri and Zakoian, 2001 [37]). Angelidis, Benos and Degiannakis (2004) [10] show
that asymmetric volatility models fare better than symmetric ones, as they capture more
efficiently the characteristics of the underlying series and provide better estimators since
they perform better in the low probability regions that VaR tries to measure (see also Ane,
2006) [9]. McMillan and Kambouroudis (2009) [91] provide evidence on the performance
of alternative VaR models for a large number of individual stocks and exchange rates.
They conclude that the APARCH model should be preferred for more extreme VaR esti-
mates, while the RiskMetrics model seems to be adequate at more moderate significance
levels. In their work, RiskMetrics seems adequate in providing volatility forecasts for most
Asian markets; however, the APARCH model is superior in obtaining forecasts for the G7
markets, as well as other European markets and the larger Asia markets.



Chapter 2. Volatility specifications versus probability distributions in VaR estimation 85

Given the widespread evidence on the skewness of the distribution of asset returns, an-
alyzing whether the assumption of an asymmetric distribution of return innovations leads
to more efficient VaR estimates is a second methodological issue of interest. Based on the
influence of leverage effects on the accuracy of VaR estimates, Brooks and Persand (2003)
[21] concluded that models which do not allow for asymmetries either in the unconditional
distribution of returns or in the volatility specification underestimate the true VaR. Giot
and Laurent (2003a) [48] used daily data for stock market indices and individual stocks,
showing that models which rely on a symmetric density for the innovation underperform
with respect to skewed density models that require modeling both the left and right tails
of the distribution of returns. Lee & Su (2015) [81] estimate the VaR through the accuracy
evaluation for the eight stock indices in Europe and Asia stock markets by a parametric
approach (only GARCH model) and by the semi-parametric approach of Hull and White.
As measures of accuracy these authors use the unconditional coverage test by Kupiec as
well as two loss functions, quadratic loss function, and the unexpected loss. They only
consider the asymmetric distribution skewed generalized Student-t. They conclude that
the skewed generalized Student-t has the best VaR forecasting performance followed by
the Student-t, while the Normal has the worst performance in VaR forecasting. Corlu,
Meterelliyoz and Tiniç (2016) [29] investigate the ability of five alternative probability
distributions to represent the behavior of daily equity index returns over the period 1979-
2014: the skewed Student-t distribution, the generalized lambda distribution, the Johnson
system of distributions, the normal inverse Gaussian distribution, and the g-and-h distri-
bution. The explanatory power of the distributions is tested using in-sample Value-at-Risk
(VaR) failure rates. Their focus is on the unconditional distribution of equity returns, not
in conditional distributions.

We consider that financial returns exhibit temporal dependence in mean and volatility,
calculate out-of-sample VaR, perform a battery of VaR statistical tests and loss functions,
we consider the fit of return innovations moments and return moments and contemplate
a broad set of assets of different nature.

More recently, some papers have jointly examined the performance of both, the vari-
ance specification and the probability distribution of return innovations in VaR estimation.
Gerlach et al. (2011) [44] examine the performance of a wide class of volatility models:
RiskMetrics, asymmetric GARCH, IGARCH, GJR-GARCH and EGARCH, under four
alternative probability distributions: Gaussian, Student-t, Generalized Error Distribution
and Skewed Student-t in VaR estimation at 1% and 5% significance in different time pe-
riods (pre-crisis, crisis-GFC and post-crisis) incorporating parameter uncertainty through
a Bayesian approach. In such a global analysis, results are varied and hard to summarize,
but their evidence suggests a preference for asymmetric probability distributions for the in-
novations of the return process. Giot and Laurent (2003b) [49] use skewed density models
for daily returns on commodities. Bubak (2008) [22], Tu, Wong and Chang (2008) [124],
Kang and Yoon (2009) [73] and Diamandis et al. (2011) [31], analyze Eastern and Central
European stock markets, Asian stock markets, Asian emerging markets and developed and
emerging markets, respectively. Comparing a wide range of univariate conditional variance
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models, they show that models that incorporate an asymmetric distribution of the error
term tend to perform better than models with a symmetric distribution to produce both
in-sample and out-of-sample (one-day-ahead) VaR forecasts. Tang and Shieh (2006) [118]
and Mabrouk and Saadi (2012) [88] include Fractionally Integrated time varying GARCH
models designed to capture not only volatility clustering, but also long memory in assets
return volatility. They find that FIAPARCH model, under a skewed Student-t distribu-
tion, outperforms the alternative models they consider, including some widely used ones
such as GARCH and HYGARCH. However, given that the VaR forecasts required by the
Basel accords are short run, the inclusion of long-memory is expected not to make any
fundamental differences; for support of this result, see for example So and Yu (2006) [117].

We also examined the performance of both, the variance specification and the proba-
bility distribution of return innovations in VaR estimation. We consider a complex and
flexible volatility model, FGARCH model proposed by Hentschel (1995 [63]), which is an
omnibus model which subsumes some of the most popular GARCH models. To the best
of our knowledge, there are no papers examining the performance of this model for VaR
estimation. Besides, we introduce distributions rarely used in the literature on VaR perfor-
mance, such as Skewed Generalized Error Distribution [Fernandez and Steel (1998) [41]],
Johnson SU distribution [Johnson (1949) [70]], Skewed Generalized-t [Theodossiou (1998)
[123]] and Generalized Hyperbolic Skew Student-t distribution (GHST) [Aas and Haff
(2016) [1]]. In the VaR literature, Johnson distributions are suggested in Zangari (1996)
[129], Mina and Ulmer (1999) [94], in RiskMetrics Technical Document (1996) [110] and
Choi and Nam (2008) [26]. The last one examines empirically a GARCH model with
Johnson innovations. Simonato (2011) [115] documents the performance of the Johnson
system relative to closely competing approaches, such as the Gram-Charlier and Cornish-
Fisher approximations. He considers the case of Expected Shortfall computation without
performing a backtesting analysis, just comparing the moments of the distributions and
root-mean-squared errors. The GHST distribution has hardly been employed in financial
applications because its estimation is computationally demanding. Nakajima and Omori
(2012) [97] use GHST distribution but they perform a Bayesian analysis of a stochastic
volatility model. Hu (2005) [66] estimates Multivariate Generalized Hyperbolic Distri-
bution using the EM algorithm. Paolella and Polak (2015) [101] also use Generalized
Hyperbolic distribution in a context of multivariate time series.

Relative to this ever increasing literature, we contribute in different ways: i) consider-
ing a set of probability distributions that have recently been rendered to be appropriate
to capture the skewness and kurtosis of financial data, but whose performance for VaR
estimation has not been compared previously on a common dataset, ii) considering volatil-
ity models with leverage, APARCH and FGARCH, that again, have been appreciated as
being adequate for financial returns, iii) by explicitly evaluating their fit to return data,
relating that fitting ability to their VaR performance, iv) by introducing a dominance
criterion to establish a ranking of models on the basis of their behavior under standard
VaR validation tests and loss functions.

Tables 2.1-2.2 show an overview of the recent literature.
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APARCH Skewed distribution Variety of assets Significance Level VaR

Aas & Aaf (2006) NIG, AC, GHST 2 indices,, 1 interest rate, 1 exchange rate 0.5%, 1%, 5%, 95%, 99%, 99.5%

Abad & Benito (2010) 8 indices 1%

Abad, Benito & Lopez (2015) 1 commodity, 1 index 0.1%, 0.5%, 1%, 5%

Abad, Benito, Sanchez-Granero & Lopez (2013) H, SGT, SGED, JSU 9 indices 0.25%, 1%

Andersen, Bollerslev, Diebold & Labys (2003) 2 exchange rates 1%, 5%, 10%, 90%, 95%, 99%

Angelidis, Benos & Degiannakis (2007) X LL 2 indices 1%, 2.5%, 97.5%, 99%

Bali & Theodossiou (2007) SGT 1 index 0.5%, 1%, 1.5%, 2%, 2.5%, 5%

Bubak (2008) X LL 4 indices, 14 stocks 0.5%, 1%, 2.5%, 5%, 95%, 97.5%, 99%, 99.5%

Corlu, Meterelliyoz and Tiniç (2016) GLD, JSU, AC, gh, NIG 20 indices 0.5%, 1%, 5%, 95%, 99%, 99.5%

Diamandis, Drakos, Kouretas & Zarangas (2011) X LL 21 indices 0.25%, 0.5%,1%, 2.5%, 5%

Ergün & Jun (2010) H 1 indices 0.1%, 1%, 5%, 95%, 99%, 99%

Gerlach, Chen, Lin & Lee (2011) H 4 stocks 1%, 5%

Giot & Laurent (2003a) X LL 3 indices, 3 stocks 0.25%, 0.5%, 1%, 2.5%, 5%, 95% 97.5%, 99%, 99.5%, 99.25%

Giot & Laurent (2003b) X LL 3 commodities 0.25%, 0.5%, 1%, 2.5%, 5%, 95% 97.5%, 99%, 99.5%, 99.25%

Kang & Yong (2009) X LL 5 indices 0.25%, 0.5%, 1%, 2.5%, 5%, 95% 97.5%, 99%, 99.5%, 99.25%

Kuester, Mittnik & Paolella (2006) P 1 index 1%, 2.5%, 5%

Lee & Su (2015) SGT 8 indices 0.5%, 1%, 5%

Louzis, Xanthopoulus-Sisinis & Refenes (2014) LL 1 index, 1 exchange rate, 1 future, 1 commodity 1%

Mabrouk & Saadi (2012) FIAPARCH LL 7 indices 0.25%, 0.5%, 1%, 2.5%, 5%, 95% 97.5%, 99%, 99.5%, 99.25%

McMillan & Kambouroudis (2009) X 31 indices 1%, 5%

Ozun, Cifter & Yilmazer (2010) X LL 1 index 1%, 5%

Polanski & Stoja (2010) SGT, EGB2 3 indices 0.5%, 1%, 1.5%, 2%, 5%

So & Yu (2006) 12 indices, 4 exchange rates 1%, 2.5%, 5%, 95%, 97.5%, 99%

Tang & Shieh (2006) LL 3 indices 0.25%, 0.5%, 1%, 2.5%, 5%, 95% 97.5%, 99%, 99.5%, 99.25%

Tu, Wong & Chang (2008) X LL 10 indices 0.5%, 1%, 2.5%, 5%, 95% 97.5%, 99%, 99.5%

Table 2.1: Overview of papers that compare VaR models.

Note: The table summarizes some characteristics of empirical papers involving comparison of VaR models and the
variety of assets. The volatility model and the VaR methodology are marked with a cross when they are included
in a paper. The skewed distributions included in these table are the following: the skewed Student-t distribution of
Hansen (H) [59], the skewed Student-t distribution of Lambert & Laurent (LL) [80], the skewed Studen-t proposed
by Azzalini and Capitanio (AC) [7], the skewed generalised-t distribution of Theodossiou (SGT) [123], the skewed
error generalised distribution of Theodossiou (SGED) [122], the Johnson SU distribution (JSU) [70], the generalized
asymmetric t distribution of Paolella [100] and Mittnik and Paolella [95] (P), the exponential generalized beta of
the second kind (EGB2) [90], the generalized lambda distribution (GLD) [42] [71] [109], g-and-h distribution (gh)
[125], the Normal Inverse Gaussian of Barndorff-Nielsen (NIG) [15] and the Generalized Skew Student-t of Aas and
Haff (GHST) [1].
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Tests VaR Loss Functions

Aas & Aaf (2006) FR

Abad & Benito (2010) FR, LRuc, LRind, LRcc, BTC, DQT RQ

Abad, Benito & Lopez (2015) FR, LRuc, LRind, LRcc, BTC RQL, RL, RQ, RC1, RC2, RC3, FS, FC1, FC2, FC3, FABL

Abad, Benito, Sanchez-Granero & Lopez (2013) FR, LRuc, LRind, LRcc, BTC, DQT RQ, FS

Andersen, Bollerslev, Diebold & Labys (2003) FR

Angelidis, Benos & Degiannakis (2007) FR, LRuc

Bali & Theodossiou (2007) FR, LRuc, LRind, LRcc

Bubak (2008) FR, LRuc

Corlu, Meterelliyoz and Tiniç (2016) FR, LRuc

Diamandis, Drakos, Kouretas & Zarangas (2011) FR, LRuc, LRind, LRcc, DQT

Ergün & Jun (2010) FR, LRuc, LRind, LRcc

Gerlach, Chen, Lin & Lee (2011) FR, MRC, LRuc, LRcc RC3

Giot & Laurent (2003a) LRuc

Giot & Laurent (2003b) LRuc

Kang & Yong (2009) LRuc

Kuester, Mittnik & Paolella (2006) FR, LRuc, LRind, LRcc, DQT

Lee & Su (2015) FR, LRuc RQL, UL

Louzis, Xanthopoulus-Sisinis & Refenes (2014) FR, MRC, LRuc, LRind, LRcc, DQT RQL, FS

Mabrouk & Saadi (2012) FR, LRuc, DQT

McMillan & Kambouroudis (2009) FR, LRuc, DQT

Ozun, Cifter & Yilmazer (2010) LRuc, LRcc RQL

Polanski & Stoja (2010) FR, LRuc, LRcc

So & Yu (2006) FR

Tang & Shieh (2006) FR, LRuc

Tu, Wong & Chang (2008) FR, LRuc

Table 2.2: Overview of papers that compare VaR models (continued).

Note: The table summarizes the tests used to evaluate the accuracy of VaR models and the loss functions used in
the comparative exercise. We indicate the test to evaluate the accuracy of VaR models and/or the loss function
used in the comparative exercise. FR is the failure rate, MRC is the Market Risk Charge, LRuc is the unconditional
coverage test [78], LRind is the statistic for the serial independence, LRcc is the conditional coverage test [27],
BTC is the Back-Testing Criterion, DQT is the Dynamic Quantile Test [39], RQL is the Regulator’s Quadratic loss
function of Lopez [85, 86], RL is Regulator’s Lineal loss function of Lopez [85, 86], RQ is the Regulator’s Quadratic
Loss Function of Sarma et al. [113] , RC1, RC2 and RC3 are the Regulator’s loss functions of Caporin [23], FS is
the Firm’s loss function of Sarma et al. [113], FC1, FC2 and FC3 are the Firm’s loss functions of Caporin [23],
FABL is the Firm’s loss functions of Abad, Benito and Lopez [3] and UL is unexpected loss of Lee and Su [81].

2.3 Models and probability distributions

Let xt, for t = 1, ..., T , be a time series of asset returns. It is convenient to break down the
complete characterization of xt into three components: (i) the conditional mean, µt (ii) the
conditional variance, which contains the scale parameter that measures the dispersion of
the distribution, σ2

t and (iii) the shape parameters (e.g., skewness, kurtosis) that determine
the form of a conditional distribution within the general family of distributions. Thus, we
may write

xt = µt(θ) + εt µt(θ) = E[xt|Ft−1] = µ(θ,Ft−1) εt = σt(θ)zt

σ2
t (θ) = E[(xt − µt)2|Ft−1] = σ2(θ,Ft−1) zt ∼ f(zt|θ)

The standardized innovation, zt = (xt−µt(θ))/σt(θ) has zero mean and unit variance and
it follows a conditional distribution f . Vector θ contains all the parameters associated
with the conditional mean, the conditional variance and conditional distribution. In the
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last, we have shape parameters which capture asymmetry and fat-tailedness of the dis-
tribution, except if the conditional distribution is assumed to be N (0, 1), we do not have
shape parameters. We estimate all parameters jointly by Maximum Likelihood.

An AR(1) model was specified for the conditional mean return in all cases, which is
sufficient to produce serially uncorrelated innovations. We consider three general volatility
models with leverage, GJR-GARCH, APARCH and FGARCH as well as the standard
symmetric GARCH model as benchmark. As probability distributions for the innovations
we compare the performance of Skewed Student-t, Skewed Generalized Error, Johnson SU ,
Skewed Generalized-t and Generalized Hyperbolic Skew Student-t distributions, with the
Normal and symmetric Student-t distributions as benchmark. We provide a description
of volatility models and probability distributions in Appendices A.1 - A.9.

2.4 The data

We work with daily percentage returns on five groups of assets of different nature over the
sample period 01/04/2000 - 12/31/2015 (4173 observations). Daily returns are computed
as 100 times the first difference of log prices, i.e. 100[ln(Pt+1) − ln(Pt)]%. The financial
assets considered are: stock market indices: IBEX 35 (e), NASDAQ 100 ($), FTSE 100
(£) and NIKKEI 225 (U); individual stocks: International Business Machines [IBM] ($),
Banco Santander [SAN] (e), AXA (e) and BP (£); interest rates: Interest Rate Swap
5Y [IRS 5Y] (e), interest rate of GERMAN BOND 10Y (e) and interest rate of US
BOND 10Y($); commodity prices CRUDE OIL BRENT ($ per barrel), NATURAL GAS
($ per Million British Thermal Units), GOLD ($ per Troy Ounce) and SILVER (Cents $
per Troy Ounce) and exchange rates EUR/USD (e), GBP/USD (£), JPY/USD (U) and
AUD/USD (Australian $). The data were extracted from Datastream.

Table 2.3 reports descriptive statistics for daily returns. All of them have a mean
close to zero. Median returns are zero, except for IBEX, NASDAQ, IRS, interest rate of
GERMAN BOND, interest rate of US BOND, GOLD, JPY/USD and AUD/USD. GAS
is the one with a wider total range (max−min) followed by AXA and SAN. In general,
interest rates have a narrow range. The unconditional standard deviation is specially high
for GAS (4.19), AXA (2.67), OIL BRENT (2.28) and SAN (2.19) and very low for interest
rates and exchange rates. For the rest of assets, the standard deviation moves between
1.13 GOLD and 1.85 NASDAQ. According to the skewness statistic, AUD/USD, SILVER,
GOLD and NIKKEI have relatively high negative skewness, while GAS, AXA, JPY/USD
and NASDAQ have relatively high positive skewness. GBP/USD, IBM and the interest
rate of GERMAN BOND display a small negative skewness. For all assets considered, the
kurtosis statistic is large, implying that the distributions of those returns have much thicker
tails than Normal distribution. For instance, AUD/USD, GAS, IBM and AXA have a high
degree of kurtosis while EUR/USD, interest rate of GERMAN BOND and JPY/USD have
a small kurtosis. Similarly, the Jarque-Bera statistic is statistically significant, rejecting
the assumption of normality in all cases.
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Mean (%) Median (%) Max Min S.D. Skewness Kurtosis J-B

IBEX -0.47 2.89 13.48 -9.58 1.49 0.08 7.93 4234.84

NASDAQ 0.46 3.68 17.20 -11.11 1.85 0.19 9.62 7652.53

FTSE -0.25 0 9.38 -9.26 1.21 -0.16 9.36 7042.80

NIKKEI 0.01 0 13.23 -12.11 1.50 -0.41 9.72 7979.58

IBM 0.42 0 12.26 -16.89 1.66 -0.07 11.63 12947.74

SAN 1.01 0 20.87 -15.19 2.19 0.15 9.11 6515.50

AXA 0.55 0 19.78 -20.35 2.67 0.27 10.09 8790.79

BP -1.35 0 10.58 -14.04 1.71 -0.13 7.81 4041.28

IRS 0.55 0.48 1.92 -1.86 0.21 -0.28 8.53 5367.17

GER BOND 1.11 0.97 3.39 -2.33 0.41 -0.09 5.97 1536.83

US BOND 0.98 0.96 4.53 -5.57 0.59 -0.22 7.96 4307.77

BRENT 0.98 0 17.97 -18.72 2.28 -0.19 8.26 4831.81

GAS 0.01 0 37.81 -28.90 4.19 0.56 12.81 16946.14

GOLD 3.10 0.01 6.86 -10.16 1.13 -0.41 8.81 5991.49

SILVER 2.26 0 13.66 -12.98 1.93 -0.57 8.62 5724.23

EUR/USD 0.16 0 4.62 -3.84 0.63 0.14 5.48 1091.11

GBP/USD -0.20 0 4.43 -3.88 0.57 -0.04 7.27 3170.80

JPY/USD -0.41 -0.99 4.61 -3.71 0.63 0.27 6.96 2779.74

AUD/USD 0.23 1.86 6.70 -8.83 0.83 -0.82 15.13 26058.43

Table 2.3: Descriptive statistics for the daily percentage returns.

Figure 2.1 displays daily percentage returns of each stock market indices. It is clear
from the graph that large price changes tend to also be followed by large changes, and
small changes tend to follow small changes. Such volatility clustering is a property of
asset prices that each index seems to exhibit. This graphical evidence is an indication
of the presence of ARCH effect in our daily returns series that should be accounted for
when estimating Value at Risk. Figure 2.1 also displays QQ-plot of each index against the
Normal distribution. These QQ-plot show that all returns distributions exhibit fat tails
and also fat tails are not symmetric.
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Figure 2.1: Stock market indices daily percentage returns and QQ-plot against the Normal
distribution.
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2.5 Parameter estimates

To perform a VaR analysis we estimate four volatility models: GARCH, GJR-GARCH,
APARCH and FGARCH under each of the different probability distributions assumed
for the innovations: Gaussian, Student-t, skewed Student-t, skewed generalized error,
unbiased Johnson SU , skewed generalized-t and generalized hyperbolic skewed Student-t
distributions. To save space, we only report estimation results of the APARCH model
under the different probability distributions in Tables 2.4 - 2.8 for the different assets
according to their nature. Results for alternative models are available from the authors
upon request 2.

In Tables 2.4 - 2.8 we observe that the APARCH model is particularly successful in
capturing the heteroscedasticity exhibited by the data. We show the parameter estimates
under the seven probability distributions. The Ljung-Box Q statistic for five lags com-
puted on the standardized residuals does not show evidence of autocorrelation at 1%
significance level except for GAS. But for one lag, GAS does not show autocorrelation
at 1%, inasmuch as the p-values of the Q statistics are 0.0899, 0.2621, 0.2440, 0.0452,
0.2288, 0.0447 and 0.4053 for N-, ST-, SKST-, SGED-, JSU-, SGT- and GHST-APARCH
models, respectively. The same statistic computed with nine lags on the squared stan-
dardized residuals is not significant at 1% except for IBEX, SAN, IRS, GERMAN BOND,
OIL, GOLD and SILVER. If we consider one lag, we obtain a Q statistic not significant
at 1% significance level for IBEX and SAN but it remains significant for the remaining
assets. A significant statistic indicates a possible problem with this model. In the lower
panels of these tables we present the log-likelihood values of the four volatility models
(GARCH, GJR-GARCH, APARCH and FGARCH). Their similarity suggests that the
implied volatility specifications are very similar. The autoregressive effect in volatility is
strong, with a β1-parameter generally above 0.90, suggesting strong memory effects. The
range of β1 is [0.88, 0.97] where the minimum is obtained for GAS and the maximum is
obtained for EUR/USD. The coefficient γ1 is positive and statistically significant for most
series, indicating the existence of a leverage effect for negative returns in the conditional
variance specification. Estimates of γ1 are close to 1 for IBEX, NASDAQ and FTSE (in
the GJR-GARCH model we also obtain an α1-parameter close to 0). Compared to es-
timates for other assets these values are very high, suggesting that only negative shocks
contribute to volatility. We also obtain a γ1 estimate close to 1 in the APARCH model
(equivalently α1 close to 0 in GJR-GARCH) with other indices not considered in this
paper such as CAC 40, DAX 30 and S&P 500 for this same sample period. We obtain
the same parameter estimates for these models using MatLab, R, Eviews and Gretl. The
coefficient γ1 is negative and statistically significant for interest rates with some models,
GOLD, SILVER and JPY/USD, indicating that a positive shock generates greater volatil-
ity than a negative shock of equal size.

2All computations were performed with the rugarch package (version 1.3-4) of R software (version 3.1.1)
designed for the estimation and forecast of various univariate ARCH-type models, except in the estimation
of models under the Skewed Generalized-t and Generalized Hyperbolic Skew Student-t distributions that
we used the sgt package (version 2.0) and the SkewHyperbolic package (version 0.3-2), respectively.
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It is also important that estimates of ξ in the skewed Student-t and Skewed Generalized
Error are less than 1 for most assets, suggesting the convenience of incorporating negative
asymmetric features in the probability distribution in order to model innovations appro-
priately. A similar consideration applies to the skewness parameter γ of the Johnson SU ,
λ of the Skewed Generalized-t and β of Generalized Hyperbolic Skew Student-t, which in
these cases the skewness parameters have negative sign. We obtain positive skewness with
GAS and GOLD with some models, EUR/USD and JPY/USD. According to kurtosis, the
estimates of ν (Student-t and Skewed Student-t) and δ(Johnson SU ) are between 1.35 and
12.50, capturing the heavy tails of the distribution. The smallest values are obtained with
Johnson SU . The kurtosis parameters η and p of Skewed Generalized Error and Skewed
Generalized-t, respectively, measure the peakness of the distribution. For most assets and
with most models, we obtain values lower than 2 indicating that the distribution is lep-
tokurtic. Note that Skewed Generalized-t have two parameters related to kurtosis, p and
q. The parameters p and q control the peak and the tails of density, respectively. And the
parameter q only has the degrees of freedom interpretation in case λ = 0 and p = 2. We
obtain high q values accompanied with low p values for some assets, indicating in these
cases that the kurtosis is mainly due to higher peak, rather than thicker tails of the distri-
bution. Finally, δ takes value between 0.95 and 2.33, being significantly different from 2
in most cases. These results suggest that, contrary to standard practice, we should model
the conditional standard deviation, rather than the conditional variance 3. Our estimates
for the different asset classes suggest that we should model the conditional standard devia-
tion for stock market indices, individual stocks and commodities (metals), the conditional
variance (δ = 2) for interest rates, and something between conditional standard deviation
and variance (δ = 1.5) for commodities (energy) and exchange rates. In summary, these
results indicate the need for a model featuring a negative leverage effect in the conditional
variance equation (conditional asymmetry) combined with an asymmetric distribution for
the underlying error term (unconditional asymmetry) when representing market data.

3This result is in line with those of Taylor (1986) [121], Schwert (1990) [114] and Ding et al. (1993)
[35] who indicate that there is substantially more correlation among absolute returns than among squared
returns, a reflection of the ’long memory’ of high-frequency financial return.
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Figure 2.2 displays, for each stock market index, histograms and QQ-plots against the-
oretical quantiles for estimated standardized residuals (ẑt) of the SKST-APARCH model.
We can observe that standardized innovations show, indeed, fat tails and negative skew-
ness.

(a) IBEX 35 (b) NASDAQ 100 (c) FTSE 100 (d) NIKKEI 225

(e) IBEX 35 (f) NASDAQ 100 (g) FTSE 100 (h) NIKKEI 225

Figure 2.2: Histograms and QQ-plots of standardized innovations from SKST-APARCH
model for stock market indices against the skewed Student-t distribution.

Figure 2.3 displays the news impact curves of different volatility models for IBM. We
can observe that GARCH and GJRGARCH models are based on the variance equation,
while APARCH and FGARCH models introduce the Box-Cox transformation in the con-
ditional standard deviation, and the free parameter (δ in APARCH and λ in FGARCH)
determines the shape of the transformation. For IBM the value of this parameter is
δ = 1.01 and λ = 1.10 for the APARCH and FGARCH model, respectively. This pa-
rameters are significantly different from zero and two, but not from one. Furthermore,
FGARCH model permit not only rotations, like APARCH model, but also shifts of the
news impact curve. As can be seen from Figure 2.3 d), the asymmetry caused by the
shift η2 = 0.20 is most pronounced for small shocks. For extremely large shocks, the
asymmetric effect becomes a negligible part of the total response. On the other hand,
the rotated news impact curve of Figure 2.3 c), γ = 0.61 maintains the hypothesis that a
zero shock results in the smallest increase of conditional variance. Additionally, the size
of the asymmetric effect of small shocks is very small in absolute terms. The estimates of
γ in APARCH model imply that negative shocks result in higher volatility than equally
large positive shocks, which is in accordance with the ”leverage effect”. In Figure 2.3
d) the shift η2 = 0.20 and rotation η1 = 0.42 are combined in one news impact curve.
Both parameters are significant. By appropriately shifting and rotating the news impact
curve, it is possible to have asymmetry for small shocks, a roughly symmetric response for
moderate shocks, and asymmetry for very large shocks.
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(a) GHST-GARCH (b) GHST-GJRGARCH

(c) GHST-APARCH (d) GHST-FGARCH

Figure 2.3: News impact curves of different volatility model for IBM.

2.6 Fitting the data

VaR models are usually evaluated according to the performance of their VaR estimates
using appropriate testing procedures. However, the ability of a VaR model to reproduce
the main characteristics of return data is hardly ever examined. A possible justification
for such inattention is the argument that good VaR estimates have to do just with the
quality of the fit to the tails of the distribution of returns. A good overall fit might not
be all that interesting because it might be obtained at the expense of not fitting so well
the distribution tails. However, the fit to the tail of return distribution is usually not
examined either. The fact is that it is unclear whether a good overall fit of the return
distribution helps to produce good VaR estimates or whether it should be enough to care
about the fit to the tail of the distribution, and we want to throw some light into that
question. In particular, if fitting the tail distribution is what matters, that might explain
why the type of models considered in extreme value theory tend to beat other alternatives
in VaR estimation.

We examine in this section the extent to which each model fits the return data, and we
will later check whether the models with a better overall fit lead to better VaR estimates.
We start by checking the extent to which each model fits the likelihood of return data.
After that, we examine the ability of each model to fit the main sample moments of
returns. To evaluate the fit to the distribution of returns Monte Carlo simulation is
needed, as explained below.
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2.6.1 Likelihood ratio tests

The lower panels of the Tables 2.4 - 2.8 show that models with FGARCH volatility, com-
bined with JSU and SGED distributions for stock market indices, with SKST and SGED
distributions for individual stocks, with JSU and GHST distributions for interest rates,
with SGED for commodities and with SGED and JSU for exchange rates, often achieve
the highest log-likelihood. Likelihood ratio tests in Table 2.9 show a superiority of the
FGARCH specification over the APARCH, GJR-GARCH and the symmetric GARCH
specifications for stock market indices. In all comparisons in the table, the more restricted
model appears to the left. At 5% significance, the test clearly favors the APARCH model
against the GJRGARCH model and the FGARCH model against the APARCH. Indeed,
for stock market indices, individual stocks and commodities the FGARCH model is pre-
ferred to the APARCH model whereas for interest rates and exchange rates the APARCH
model is preferred. Overall, FGARCH and APARCH are the best models according to
this criterion.

Test statistic IBEX NASDAQ FTSE NIKKEI

N-GARCH vs N-APARCH 205.186 138.348 195.112 78.296

N-GJRGARCH vs N-APARCH 30.148 11.934 15.908 9.164

N-APARCH vs N-FGARCH 21.816 52.104 37.834 47.568

ST-GARCH vs ST-APARCH 159.688 119.084 248.592 79.222

ST-GJRGARCH vs ST-APARCH 25.748 15.412 18.558 17.354

ST-APARCH vs ST-FGARCH 8.762 27.646 32.422 44.818

SKST-GARCH vs SKST-APARCH 167.376 134.806 186.022 77.49

SKST-GJRGARCH vs SKST-APARCH 26.388 18.518 19.916 17.154

SKST-APARCH vs SKST-FGARCH 11.064 38.588 33.902 46.58

SGED-GARCH vs SGED-APARCH 163.090 123.216 137.098 66.682

SGED-GJRGARCH vs SGED-APARCH 24.716 15.794 -19.958 13.778

SGED-APARCH vs SGED-FGARCH 12.574 19.094 30.93 40.332

JSU-GARCH vs JSU-APARCH 166.902 135.970 184.646 74.574

JSU-GJRGARCH vs JSU-APARCH 25.992 19.584 19.006 16.460

JSU-APARCH vs JSU-FGARCH 1.216 14.958 33.778 47.004

SGT-GARCH vs SGT-APARCH 154.116 108.794 157.816 66.148

SGT-GJRGARCH vs SGT-APARCH 24.028 12.516 15.348 13.442

SGT-APARCH vs SGT-FGARCH 10.89 27.402 30.93 38.618

GHST-GARCH vs GHST-APARCH 168.844 148.648 180.538 71.766

GHST-GJRGARCH vs GHST-APARCH 34.134 60.512 19.006 16.460

GHST-APARCH vs GHST-FGARCH -6.826 13.926 20.554 57.444

Table 2.9: Likelihood ratio tests of volatility specifications for stock market indices. Note:
The null hypothesis is rejected, except where indicated by boldface.
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2.6.2 Fitting standardized innovations

2.6.2.1 Fitting the empirical distribution of return innovations

Table 2.10 reports the results obtained when comparing the empirical distribution of es-
timated innovations to the theoretical distribution used in estimation for the four stock
market indices 4. We use the Kolmogorov-Smirnov (KS) test (Kolmogorov, 1933, Smirnov,
1939 and Massey, 1951) [76] [116] [89], which quantifies the distance between the empirical
distribution function of standardized innovation and the cumulative distribution function
of the reference distribution, and the Chi-square (Chi2) test (Pearson, 1900) [102] applied
to a partition of the return data range into 10 bins 5. The null distribution of these statis-
tics is calculated under the null hypothesis that the sample is drawn from the reference
distribution. These tests suggest that models with an asymmetric distribution for the
innovations are to be preferred. Test statistics also tend to be smaller for the APARCH
and FGARCH volatility specifications.

IBEX35 NASDAQ100 FTSE100 NIKKEI225

KS Chi2 KS Chi2 KS Chi2 KS Chi2

N-GARCH 0.039 (0.000) 243110 (0.000) 0.043 (0.000) 86.329 (0.000) 0.032 (0.000) 107.345 (0.000) 0.051 (0.000) 243267 (0.000)
ST-GARCH 0.022 (0.038) 21.348 (0.011) 0.028 (0.002) 17.048 (0.048) 0.020 (0.083) 37.191 (0.000) 0.039 (0.000) 21.667 (0.010)
SKST-GARCH 0.027 (0.005) 9.892 (0.359) 0.030 (0.001) 7.344 (0.601) 0.031 (0.001) 15.078 (0.089) 0.038 (0.000) 13.744 (0.132)
SGED-GARCH 0.022 (0.035) 50.690 (0.000) 0.023 (0.027) 5.633 (0.776) 0.027 (0.005) 17.152 (0.046) 0.026 (0.006) 39.174 (0.000)
JSU-GARCH 0.026 (0.006) 10.010 (0.349) 0.030 (0.001) 6.336 (0.706) 0.031 (0.001) 13.381 (0.146) 0.041 (0.000) 14.011 (0.122)
SGT-GARCH 0.029 (0.001) 23.392 (0.005) 0.028 (0.003) 6.001 (0.740) 0.034 (0.000) 17.480 (0.042) 0.028 (0.003) 39.408 (0.000)
GHST-GARCH 0.021 (0.056) 8.799 (0.456) 0.028 (0.003) 7.665 (0.568) 0.019 (0.099) 22.349 (0.008) 0.037 (0.000) 10.983 (0.277)
N-GJRGARCH 0.034 (0.000) 228.860 (0.000) 0.047 (0.000) 39.537 (0.000) 0.039 (0.000) 117.613 (0.000) 0.048 (0.000) 971626 (0.000)
ST-GJRGARCH 0.024 (0.020) 49.752 (0.000) 0.031 (0.001) 40.861 (0.000) 0.029 (0.002) 57.236 (0.000) 0.038 (0.000) 73.794 (0.000)
SKST-GJRGARCH 0.018 (0.129) 14.610 (0.102) 0.022 (0.041) 12.553 (0.184) 0.016 (0.222) 8.206 (0.514) 0.036 (0.000) 43.630 (0.000)
SGED-GJRGARCH 0.015 (0.338) 21.714 (0.010) 0.017 (0.166) 17.948 (0.036) 0.016 (0.262) 9.942 (0.355) 0.030 (0.001) 127.937 (0.000)
JSU-GJRGARCH 0.017 (0.155) 14.262 (0.113) 0.020 (0.072) 12.947 (0.165) 0.016 (0.248) 5.923 (0.748) 0.039 (0.000) 38.568 (0.000)
SGT-GJRGARCH 0.021 (0.046) 20.689 (0.014) 0.025 (0.012) 20.488 (0.015) 0.026 (0.008) 11.848 (0.222) 0.029 (0.002) 133.807 (0.003)
GHST-GJRGARCH 0.027 (0.004) 18.724 (0.028) 0.033 (0.000) 12.947 (0.165) 0.028 (0.003) 28.488 (0.001) 0.035 (0.000) 24.784 (0.000)
N-APARCH 0.036 (0.000) 248.980 (0.000) 0.047 (0.000) 141.086 (0.000) 0.042 (0.000) 111.868 (0.000) 0.048 (0.000) 243023 (0.000)
ST-APARCH 0.026 (0.006) 48.544 (0.000) 0.030 (0.001) 29.656 (0.001) 0.031 (0.001) 44.470 (0.000) 0.038 (0.000) 47.912 (0.000)
SKST-APARCH 0.019 (0.093) 15.015 (0.091) 0.020 (0.062) 2.589 (0.978) 0.019 (0.110) 3.208 (0.956) 0.037 (0.000) 20.405 (0.016)
SGED-APARCH 0.019 (0.114) 24.748 (0.003) 0.017 (0.162) 3.676 (0.931) 0.015 (0.275) 5.960 (0.744) 0.031 (0.001) 54.437 (0.000)
JSU-APARCH 0.020 (0.081) 16.025 (0.066) 0.020 (0.064) 1.759 (0.995) 0.018 (0.120) 3.576 (0.937) 0.038 (0.000) 15.731 (0.073)
SGT-APARCH 0.019 (0.094) 21.066 (0.012) 0.026 (0.008) 5.237 (0.813) 0.025 (0.013) 6.753 (0.663) 0.029 (0.002) 60.521 (0.000)
GHST-APARCH 0.030 (0.001) 22.105 (0.009) 0.031 (0.001) 8.823 (0.454) 0.030 (0.001) 21.973 (0.009) 0.037 (0.000) 20.293 (0.016)
N-FGARCH 0.037 (0.000) 132.260 (0.000) 0.047 (0.000) 97.099 (0.000) 0.042 (0.000) 106.330 (0.000) 0.051 (0.000) 971730 (0.000)
ST-FGARCH 0.027 (0.004) 14.633 (0.102) 0.025 (0.011) 32.188 (0.000) 0.033 (0.000) 44.745 (0.000) 0.037 (0.000) 60.110 (0.000)
SKST-FGARCH 0.019 (0.102) 4.929 (0.840) 0.022 (0.035) 15.5601(0.077) 0.019 (0.088) 2.967 (0.966) 0.034 (0.000) 27.787 (0.001)
SGED-FGARCH 0.018 (0.142) 10.078 (0.344) 0.023 (0.029) 14.149 (0.117) 0.017 (0.158) 2.206 (0.988) 0.032 (0.000) 110.135 (0.000)
JSU-FGARCH 0.019 (0.097) 4.467(0.878) 0.026 (0.007) 12.654 (0.179) 0.020 (0.082) 2.393 (0.984) 0.035 (0.000) 22.448 (0.008)
SGT-FGARCH 0.018 (0.123) 7.566 (0.578) 0.028 (0.002) 14.121 (0.118) 0.023 (0.022) 3.179 (0.957) 0.027 (0.005) 121.760 (0.000)
GHST-FGARCH 0.026 (0.008) 15.856 (0.070) 0.032 (0.000) 33.125 (0.000) 0.032 (0.000) 25.915 (0.002) 0.037 (0.000) 25.226 (0.003)

Table 2.10: Goodness-of-fit tests for standardized innovations of stock market indices.
Figures in brackets denote p-value.

According to the KS test, models with N distributions fits the data well 11 out of 76
cases (4 volatility models by 19 assets), ST fits the data well in 53 cases, SKST in 54,
SGED in 59, JSU in 47, SGT in 62 and GHST in 47 cases. Regarding volatility mod-
els, distributions with GARCH model fit the data well 79 out of 133 cases (7 probability
distributions by 19 assets), GJRGARCH and APARCH fit the data well in 85 cases and
FGARCH in 84 cases. According to the Chi2 test, models with N distributions fits the
data well 1 out of 76 cases, ST fits the data well in 20 cases, SKST and SGED in 32, JSU

4Results for another assets are available on request.
5The number of bins affects the results of the Pearson test.
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and SGT in 30 and GHST in 18 cases. Respect to volatility models, distributions with
GARCH, APARCH and FGARCH models fit the data well 40 out of 133 cases and GJR-
GARCH in 43 cases. To sum up, the SGED and SGT are preferred to fit the innovations
and GJRGARCH and APARCH to model the volatility.

To compare the adequacy of the different distributions we can also employ out-of-
sample density forecasts, as proposed by Diebold, Gunther and Tay (1998) [34] (DGT).
Let fi(yi|Ωi)

m
i=1 be a sequence of m one-step-ahead density forecasts produce by a given

model, where Ωi is the conditioning information set, and pi(yi|Ωi)
m
i=1 the sequence of

densities defining the Data Generating Process yi (which is never observed). The null
hypothesis is H0 : fi(yi|Ωi)

m
i=1 = pi(yi|Ωi)

m
i=1. DGT use the fact that under the null hy-

pothesis, the probability integral transform ζi =
∫ yi
−∞ fi(t)dt is i.i.d. with a Uniform(0,1)

distribution. To check H0, they propose to use independence test for i.i.d. U(0,1). The
i.i.d.-ness property of ζi can be evaluated by plotting an histogram of ζi. A humped shape
of the ζ-histogram would indicate that the issued forecasts are too narrow and that the
tails of the true density are not accounted for. On the other hand, a U-shape of the his-
togram would suggest that the model issues forecasts that either under- or overestimate
too frequently [Bauwens, Giot, Grammig and Veredas (2000) [16]].

Figures 2.4 a) and 2.4 b) show a sample of such histograms for the assets in our
data set. The humped shape of the histograms shows that symmetrical distributions are
not suitable to model the OIL and US BOND 10Y returns. Figures 2.4 c) and 2.4 d)
show that the Skewed Generalized Error distribution is not suitable for NIKKEI 225. It
is appropriate for JPY/USD because its probability integral transform is Uniformly dis-
tributed. In 4 e) the Johnson SU distribution is also appropriate for AUD/USD. Figure
2.4 f) shows that the assumption of a Generalized Hyperbolic Skew Student-t for the in-
novation is not appropriate for SAN. These results are consistent with the goodness-of-fit
tests previously carried out. For the rest of assets, the results are similar, the symmetrical
distributions and the Generalized Hyperbolic Skew Student-t for the innovations are not
appropriate for most of the assets whereas Skewed Student-t, Skewed Generalized Error
and Johnson SU are suitable.
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(a) OIL - N (b) US BOND 10Y - ST

(c) NIKKEI 225 - SGED (d) JPY/USD - SGED

(e) AUD/USD - JSU (f) SAN - GHST

Figure 2.4: ζ-histograms (100 cells) for 4173 one-step-ahead forecasts. We assume different
distributions with AR(1)-FGARCH(1,1) model for different assets.
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2.6.2.2 Fitting the sample moments of return innovations

For a given asset, the innovations change with the estimated model, so we compare the
theoretical moments of a given probability distribution with the sample moments for the
standardized innovations for that model. In fact, however, sample moments for inno-
vations are similar across models, showing a near zero mean and a unit variance in all
models, as expected. But that is also the case under all the estimated probability dis-
tributions, so it makes sense to focus on the ability of each estimated distribution to fit
the sample skewness and kurtosis of standardized innovations. Tables 2.11 - 2.15 compare
the theoretical value of skewness and kurtosis from the estimated probability distribution
with the similar sample moments of the standardized innovations calculating the absolute
differences between these both values. Obviously, the Normal and the symmetric Student
distribution do not produce any skewness. This is a limitation of these distributions since
skewness and kurtosis are present in standardized innovations. For most assets, the skewed
t-Student distribution produces negative skewness, although not as much as it is observed
in the data. The unbounded Johnson distribution achieves a higher level of negative skew-
ness, often being close to that observed in the data. The GHST distribution does not
fit innovation moments very well, especially overestimating the degree of negative skew-
ness. Indeed, the GHST distribution usually produces the maximum absolute difference
between the theoretical and the sample skewness in most stock market indices, individual
stocks and exchange rates. The GHST distribution has been proposed as being suitable
for assets with high skewness and heavy-tailed (Aas & Haff, 2006 [1]) and the assets we
consider do not have high skewness. In fact, only the standardized innovations in SILVER
and AUD/USD have a negative high skewness and in these two cases models with GHST
produce the best fit to sample skewness. Additionally, asymmetric probability distribu-
tions are unable to reproduce the positive skewness shown by a few return innovations,
such as those in IRS5Y and GAS.

On the other hand, the GHST distribution can explain the high kurtosis often ob-
served in our standardized innovations, except when used with a GJRGARCH volatility
for stock market indices or when used with APARCH and FGARCH specifications for
IRS5Y. The symmetric and the skewed Student-t distributions explain the level of kurto-
sis observed in the data 6, while the Johnson distribution generally implies higher kurtosis
than it is observed in the data 7.

In fact, for skewness the results are concentrated in the SKST distribution, it fits
skewness best in 8 of the 19 cases. For kurtosis results are not so concentrated: ST (for
5 assets), SKST (4), SGT (6) y SGED (4) fit kurtosis best. Pulling together the fit of
both moments, the SKST distribution performs best in 12 out of the 38 cases, followed by

6The theoretical kurtosis for the Student-t distribution has been calculated as K = 6
ν−4

+ 3 (The same
result is obtained by replacing ξ = 1 and ν in (2)-(3); see Appendices). For GOLD and SILVER the
Student-t distribution for some volatility models produces negative kurtosis because we have obtained in
the estimation a number of degrees of freedom (ν) less than 4.

7For GOLD and SILVER, as well as for IBM and BP, the unbounded Johnson distribution produces
extremely high kurtosis because the estimated kurtosis parameter (δ) of the Johnson distribution is close
to 1. As δ →∞ the distribution approaches the Normal density function and we obtain a kurtosis = 3.
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SGT and SGED with 7 cases. The FGARCH specification fits skewness best in 7 assets,
while the GARCH specification fits kurtosis best in 8 assets. Overall, the SGT and SKST
distributions with GARCH, GJR-GARCH and FGARCH do better in capturing skewness
and kurtosis of the standardized innovations than other combinations.

IBEX35 NASDAQ100 FTSE100 NIKKEI225

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

N-GARCH 0.263 1.327 0.235 0.900 0.318 0.748 0.377 1.334

ST-GARCH 0.284 0.149 0.245 0.651 0.317 0.488 0.398 0.278

SKST-GARCH 0.079 0.045 0.048 0.555 0.065 0.313 0.197 0.127

SGED-GARCH 0.104 0.420 0.101 0.206 0.102 0.063 0.341 0.074

JSU-GARCH 0.070 2.529 0.145 3.869 0.062 1.020 0.076 3.273

SGT-GARCH 0.114 0.254 0.123 0.222 0.118 0.082 0.351 0.105

GHST-GARCH 0.345 1.303 0.416 2.406 0.210 0.333 0.249 1.558

N-GJRGARCH 0.260 0.952 0.275 0.734 0.332 0.633 0.366 1.499

ST-GJRGARCH 0.269 0.159 0.288 0.476 0.332 0.196 0.384 0.267

SKST-GJRGARCH 0.032 0.119 0.030 0.421 0.047 0.115 0.198 0.339

SGED-GJRGARCH 0.055 0.187 0.070 0.188 0.066 0.011 0.316 0.268

JSU-GJRGARCH 0.025 0.952 0.069 2.094 0.171 0.165 0.032 1.718

SGT-GJRGARCH 0.063 0.084 0.096 0.203 0.081 0.010 0.336 0.264

GHST-GJRGARCH 0.501 4.861 0.843 18.402 0.304 2.140 0.731 16.204

N-APARCH 0.251 0.916 0.307 0.773 0.338 0.685 0.365 1.577

ST-APARCH 0.258 0.159 0.332 0.420 0.346 0.085 0.395 0.451

SKST-APARCH 0.019 0.130 0.061 0.323 0.052 0.033 0.206 0.511

SGED-APARCH 0.043 0.172 0.094 0.108 0.067 0.088 0.313 0.461

JSU-APARCH 0.027 0.852 0.023 1.778 0.176 0.097 0.001 2.072

SGT-APARCH 0.049 0.058 0.118 0.127 0.083 0.089 0.343 0.458

GHST-APARCH 0.391 2.119 0.334 2.779 0.199 0.498 0.277 1.444

N-FGARCH 0.232 0.763 0.299 0.677 0.338 0.649 0.385 1.632

ST-FGARCH 0.250 0.197 0.297 0.204 0.349 0.038 0.415 0.513

SKST-FGARCH 0.003 0.184 0.053 0.352 0.055 0.002 0.216 0.596

SGED-FGARCH 0.027 0.082 0.122 0.131 0.065 0.099 0.318 0.588

JSU-FGARCH 0.035 0.745 0.185 0.140 0.201 0.021 0.051 1.326

SGT-FGARCH 0.035 0.011 0.106 0.168 0.080 0.096 0.353 0.582

GHST-FGARCH 0.291 2.414 0.313 2.303 0.080 1.123 0.218 0.818

Table 2.11: Absolute differences between standardized innovation moments and theoretical
moments for stock market indices.
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IBM SAN AXA BP

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

N-GARCH 0.339 4.930 0.218 1.784 0.147 1.323 0.097 1.718

ST-GARCH 0.510 4.606 0.225 0.196 0.152 0.066 0.084 0.032

SKST-GARCH 0.440 4.448 0.092 0.120 0.085 0.093 0.014 0.021

SGED-GARCH 0.455 3.691 0.157 0.642 0.094 0.554 0.070 0.664

JSU-GARCH 0.916 149.379 0.171 6.433 0.056 1.217 0.113 5.795

SGT-GARCH 0.384 0.033 0.150 0.477 0.087 0.117 0.057 0.485

GHST-GARCH 0.121 3.295 0.543 4.010 0.678 6.267 0.596 2.078

N-GJRGARCH 0.286 4.536 0.221 1.365 0.109 1.125 0.080 1.536

ST-GJRGARCH 0.416 3.042 0.222 0.170 0.111 0.082 0.063 0.025

SKST-GJRGARCH 0.335 2.956 0.062 0.135 0.004 0.098 0.032 0.017

SGED-GJRGARCH 0.327 3.035 1.113 0.356 0.024 0.455 0.022 0.560

JSU-GJRGARCH 0.897 110.441 0.084 2.988 0.008 0.507 0.139 3.744

SGT-GJRGARCH 0.276 0.441 0.117 0.290 0.009 0.051 0.019 0.404

GHST-GJRGARCH 0.072 4.745 0.380 0.810 0.543 1.923 0.469 0.456

N-APARCH 0.225 4.237 0.233 1.508 0.102 1.052 0.073 1.646

ST-APARCH 0.277 2.664 0.235 0.037 0.106 0.074 0.045 0.274

SKST-APARCH 0.173 2.612 0.058 0.050 0.011 0.085 0.060 0.254

SGED-APARCH 0.213 2.592 0.111 0.538 0.009 0.407 0.003 0.748

JSU-APARCH 1.092 88.537 0.092 2.782 0.006 0.364 0.177 3.646

SGT-APARCH 0.165 1.135 0.115 0.430 0.005 0.057 0.005 0.554

GHST-APARCH 0.343 1.368 0.270 0.835 0.438 0.140 0.652 2.511

N-FGARCH 0.234 4.161 0.220 1.459 0.104 1.014 0.064 1.686

ST-FGARCH 0.280 2.559 0.226 0.011 0.106 0.086 0.015 0.345

SKST-FGARCH 0.170 2.518 0.045 0.003 0.016 0.092 0.099 0.613

SGED-FGARCH 0.212 2.553 0.100 0.500 0.004 0.393 0.019 0.896

JSU-FGARCH 1.099 86.192 0.107 2.849 0.013 0.222 0.210 2.980

SGT-FGARCH 0.163 1.065 0.102 0.380 0.009 0.070 0.027 0.694

GHST-FGARCH 0.314 1.905 0.531 3.974 0.194 2.066 0.650 1.498

Table 2.12: Absolute differences between standardized innovation moments and theoretical
moments for individual stocks.
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IRS 5Y GERMANBOND 10Y USBOND 10Y

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

N-GARCH 0.136 6.020 0.259 1.625 0.173 1.644

ST-GARCH 0.187 3.704 0.253 0.176 0.176 0.322

SKST-GARCH 0.364 3.837 0.066 0.201 0.033 0.353

SGED-GARCH 0.215 5.141 0.120 0.721 0.066 0.534

JSU-GARCH 1.171 19.504 0.045 1.793 0.329 6.449

SGT-GARCH 0.289 4.371 0.088 0.287 0.040 0.190

GHST-GARCH 0.311 8.732 0.052 2.600 0.314 1.122

N-GJRGARCH 0.315 6.002 0.260 1.603 0.178 1.655

ST-GJRGARCH 0.193 3.807 0.250 0.206 0.183 0.290

SKST-GJRGARCH 0.369 3.945 0.064 0.230 0.004 0.302

SGED-GJRGARCH 0.216 5.161 0.121 0.716 0.074 0.556

JSU-GJRGARCH 1.174 19.380 0.047 1.769 0.303 6.189

SGT-GJRGARCH 0.291 4.394 0.088 0.288 0.046 0.196

GHST-GJRGARCH 0.452 9.239 0.074 1.519 0.600 4.455

N-APARCH 0.088 6.168 0.263 1.547 0.181 1.639

ST-APARCH 0.080 6.300 0.249 0.225 0.182 0.284

SKST-APARCH 0.266 6.463 0.062 0.253 0.005 0.298

SGED-APARCH 0.129 5.963 0.121 0.700 0.074 0.551

JSU-APARCH 1.160 20.361 0.051 1.776 0.305 6.211

SGT-APARCH 0.216 4.963 0.090 0.277 0.047 0.196

GHST-APARCH 0.098 26.225 0.062 2.621 0.144 1.558

N-FGARCH 0.067 6.154 0.257 1.500 0.191 1.646

ST-FGARCH 0.030 8.461 0.246 0.208 0.189 0.261

SKST-FGARCH 0.226 8.610 0.061 0.237 0.006 0.272

SGED-FGARCH 0.097 6.436 0.119 0.675 0.084 0.561

JSU-FGARCH 1.228 19.090 0.013 0.443 0.279 5.958

SGT-FGARCH 0.183 5.372 0.087 0.261 0.057 0.206

GHST-FGARCH 0.337 13.856 0.051 2.659 0.122 2.636

Table 2.13: Absolute differences between standardized innovation moments and theoretical
moments for interest rates.
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OIL BRENT GAS GOLD SILVER

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

N-GARCH 0.248 1.897 0.296 2.590 0.213 4.389 0.621 4.960

ST-GARCH 0.251 0.668 0.310 0.470 0.214 1027.771 0.635 330.553

SKST-GARCH 0.107 0.609 0.266 0.443 0.021 380.951 0.253 183.017

SGED-GARCH 0.177 0.632 0.310 1.129 0.235 2.210 0.587 1.852

JSU-GARCH 0.343 11.883 0.079 21.572 7.085 669.264 15.594 923.526

SGT-GARCH 0.158 0.251 0.306 1.009 0.212 2.003 0.625 1.629

GHST-GARCH 0.569 8.280 0.785 2.355 0.284 3.881 0.100 0.283

N-GJRGARCH 0.256 1.887 0.288 2.528 0.244 4.768 0.650 5.124

ST-GJRGARCH 0.263 0.462 0.315 0.451 0.309 48.982 0.681 24.536

SKST-GJRGARCH 0.110 0.413 0.271 0.422 0.155 40.928 0.379 18.715

SGED-GJRGARCH 0.174 0.666 0.309 1.112 0.323 3.066 0.608 2.330

JSU-GJRGARCH 0.305 9.572 0.079 21.738 5.608 564.599 9.670 529.738

SGT-GJRGARCH 0.159 0.317 0.305 0.997 0.291 2.791 0.652 2.220

GHST-GJRGARCH 0.377 0.975 1.128 4.548 0.303 3.085 0.099 3.690

N-APARCH 0.255 1.883 0.284 2.515 0.394 8.649 0.645 5.004

ST-APARCH 0.274 0.371 0.313 0.505 0.395 75.737 0.665 100.057

SKST-APARCH 0.118 0.315 0.265 0.475 0.215 57.680 0.270 Inf

SGED-APARCH 0.178 0.710 0.305 1.103 0.373 4.778 0.585 2.169

JSU-APARCH 0.294 9.220 0.102 21.777 5.964 560.019 14.586 870.605

SGT-APARCH 0.161 0.338 0.302 0.965 0.333 4.343 0.632 2.056

GHST-APARCH 0.698 2.044 0.975 0.847 0.149 6.751 0.087 0.018

N-FGARCH 0.230 1.773 0.257 2.314 0.117 3.662 0.618 4.929

ST-FGARCH 0.252 0.396 0.284 0.724 0.326 82.896 0.651 85.487

SKST-FGARCH 0.106 0.341 0.230 0.698 0.137 64.476 0.242 Inf

SGED-FGARCH 0.166 0.635 0.272 0.895 0.297 4.077 0.567 2.109

JSU-FGARCH 0.259 8.370 0.167 21.559 6.264 564.523 14.912 863.214

SGT-FGARCH 0.150 0.321 0.271 0.772 0.265 3.656 0.619 1.986

GHST-FGARCH 0.248 1.120 0.918 0.452 0.173 6.510 0.068 0.745

Table 2.14: Absolute differences between standardized innovation moments and theoretical
moments for commodities.
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EUR/USD GBP/USD JPY/USD AUD/USD

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

N-GARCH 0.042 0.910 0.034 0.800 0.170 2.894 0.410 1.681

ST-GARCH 0.039 0.405 0.035 0.399 0.173 0.779 0.423 0.208

SKST-GARCH 0.035 0.407 0.045 0.402 0.045 0.718 0.172 0.318

SGED-GARCH 0.018 0.021 0.006 0.192 0.085 1.478 0.185 0.852

JSU-GARCH 0.026 2.323 0.069 1.942 0.634 26.765 0.047 1.432

SGT-GARCH 0.022 0.020 0.001 0.194 0.079 0.304 0.186 0.410

GHST-GARCH 0.583 0.267 0.431 0.523 0.428 4.092 0.204 1.054

N-GJRGARCH 0.037 0.868 0.033 0.743 0.179 2.838 0.394 1.575

ST-GJRGARCH 0.036 0.422 0.034 0.347 0.176 0.768 0.411 0.162

SKST-GJRGARCH 0.032 0.421 0.048 0.356 0.003 1.340 0.162 0.259

SGED-GJRGARCH 0.016 0.049 0.014 0.209 0.086 1.441 0.019 2.046

JSU-GJRGARCH 0.026 2.244 0.060 1.525 0.631 26.106 0.055 1.308

SGT-GJRGARCH 0.020 0.049 0.006 0.209 0.083 0.318 0.172 0.349

GHST-GJRGARCH 0.441 1.196 0.311 1.512 0.577 3.216 0.061 1.223

N-APARCH 0.036 0.865 0.034 0.743 0.154 2.676 0.388 1.577

ST-APARCH 0.035 0.421 0.035 0.350 0.159 0.770 0.407 0.195

SKST-APARCH 0.032 0.421 0.047 0.358 0.033 0.720 0.162 0.285

SGED-APARCH 0.016 0.054 0.013 0.210 0.069 1.330 0.169 0.778

JSU-APARCH 0.027 2.225 0.059 1.548 0.594 24.778 0.063 1.216

SGT-APARCH 0.020 0.052 0.004 0.209 0.066 0.298 0.170 0.367

GHST-APARCH 0.406 0.804 0.276 1.711 0.510 3.450 0.003 1.856

N-FGARCH 0.037 0.887 0.034 0.739 0.161 2.568 0.388 1.575

ST-FGARCH 0.037 0.348 0.036 0.370 0.159 0.770 0.407 0.196

SKST-FGARCH 0.031 0.349 0.045 0.377 0.033 0.719 0.162 0.287

SGED-FGARCH 0.016 0.009 0.011 0.215 0.076 1.304 0.169 0.781

JSU-FGARCH 0.024 2.176 0.059 1.616 0.007 0.217 0.064 1.200

SGT-FGARCH 0.019 0.009 0.003 0.216 0.074 0.303 0.170 0.367

GHST-FGARCH 0.115 2.419 0.262 1.769 0.499 3.512 0.015 2.012

Table 2.15: Absolute differences between standardized innovation moments and theoretical
moments for exchange rates.
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2.6.3 Fitting observed returns

2.6.3.1 Fitting the empirical distribution of asset returns

How about the ability of each estimated model to fit sample return moments? Unfortu-
nately, except in cases when returns do not show any stochastic structure, it is not easy to
derive the moments of asset returns from the estimated probability distribution for return
innovations. Hence, we characterize the implied probability distribution for returns by
simulation. Taking random draws for the estimated probability distribution for innova-
tions, we generate 1000 time series for returns with the same length as our data set. For
each simulation we apply the two-sample KS test (Kolmogorov, 1933, Smirnov, 1939 and
Massey, 1951) [76] [116] [89] and the Chi2 test (Pearson, 1900) [102] to compute the failure
rates of the respective null hypotheses.

The KS test quantifies the distance between the empirical distribution function of
observed returns and the one obtained from each simulated time series. The KS test
statistic is:

D = supx|F1,n(x)− F2,n′(x)|

where supx is the supremum of the set of distances between the two empirical distributions,

F1,n and F2,n′ . The null hypothesis is rejected at level α if D > c(α)
√

n+n′

nn′ where n and

n′ are the sizes of first and second sample respectively. The value of c(α) is given in the
table below for each level of α,

α 0.10 0.05 0.025 0.01 0.005 0.001

c(α) 1.22 1.36 1.48 1.63 1.73 1.95

Table 2.16 reports the failure rates of the KS and Chi2 null hypothesis at confidence
level 99%. The models with lower failure rate in either the KS and the Chi2 tests are the
SGED distribution with GJRGARCH, APARCH or FGARCH volatility specifications, and
the SKST and JSU distributions with APARCH and FGARCH specifications, respectively.
Hence, we observe again the preference for asymmetric distributions and volatility models
with leverage.
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confidence level = 0.99 IBEX35 NASDAQ100 FTSE100 NIKKEI225

fail rate KS Chi2 KS Chi2 KS Chi2 KS Chi2
N-GARCH 0.821 0.985 0.993 1.000 0.367 0.846 1.000 0.999
ST-GARCH 0.069 0.978 0.391 0.999 0.100 0.676 0.798 0.997
SKST-GARCH 0.202 0.714 0.575 0.994 0.551 0.423 0.836 0.773
SGED-GARCH 0.110 0.594 0.155 0.991 0.519 0.461 0.460 0.979
JSU-GARCH 0.208 0.713 0.549 0.993 0.555 0.436 0.855 0.542
SGT-GARCH 0.324 0.669 0.332 0.992 0.800 0.428 0.465 0.994
GHST-GARCH 0.067 0.889 0.416 0.998 0.067 0.447 0.845 0.811
N-GJRGARCH 0.593 0.997 0.993 1.000 0.721 0.970 0.997 0.999
ST-GJRGARCH 0.149 0.995 0.420 1.000 0.221 0.887 0.806 0.997
SKST-GJRGARCH 0.029 0.775 0.185 0.995 0.054 0.433 0.789 0.818
SGED-GJRGARCH 0.009 0.668 0.051 0.993 0.056 0.450 0.521 0.993
JSU-GJRGARCH 0.025 0.803 0.164 0.996 0.050 0.459 0.841 0.637
SGT-GJRGARCH 0.074 0.648 0.150 0.990 0.270 0.421 0.461 0.991
GHST-GJRGARCH 0.223 0.974 0.617 0.996 0.218 0.705 0.923 0.804
N-APARCH 0.672 0.999 0.992 1.000 0.819 0.993 0.999 0.998
ST-APARCH 0.250 0.994 0.407 1.000 0.313 0.943 0.791 1.000
SKST-APARCH 0.032 0.812 0.177 0.993 0.040 0.527 0.747 0.826
SGED-APARCH 0.024 0.706 0.058 0.989 0.034 0.583 0.565 0.989
JSU-APARCH 0.037 0.818 0.154 0.996 0.037 0.551 0.762 0.708
SGT-APARCH 0.045 0.657 0.170 0.983 0.219 0.515 0.473 0.996
GHST-APARCH 0.318 0.984 0.463 0.999 0.302 0.789 0.808 0.938
N-FGARCH 0.735 0.998 0.984 1.000 0.858 0.983 1.000 1.000
ST-FGARCH 0.305 0.999 0.285 1.000 0.423 0.939 0.768 0.999
SKST-FGARCH 0.033 0.831 0.158 0.998 0.046 0.453 0.714 0.825
SGED-FGARCH 0.030 0.746 0.142 0.999 0.025 0.452 0.607 0.991
JSU-FGARCH 0.033 0.864 0.338 1.000 0.047 0.500 0.700 0.700
SGT-FGARCH 0.040 0.670 0.336 0.998 0.173 0.405 0.441 0.989
GHST-FGARCH 0.257 0.998 0.455 1.000 0.344 0.861 0.802 0.959

Table 2.16: Goodness-of-fit tests for observed returns of stock market indices. Figures
denote the fail rates for each model.

2.6.3.2 Fitting the sample moments of asset returns

In addition to the fit to the whole distribution, we now examine the ability of each com-
bination of volatility specification and probability distribution to fit the main moments of
observed returns: sample mean, standard deviation, skewness, kurtosis, maximum, mini-
mum and the observed range. To that end, we assign to each model the average value for
each of these moments over the set of 1000 simulations, to be compared with their sample
return analogues. Tables 2.17 - 2.21 present sample return moments for each asset together
with a summary of the average simulated return moments over probability distributions
and volatility specifications. Column 1 in Tables 2.17 - 2.21 displays sample moments,
while column 2 shows the median value of the average simulated moments across all mod-
els (28 in total). The remaining columns show median values of moments across subsets of
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models8. The first panel, from third to ninth column, considers median values of moments
across alternative volatility specifications, for a given probability distribution for return
innovations. The second panel, from tenth to thirteenth column, presents median values
of simulated moments across probability distributions, for a given volatility specification.
We also compute the mean absolute difference between the average moments obtained
by simulation and the analogue sample moments (mean, standard deviation, skewness,
kurtosis, maximum, minimum and the observed range). The last row displays the median
value of these absolute differences. Finally, we take the range 9 of MAE values across the
set of volatility specifications or across the set of probability distributions, as shown in the
last two columns.

The first panel shows that for most assets all probability distributions explain the
standard deviations of return data similarly, with the Normal and Student-t distributions
doing somewhat better than the rest. The Johnson SU distribution approximates very
well the level of skewness in returns and Skewed Generalized Error distribution does bet-
ter than other distributions to approximate the level of kurtosis. We conclude that the
Normal distribution performs well on this account for stock market indices because it
fits very well the second moment but not because it fits well the higher order moments,
i.e. the third and fourth moment. In the second panel, the differences between volatility
specifications are small compared with differences between probability distributions but
APARCH and FGARH models fit standard deviation better than another volatility mod-
els, GJRGARCH and FGARCH volatilities seem to fit skewness best, while APARCH and
FGARCH fit kurtosis best.

Summarizing, all the probability distributions other than the Normal produce levels of
kurtosis as high as those in the return data, but they fall short of explaining the negative
skewness observed in some market returns. They also fall a bit short of reproducing the
maximum returns. However, they tend to produce a minimum that is higher in abso-
lute value than the one for observed returns. Consequently, the range of values implied by
the estimated models is just a bit narrower than that observed in return data for all assets.

According to the median MAE, the Normal distribution is the preferred one for 2
assets, the symmetric Student-t is the best for 4 assets, the Skewed Student-t for 3, the
Skewed Generalized Error for 2, the Johnson SU for 4, the Skewed Generalized-t for 1 and
Generalized Hyperbolic Skew Student-t for 3 assets. In terms of volatility models, the
standard GARCH is the preferred volatility specifications for 4 assets, the GJR-GARCH
model for 1, the APARCH model for 6 and the FGARCH model is the best for 8 assets.
So, from this point of view, it looks as if the FGARCH and APARCH volatility specifi-
cations and the symmetric Student-t and the Johnson SU probability distribution should
be preferred.

If we exclude from consideration the ability to reproduce the maximum and minimum
observed returns the Normal distribution is the preferred one for 2 assets, the symmetric

8Remember that for each model we take the average value of each moment over 1000 simulations.
9The difference between the highest and the lowest MAE values.
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Student-t is the best for 2 assets, the Skewed Student-t for 2, the Skewed Generalized Error
for 5, the Johnson SU for 3, the Skewed Generalized-t for 2 and Generalized Hyperbolic
Skew Student-t for 3 assets. In terms of volatility models, the standard GARCH is the
preferred volatility specifications for 5 assets, the GJR-GARCH model for 1, the APARCH
model for 7 and the FGARCH model is the best for 6 assets. Again, the APARCH and
FGARCH volatility models perform better than GARCH and GJR-GARCH, but now the
Skewed Generalized Error distribution is the preferred one.

Interestingly enough, the last two columns show that median values of the simulated
statistics for different volatility specifications are more similar among them than median
values for the alternative probability distributions. This suggests again that the assump-
tion we can make on the probability distribution of return innovations may be more
important to fit return data than the assumption on the volatility specification.

Median over Median over probability distributions Median over volatility models Ranges over distributions (left)

Sample all models N ST SKST SGED JSU SGT GHST GARCH GJRGARCH APARCH FGARCH and over volatility models (right)

IBEX35

Mean -0.005 0.018 0.007 0.028 0.011 0.006 0.012 0.029 0.009 0.046 0.015 0.007 0.004 0.023 0.042

Standard deviation 1.495 1.743 1.592 1.474 1.874 1.685 1.743 2.004 2.400 2.049 1.750 1.516 1.674 0.926 0.532

Skewness 0.083 -0.193 0.042 0.064 -0.272 -0.224 -0.318 -0.078 -0.740 -0.244 -0.182 -0.235 -0.079 0.804 0.165

Kurtosis 7.932 12.364 6.875 12.419 14.043 12.206 13.732 10.226 16.545 12.860 13.755 9.423 13.217 9.670 4.333

Maximum 13.484 13.675 10.356 12.234 15.004 13.348 14.102 14.953 16.584 15.095 13.989 10.735 14.316 6.228 4.360

Minimum -9.586 -13.746 -9.976 -11.114 -15.613 -13.746 -15.138 -14.938 -21.414 -16.437 -13.701 -11.861 -13.792 11.438 4.576

Range 23.070 27.584 20.332 23.348 30.866 27.208 29.557 29.891 37.448 31.533 27.690 22.596 27.791 17.115 8.936

Median MAE 0.853 1.237 2.483 1.580 2.174 1.630 4.130 2.459 1.820 0.953 2.001 3.277 1.505

NASDAQ100

Mean 0.005 0.052 0.027 0.060 0.032 0.042 0.049 0.059 0.037 0.070 0.033 0.031 0.055 0.034 0.039

Standard deviation 1.848 1.759 1.591 1.420 1.828 1.714 1.789 1.955 2.676 1.876 1.939 1.744 1.245 1.257 0.694

Skewness 0.192 -0.097 0.062 0.066 -0.227 -0.177 -0.297 -0.043 -0.788 -0.199 -0.140 -0.219 0.044 0.854 0.263

Kurtosis 9.623 11.838 6.833 11.691 15.384 11.343 12.643 9.933 33.514 11.669 15.312 12.087 7.035 26.681 8.277

Maximum 17.203 13.741 9.866 11.939 15.234 12.849 13.616 15.024 19.485 13.598 15.853 13.885 10.031 9.618 5.822

Minimum -11.115 -14.403 -9.292 -10.803 -15.034 -13.247 -15.093 -14.524 -24.307 -14.978 -15.248 -14.469 -7.301 15.015 7.946

Range 28.318 28.319 19.158 22.742 30.079 26.096 28.709 29.548 42.950 28.326 31.101 29.092 19.883 23.792 11.218

Median MAE 2.134 1.507 2.296 1.739 2.431 1.508 7.888 1.783 2.534 1.845 2.896 6.380 1.113

FTSE100

Mean -0.003 -0.003 -0.006 0.010 -0.005 -0.009 -0.005 0.010 -0.008 0.028 -0.003 -0.008 -0.011 0.019 0.039

Standard deviation 1.210 1.346 1.221 1.237 1.321 1.244 1.279 1.665 1.762 1.287 1.326 1.231 1.551 0.541 0.320

Skewness -0.161 -0.277 0.065 0.067 -0.325 -0.277 -0.404 -0.094 -0.596 -0.290 -0.261 -0.305 -0.265 0.663 0.044

Kurtosis 9.356 11.624 7.223 11.786 13.472 12.302 13.579 10.420 21.043 11.269 14.362 9.968 17.074 13.820 7.106

Maximum 9.384 10.687 8.027 9.726 10.406 9.813 10.133 12.133 14.531 9.083 10.786 8.984 13.586 6.504 4.602

Minimum -9.266 -10.675 -7.673 -9.437 -10.967 -10.049 -11.161 -12.544 -16.806 -10.260 -10.751 -10.189 -14.170 9.132 3.981

Range 18.650 21.293 15.700 19.164 21.337 19.863 21.294 24.677 31.337 19.343 21.537 19.229 27.293 15.637 8.064

Median MAE 0.888 0.926 1.213 0.856 1.294 1.349 4.219 0.868 1.384 0.539 2.941 3.363 2.402

NIKKEI225

Mean 0.000 0.012 0.012 0.012 0.012 -0.001 0.012 0.012 -0.011 0.012 0.012 0.012 0.002 0.023 0.010

Standard deviation 1.499 1.561 1.533 1.502 1.506 1.529 1.500 2.182 1.693 1.545 1.482 1.484 1.678 0.681 0.195

Skewness -0.410 -0.064 0.014 0.024 -0.218 -0.064 -0.336 0.000 -0.751 -0.066 -0.037 -0.061 -0.092 0.775 0.055

Kurtosis 9.725 8.711 4.825 8.581 8.987 9.273 8.898 8.565 13.131 8.672 9.301 7.444 11.667 8.306 4.223

Maximum 13.235 10.939 8.372 10.785 10.597 11.194 10.177 15.646 11.342 10.992 10.886 10.076 12.773 7.275 2.697

Minimum -12.120 -11.439 -8.158 -10.532 -11.305 -11.072 -11.567 -15.496 -15.983 -11.422 -11.189 -10.693 -14.054 7.825 3.361

Range 25.354 22.376 16.530 21.318 21.902 22.266 21.744 31.142 27.325 22.309 22.074 20.357 27.491 14.612 7.134

Median MAE 2.367 0.947 0.798 0.991 0.821 1.341 1.618 0.983 1.076 1.323 1.259 1.570 0.340

Table 2.17: Empirical moments vs sample moments for stock market indices.
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Median over Median over probability distributions Median over volatility models Ranges over distributions (left)

Sample all models N ST SKST SGED JSU SGT GHST GARCH GJRGARCH APARCH FGARCH and over volatility models (right)

IBM

Mean 0.004 0.004 0.006 0.017 0.006 -0.004 0.004 0.005 -0.024 0.017 0.009 0.000 -0.002 0.041 0.019

Standard deviation 1.660 1.674 1.961 1.724 1.674 1.598 1.602 2.231 1.645 1.711 1.630 1.724 1.670 0.633 0.095

Skewness -0.071 -0.023 0.026 0.109 -0.072 -0.020 -0.127 0.006 -0.697 -0.025 0.015 -0.029 -0.034 0.806 0.049

Kurtosis 11.628 11.097 5.551 17.933 16.961 9.479 12.434 9.300 10.583 9.604 11.133 11.120 11.074 12.382 1.529

Maximum 12.260 13.474 11.472 16.512 15.725 11.803 13.418 16.904 10.513 12.852 13.942 13.451 13.498 6.391 1.090

Minimum -16.892 -14.357 -11.070 -15.174 -15.534 -11.680 -13.784 -16.714 -14.417 -13.488 -13.680 -15.174 -14.802 5.645 1.686

Range 29.152 27.493 22.489 31.701 31.455 23.482 27.318 33.619 24.930 26.341 27.622 29.332 27.273 11.129 2.992

Median MAE 2.382 1.954 1.629 1.346 0.834 1.347 0.996 1.756 1.426 1.424 1.404 1.548 0.351

SAN

Mean -0.010 0.006 -0.004 0.017 -0.002 -0.009 -0.001 0.021 -0.025 0.046 0.006 -0.010 -0.011 0.046 0.057

Standard deviation 2.190 2.762 2.609 2.273 2.608 2.582 2.510 3.698 3.883 3.496 2.799 2.387 2.387 1.611 1.109

Skewness 0.147 -0.068 0.083 0.078 -0.165 -0.092 -0.228 -0.131 -0.743 -0.113 -0.006 -0.098 -0.086 0.827 0.106

Kurtosis 9.114 13.557 9.549 13.501 15.442 13.908 14.606 14.459 19.032 16.694 17.199 11.117 12.291 9.483 6.081

Maximum 20.877 23.153 19.093 19.729 22.595 21.992 21.659 29.758 26.997 27.046 24.751 18.690 19.496 10.665 8.356

Minimum -15.186 -23.581 -17.330 -17.981 -22.189 -21.065 -21.839 -30.572 -36.777 -28.494 -24.015 -19.281 -19.664 19.447 9.214

Range 36.063 47.416 36.423 37.710 44.785 43.057 43.498 60.330 63.774 55.541 48.624 37.601 38.373 27.351 17.940

Median MAE 0.838 1.412 2.821 2.477 2.728 5.599 6.740 4.908 3.696 1.607 1.759 5.902 3.301

AXA

Mean -0.005 -0.001 -0.004 0.011 -0.003 -0.006 -0.002 0.013 -0.037 0.055 0.001 -0.007 -0.019 0.050 0.074

Standard deviation 2.673 2.599 2.626 2.432 2.572 2.536 2.499 3.437 4.113 2.504 2.584 2.514 2.638 1.681 0.134

Skewness 0.266 -0.080 0.034 0.034 -0.099 -0.086 -0.132 -0.029 -0.644 -0.079 -0.062 -0.101 -0.092 0.678 0.039

Kurtosis 10.090 9.303 6.865 9.626 10.368 9.393 9.729 8.772 16.564 8.946 10.625 8.529 10.313 9.699 2.097

Maximum 19.778 19.666 17.039 18.115 19.501 18.454 18.564 24.632 29.093 18.022 19.840 18.247 19.768 12.054 1.817

Minimum -20.350 -18.910 -16.344 -17.476 -19.567 -18.274 -18.803 -24.561 -38.232 -18.022 -19.481 -18.124 -20.143 21.888 2.121

Range 40.128 38.617 33.352 35.591 39.170 36.707 37.417 49.193 66.634 36.044 39.234 35.725 39.794 33.282 4.070

Median MAE 1.720 0.926 0.653 0.828 0.734 1.916 5.797 1.273 0.956 1.339 0.521 5.144 0.817

BP

Mean -0.014 -0.016 -0.017 -0.008 -0.019 -0.024 -0.018 -0.005 -0.053 0.007 -0.015 -0.021 -0.027 0.048 0.034

Standard deviation 1.715 1.757 1.670 1.719 1.780 1.681 1.740 2.295 2.139 1.815 1.721 1.731 1.757 0.625 0.094

Skewness -0.127 -0.039 0.018 0.031 -0.089 -0.039 -0.124 -0.008 -0.786 -0.029 -0.028 -0.048 -0.050 0.817 0.023

Kurtosis 7.814 8.232 4.342 8.851 9.900 7.323 8.937 6.501 12.452 9.444 9.215 7.910 8.431 8.110 1.533

Maximum 10.583 12.818 8.578 12.744 13.466 11.179 12.535 14.673 13.687 13.448 12.978 12.278 12.869 6.096 1.169

Minimum -14.037 -12.996 -8.246 -12.158 -13.580 -11.055 -12.947 -14.394 -20.002 -13.976 -12.937 -12.420 -12.956 11.756 1.556

Range 24.619 25.859 16.731 24.902 27.098 22.389 25.593 29.067 33.689 27.679 25.915 24.297 25.270 16.958 3.382

Median MAE 1.936 0.882 0.887 0.709 0.659 1.078 2.458 1.033 1.056 0.789 0.802 1.799 0.267

Table 2.18: Empirical moments vs sample moments for individual stocks.

Median over Median over probability distributions Median over volatility models Ranges over distributions (left)

Sample all models N ST SKST SGED JSU SGT GHST GARCH GJRGARCH APARCH FGARCH and over volatility models (right)

IRS 5Y

Mean 0.006 0.006 0.007 0.008 0.006 0.005 0.006 0.006 0.006 0.006 0.006 0.007 0.006 0.003 0.001

Standard deviation 0.208 0.254 0.241 0.276 0.281 0.235 0.251 0.341 0.199 0.286 0.345 0.223 0.213 0.142 0.132

Skewness -0.282 -0.069 0.004 0.014 -0.195 -0.069 -0.257 -0.053 -0.234 -0.067 -0.068 -0.070 -0.083 0.271 0.016

Kurtosis 8.527 9.488 4.508 12.239 12.260 8.673 10.632 8.073 9.034 9.744 12.415 7.601 8.818 7.752 4.814

Maximum 1.921 1.763 1.232 2.216 2.107 1.610 1.820 2.323 1.314 2.142 2.539 1.497 1.385 1.092 1.154

Minimum -1.862 -1.793 -1.217 -2.157 -2.238 -1.641 -1.995 -2.379 -1.565 -2.333 -2.715 -1.658 -1.655 1.161 1.060

Range 3.783 3.495 2.449 4.373 4.345 3.248 3.815 4.702 2.879 4.476 5.289 3.155 3.155 2.253 2.134

Median MAE 0.946 0.826 0.817 0.309 0.488 0.399 0.634 0.773 0.975 0.384 0.445 0.636 0.591

GERMAN BOND 10Y

Mean 0.011 0.010 0.009 0.016 0.011 0.008 0.010 0.014 0.009 0.010 0.010 0.010 0.011 0.008 0.001

Standard deviation 0.413 0.407 0.402 0.407 0.407 0.407 0.404 0.579 0.413 0.407 0.409 0.407 0.403 0.177 0.006

Skewness -0.096 -0.150 0.001 0.000 -0.197 -0.150 -0.244 -0.062 -0.321 -0.150 -0.150 -0.149 -0.147 0.321 0.003

Kurtosis 5.967 5.087 3.379 5.261 5.296 4.657 5.087 4.292 5.709 5.106 5.090 5.084 5.062 2.330 0.044

Maximum 3.392 2.150 1.678 2.391 2.238 2.001 2.095 2.864 2.150 2.172 2.150 2.137 2.150 1.186 0.034

Minimum -2.317 -2.434 -1.647 -2.364 -2.477 -2.165 -2.434 -2.988 -2.792 -2.441 -2.435 -2.434 -2.417 1.341 0.024

Range 5.709 4.695 3.325 4.755 4.716 4.166 4.529 5.852 4.947 4.726 4.717 4.715 4.652 2.527 0.074

Median MAE 0.847 0.310 0.349 0.486 0.409 0.513 0.368 0.405 0.408 0.409 0.409 0.537 0.005

US BOND 10Y

Mean 0.010 0.009 0.009 0.016 0.008 0.007 0.009 0.015 0.003 0.007 0.009 0.009 0.009 0.013 0.003

Standard deviation 0.594 0.585 0.593 0.595 0.582 0.585 0.576 0.847 0.583 0.588 0.607 0.585 0.575 0.270 0.033

Skewness -0.217 -0.126 -0.002 -0.009 -0.198 -0.126 -0.235 -0.054 -0.424 -0.124 -0.128 -0.128 -0.124 0.422 0.005

Kurtosis 7.958 5.858 3.675 6.345 6.339 5.350 5.917 4.864 6.263 5.977 5.924 5.844 5.857 2.671 0.133

Maximum 4.531 3.274 2.610 3.773 3.521 3.119 3.274 4.523 3.001 3.331 3.274 3.264 3.273 1.913 0.067

Minimum -5.572 -3.767 -2.600 -3.827 -3.861 -3.326 -3.751 -4.645 -4.177 -3.778 -3.935 -3.745 -3.689 2.046 0.246

Range 10.104 7.070 5.210 7.600 7.360 6.447 7.020 9.168 7.200 7.421 7.472 6.740 6.962 3.959 0.732

Median MAE 1.568 0.724 0.735 1.061 0.860 0.756 0.804 0.784 0.728 0.940 0.878 0.844 0.213

Table 2.19: Empirical moments vs sample moments for interest rates.
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Median over Median over probability distributions Median over volatility models Ranges over distributions (left)

Sample all models N ST SKST SGED JSU SGT GHST GARCH GJRGARCH APARCH FGARCH and over volatility models (right)

OIL BRENT

Mean 0.010 0.011 0.009 0.030 0.009 0.003 0.009 0.026 -0.027 0.019 0.007 0.005 0.010 0.057 0.013

Standard deviation 2.281 3.464 3.092 2.963 4.080 3.480 3.447 4.389 3.507 3.450 4.061 3.741 3.197 1.426 0.864

Skewness -0.195 -0.070 0.023 0.055 -0.123 -0.079 -0.185 -0.013 -0.590 -0.108 -0.068 -0.011 -0.084 0.644 0.097

Kurtosis 8.257 8.999 5.259 9.597 10.206 8.518 9.322 7.587 10.504 9.120 9.524 8.720 8.877 5.246 0.803

Maximum 17.969 21.604 15.471 20.771 24.479 20.762 21.497 26.023 19.315 19.782 23.212 22.216 20.345 10.553 3.430

Minimum -18.725 -22.363 -15.052 -19.929 -25.125 -21.239 -23.092 -25.993 -28.254 -22.390 -24.648 -22.336 -21.147 13.202 3.501

Range 36.694 44.573 30.523 40.650 49.604 42.001 44.588 52.007 47.569 45.117 47.860 44.552 42.612 21.484 5.248

Median MAE 1.701 1.061 2.815 1.152 1.712 3.055 2.483 1.875 2.374 1.887 1.755 1.995 0.620

GAS

Mean 0.000 -0.011 -0.008 -0.012 -0.013 -0.002 -0.011 0.003 -0.011 -0.011 -0.011 -0.010 -0.009 0.016 0.002

Standard deviation 4.196 4.536 13.261 4.424 4.425 4.619 4.366 6.570 5.583 4.574 4.809 4.428 4.332 8.896 0.477

Skewness 0.559 0.019 0.015 0.028 0.030 -0.004 0.074 0.014 -0.867 0.014 0.020 0.018 0.027 0.941 0.013

Kurtosis 12.809 15.878 16.181 15.632 15.727 14.372 13.991 13.873 16.636 16.278 16.365 13.549 13.352 2.763 3.013

Maximum 37.814 41.562 101.791 39.990 39.636 38.399 37.802 55.771 40.469 41.650 42.040 37.688 37.809 63.989 4.352

Minimum -28.899 -41.957 -103.351 -39.504 -39.912 -38.870 -37.449 -55.403 -57.221 -42.193 -42.033 -37.791 -36.755 65.902 5.437

Range 66.714 83.591 205.142 79.511 79.549 77.269 75.252 111.177 97.690 83.732 83.618 75.479 74.565 129.891 9.168

Median MAE 25.553 2.722 2.779 2.661 2.125 8.301 6.320 3.844 3.813 1.773 1.735 23.428 2.109

GOLD

Mean 0.031 0.029 0.036 0.044 0.034 0.025 0.030 0.023 0.014 0.027 0.032 0.030 0.029 0.030 0.005

Standard deviation 1.129 1.247 1.147 1.605 1.579 1.186 1.327 1.678 0.963 1.392 1.605 1.261 1.149 0.715 0.457

Skewness -0.415 -0.052 -0.002 -0.052 -0.210 -0.006 -0.275 -0.007 -0.569 -0.006 -0.180 -0.077 -0.027 0.567 0.174

Kurtosis 8.811 9.739 3.842 20.339 20.383 9.288 14.431 7.524 6.895 9.312 11.569 9.961 8.556 16.541 3.013

Maximum 6.865 10.430 5.172 15.426 14.787 8.583 11.132 11.280 4.799 11.492 13.887 10.357 9.352 10.627 4.535

Minimum -10.162 -10.984 -5.143 -15.543 -15.425 -8.593 -12.180 -11.260 -7.387 -11.346 -13.995 -11.174 -9.915 10.400 4.081

Range 17.028 21.580 10.315 30.969 30.212 17.177 23.312 22.540 12.118 22.839 27.882 21.861 19.499 20.653 8.383

Median MAE 2.042 4.388 4.240 0.708 2.041 1.295 1.230 2.142 2.127 1.636 1.189 3.680 0.953

SILVER

Mean 0.023 0.005 0.005 0.044 0.014 -0.011 0.004 0.005 -0.017 -0.001 0.006 0.005 0.006 0.061 0.007

Standard deviation 1.926 2.884 3.547 3.108 2.778 2.861 2.491 4.598 1.656 3.086 2.884 4.748 2.429 2.942 2.320

Skewness -0.568 -0.167 -0.023 -0.134 -0.400 -0.132 -0.506 -0.032 -0.756 -0.063 -0.176 -0.252 -0.108 0.733 0.189

Kurtosis 8.624 13.237 5.800 21.952 20.713 13.237 16.437 11.294 8.466 13.138 14.129 13.336 10.181 16.152 3.948

Maximum 13.665 21.732 18.751 27.384 24.203 21.034 20.098 32.277 8.124 23.170 20.994 28.401 18.516 24.153 9.886

Minimum -12.982 -23.125 -16.153 -28.334 -26.412 -22.499 -23.751 -32.756 -13.927 -26.339 -22.548 -26.806 -19.338 18.828 7.468

Range 26.646 44.302 31.928 55.701 50.616 43.533 44.083 65.032 22.288 49.350 43.575 49.229 37.077 42.745 12.273

Median MAE 2.729 7.235 6.187 3.895 4.338 7.381 1.256 5.317 3.972 7.681 2.512 6.125 5.170

Table 2.20: Empirical moments vs sample moments for commodities.

Median over Median over probability distributions Median over volatility models Ranges over distributions (left)

Sample all models N ST SKST SGED JSU SGT GHST GARCH GJRGARCH APARCH FGARCH and over volatility models (right)

EUR/USD

Mean 0.002 0.006 0.005 0.005 0.006 0.006 0.006 0.005 0.008 0.007 0.006 0.005 0.006 0.004 0.001

Standard deviation 0.630 0.789 0.716 0.813 0.823 0.725 0.773 1.043 0.911 0.801 0.825 0.751 0.797 0.328 0.074

Skewness 0.141 0.017 0.007 0.013 0.024 0.026 0.022 0.014 -0.107 0.011 0.016 0.018 0.035 0.133 0.025

Kurtosis 5.489 6.193 3.918 6.504 6.486 5.700 6.241 5.182 7.662 6.257 6.456 5.901 6.535 3.744 0.634

Maximum 4.617 4.835 3.219 4.892 4.975 4.016 4.637 5.542 5.683 4.810 4.973 4.500 5.080 2.464 0.580

Minimum -3.844 -4.537 -3.169 -4.869 -4.843 -3.963 -4.537 -5.452 -5.951 -4.827 -4.863 -4.418 -4.604 2.782 0.445

Range 8.462 9.482 6.388 9.772 9.820 7.980 9.173 10.994 11.634 9.671 9.873 8.977 9.501 5.247 0.897

Median MAE 0.644 0.441 0.446 0.202 0.293 0.619 1.026 0.435 0.459 0.279 0.514 0.824 0.235

GBP/USD

Mean -0.002 0.001 0.001 0.004 0.001 0.000 0.002 0.004 -0.005 0.005 0.000 0.001 0.001 0.009 0.004

Standard deviation 0.575 0.594 0.538 0.571 0.599 0.583 0.591 0.803 0.862 0.594 0.583 0.603 0.593 0.323 0.020

Skewness -0.047 -0.046 0.006 0.015 -0.073 -0.046 -0.087 -0.007 -0.332 -0.053 -0.047 -0.044 -0.041 0.347 0.012

Kurtosis 7.269 5.907 3.653 5.900 6.083 5.773 6.035 5.126 8.555 5.887 5.860 5.914 5.985 4.902 0.125

Maximum 4.431 3.554 2.401 3.470 3.644 3.353 3.547 4.444 5.804 3.548 3.449 3.644 3.650 3.403 0.201

Minimum -3.887 -3.615 -2.331 -3.365 -3.683 -3.363 -3.650 -4.363 -6.291 -3.622 -3.546 -3.717 -3.678 3.960 0.171

Range 8.318 7.155 4.732 6.830 7.319 6.706 7.192 8.809 12.474 7.137 6.995 7.361 7.328 7.742 0.366

Median MAE 1.215 0.487 0.369 0.518 0.403 0.490 1.065 0.531 0.540 0.479 0.475 0.846 0.065

JPY/USD

Mean -0.004 -0.008 -0.008 -0.013 -0.008 -0.007 -0.007 -0.013 -0.023 -0.011 -0.008 -0.008 -0.008 0.016 0.003

Standard deviation 0.635 0.632 0.688 0.632 0.637 0.626 0.628 0.886 0.605 0.644 0.633 0.630 0.630 0.281 0.014

Skewness 0.270 0.040 -0.002 0.007 0.126 0.085 0.153 0.040 -0.361 0.041 0.040 0.039 0.037 0.513 0.004

Kurtosis 6.962 5.766 3.515 7.788 7.954 5.399 6.765 4.923 5.766 5.512 5.832 5.746 5.787 4.439 0.320

Maximum 4.610 4.294 2.949 4.527 4.683 3.557 4.294 4.988 3.083 4.350 4.318 4.270 4.271 2.039 0.080

Minimum -3.710 -4.259 -2.975 -4.503 -4.477 -3.455 -4.029 -4.847 -4.259 -4.064 -4.209 -4.308 -4.395 1.872 0.331

Range 8.320 8.323 5.924 9.030 9.159 7.012 8.323 9.835 7.271 8.414 8.382 8.264 8.264 3.911 0.150

Median MAE 1.029 0.329 0.330 0.511 0.160 0.674 0.660 0.507 0.519 0.515 0.505 0.869 0.014

AUD/USD

Mean 0.002 0.003 0.001 0.015 0.003 -0.001 0.002 0.013 0.000 0.007 0.002 0.002 0.001 0.015 0.006

Standard deviation 0.831 0.788 0.828 0.727 0.786 0.786 0.781 1.036 0.862 0.799 0.788 0.785 0.784 0.309 0.014

Skewness -0.818 -0.260 0.008 0.010 -0.274 -0.260 -0.339 -0.085 -0.477 -0.273 -0.084 -0.260 -0.260 0.487 0.189

Kurtosis 15.132 6.143 4.175 6.170 6.671 5.802 6.395 5.037 8.324 6.575 6.266 6.072 6.074 4.148 0.503

Maximum 6.701 4.615 4.068 4.604 4.715 4.277 4.416 5.581 5.126 4.776 4.624 4.601 4.606 1.513 0.175

Minimum -8.828 -5.256 -3.991 -4.493 -5.327 -4.794 -5.302 -5.851 -6.766 -5.365 -5.376 -5.237 -5.238 2.775 0.138

Range 15.529 9.866 8.059 9.096 10.067 9.083 9.717 11.432 11.923 10.247 10.017 9.628 9.625 3.865 0.622

Median MAE 3.203 2.733 2.419 2.761 2.512 2.526 1.801 2.366 2.521 2.559 2.559 1.402 0.193

Table 2.21: Empirical moments vs sample moments for exchange rates.
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2.7 VaR Performance

We now analyze VaR performance of our estimated models restricting our attention to
the left tail of the distribution and the 1% significance level. Results for alternative sig-
nificance levels are available from the authors upon request. The choice of the 1% level
is a compromise between trying to capture extreme events and trying to avoid a too low
number of exceptions. Considering the left tail is not a trivial choice, since results for
both tails may differ significantly for asymmetric return distributions. In all cases we
show out-of-sample VaR estimates over the last five years in the sample: 2011-2015 (1260
data). Every day we compute 1-day ahead 1% VaR, reestimating each model every 50
days. The latter choice tries to reduce the computational cost as well as avoiding frequent
parameter variation that might be due in part to pure noise.

The one-step ahead V aRα,t = µt(θ) + σt(θ)F
−1(α|θ), where µt(θ) represents the con-

ditional mean, σt(θ) is the conditional standard deviation and F−1(α|θ) denotes the cor-
responding quantile of the distribution of the standardized innovations zt at a given α%
significance.

The performance of VaR is examined through standard tests: the unconditional cover-
age test of Kupiec (1995) [78], the independence and conditional coverage tests of Christof-
fersen (1998) [27], the Dynamic Quantile test of Engle and Manganelli (2004) [39], as well
as the loss functions proposed by Lopez (1998, 1999) [85, 86] and Sarma et al. (2003) [113]
and that of Giacomini and Komunjer (2005) [46].

2.7.1 Backtesting VaR

The unconditional coverage test introduced by Kupiec (1995) [78] is based on the number
of violations, i.e. the number of times returns exceed the predicted VaR (T1) over a period
of time T for a given significance level. If the VaR model is correctly specified, the failure
rate (π̂ = T1

T ) should be equal to the pre-specified VaR level (α). The null hypothesis
H0 : π = α is evaluated through a likelihood ratio test:

LRuc = −2 ln

(
L(Πα)

L(Π̂)

)
= −2 ln

(
(1− α)T0αT1

(1− π̂)T0 π̂T1

)
T→∞−→ χ2

1

where T0 = T − T1.

Christoffersen (1998) [27] developed a conditional coverage test from the unconditional
coverage test (LRuc) and the independence test (LRind).

The LRind statistic: LRind = −2 ln(L(Π̂)/L(Π̂1)) is the likelihood ratio statistic for the
hypothesis of serial independence against first-order Markov dependence. It has an asymp-
totic χ2

1 distribution. The likelihood function under the null hypothesis (π01 = π11 = π =

(T11 +T01)/T ) is L(Π̂) = (1− π̂)T0 π̂T1 where T0 = T00 +T10 and T1 = T11 +T01. The likeli-
hood function under the alternative hypothesis is L(Π̂1) = (1− π̂01)T00 π̂T01

01 (1− π̂11)T10 π̂T11
11

where Tij denotes the number of observations in state j after having been in state i in the
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previous period, π̂01 = T01/(T00 + T01) and π̂11 = T11/(T10 + T11).

He assumes that, under the alternative hypothesis of VaR inefficiency, the process
of violations It(α), where It(α) = 1 if rt < V aR(α) and It(α) = 0 otherwise, can be
modeled as a Markov chain with πij = Pr[It(α) = j|It−1(α) = i]. This leads to a test
of the null hypothesis of conditional coverage using a simple likelihood ratio statistic,
LRcc = −2 ln(L(Πα)/L(Π̂1)) = LRuc + LRind, which is asymptotically distributed χ2

2.

While this test is easy to use, it is rather limited for two main reasons, i) The inde-
pendence is tested against a very particular form of alternative dependence structure that
does not take into account a dependence of order higher than one, ii) The use of a Markov
chain only considers the influence of past violations It(α) and not the influence of any
other exogenous variable.

The Dynamic Quantile Test proposed by Engle and Manganelli (2004) [39] overcomes
these two drawbacks of the conditional coverage test. These authors suggest using a lin-
ear regression model that links current violations to past violations. Let us define the
auxiliary variable: Hitt(α) = It(α) − α so that Hitt(α) = 1 − α if rt < V aRt|t−1(α) and
Hitt(α) = −α otherwise. The null hypothesis of this test is that the sequence of hits
(Hitt) is uncorrelated with any variable that belongs to the information set Ωt−1 available
when the VaR was calculated and it has a mean value of zero, which implies that the hits
are not autocorrelated.

The Dynamic Quantile test is a Wald test of the null hypothesis that all slopes in the
regression model,

Hitt(α) = δ0 +

p∑
i=1

δiHitt−i +

q∑
j=p+1

δjXj + εt

are zero, where Xj are explanatory variables contained in Ωt−1. The test statistic
has an asymptotic χ2

p+q+1 distribution. In our implementation of the test, we use p = 5
and q = 1 (where X1 = V aR(α)) as proposed by Engle and Manganelli (2004). By doing
so, we are testing whether the probability of an exception depends on the level of the VaR.

Lopez (1998, 1999) [85, 86] introduced loss functions in VaR evaluation to take into
account the magnitude of the excesses that occur with respect to the VaR. Using that
insight, Sarma et al. (2003) [113] introduced the Quadratic Loss Function (QLF) that
uses squared distances between the observed returns and the V aR(α) predicted when a
violation occurs, to ensure a greater penalty on large excesses:

lft+1 =

{
(rt+1 − V ar(α))2 if rt+1 < V aR(α)

0 if rt+1 ≥ V aR(α)

A VaR model should be preferable to another if it has a lower average value of the loss

function,
(∑T

t=1
lft
T

)
.
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Later on, Giacomini and Komunjer (2005) [46] suggested the use of the Asymmetric
Linear Tick Loss Function (AlTick) that takes into account the magnitude of the implicit
cost associated with VaR forecasting errors. Hence, it takes into account not only the
returns that exceed the VaR, but also the opportunity cost produced by an overestimation
of VaR. When there are not exceptions, the loss function also penalizes due to the excess
capital retained:

Lα(et+1) =

{
(α− 1)et+1 if et+1 < 0

αet+1 if et+1 ≥ 0

where et+1 = rt+1 − V aRt+1. Giacomini and Komunjer use the asymmetric linear
loss function of order α because the object of interest is the conditional α-quantile of
the distribution of returns. If a quadratic loss function is used, the optimal forecast is the
conditional mean of the distribution of returns and if, on the other hand, an absolute value
loss function is used, the optimal forecast corresponds to the conditional median of the
distribution of returns. For this reason, the AlTick is the implicit loss function whenever
the object of interest is a forecast of a particular quantile of the conditional distribution
of returns. A VaR model is preferable if it has a lower average value of the loss function.

2.7.2 VaR Analysis

The different combinations of probability distributions and volatility specifications, ap-
plied to each of the 19 assets considered, yield a large number of VaR tests and it is hard
to summarize so much information in order to achieve some clear-cut conclusion on the
adequacy of each model.

Some authors compare the VaR methodologies and VaR models using a two-stage
selection process. This approach, proposed by Sarma et al. (2003) [113], consists in re-
moving in a first stage those methods or models that fail to pass statistical accuracy tests
(backtesting), like those described above. The VaR models selected in this stage are then
compared in a second stage on the basis of loss functions. Even though this two-stage
selection approach helps in selecting a smaller set of competing models, it may fail to
identify suitable models because they have been removed in the first stage. Indeed, a
model may be rejected in the first stage because it is not statistically appropriate for a
given test at a specific confidence level, in spite of having a smaller loss than another one
that has been judged to be statistically appropriate in the first stage. Under that approach
the VaR accuracy tests resemble more a decision-making process than an evaluation using
loss functions. In the extreme case when we identify a single model as appropriate in
the first stage, we would be making a decision based on statistical accuracy tests without
taking into account the size of the losses beyond the VaR.

Instead, we will proceed in the next section along four lines: i) the frequency of re-
jections of the model according to each test when applied to each asset, ii) how often a
given test statistic increases in value when switching between two models differing in either
the probability distribution or the volatility specification, iii) by a concept of Dominance
among VaR models that we introduce below, iv) by implementing a Model Confidence Set
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approach to select the preferred VaR models for each asset.

2.7.3 Frequency of violations

Tables 2.25 - 2.28 present the the number of violations, the test statistics and p-values
of each test for each combination of volatility model and probability distribution for the
innovations. Naturally, violation rates close to α = 0.01 (13 violations) are desirable.
Further, under the Basel Accord, models that over-estimate risk are preferable to those
that under-estimate risk levels. We can see that most models with Normal innovations
under-estimate the level of risk. In fact, such models are not very acceptable for many
assets with more than 20 violations out of 1260 observations, so that the models fall in
the yellow zone.10

Models with a Student-t distribution for the innovations are not suitable for stock
market indices, falling again in the yellow zone, although they show an exact coverage, 13
violations, for IBM and JPY/USD. Models with a skewed Student-t and the unbounded
Johnson distributions for the innovations are good models, with less than 20 violations
(green zone) for all assets. Models with skewed generalized error, skewed generalized-t
and generalized hyperbolic skew Student-t distributions for the innovations are also good
models, except for GOLD and SILVER, for which they get more than 20 violations. Me-
dian frequency of violations over volatility specifications is 1.75% for models with Normal
innovations, 1.27% for Student-t innovations, 1.19% for skewed Student-t, skewed gener-
alized error and skewed generalized-t innovations, 1.11% for Johnson SU innovations and
0.79% for generalized hyperbolic skew Student-t innovations. According to the frequency
of violations, Johnson SU distribution shows the best behavior among the asymmetric
probability distributions.

On the other hand, the frequency of violations for all volatility specifications is rel-
atively similar: 1.19% for GARCH, 1.11% for GJR-GARCH, 1.27% for APARCH and
FGARCH models. This observation already suggests the need to be careful when choosing
an appropriate probability distribution for return innovations. Needless to say, selecting an
appropriate volatility specification is also important, although differences across volatility
models might not be so crucial.

2.7.4 Switching between models

For each of the four tests described above (Kupiec, independence, conditional coverage and
Dynamic Quantile tests) we compare in this section the values of the test statistics for
models that differ in either the probability distribution for the innovations or the volatility

10In terms of Basel Accord, based on a sample of 250 observations, if the number of exception is less than,
or equal to 4 (the green zone), the test results are consistent with an accurate model, and the possibility of
erroneously accepting an inaccurate model is low. At the other extreme, if there are 10 or more exceptions
(the red zone), the test results are extremely unlikely to have a resulted from an accurate model, and
the probability of erroneously rejecting an accurate model on this basis is remote. In between these two
cases, however, is the yellow zone where the backtesting results could be consistent with either accurate or
inaccurate models, and the supervisor should encourage a bank to present additional information about
its model before taking action.
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specification. To summarize the results of this analysis, Table 2.22 displays the number of
cases in which the numerical value of the test statistic decreases or increases by a change
in the probability distribution or by a change in the specification of the volatility model.

If we consider all the possible specifications sharing the same probability distribution
for return innovations, we see that switching from a Normal to a Student-t distribution for
return innovations reduces the value of the statistic in 160 out of a total of 216 compar-
isons, leading in those cases to a more accurate VaR model.11 Even though such statistics
are obviously subject to sampling error, that frequency of reductions in value suggests
that, as expected, the Student-t distribution is generally more appropriate than the Nor-
mal to represent financial returns. Switching from the symmetric to the skewed Student-t
distribution achieves a further reduction in 114 comparisons, while increasing in 75 cases.
Moving from the asymmetric Student-t to other asymmetric distributions the unbounded
Johnson achieves a reduction in 91 cases while increasing in 55 cases. Switching from the
asymmetric Student-t (SKST) to other asymmetric distributions (SGT, JSU, SGED), the
numerical value of the statistic decreases more often than otherwise. On the contrary, if
we switch from the SKST, SGED, JSU or SGT distributions to the GHST distribution,
the opposite happens, with the test statistic usually increasing in value. Hence, we con-
sider the SKST, SGED, JSU and SGT distributions to be preferable to GHST. Between
these asymmetric distributions, switching to JSU or SGT lead to a reduction in the test
statistic in a greater number of cases.

Among volatility models, switching from the symmetric GARCH to GJR-GARCH re-
duces the value of the statistic in 176 out of 378 comparisons. The value of the test statistic
decreases in 131 cases when switching from GJR-GARCH to APARCH, but it increases in
167 cases. On the other hand, if we move from the APARCH to the FGARCH model, the
statistic decreases in 151 out of 378 cases, increasing in 128 cases. Overall, the FGARCH
model seems the preferable volatility specification.

Percent differences between the number of cases in which the value of the test statistic
increases or decreases when switching between volatility models are not as large as the
ones obtained when switching between two probability distributions. That suggests again
that, according to the performance of the models for VaR estimation, the specification
of the probability distribution of the innovation in returns seems to be more important
than the specification of the volatility dynamics. This is consistent with our results in
subsection 2.6.3.

11The number of comparisons arises from applying all the VaR tests to all the assets. When comparing
two probability distribution or two volatility models, the difference between the total number of compar-
isons considered and the sum of decreases and increases in the test statistic is the number of cases in which
the numerical value of the test statistic does not change.
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LRuc LRind LRcc DQT TOTAL

Total number statistics 76 32 32 76 216

Decreases/Increases ⇓ ⇑ ⇓ ⇑ ⇓ ⇑ ⇓ ⇑ ⇓ ⇑

N→ST 64 12 8 24 30 2 58 18 160 56

ST→SKST 45 11 9 20 21 7 39 37 114 75

SKST→JSU 25 6 4 15 16 4 46 30 91 55

SKST→SGT 14 15 6 12 16 2 49 27 85 56

SKST→GHST 33 37 9 19 11 16 32 44 85 116

SKST→SGED 17 16 5 15 14 6 47 29 83 66

SGED→JSU 28 13 8 9 9 8 41 35 86 65

SGED→SGT 6 11 7 2 6 3 52 24 71 40

SGED→GHST 29 38 9 16 8 17 29 47 75 118

JSU→SGT 10 30 12 6 9 9 43 33 74 78

JSU→GHST 22 43 8 17 8 18 25 51 63 129

SGT→GHST 29 29 6 16 2 20 29 47 66 112

Total number statistics 133 56 56 133 378

Decreases/Increases ⇓ ⇑ ⇓ ⇑ ⇓ ⇑ ⇓ ⇑ ⇓ ⇑

GARCH→GJRGARCH 46 56 36 19 35 21 59 74 176 170

GJRGARCH→APARCH 32 50 25 16 16 26 58 75 131 167

APARCH→FGARCH 34 44 21 13 18 16 78 55 151 128

Table 2.22: Number of cases in which the numerical value of the test statistics decreases
or increases when changing probability distribution or changing volatility model for all
assets.

2.7.5 Dominance among VaR models

In the previous sections we have used four backtesting tests for VaR performance: the un-
conditional likelihood-ratio test, the independence test, the conditional coverage test, and
the dynamic quantile test, and each test has been run for a variety of models 12 and assets.
In this section we evaluate the adequacy of the different models considered by compar-
ing the specific situations in which each model has been rejected by each one of these tests.

We introduce now the concept of dominance: we say that model M1 is dominated by
model M2 if i) M1 has been rejected in at least as many cases as M2, and ii) whenever
M2 is rejected by a test, M1 is also rejected. This introduces a transitive relationship
among VaR models but it is too strong to be satisfied in practice. So, we also consider
the concept of p-dominance: Given a confidence level between 0 and 1, we say that model
M1 is p-dominated by model M2 if i) M1 has been rejected in at least as many cases

12As in the rest of the paper, a model is a combination of a volatility specification and a probability
distribution for return innovations.
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as M2, and ii) in a percentage of at least p of the cases when M2 is rejected by a test,
M1 is also rejected. It is interesting to consider the special case p=1: Two models with
exactly the same set of rejections p-dominate each other. They also dominate each other.
Unfortunately, p-dominance is not a transitive relationship.

The upper panel of Table 2.23 compares the rejections of models using probability
distributions D1 (left) and D2 (right) when combined with all the volatility specifications.
The lower panel compares the rejections of models made up with volatility specifications
M1 (left) and M2 (right) when combined with all the probability distributions. The first
two columns of each panel (C1 and C2) in Table 2.23 show the number of cases when the
two probability distributions D1 and D2 (or volatility models M1 and M2) listed in the
first column have been rejected by the data. The third column (p) displays the percentage
of rejections of D2 that were also rejections of D1. For instance, the independence test
rejected 7 models made up with either the Normal or the Student-t distributions. In 5
of the 7 cases (0.714) when a model with a Student-t distribution was rejected, it was
also rejected with a Normal distribution for return innovations. The number of pairwise
comparisons is very high because they could be made in both directions, but we show
in Table 2.23 the more interesting ones. For instance, we do not explicitly show the
comparisons between the Normal distribution and asymmetric distributions because the
latter always dominate. Similarly, we do not show pairwise comparisons between Student-
t and any asymmetric distribution other than the skewed Student-t because the skewed
Student-t tend to p-dominate the standard Student-t, and the majority of asymmetric
distributions p-dominate the skewed Student-t distribution13.

At α = 95% we can summarize the comparisons over the set of tests as:14

JSU � SGT � SGED � SKST � GHST � ST

No matter whether we take α = 99% or α = 95% the Student-t, SKST and SGED
distributions are dominated by other alternatives, specially JSU and SGT. According to
this dominance criterion the GHST distribution is judged again not to be appropriate
for VaR estimation, since it is dominated by the rest of asymmetric distributions. The
Normal distribution is dominated by all other distributions.

At α = 99% there is not a clear dominance ordering between volatility specifications.
For α = 95% the FGARCH specification seems to dominate.

13Even though p-dominance is not transitive it seems safe to focus on the models that tend to be
p-dominant.

14Looking at specific tests we would have similar orderings characterized with somewhat lower precision:

LRuc : JSU � SGT = SKST � SGED � ST

LRind : SGT � JSU = SGED

LRcc : JSU = SGT � SGED = SKST

DQT : JSU � SGT = SKST � SGED � ST
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Confidence level 99% LRuc LRind LRcc DQT TOTAL

Total number statistics 76 32 32 76 216
D1 → D2 C1 C2 p C1 C2 p C1 C2 p C1 C2 p C1 C2 p

N → ST 36 7 1 7 7 0.714 25 13 1 44 29 1 112 56 0.964
ST → SKST 7 0 1 7 6 0.833 13 7 1 29 21 1 56 34 0.971
SKST → JSU 0 0 1 6 4 1 7 4 1 21 21 0.952 34 29 0.966
SKST → SGT 0 1 0 6 5 1 7 6 1 21 21 0.952 34 33 0.939
SKST → SGED 0 1 0 6 6 0.833 7 7 0.857 21 22 0.955 34 36 0.889
SGED → JSU 1 0 1 6 4 1 7 4 1 22 21 1 36 29 1
SGED → SGT 1 1 1 6 5 1 7 6 1 22 21 1 36 33 1
SGT → JSU 1 0 1 5 4 1 6 4 1 21 21 1 33 29 1
GHST → SKST 9 0 1 7 6 0.667 9 7 1 24 21 0.762 49 34 0.794
GHST → SGED 9 1 1 7 6 1 9 7 1 24 22 0.727 49 36 0.833
GHST → JSU 9 0 1 7 4 1 9 4 1 24 21 0.714 49 29 0.793
GHST → SGT 9 1 1 7 5 1 9 6 1 24 21 0.714 49 33 0.818

Total number statistics 133 56 56 133 378
M1 → M2 C1 C2 p C1 C2 p C1 C2 p C1 C2 p C1 C2 p

GARCH → GJRGARCH 10 12 0.833 9 9 0.778 16 12 0.917 48 45 0.844 83 78 0.846
GJRGARCH → APARCH 12 14 0.714 9 13 0.615 12 23 0.609 45 46 0.739 78 96 0.688
APARCH → FGARCH 14 18 0.722 13 11 0.818 23 20 0.800 46 43 0.930 96 92 0.848

Confidence level 95% LRuc LRind LRcc DQT TOTAL

Total number statistics 76 32 32 76 216
D1 → D2 C1 C2 p C1 C2 p C1 C2 p C1 C2 p C1 C2 p

N → ST 50 23 0.826 13 13 0.769 32 23 1 52 35 1 147 94 0.926
ST → SKST 23 6 1 13 16 0.813 23 18 1 35 27 0.963 94 67 0.940
SKST → JSU 6 3 1 16 17 0.941 18 17 1 27 25 0.960 67 62 0.968
SKST → SGT 6 6 1 16 16 0.875 18 17 1 27 28 0.964 67 67 0.955
SKST → SGED 6 8 0.750 16 17 0.882 18 18 1 27 28 0.964 67 71 0.930
SGED → JSU 8 3 1 17 17 0.941 18 17 1 28 25 1 71 62 0.984
SGED → SGT 8 6 1 17 16 1 18 17 1 28 28 0.964 71 67 0.985
SGT → JSU 6 3 1 16 17 0.882 17 17 0.941 28 25 1 67 62 0.866
GHST → SKST 21 6 0.833 17 16 0.938 19 18 0.944 30 27 0.926 87 67 0.925
GHST → SGED 21 8 0.875 17 17 0.882 19 18 0.944 30 28 0.929 87 71 0.901
GHST → JSU 21 3 1 17 17 0.882 19 17 0.941 30 25 1 87 62 0.952
GHST → SGT 21 6 1 17 16 0.875 19 17 0.941 30 28 0.929 87 67 0.925

Total number statistics 133 56 56 133 378
M1 → M2 C1 C2 p C1 C2 p C1 C2 p C1 C2 p C1 C2 p

GARCH → GJRGARCH 23 30 0.700 32 30 0.867 40 37 0.865 56 51 0.863 151 148 0.831
GJRGARCH → APARCH 30 33 0.758 30 25 0.960 37 36 0.972 51 59 0.797 148 153 0.856
APARCH → FGARCH 33 31 0.968 25 22 0.955 36 32 1 59 59 0.915 153 144 0.951

Table 2.23: Dominance among VaR models. C1 is the set consisting of the number of
times H0 is rejected with D1/M1 for the different assets, C2 is the set consisting of the
number of times H0 is rejected with D2/M2 for the different assets and p is the proportion
of times that H0 is rejected with D2/M2 and and also rejected with D1/M1.

A preference for APARCH and FGARCH models against standard GARCH and GJR-
GARCH has been a constant throughout our analysis. So, a robust conclusion is the
need to incorporate a leverage effect in volatility and, possibly more important, the conve-
nience to model standard deviations, rather than variances. The preference for asymmetric
probability distributions in Table 2.23 is also consistent with results in Table 2.22 when
comparing the numerical values of the test statistics. Both analysis are based on the same
information, but they use it in a very different fashion15. Nothing guarantees that the con-

15Switching between models we compared the values of the test statistics under a continuous criterion,
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clusions on the preferred probability distributions should be the same in both analysis. On
the contrary, this coincidence should be seen as a proof of the robustness of such preference.

The interesting feature of this dominance criterion is that it compares any two model
specifications across all the statistical tests and assets. The criterion could accommodate
different weights to each asset and test depending on the relevance we want to assign them.
The dominance criterion would then be applied to such weighted sums, as representing
the number of rejections, weighted by relevance. An interesting possibility would consist
of assigning a larger weight to tests having a larger ability to discriminate among models.

A further variation of the dominance criterion would choose weights as a bounded
function of the size of the test rejection, either in terms of the test statistic or the p-value
of the test.

2.7.6 Loss functions

Tables 2.29 - 2.33 present the values of the QLF and AlTick loss functions for different
models and assets. Including a leverage effect in volatility reduces the AlTick loss func-
tion with independence of the assumption on the probability distribution of innovations,
except for interest rates and GOLD and SILVER. Indeed, the accuracy of the GARCH
specification falls well below that of GJR-GARCH, APARCH and FGARCH models.

For these three volatility specifications there is some reduction in the loss function
when switching from a Normal to a Student-t distribution. The reduction achieved by
the skewed t-Student distribution over the symmetric Student-t distribution is again not
so evident 16. On the contrary, there is a noticeable improvement when we move from
symmetric to asymmetric distributions in terms of formal tests and also in terms of loss
functions. VaR models under an unbounded Johnson, skewed Generalized Error, Skewed
Generalized-t and Generalized Hyperbolic Skew Student-t distributions significantly re-
duce the value of the loss function relative to the Skewed Student-t with independence of
the assumption on the volatility model.

Hence, our results suggest that it is the explicit consideration of the skewness in the
probability distribution of innovations that is truly important for VaR performance ac-
cording to the loss function criterion.

2.7.7 Model Confidence Sets

The availability of several model specifications being able to adequately describe the un-
observed data generating process (DGP) opens the question of selecting the ’best fitting
model’ according to a given optimality criterion. Recently, significant effort has been
placed on developing testing procedures being able to deliver the ’best fitting’ models

while in this section we compare the results of the tests under alternative models in a discrete way.
16See OIL, GAS and exchange rates.
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among a set of alternatives. One of the first proposals was Diebold & Mariano (1995)
[33], but it is not applicable when the forecasts come from nested models or when they
depend on semiparametric or non parametric estimators (Giacomini & Komunjer, 2005
[46]). This has been overcome by the Reality Check (RC) approach of White (2000) [126],
the Stepwise Multiple Testing procedure of Romano and Wolf (2005) [111], the Superior
Predictive Ability (SPA) test of Hansen and Lunde (2005) [60], the Conditional test of
Giacomini and White (2006) [47], and the Model Confidence Set (MCS) procedure de-
veloped by Hansen, Lunde and Nason (2011) [62]. All these tests are relevant from an
empirical point of view, especially when the set of competing alternatives is large.

We implement the Model Confidence Set (MCS) procedure developed by Hansen,
Lunde and Nason (2011) [62] to discriminate among models. The MCS procedure is a
general approach to model selection that neither assumes knowledge of the correct spec-
ification, nor does it require that the “true” model is available as one of the competing
models. Another advantage is that MCS does not discard a model unless it is found to be
significantly inferior relative to other models 17. The MCS has an interpretation similar
to a confidence interval for a parameter in the sense that, with a given level of confidence,
a MCS contains the best model. It is an appealing method to use when comparing a set
of forecasting models because in practice it often cannot be ruled out that two or more
competing models are equally good. In this sense, the MCS approach may be preferred
over methods that require a single model to be selected as “best model”.

The MCS procedure consists on a sequence of tests to construct the ’Set of Superior
Models’ (SSM) where the null hypothesis of Equal Predictive Ability (EPA) is not rejected
at a certain confidence level, while such set is characterized as having better predictive
ability than models not in the set. The EPA test statistic is evaluated under a given
loss function, which essentially means that it is possible to test models on various aspects
depending on the chosen loss function. The possibility of user supplied loss functions pro-
vides enough flexibility to the procedure that can be used to test competing models with
respect to different dimensions. This is in common with Diebold & Mariano (1995) [33],
although we are here not so much interested on whether VaR forecasts are significantly
different, but rather on whether the number and size of VaR violations are different across
models.

Formally, the loss function `i,t associated to the i-th model `i,t = `(Yt, Ŷi,t) measures
the cost produced by the difference between the observation at time t, Yt, and Ŷi,t the
output of model i at time t. The MCS procedure starts from an initial set of models
M̂0 of dimension m made up by all combinations of probability distribution and volatility
specification considered in previous sections. Then, for a given confidence level 1− α, we
obtain a smaller set, the superior set of models, SSM, M̂∗1−α of dimension m∗ ≤ m. Let
us denote by dij the loss differential between models i and j,

dij,t = `i,t − `j,t i, j = 1, ...,m, t = 1, ..., n,

17In this respect it is clearly different from the two-stage approach to model selection we described in
subsection 2.7.2.
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The EPA hypothesis for a given set of models M can be formulated:18

H0,M : cij = 0, for all i, j = 1, ...,m

H1,M : cij 6= 0, for some i, j = 1, ...,m

where cij = E(dij) is assumed to be finite and not time dependent. This hypothesis
can be tested using the test statistic [Hansen et al. (2011)],

tij =
d̄ij√

v̂ar(d̄ij)
for i, j ∈M

where d̄ij = n−1
∑n

t=1 dij,t measures the relative sample loss between the i-th and j-th
models, while v̂ar(d̄ij) is a bootstrapped estimate of var(d̄ij) . According to Hansen et al.
(2011), to calculate the bootstrapped variances, we perform a block-bootstrap procedure
19 of 10000 resamples, where the block length p is the maximum number of significant
parameters obtained by fitting an AR(p) process on all the dij terms, in our case p = 1.

As discussed in Hansen et al. (2011) [62] the EPA null hypothesis maps naturally into
the statistic,

TR,M = max
i,j∈M

|tij |

Since the asymptotic distributions of this test statistic is nonstandard, the relevant
distribution under the null hypothesis needs to be estimated using a bootstrap procedure

18An alternative test is: Let di·,t = (m − 1)−1 ∑
j∈M dij,t i = 1, ...,m the simple average loss of

model i relative to any other model j at time t, the EPA hypothesis for a given set of models M is

H0,M : ci· = 0, for all i, j = 1, ...,m

H1,M : ci· 6= 0, for some i, j = 1, ...,m

where ci· = E(di·) is assumed to be finite and not time dependent. The statistic is,

ti· =
d̄i·√

v̂ar(d̄i·)
for i, j ∈M

where d̄i· = (m − 1)−1 ∑
j∈M d̄ij is the simple loss of the i-th model relative to the average losses across

models in the set M , while v̂ar(d̄i·) is bootstrapped estimates of var(d̄i·).
The EPA null hypothesis is Tmax,M = maxi∈M ti· and the relevant distribution under the null hypothesis
need to be estimated using a bootstrap procedure similar to that used to estimate var(d̄i·) since the
asymptotic distribution of the test statistic is nonstandard. The choice of the worst model to be eliminated
is coherent with the test statistic:

emax,M = argmax
i∈M

d̄i·

v̂ar(d̄i·)

19The block-bootstrap is the most general method to improve the accuracy of bootstrap for time series
data. By dividing the data into several blocks, it can preserve the original time series structure within
a block. However the accuracy of the block-bootstrap is sensitive to the choice of block length, and the
optimal block length depends on the sample size, the data generating process, and the statistic considered
(see Goncalves and White, 2004 [55], 2005 [56], Künsch, 1989 [77], Liu and Singh, 1992 [82] [83] and Politis
and Romano, 1994 [107]). Details about the implemented bootstrap procedure can be found in White
(2000) [126], Kilian (1999) [74], Clark and McCracken (2001) [28], Hansen et al. (2003) [61], Hansen and
Lunde (2005) [60], Hansen et al. (2011) [62] and Bernardi et al. (2016) [18].



similar to that used to estimate var(d̄ij) .
The MCS is a sequential testing procedure that eliminates at each step the worst

model, until the hypothesis of equal predictive ability (EPA) is not rejected for any of the
models in the current SSM. The choice of the worst model to be eliminated has been made
using an elimination rule that is coherent with the statistic test which is

eR,M = argmax
i

supj∈M d̄ij√
v̂ar(d̄ij)


Table 2.24 reports the frequency by which each probability distribution and each

volatility specification enter into the Superior Set of Models for each asset using the AlTick
loss function 20. Tests are performed at the 90% confidence level, using a block-bootstrap
procedure of 10000 resamples with a block length of 1. The table shows that for some
assets the SSM with AlTick function is quite homogeneous with respect to the volatility
and probability distribution assumptions, specially for NASDAQ 100, FTSE 100 and US
BOND in distributions and for EUR/USD in volatility models and probability distribu-
tions. In those cases the one step ahead 1% VaR forecasting performance of the competing
combinations are quite similar, suggesting that for those series the use of complicated non-
linear combinations is not entirely justified. Among the volatility models FGARCH seems
to describe very well the financial time series behaviour. Concerning the distribution
specifications, we observe that the MCS confirms the common finding that the Gaussian
distribution provides a poor description of the behavior of financial time series. Under the
AlTick loss, the Skewed Generalized-t and Skewed Error Distributions perform better than
the Generalized Hyperbolic Skew Student-t. Definitely, Gaussian, Student-t and Skewed
Student-t distributions do not seem to be appropriate for the wide set of financial assets
considered in this paper. Regarding QLF loss function, the results obtained with SSM are
not homogeneous. Surprisingly there is a clear preference for GHST distribution and for
GJR-GARCH volatility model. This is due to that QLF only considers the underestima-
tion of risk, and GHST tends to overestimate it. For this reason, we obtain lower QLF loss
functions with this distribution. We observe that the conclusions are different and depend
on we focus only on the magnitude of failure or also on the opportunity cost of capital.
The QLF is preferred by regulators which are concerned about the underestimation of the
risk and AlTick is preferred by firms which have a conflict between the goal of safety and
the goal of profit maximization.

20Care must be exerted when choosing the loss function, and it might be worthwhile to explore other
functions that might focus on different characteristics of VaR estimates. We believe that the opportunity
cost of overestimating VaR is non trivial, and therefore, the AlTick loss function is to be preferred over
the QLF loss.
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2.8 Conclusions

This paper completes previous work on the forecasting performance of alternative VaR
models by considering four volatility specifications: GARCH, GJR-GARCH, APARCH
and FGARCH and a set of distributions including skewed Student-t, skewed generalized
error, unbounded Johnson, skewed generalized-t and generalized hyperbolic skew Student-
t distributions, some of them not widely used yet in the literature. Standard symmetric
distributions and GARCH models without leverage are also used as a benchmark. We em-
ployed data covering the recent financial crisis of 2007-2009 for assets of different nature.

Two clear results refer to issues that have been analyzed in previous research by a num-
ber of authors: i) VaR models that assume asymmetric probability distributions for the
innovations, like the Skewed Student-t distribution, Skewed Generalized Error distribu-
tion, Johnson SU distribution, and Skewed Generalized-t distribution provide a better fit
of the sample return moments than symmetric distributions and achieve better VaR per-
formance, ii) volatility models with leverage, like APARCH and FGARCH, show a better
VaR performance than more standard GARCH and GJR-GARCH volatility specifications.

Our results highlight other important issues. A third result is that the shape and
the skew of the assumed probability distribution for innovations are more important than
including a leverage effect in volatility for the performance of a Value-at-Risk model. This
corroborates results by other authors (Lopez and Walter, 2000 [87], Angelidis and De-
giannakis, 2006 [11], and Braione and Scholtes, 2016 [20]) suggesting that the assumption
on the probability distribution is more important than the chosen volatility specification.
We provide a thorough analysis of that issue by showing that for the wide set of assets
considered: i) different volatility models with the same probability distribution for the in-
novations fit sample return moments similarly, ii) the frequency of rejections of VaR tests
in models that differ in their volatility specification are similar, while rejection frequencies
among models with the same volatility specification but different probability distribution
for the innovations can differ very significantly, iii) changing the probability distribution
in a VaR model affects the numerical value of the statistic for VaR tests much more than
changing the volatility specification, and iv) the dominance criterion establishes a clear
ranking between models differing in their probability distribution.

A fourth result deals with the fact that if the true, unobserved volatility dynamics is
not in terms of squared conditional standard deviations, then models specified for the con-
ditional variance are prone to produce biased results. We believe that by dealing with the
power of the conditional standard deviation as a free parameter is an important feature of
the APARCH/FGARCH volatility specifications. In fact, our estimates suggest that for a
number of financial assets the squared conditional deviation specification is inappropriate.

Fifth, our analysis suggests that, as expected, a good fit of the moments of the dis-
tribution of returns usually leads to a good VaR performance. The MAE calculated over
estimates for the four first moments selects the combination of a Skewed Generalized Er-
ror distribution and an APARCH/FGARCH volatility specification as the best model to
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reproduce the skewness and kurtosis in asset returns. According to VaR performance, the
results obtained are similar. The use of a dominance criterion introduced in this paper
on the results of backtesting tests suggests that Johnson SU , Skewed Generalized-t and
Skewed Generalized Error distributions dominate over other asymmetric distributions, like
Skewed Student-t and Generalized Hyperbolic Skew Student-t, and symmetric distribu-
tions, like Student-t and Normal distributions. FGARCH seems the preferable volatility
model. If we consider the AlTick loss function, the Skewed Generalized-t and Skewed Error
distributions perform better than the other distributions in terms of the Model Confidence
Sets procedure. Among the volatility models FGARCH seems again to describe well the
financial time series behavior.

Finally, we have examined in the paper whether alternative VaR models provide differ-
ent evidence in VaR performance for assets of different nature. FGARCH volatility model
with Skewed Generalized Error, Skewed Generalized-t and Johnson SU distributions are
the most suitable for stock market indices and individual stocks. The Generalized Hyper-
bolic Skew Student-t seems to perform well for interest rate and exchange rates, and the
models combining APARCH or FGARCH volatility specifications and symmetric distri-
butions or simple volatility models with asymmetric distributions are good combinations
for commodities.
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A Models and Probability distributions

A.1 GARCH volatility model

The GARCH model is based on an infinite order ARCH specification. It improves upon
the ARCH model by reducing the number of estimated parameters from infinity to two.
The conditional variance of GARCH(p,q) model (Bollerslev, 1986) [19] is supposed to be
not only a linear function of lagged squared residuals but also a linear function of lagged
conditional variance. The standard GARCH model captures the existence of volatility
clustering but it is unable to express the leverage effect, since it assumes that positive and
negative error terms have the same effect on volatility,

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j

where ω > 0, αi, βj ≥ 0,
∑q

i=1 αi +
∑p

j=1 βj < 1.

A.2 GJR-GARCH volatility model

To incorporate asymmetric effects on volatility from positive and negative surprises, Glosten,
Jagannathan and Runkle (1993) [50] proposed a GJR-GARCH(p,q) model, adding the
negative impact of leverage in the conditional variance equation. This model incorporates
positive and negative shocks on the conditional variance asymmetrically via the use of the
indicator function I(εt−i ≤ 0), so that the variance equation becomes,

σ2
t = ω +

q∑
i=1

[
αiε

2
t−i + γiI(εt−i ≤ 0)ε2

t−i
]

+

p∑
j=1

βjσ
2
t−j

The volatility effect of a unit negative shock is αi+γi while the effect of a unit positive
shock is αi. A positive value of γi indicates that a negative innovation generates greater
volatility than a positive innovation of equal size, and on the contrary for a negative value
of γi.

A.3 APARCH volatility model

The APARCH model (Asymmetric Power ARCH model) was proposed by Ding, Granger
and Engle (1993) [35]. This model can well express volatility clustering, fat tailed, excess
kurtosis, leverage effect and Taylor effect. The latter effect named after Taylor (1986)
[121] who observed that the sample autocorrelation of absolute returns was usually larger
than that of squared returns. The variance equation is now,

σδt = ω +

q∑
i=1

αi(|εt−i| − γiεt−i)δ +

p∑
j=1

βj(σt−j)
δ

where ω, αi, γi, βj and δ are additional parameters to be estimated. The parameter
γi reflects the leverage effect (−1 < γi < 1). A positive (resp. negative) value of γi means
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that past negative (resp. positive) shocks have a deeper impact on current conditional
volatility than past positive (resp. negative) shocks. The parameter δ plays the role of a
Box-Cox transformation of σt(δ > 0).

The APARCH equation is supposed to satisfy the following conditions,

1. ω > 0,αi ≥ 0, i = 1, 2, ..., q, βj ≥ 0, j = 1, 2, ..., p, when αi = 0,i = 1, 2, ..., q, βj = 0,
j = 1, 2, ..., p, then σ2

t = ω. Due to the variance is positive, so ω > 0.

2. 0 ≤
∑q

i=1 αi +
∑p

j=1 βj ≤ 1

The APARCH model is a general model because it has great flexibility, having as
special cases: i) The simple ARCH model of Engle (1982) when δ = 2, βj = 0(j = 1, ..., p)
and γi = 0(i = 1, ..., q), ii) The simple GARCH model of Bollerslev (1986) [19] when
δ = 2 and γi = 0(i = 1, ..., q), iii) The Absolute Value GARCH (AVGARCH) model of
Taylor (1986) [121] and Schwert (1990) [114] when δ = 1 and γi = 0(i = 1, ..., q), iv) The
GJR-GARCH model of Glosten et al. (1993) [50] when δ = 2, v) The Threshold GARCH
(TGARCH) model of Zakoian (1994) [130] when δ = 1, vi) The Non Linear ARCH model
of Higgins et al. (1992) [64] when βj = 0(j = 1, ..., p) and γi = 0(i = 1, ..., q), vii) The
Log-ARCH model of Geweke (1986) [45] and Pantula (1986) [99] when δ → 0.

A.4 FGARCH volatility model

The FGARCH model (Family GARCH) of Hentschel (1995) [63] is an omnibus model which
subsumes some of the most popular GARCH models. It is similar to the APARCH model,
but more general since it allows the decomposition of the residuals in the conditional
variance equation to be driven by different powers for zt and σt and also allowing for
both shifts and rotations in the news impact curve, where the shift is the main source of
asymmetry for small shocks while rotation drives large shocks.

σλt = ω +

q∑
i=1

αiσ
λ
t−if

δ(zt−i) +

p∑
j=1

βj(σt−j)
λ

where f δ(zt−i) = (|zt−i − η2i| − η1i(zt−i − η2i))
δ.

Positivity of f δ(zt−i) is guaranteed when |η1| ≤ 1, which ensures that neither arm of
the rotated absolute value function crosses the abscissa. The parameter η2, however, is
unrestricted in size and sign.

In the FGARCH model, the magnitude and direction of a shift in the news impact
curve are controlled by the parameter η2; a positive value of η2 causes a rightward shift
of the news impact curve. When the news impact curve is shifted to the right by the dis-
tance η2, one obtains an asymmetric model that matches the stylized facts of stock return
volatility, with a negative shock rising volatility more than an equally large but positive
shock. The magnitude and direction of a rotation in the news impact curve are controlled
by the parameter η1. By allowing slopes of different magnitudes on either side of the
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origin, the news impact curves of this type also produce asymmetric variance responses.
A positive value of η1 corresponds to a clockwise rotation. If the news impact curve is
rotated clockwise, negative shocks increase volatility more than positive shocks. Notice
that η1 does not cause a pure rotation of the absolute value function. Rather, η1 controls
the slopes of the news impact curve, which are different on either side of the minimum at
ε = η2. To achieve a pure rotation, one must also pick an appropriate value of α. Other
GARCH models only permit either a shift or a rotation, but not both. In principle, these
two types of asymmetry are distinct, and they should not be treated as substitutes for
each other.

Various submodels arise as special cases: i) The simple GARCH model of Bollerslev
(1986) [19] when λ = δ = 2 and η1i = η2i = 0(i = 1, ..., q), ii) The Absolute Value
GARCH (AVGARCH) model of Taylor (1986) [121] and Schwert [122] when λ = δ = 1
and |η1i| ≤ 1(i = 1, ..., q), iii) The GJR-GARCH model of Glosten et al. (1993) [70] when
λ = δ = 2 and η2i = 0(i = 1, ..., q), iv) The Threshold GARCH (TGARCH) model of
Zakoian (1994) [130] λ = δ = 1, η2i = 0(i = 1, ..., q) and |η1i| ≤ 1(i = 1, ..., q), v) The
Nonlinear ARCH model of Higgins et al.(1992) [64] when δ = λ and η1i = η2i = 0(i =
1, ..., q), vi) The Nonlinear Asymmetric GARCH model of Engle and Ng (1993) when δ = λ
and η1i = 0(i = 1, ..., q), vii) The Asymmetric Power ARCH model of Ding et al. (1993)
[35] when δ = λ, η2i = 0(i = 1, ..., q) and |η1i| ≤ 1(i = 1, ..., q), viii) The Exponential
GARCH model of Nelson (1991) when δ = 1, λ = 0 and η2i = 0(i = 1, ..., q).

A.5 Skewed Student-t distribution

To account for the excess skewness and kurtosis typical of financial data, Fernandez and
Steel [41] proposed to extend the Student-t distribution by adding a skewness parameter.
Their procedure allows for the introduction of skewness in any continuous unimodal and
symmetric (about zero) distribution g(·) by changing the scale at each side of the mode.
It is helpful to express it as a mixture of two truncated densities. The main drawback of
this density is that it is expressed in terms of the mode and the dispersion. To keep it
in the ARCH tradition, Lambert and Laurent (2001) [80] expressed the skewed Student-t
density in terms of mean and variance.

According to Lambert and Laurent the innovation process zt is said to follow a (stan-
dardized) skewed Student-t distribution, SKST (0, 1, ξ, ν), if

f(z|ξ, ν) =
2

ξ + 1
ξ

s{g[ξ(sz+m)|ν]I(−∞,0)(z+m/s) + g[(sz+m)/ξ|ν]I[0,∞)(z+m/s)} (1)

where g(·|ν) is the symmetric (unit variance) Student-t density and ξ is the skewness
parameter 21; m and s2 are, respectively the mean and the variance of the non-standardized

21The skewness parameter ξ > 0 is defined such that the ratio of probability masses above and below
the mean is

Prob(z ≥ 0|ξ)
Prob(z < 0|ξ) = ξ2
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skewed Student-t and are defined as,

E(ε|ξ, ν) =
Γ( (ν−1)

2 )
√
ν − 2

√
πΓ(ν2 )

(
ξ − 1

ξ

)
≡ m

V (ε|ξ, ν) =

(
ξ2 +

1

ξ2
− 1

)
−m2 ≡ s2

where

zt =
εt −m
s

is the standardized random variable with mean 0 and variance 1.

For a standardized skewed Student-t, the log-likelihood is

LSKST (θ) = ln

[
Γ

(
ν + 1

2

)]
− ln

[
Γ
(ν

2

)]
− 1

2
ln[π(ν − 2)] + ln

(
2

ξ + 1
ξ

)
+ ln(s)−

−1

2

T∑
t=1

[
ln(σ2

t ) + (1 + ν)ln

(
1 +

szt +m

ν − 2
ξ−It

)]

where It =

{
1 si zt ≥ −m

s

−1 si zt < −m
s

Notice also that the density f(zt|1/ξ, ν) is the mirror of f(zt|ξ, ν) with respect to
the (zero) mean, i.e., f(zt|1/ξ, ν) = f(−zt|ξ, ν). Therefore, the sign of ln(ξ) indicates
the direction of the skewness: the third moment is positive (negative), and the density is
skewed to the right (left), if ln(ξ) > 0(< 0).

Provided the positive real values are finite, we can easily obtain from the estimated
standardized residuals ẑt the empirical skewness and kurtosis coefficients. If ẑt is nor-
mally distributed, Sk(ẑt) and K(ẑt) should not be significantly different from 0 and 3,
respectively 22. Accordingly and following Lambert and Laurent (2001) [80], if ẑt ∼
SKST (0, 1, ξ, ν),

Sk(ẑt|ξ, ν) =
E(ẑ3|ξ, ν)− 3E(ẑ|ξ, ν)E(ẑ2|ξ, ν) + 2E(ẑ|ξ, ν)3

V (ẑ|ξ, ν)3/2
(2)

K(ẑt|ξ, ν) =
E(ẑ4|ξ, ν)− 4E(ẑ|ξ, ν)E(ẑ3|ξ, ν) + 6E(ẑ2|ξ, ν)E(ẑ|ξ, ν)2 − 3E(ẑ|ξ, ν)4

V (ẑ|ξ, ν)2
(3)

The skewed Student-t distribution leads to a finite rth order moment (r∈ R) if and
only if the corresponding moment of g(·) exists (i.e., for ξ = 1). In our case, g(·) is the

22Lambert and Laurent (2001) [80] and Giot and Laurent (2003a) [48] have shown that for various
financial daily returns, it is realistic to assume that ẑt is skewed Student-t distribution.
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(standardized) Student-t probability density function, with number of degrees of freedom
ν > 2. In particular,

E(zr|ξ, ν) = Mr

ξr+1 + (−1)r

ξr+1

ξ + 1
ξ

where

Mr =

∫ ∞
0

2srg(s)ds

Of course, E(zr|ξ) will be real-valued only for an integer r.
Mr is the rth order moment of g(·) truncated to the positive real line. For r ≤ −1,

the unimodality of g(·) implies that Mr = ∞. Thus, we concentrate on positive integer
order moments. From Mr, the following properties can be shown to hold for noncentered
moments: For odd r, the rth order moment retains the same absolute value but changes
sign if we invert ξ, takes the value 0 only for ξ = 1, and it is an increasing function
of ξ with limξ→∞E(zr|ξ) = ∞. Even moments, on the other hand, are entirely unaf-
fected by inverting ξ and again increase without bounds in ξ for ξ > 1. Consequently,
minξE(zr|ξ) = E(zr|ξ = 1) for even r. Expressions for centered moments are readily
available from Mr. In particular, the variance possesses all of the properties just men-
tioned for even noncentered moments.

As shown in Equations (2) and (3), ξ and ν characterize skewness and kurtosis. Fur-
thermore, careful scrutiny of the algebra yielding (2) shows that skewness exist if ν > 3.
Last, kurtosis in (3) is well defined if ν > 4. Given these restrictions on the underlying
parameters, it is clear that the range of skewness and kurtosis will also be restricted to
a certain domain. The dominating feature of skewness is the ξ parameter while kurtosis
is mainly governed by ν. The Student-t distribution g(·) depends on degrees of freedom.
Note that when ξ = 1 and ν = +∞, we get the skewness and the kurtosis of the Gaussian
density and when ξ = 1 but ν > 2, we have the skewness and the kurtosis of the (stan-
dardized) Student-t distribution.

Lambert and Laurent (2001) [80] show that the quantile function skst∗α,ν,ξ of a non-
standardized skewed Student-t density is

skst∗α,ν,ξ =

{
1
ξ stα,ν

[
α
2 (1 + ξ2)

]
, if α < 1

1+ξ2 ,

−ξstα,ν
[

1−α
2 (1 + ξ−2)

]
, if α ≥ 1

1+ξ2 .

where stα,ν is the quantile function of the (unit variance) Student-t density. It is straight-
forward to obtain the quantile function of the standardized skewed Student-t skstα,ν,ξ =
(skst∗α,ν,ξ −m)/s

A.6 Skewed Generalized Error distribution

The Generalized Error Distribution (GED) by Nelson (1991) [98] is a three parameter
distribution belonging to the exponential family with conditional density given by,
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f(x) =
κe
− 1

2

∣∣∣x−αβ ∣∣∣κ
21+κ−1βΓ(κ−1)

with α, β and κ representing the location, scale and shape parameters respectively and
Γ(·) is the gamma function. Since the distribution is symmetric and unimodal the location
parameter is also mode, median and mean of the distribution (i.e., µ). By symmetry, all
odd moments beyond the mean are zero. The variance and kurtosis are given by,

V ar(X) = β222/κΓ(3κ−1)

Γ(κ−1)

K(X) =
Γ(5κ−1)Γ(κ−1)

Γ2(3κ−1)

As κ increases the density gets flatter and flatter. In the limit as κ→∞ the distribu-
tion tends toward the uniform. Special cases are the Normal when κ = 2 and the Laplace
when κ = 1. For κ > 2 the distribution is platykurtic and for κ < 2 it is leptokurtic.

Standardization is simple and involves rescaling the density to have unit standard
deviation,

V ar(X) = 1⇒ β =

√
2−2/κ

Γ(κ−1)

Γ(3κ−1)

Finally substituting into conditional density,

f(z|κ) =
κe
− 1

2

∣∣∣∣√2−2/κ Γ(κ−1)

Γ(3κ−1)
z

∣∣∣∣κ√
2−2/κ Γ(κ−1)

Γ(3κ−1)
21+κ−1Γ(κ−1)

The skewed version proposed by Fernandez and Steel is obtained from GED probability
density function. We replace g(·) in equation (1) by GED standardized density.

A.7 Johnson SU distribution

The Johnson SU distribution was one of the distributions derived by Johnson (1949) [70]
based on transformations of the Normal distribution by certain functions. Letting Z ∼
N(0, 1), the standard Normal distribution, the random variable Y has the Johnson system
of frequency curves from this method of transformation Z = γ+ δg((Y − ξ)/λ). The form
of the resulting distribution depends on the choice of g-function. When g(u) = sinh−1(u),
the distribution is unbounded, called the Johnson SU distribution. The parameters of the
distribution are ξ, λ > 0, γ, δ > 0.

We use a parametrization 23 of the original Johnson SU distribution, so that the
parameters ξ and λ are the mean and the standard deviation of the distribution. The
parameter γ determines the skewness of the distribution with γ > 0 indicating positive

23This parametrization is used by the R rugarch package, which we used for estimating the parameters
of our models.
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skewness and γ < 0 negative. The parameter δ determines the kurtosis of the distribution.
δ should be positive and most likely in the region above 1.

The pdf of the Johnson’s SU , denoted here as JSU(ξ, λ, γ, δ), is defined by

fY (y) =
δ

cλ

1√
(r2 + 1)

1√
2π
exp

[
−1

2
z2

]
where

z = −γ + δsinh−1(r) = −γ + δ log
[
r + (r2 + 1)1/2

]
r =

y − (ξ + cλω1/2sinhΩ)

cλ

c =

{
1

2
(ω − 1)[ωcosh2Ω + 1]

}−1/2

ω = exp(δ−2) and Ω = −γ/δ. Note that Z ∼ N(0, 1). Here E(Y ) = ξ and
V ar(Y ) = λ2.

The pdf of the original Johnson’s SU denoted as JSUo(ξ, λ, γ, δ) is

fY (y) =
δ

λ

1√
(r2 + 1)

1√
2π
exp

[
−1

2
z2

]
where

z = γ + δsinh−1(r) = γ + δ log
[
r + (r2 + 1)1/2

]
r = (y − ξ)/λ

Note that Z ∼ N(0, 1), y ∈ R, φ is the probability density function of the standard
Normal distribution. The parameters of the JSU are (ξ, λ, γ, δ)′ each of them affecting the
location, scale, skewness and kurtosis of the distribution. The distribution is positively
or negatively skewed according as γ is negative or positive. For a given γ , increasing δ
reduces the kurtosis. As δ →∞ the distribution approaches the Normal density function.
The parameters are not the discreet raw moments of the distribution. We give the first
four moments of Johnson SU distribution. The mean and variance are :

E(Y ) = µ = ξ + λω1/2sinh(Ω)

V ar(Y ) = σ2 =
λ2

2
(ω − 1)(ωcosh2Ω + 1)

where ω = exp(δ−2) and Ω = γ/δ. Since there is not much simplification in the
expressions for skewness and kurtosis, we give the third and fourth central moments µ3

and µ4, respectively

µ3 = −1

4
ω2(ω2 − 1)2[ω2(ω2 + 2)sinh3Ω + 3sinhΩ]

µ4 =
1

8
(ω2 − 1)2[ω4(ω8 + 2ω6 + 3ω4 − 3)cosh4Ω + 4ω4(ω2 + 2)cosh2Ω + 3(2ω2 + 1)]
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From the transformation of the Normal distribution, the cumulative distribution func-
tion of the JSU distribution is shown below. If Y ∼ JSU (ξ, λ, γ, δ), FY (y) = Φ(γ +
δsinh−1[(y− ξ)/λ]) where the function Φ(u) is the cumulative distribution function of the
standard Normal distribution.

From the equation above, the quantile function F−1
Y can be directly derived as F−1

Y =
ξ+ λsinh[(Φ−1(p)− γ)/δ] where the quantile function simply depends on the quantiles of
the standard Normal distribution Φ−1(p).

Figure 2.5 shows the distribution’s authorized domain, i.e. the region of values of
skewness and kurtosis for which a density exists. This is known as the Hamburger mo-
ment problem, which characterizes the maximum attainable skewness given a level of
kurtosis (see Widder, 1946). From the plot, it is clear that the skewed Student-t has the
widest possible combination of skewness and kurtosis for values of kurtosis less than ∼ 9,
whilst the Johnson SU distribution has the widest combination for values greater than ∼ 9.

Figure 5: Region for Skewness-Kurtosis for which Skewed Student-t and Johnson SU
distributions exist.

A.8 Skewed Generalized-t distribution

Theodossiou (1998) [123] [9] developed a skewed version of the Generalized t (GT) distribu-
tion introduced by McDonald and Newey (1988). The skewed GT is a flexible distribution
accommodating the skewness and excess kurtosis often present in financial data.

The skewed GT distribution has the probability density function

f(x|µ, σ, λ, p, q) =
p

2νσq1/pB(1
p , q)

(
|x−µ+m|p

q(νσ)p(λsign(x−µ+m)+1)p + 1
) 1
p

+q
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where

m =
2νσλq

1
pB
(

2
p , q −

1
p

)
B
(

1
p , q
)

ν = q
− 1
p

(3λ2 + 1)

B
(

3
p , q −

2
p

)
B
(

1
p , q
)

− 4λ2

B
(

2
p , q −

1
p

)
B
(

1
p , q
)

2

− 1

2

B(·) is the beta function, and µ, σ, λ, p and q are the location, scale, skewness, peakedness
and tail-thickness parameters, respectively. Notice that the parameters have the following
restrictions σ > 0, −1 < λ < 1, p > 0 and q > 0. The skewness parameter λ controls
the rate of descent of the density around x = 0. The parameters p and q control the
height and tails of the density, respectively. The parameter q has the degrees of freedom
interpretation in case λ = 0 and p = 2.

The skewed GT distribution generates for λ = 0 McDonald’s and Newey’s GT dis-
tribution; for p = 2, Hansen’s skewed Student-t distribution; for λ = 0 and q = ∞, the
Subbotin’s power exponential distribution; for λ = 0, p = 1 and q = ∞, the Laplace
distribution; for λ = 0, p = 2 and q = 1, the Cauchy distribution ; for λ = 0, p = 2
and q = ∞, the normal distribution; and for λ = 0, p = ∞ and q = ∞, the uniform
distribution.

The mean, for pq > 1, is

E(X) = µ+
2νσλq

1
pB
(

2
p , q −

1
p

)
B
(

1
p , q
) −m

The variance, for pq > 2, is

V ar(X) = (νσ)2q
2
p

(3λ2 + 1)

B
(

3
p , q −

2
p

)
B
(

1
p , q
)

− 4λ2

B
(

2
p , q −

1
p

)
B
(

1
p , q
)

2


The skewness, for pq > 3, is,

Sk(X) =
2q

3
pλ(νσ)3

B
(

1
p , q
)3

[
8λ2B

(
2

p
, q − 1

p

)3

− 3(1 + 3λ2)B

(
1

p
, q

)

B

(
2

p
, q − 1

p

)
B

(
3

p
, q − 2

p

)
+ 2(1 + λ2)B

(
1

p
, q

)2

B

(
4

p
, q − 3

p

)]
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The kurtosis, for pq > 4, is,

K(X) =
q

4
p (νσ)4

B
(

1
p , q
)4

[
− 48λ4B

(
2

p
, q − 1

p

)4

+ 24λ2(1 + 3λ2)B

(
1

p
, q

)
B

(
2

p
, q − 1

p

)2

B

(
3

p
, q − 2

p

)
− 32λ2(1 + λ2)B

(
1

p
, q

)2

B

(
2

p
, q − 1

p

)
B

(
4

p
, q − 3

p

)
+ (1 + 10λ2 + 5λ4)B

(
1

p
, q

)3

B

(
5

p
, q − 4

p

)]

A.9 Generalized Hyperbolic Skew Student-t distribution

Aas and Haff (2006) [1] proposed a special case of the generalized hyperbolic (GH) family
that they denote as the GH skew Student-t distribution. This distribution has the im-
portant property that one tail has a polynomial and the other an exponential behavior.
Further, it is the only subclass of the GH family of distribution having this property.
This is an alternative for modeling the empirical distribution of financial returns. It is
often skewed, having one heavy and one semiheavy or more gaussian-like tail. The skew
extensions to the Student-t distribution, like that of Fernandez and Steel, have two tails
behaving as polynomials. This means that they fit heavy-tailed data well, but they do not
handle substantial skewness. Substantial skewness is reached by combining one heavy tail
and one nonheavy tail.

The probability density function of the GH Skew Student-t is given by

fX(x) =
2

1−ν
2 δν |β|

ν+1
2 K ν+1

2

(√
β2(δ2 + (x− µ)2)

)
exp(β(x− µ))

Γ(ν2 )
√
π
(√

δ2 + (x− µ)2
) ν+1

2

β 6= 0

and

fX(x) =
Γ(ν+1

2 )
√
πδΓ(ν2 )

[
1 +

(x− µ)2

δ2

]−(ν+1)/2

β = 0

where Kν(x) ∼
√

π
2xexp(−x) for x → ±∞ is the modified Bessel function (Abramowitz

and Stegun, 1972), µ, δ, β and ν determine the location, scale, skew and shape parameters,
respectively.

The density fX(x) when β = 0 can be recognized as that of noncentral Student-t
distribution with ν degrees of freedom, expectation µ and variance δ2/(ν − 2).

The mean and variance of a GH skew Studen-t distributed random variate X are

E(X) = µ+
βδ2

ν − 2

and

V ar(X) =
2β2δ4

(ν − 2)2(ν − 4)
+

δ2

ν − 2
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The variance is only finite when ν > 4, as opposed to the symmetric Student-t distri-
bution, which only requires ν > 2. The derivation of the skewness and kurtosis is relative
straightforward (but cumbersome) due to the normal mixture structure of the distribution.
These are given by

Sk(X) =
2(ν − 4)1/2βδ

[2β2δ2 + (ν − 2)(ν − 4)]3/2

[
3(ν − 2) +

8β2δ2

ν − 6

]
and

K(X) =
6

[2β2δ2 + (ν − 2)(ν − 4)]2

[
(ν − 2)2(ν − 4) +

16β2δ2(ν − 2)(ν − 4)

ν − 6
+

8β4δ4(5ν − 22)

(ν − 6)(ν − 8)

]
The skewness and kurtosis do not exist when ν ≤ 6 and ν ≤ 8, respectively.
Utilizing the property of the modified Bessel function, it can be shown that in the

tails, the skew Student-t density behaves as

fX(x) ∼ const|x|−ν/2−1exp(−|βx|+ βx) x→ ±∞

Hence the heaviest tail decays as

fX(x) ∼ const|x|−ν/2−1 when

{
β < 0 and x→ −∞
β > 0 and x→ +∞

and the lightest as

fX(x) ∼ const|x|−ν/2−1exp(−2|βx|) when

{
β < 0 and x→ +∞
β > 0 and x→ −∞
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IBEX35 NASDAQ100 FTSE100 NIKKEI225

QLF AlTick QLF AlTick QLF AlTick QLF AlTick

N-GARCH 1.680 4.668 1.263 3.544 0.848 3.145 6.141 5.095

ST-GARCH 1.115 4.519 0.966 3.432 0.609 3.024 5.730 5.029

SKST-GARCH 0.873 4.504 0.818 3.397 0.479 2.985 5.365 4.995

SGED-GARCH 0.842 4.499 0.733 3.368 0.461 2.980 4.939 4.956

JSU-GARCH 0.799 4.499 0.763 3.384 0.430 2.977 5.082 4.974

SGT-GARCH 0.847 4.494 0.732 3.364 0.442 2.965 4.955 4.951

GHST-GARCH 0.478 4.520 0.418 3.400 0.260 3.003 4.230 5.002

N-GJRGARCH 1.517 4.523 0.747 3.356 0.484 2.932 5.388 4.896

ST-GJRGARCH 1.140 4.429 0.536 3.302 0.339 4.958 4.958 4.804

SKST-GJRGARCH 0.890 4.403 0.348 3.256 0.210 2.804 4.557 4.769

SGED-GJRGARCH 0.876 4.394 0.292 3.242 0.201 2.800 4.228 4.746

JSU-GJRGARCH 0.829 4.403 0.296 3.249 0.179 2.801 4.311 4.760

SGT-GJRGARCH 0.888 4.395 0.311 3.238 0.208 2.792 4.296 4.747

GHST-GJRGARCH 0.457 4.602 0.176 3.334 0.141 3.030 4.340 4.785

N-APARCH 1.428 4.485 0.782 3.322 0.500 2.911 5.994 4.960

ST-APARCH 1.052 4.387 0.586 3.258 0.366 2.836 5.587 4.863

SKST-APARCH 0.793 4.338 0.398 3.228 0.239 2.788 5.169 4.809

SGED-APARCH 0.784 4.327 0.338 3.216 0.230 2.783 4.845 4.777

JSU-APARCH 0.735 4.335 0.347 3.219 0.210 2.789 4.924 4.792

SGT-APARCH 0.801 4.328 0.353 3.216 0.241 2.783 4.915 4.778

GHST-APARCH 0.457 4.340 0.176 3.255 0.141 2.833 4.340 4.807

N-FGARCH 1.299 4.453 1.761 4.075 0.511 2.908 6.234 4.921

ST-FGARCH 1.047 4.376 0.749 3.257 0.370 2.840 5.928 4.830

SKST-FGARCH 0.785 4.326 0.574 3.235 0.230 2.780 5.531 4.759

SGED-FGARCH 0.754 4.309 0.543 3.253 0.225 2.776 5.181 4.713

JSU-FGARCH 0.738 4.330 0.596 3.242 0.201 2.778 5.307 4.736

SGT-FGARCH 0.767 4.312 0.447 3.211 0.237 2.779 7.403 5.412

GHST-FGARCH 0.772 4.318 0.585 3.273 0.198 2.861 4.845 4.796

Table 2.6: V aR1% loss functions for stock market indices: Quadratic Loss Function (QLF)
and Asymmetric Linear Tick Loss Function (AlTick).
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IBM SAN AXA BP

QLF AlTick QLF AlTick QLF AlTick QLF AlTick

N-GARCH 9.127 5.417 11.834 7.181 4.090 6.694 3.390 4.591

ST-GARCH 8.025 5.370 10.158 7.042 3.053 6.562 2.805 4.577

SKST-GARCH 7.966 5.372 9.663 7.038 2.975 6.565 2.716 4.574

SGED-GARCH 7.785 5.358 9.564 7.043 2.917 6.576 2.672 4.567

JSU-GARCH 7.830 5.373 9.409 7.036 2.882 6.570 2.665 4.574

SGT-GARCH 7.854 5.535 8.912 6.863 2.655 6.672 2.234 4.536

GHST-GARCH 6.970 5.570 7.274 6.941 0.402 6.916 1.377 4.741

N-GJRGARCH 9.146 5.527 10.893 7.019 3.848 6.779 2.858 4.513

ST-GJRGARCH 8.120 5.542 9.523 6.905 2.829 6.666 2.379 4.538

SKST-GJRGARCH 8.020 5.543 8.904 6.862 2.603 6.668 2.239 4.542

SGED-GJRGARCH 7.804 5.536 8.817 6.857 2.585 6.670 2.203 4.533

JSU-GJRGARCH 7.879 5.546 8.668 6.848 2.508 6.667 2.192 4.544

SGT-GJRGARCH 7.854 5.535 8.912 6.863 2.655 6.672 2.234 4.536

GHST-GJRGARCH 6.970 5.570 7.274 6.941 0.402 6.916 1.377 4.741

N-APARCH 8.849 5.542 11.265 6.969 3.269 6.660 2.822 4.482

ST-APARCH 7.623 5.450 9.977 6.813 2.330 6.511 2.374 4.506

SKST-APARCH 7.485 5.446 9.322 6.771 2.084 6.498 2.213 4.500

SGED-APARCH 7.348 5.443 9.102 6.758 2.003 6.494 2.165 4.499

JSU-APARCH 7.348 5.443 9.102 6.758 2.003 6.494 2.165 4.499

SGT-APARCH 7.333 5.422 9.283 6.766 2.062 6.493 2.172 4.489

GHST-APARCH 6.970 5.451 7.274 6.773 0.402 6.471 1.377 4.667

N-FGARCH 8.814 5.529 10.917 6.918 3.004 6.535 2.823 4.517

ST-FGARCH 7.607 5.429 9.622 6.733 2.239 6.445 2.425 4.522

SKST-FGARCH 7.444 5.421 8.970 6.667 1.974 6.435 2.240 4.516

SGED-FGARCH 7.311 5.397 8.962 6.672 1.919 6.412 2.194 4.505

JSU-FGARCH 7.307 5.417 8.764 6.650 1.892 6.429 2.190 4.518

SGT-FGARCH 5.230 4.716 9.076 6.687 1.985 6.417 2.250 4.512

GHST-FGARCH 7.048 5.414 7.137 6.697 0.454 6.454 1.403 4.664

Table 2.7: V aR1% loss functions for individual stocks: Quadratic Loss Function (QLF)
and Asymmetric Linear Tick Loss Function (AlTick).
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IRS 5Y GERMANBOND 10Y USBOND 10Y

QLF AlTick QLF AlTick QLF AlTick

N-GARCH 0.101 0.652 0.331 1.520 0.222 1.679

ST-GARCH 0.083 0.647 0.268 1.489 0.139 1.632

SKST-GARCH 0.076 0.649 0.234 1.481 0.110 1.626

SGED-GARCH 0.075 0.646 0.237 1.485 0.114 1.629

JSU-GARCH 0.072 0.649 0.225 1.479 0.102 1.626

SGT-GARCH 0.074 0.644 0.241 1.486 0.114 1.628

GHST-GARCH 0.076 0.654 0.203 1.480 0.088 1.625

N-GJRGARCH 0.104 0.660 0.330 1.520 0.245 1.698

ST-GJRGARCH 0.085 0.658 0.270 1.496 0.165 1.652

SKST-GJRGARCH 0.078 0.660 0.236 1.485 0.134 1.648

SGED-GJRGARCH 0.078 0.657 0.238 1.487 0.134 1.648

JSU-GJRGARCH 0.075 0.660 0.227 1.483 0.125 1.648

SGT-GJRGARCH 0.077 0.655 0.241 1.488 0.135 1.649

GHST-GJRGARCH 0.108 0.663 0.209 1.493 0.130 1.657

N-APARCH 0.106 0.660 0.324 1.513 0.242 1.697

ST-APARCH 0.119 0.665 0.274 1.502 0.169 1.654

SKST-APARCH 0.110 0.666 0.240 1.490 0.137 1.651

SGED-APARCH 0.099 0.661 0.237 1.487 0.135 1.649

JSU-APARCH 0.106 0.666 0.231 1.486 0.127 1.651

SGT-APARCH 0.098 0.660 0.241 1.488 0.135 1.650

GHST-APARCH 0.108 0.670 0.209 1.484 0.130 1.656

N-FGARCH 0.103 0.658 0.307 1.498 0.241 1.693

ST-FGARCH 0.121 0.665 0.265 1.493 0.163 1.658

SKST-FGARCH 0.112 0.665 0.231 1.481 0.132 1.652

SGED-FGARCH 0.096 0.659 0.227 1.476 0.131 1.652

JSU-FGARCH 0.106 0.665 0.222 1.476 0.122 1.651

SGT-FGARCH 0.096 0.658 0.229 1.476 0.131 1.652

GHST-FGARCH 0.180 0.730 0.203 1.483 0.093 1.629

Table 2.8: V aR1% loss functions for interest rates: Quadratic Loss Function (QLF) and
Asymmetric Linear Tick Loss Function (AlTick).
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OIL BRENT GAS GOLD SILVER

QLF AlTick QLF AlTick QLF AlTick QLF AlTick

N-GARCH 4.887 5.500 3.188 8.480 7.298 4.748 15.631 8.630

ST-GARCH 3.716 5.426 1.483 8.872 5.609 4.394 11.606 8.152

SKST-GARCH 3.447 5.453 1.621 8.838 5.422 4.376 10.066 8.004

SGED-GARCH 3.498 5.450 1.438 8.942 5.675 4.394 10.310 8.034

JSU-GARCH 3.319 5.467 1.681 8.821 5.263 4.369 9.075 7.948

SGT-GARCH 3.456 5.447 1.432 8.946 5.644 4.385 9.960 8.005

GHST-GARCH 2.681 5.599 0.703 9.743 5.536 4.353 10.035 7.960

N-GJRGARCH 4.108 5.306 3.215 8.485 8.361 4.896 18.011 8.772

ST-GJRGARCH 3.004 5.327 1.503 8.878 6.582 4.484 14.520 8.291

SKST-GJRGARCH 2.703 5.382 1.651 8.843 6.412 4.465 13.025 8.147

SGED-GJRGARCH 2.783 5.373 1.459 8.938 6.583 4.471 12.983 8.154

JSU-GJRGARCH 2.574 5.410 1.715 8.826 6.190 4.451 12.036 8.064

SGT-GJRGARCH 2.779 5.373 1.450 8.943 6.545 4.461 8.823 7.097

GHST-GJRGARCH 2.888 5.785 0.450 9.766 7.295 4.459 13.582 8.020

N-APARCH 4.128 5.310 3.128 8.352 7.012 4.432 19.479 9.022

ST-APARCH 2.984 5.335 1.396 8.662 7.208 4.481 14.305 8.299

SKST-APARCH 2.670 5.399 1.553 8.621 7.012 4.432 12.629 8.128

SGED-APARCH 2.771 5.381 1.407 8.745 7.198 4.462 13.272 8.211

JSU-APARCH 2.546 5.426 1.628 8.603 6.862 4.406 11.872 8.086

SGT-APARCH 2.774 5.382 1.394 8.754 7.151 4.448 12.921 8.167

GHST-APARCH 2.888 5.498 0.450 9.232 7.295 4.493 13.582 8.226

N-FGARCH 3.597 5.288 2.920 8.288 8.315 4.935 18.720 9.139

ST-FGARCH 2.791 5.401 1.282 8.580 6.958 4.470 14.409 8.261

SKST-FGARCH 8.527 5.466 1.445 8.525 2.433 3.875 12.668 8.092

SGED-FGARCH 2.582 5.464 1.293 8.642 6.918 4.474 13.290 8.147

JSU-FGARCH 2.408 5.495 1.502 8.500 6.615 4.408 11.902 8.032

SGT-FGARCH 2.564 5.464 1.274 8.653 6.882 4.457 12.969 8.110

GHST-FGARCH 1.764 5.680 0.450 9.217 7.114 4.503 13.717 8.192

Table 2.9: V aR1% loss functions for commodities: Quadratic Loss Function (QLF) and
Asymmetric Linear Tick Loss Function (AlTick).
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EUR/USD GBP/USD JPY/USD AUD/USD

QLF AlTick QLF AlTick QLF AlTick QLF AlTick

N-GARCH 0.209 1.814 0.050 1.271 1.283 2.221 0.784 2.172

ST-GARCH 0.137 1.761 0.032 1.273 1.028 2.198 0.658 2.184

SKST-GARCH 0.145 1.767 0.028 1.278 1.117 2.200 0.556 2.217

SGED-GARCH 0.136 1.762 0.025 1.281 1.100 2.198 0.546 2.218

JSU-GARCH 0.143 1.767 0.027 1.280 1.136 2.201 0.526 2.229

SGT-GARCH 0.135 1.759 0.026 1.280 1.084 2.198 0.548 2.210

GHST-GARCH 0.051 1.745 0.015 1.347 0.882 2.212 0.493 2.257

N-GJRGARCH 0.198 1.805 0.037 1.259 1.281 2.240 0.701 2.167

ST-GJRGARCH 0.130 1.759 0.023 1.265 1.022 2.200 0.586 2.174

SKST-GJRGARCH 0.138 1.766 0.020 1.269 1.114 2.205 0.487 2.200

SGED-GJRGARCH 0.132 1.761 0.017 1.274 1.097 2.203 0.474 2.199

JSU-GJRGARCH 0.136 1.765 0.019 1.272 1.135 2.209 0.459 2.210

SGT-GJRGARCH 0.128 1.757 0.018 1.273 1.080 2.203 0.477 2.193

GHST-GJRGARCH 0.097 1.771 0.013 1.410 0.938 2.206 0.383 2.283

N-APARCH 0.199 1.807 0.038 1.261 1.266 2.243 0.648 2.151

ST-APARCH 0.131 1.761 0.025 1.268 1.014 2.186 0.524 2.160

SKST-APARCH 0.139 1.767 0.021 1.272 1.105 2.196 0.433 2.185

SGED-APARCH 0.133 1.762 0.018 1.277 1.082 2.189 1.215 2.667

JSU-APARCH 0.137 1.766 0.020 1.275 1.124 2.201 0.407 2.195

SGT-APARCH 0.129 1.758 0.019 1.276 1.063 2.186 0.424 2.180

GHST-APARCH 0.097 1.762 0.013 1.328 0.938 2.181 0.383 2.213

N-FGARCH 0.194 1.793 0.039 1.267 1.220 2.236 0.651 2.151

ST-FGARCH 0.128 1.746 0.026 1.273 0.995 2.188 0.529 2.162

SKST-FGARCH 0.136 1.749 0.023 1.278 1.085 2.198 0.437 2.189

SGED-FGARCH 0.131 1.748 0.019 1.282 1.063 2.190 0.429 2.189

JSU-FGARCH 0.134 1.748 0.021 1.280 1.105 2.202 0.425 2.202

SGT-FGARCH 0.126 1.746 0.020 1.281 1.044 2.189 0.429 2.182

GHST-FGARCH 0.107 1.755 0.014 1.339 0.922 2.181 0.394 2.233

Table 2.10: V aR1% loss functions for exchange rates: Quadratic Loss Function (QLF) and
Asymmetric Linear Tick Loss Function (AlTick).





Chapter 3

Testing ES estimation models: An
extreme value theory approach

Abstract

We investigate whether there is a pattern regarding the quality of several models and
methods in Expected Shortfall (ES) estimation for a set of assets, considering a variety
of significance levels. We use conditional models applied to the full distribution and also
models that focus on extreme events through the extreme value theory (EVT) approach,
following the two-step procedure of McNeil & Frey (2000). We assess the performance of
the models using different ES backtests recently proposed in the literature. Our results
suggest that the conditional EVT-based models produce a better 1-day ES performance
compared with conditional models with asymmetric probability distributions for return
innovations. We find that these results are also valid for the recent crisis period. They are
also robust to considering 10-day ES, where the conditional EVT models are again more
accurate and reliable for predicting asset risk losses.





3.1 Introduction

The Basel Committee on Banking Supervision (BIS) has recently sanctioned Expected
Shortfall (ES) as the market risk measure to be used for banking regulation purposes,
replacing the well-known Value-at-Risk (VaR). This change is motivated by the appealing
theoretical properties of ES as a measure of risk and the poor properties of VaR. In par-
ticular, VaR fails to control for “tail risk”. In this transition, the major challenge faced by
financial institutions is the unavailability of simple tools for evaluation of ES forecasts (i.e.
backtesting ES). In fact, the Basel Committee backed down on requiring the backtesting
of ES. A debate, started by Gneiting [49] led many to believe that ES could not be back-
tested because it was not “elicitable”. That point was settled recently by Fissler, Ziegel
and Gneiting [45] and by Acerbi [4]; they demonstrate that lack of elicitability is not an
impediment to backtesting ES. The latest Basel consultative document of January 2016
[13], however, proposed to calculate risk and capital using ES, but to conduct backtesting
only on VaR. The backtests are applied comparing whether the observed percentage of
outcomes covered by the risk measure is consistent with the intended level of coverage.
However, it is important that the capital reserve indicated by the VaR calculation could
be tested, and the hypothesis that the level of reserves is adequate could be subject to a
valid statistical test.

There is not much work evaluating and comparing the performance of ES estima-
tion models using recently introduced ES backtesting. Alexander and Sheedy (2008) [2]
develop a methodology for conducting stress tests in the context of a risk model, propos-
ing a two-stage approach whereby an initial shock event is linked to the probability of
its occurrence. The risk model is used to model the consequences of that shock event in
simulation. They implemented this stress testing procedure for three major currency pairs
and found that results compared favorably with the traditional historical scenario stress
testing approach in all but one extraordinary case. Jalal and Rockinger (2008) [62] use the
circular block bootstrap, consisting in wrapping the data around a circle. This ensure that
each of the original observations has an equal chance of appearing in a simulated series and
that all the blocks have the same length. This method is adequate to take into account
the possible dependency among the exceedances. Focusing on ES forecasts, obtained for
the two step procedure of McNeil and Frey (2000) [75], they find that one cannot reject
the assumption that the forecasted ES measure captures actual shortfalls in a satisfac-
tory manner. Ergün and Jun (2010) [42], apply the Autoregressive Conditional Density
(ARCD) model of Hansen (1994), which allows time-variation in higher-order conditional
moments, to five minute stock index futures returns and examine their out-of-sample one-
step-ahead VaR and ES forecast performance for long and short positions. They also
estimate other GARCH-based models and a model based on the extreme value theory
(EVT), following the two-step approach of McNeil and Frey (2000). Estimation results
show that the ARCD model with a time-varying conditional skewness parameter seems
to provide more accurate ES forecasts. Other studies have VaR as their primary measure
of interest, leaving ES to a second level, such as Venter and Jongh (2004) [92], Marinelli,
D’Addona and Rachev (2007) [74], Zhou (2012) [96], Degiannakis, Floros and Dent (2013)
[32] and Tolikas (2014) [91], where no extensive focus is placed on ES forecasting patters.

169
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Wong, Fan and Zeng (2012) [93] compare ES estimation models considering only the sad-
dlepoint backtest proposed by Wong (2008) [95]. Righi and Ceretta (2015) [83] evaluate
unconditional, conditional and quantile/expectile regression-based models for ES estima-
tion using only the ES backtest proposed by McNeil and Frey (2000) [75] and a proposed
test based on the standard deviation of returns beyond VaR. Clift, Costanzino and Curran
(2016) [23] apply three approaches recently proposed in the literature for backtesting ES,
i.e. Wong (2008), Acerbi & Szekely (2014) and Costanzino & Curran (2015) approaches,
but they only use GARCH volatility and a Normal distribution for ES estimation.

We estimate the conditional Expected Shortfall at 1-day and 10-day horizons based on
the EVT approach using asymmetric probability distributions for return innovations, and
we analyze the accuracy of our estimates before and during the 2008 financial crisis using
daily data. We take into account volatility clustering and leverage effects in return volatil-
ity by using the APARCH model (Ding, Granger and Engle, 1993 [35]) under different
probability distributions assumed for the standardized innovations: Gaussian, Student-t,
skewed Student-t [Fernandez and Steel (1998) [43]], skewed generalized error [Fernandez
and Steel (1998) [43]] and Johnson SU [Johnson (1949) [63]] and following the two-step
procedure of McNeil & Frey (2000) [75]. This two-step procedure fits a generalized Pareto
distribution to the extreme values of the standardized residuals generated by an APARCH
model. Then, we compare the out-of-sample one-step-ahead ES forecast performance of
all these models. For ES evaluation, we use the most recent ES backtesting proposals,
which overcome the limitations of previous tests [McNeil & Frey (2000) [75], Berkowitz
(2001) [15], Kerkhof and Melenberg (2004) [65] and Wong (2008) [95]]. These are the test
of Righi & Ceretta (2013) [83], the first two tests of Acerbi & Szekely (2014) [4], which are
straightforward but require simulation analysis (like the Rigui & Ceretta test), the test of
Graham & Pál (2014) [57] which is an extension of the Lugannani-Rice approach of Wong
(2008) [95], the quantile-space unconditional coverage test of Costanzino & Curran (2015)
[26] for the family of Spectral Risk Measures, of which ES is a member and, finally, the
conditional test of Du & Escanciano (2015) [36]. The last two tests can be thought of as
the continuous limit of the Emmer, Kratz & Tasche (2013) [39] idea in that it is a joint
test of a continuum of VaR levels.

Implementation of the EVT for ES estimation has rarely been applied beyond a one-day
horizon when estimating the ES of financial assets, even though there are several economic
and practical reasons for computing long-term risk measures. Risk horizons longer than
one day are particularly important for risk liquidity management, for long term strategic
asset allocation and for capital requirement and the Basel Committee obliges banks to
compute their level of risk over a ten-day horizon. The difficulty is that it is hard enough
data on 10-day returns over non-overlapping periods. With this motivation we use Filtered
Historical Simulation (FHS) to obtain time series of 10-day returns and we estimate the
10-day ES by applying the same methodology we have used to estimate the 1-day ahead
ES. That way we avoid the limitations of the scaling law.

To sum up, this work contributes to the literature in four ways. First, we use the
APARCH volatility specification in an EVT model and in Filtered Historical Simulation
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(FHS) to take into account volatility clustering and asymmetric returns. Second, we
compare conditional EVT models that incorporate conditional models with asymmetric
probability distributions rarely used in the financial literature to calculate ES. Third, we
calculate VaR and ES over 10-day horizons for risk liquidity management and Basel cap-
ital requirements. Finally, we focus on the accuracy of our risk models for VaR and ES
estimation during pre-crisis and crisis periods as well as under different significance levels
(α).

The remainder of the paper is organized as follows. In Section 3.2 we present a review
of the literature. In Section 3.3 we describe the mathematical properties of the standard
risk measures and explain the backtesting approaches used in our analysis. In Section
3.4 we present the procedure to estimate ES models, including McNeil & Frey procedure
for EVT. In Section 3.5 we present preliminary statistics for our daily data and param-
eter estimates. In Section 3.6 we report the results of the empirical investigation of the
estimated 1-day ES models and 1-day ES backtesting and in Section 3.7 we report the
results obtained after dividing the sample in pre-crisis and crisis periods. In Section 3.8
we provide a description of the different methods to calculate ES for risk horizons longer
than one-day and we assess 10-day ES performance. Finally, Section 3.9 concludes the
paper.

3.2 Review of Literature

The quantiles of the distribution of returns (VaR) can be estimated by extreme value
theory (EVT), which models the tails of the distribution of returns without making any
specific assumption concerning the center of the distribution (Rocco, 2014 [84]). The tail
index parameter in EVT can be estimated nonparametrically without assuming any par-
ticular model for the tail. There are many estimators that can be used to accomplish
this task, such as Hill estimator (Hill, 1975) [60] and Pickands estimator (Pickands, 1975)
[80]. In practice, the number of data points in the tails are limited, leading to small
sample biases. To address this problem, many solutions have been proposed by Huisman,
Koedijk, Kool and Palm (2001) [61], Gomes, de Haan and Rodrigues (2008) [51], Gomes,
Figueiredo, Rodrigues and Miranda (2012) [52], Gomes, Matins and Neves (2007) [53]
and Gomes and Pestana (2007) [54]. Gourieroux and Jasiak (2010a) [56] point out that
the accuracy of these non-parametric estimators is rather poor, due to the difficulty of
estimating the probability of infrequent events. Another problem is that these estimators
depend on the number of observations in a very erratic way.

For the estimation of the tail index parameter in EVT there are also two paramet-
ric approaches. The parameter of the distribution of extremes, including tail index, are
directly estimated by classical methods such as maximum likelihood. The first parametric
approach is Block Maxima (BM) based on the Generalized Extreme Value (GEV), which
divides the sample into m subsamples of n observations each, and picks the maximum of
each subsample; see for example Longin (2000) [70], Diebold, Schuermann and Stroughair
(2000) [34]. The second EVT parametric approach is the Peak Over Threshold (POT)
based on the Generalized Pareto Distribution, according to which any observations that
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exceeds a given high threshold, u, are modelled separately from non-extreme observations.
McNeil and Frey (2000) [75] show that the EVT method based on the General Pareto
distribution yields quantile estimates that are more stable than those from the Hill esti-
mator. Any EVT approach entails choosing an adequate cut-off between the central part
of the distribution and the tails. When working with threshold exceedances the cut-off is
induced by the number of observations in the tail while in the block maxima procedure
it is implied by the choice of the number of blocks. The choice of the cut-off may have
severe consequences for the risk estimates. If it is too low, the VaR forecasts will be bi-
ased and the asymptotic limit theorems do not apply. Conversely, if the threshold is too
large, the VaR forecasts will have large standard deviations due to the limited number of
observations over the threshold. Danielsson, de Haan, Peng and de Vries (2001) [29] and
Ferreira, de Haan, and Peng (2003) [44] develop bootstrap methods for optimal threshold
selection in the context of the Hill and GPD estimators, respectively. The former authors
choose the threshold by minimizing the asymptotic MSE of the Hill estimator. However,
the selection of the threshold using bootstrap procedures is very time consuming. Al-
ternatively, Gonzalo and Olmo (2004) [55] propose a single-step approach to threshold
selection. Gençay and Selçuk (2004) [47] determine the threshold using a combination
of the mean excess function and the Hill plots. Chavez-Demoulin, Embrechts and Sardy
(2014) [19] propose the inclusion of a sensitivity analysis across several threshold values
for a full POT application. As another alternative, Li, Peng and Yang (2010) [69] propose
choosing the threshold in such a way as to reduce the bias of the tail index estimator.

Alternatively, it is possible to calculate the conditional quantile. Based on paramet-
ric methods, the most popular option to calculate the conditional quantile is assuming a
particular distribution for return innovations. The most popular parametric distribution
for standardized returns are Gaussian and Student-t distributions, the Skewed Student-t
distribution of Hansen (1994) [59] [see Ardia and Hoogerheide (2014) [6], Bali and Theo-
dossiou (2007) [9], Giot and Laurent (2003) [48], Halbleib and Pohlmeier (2012) [58],
Kuester et al. (2006) [67], Louzis et al. (2013) [71], Pérignon and Smith (2010a) [79]
and Sajjad et al. (2008) [87] for applications using these distributions]. An alternative
leptokurtic and asymmetric distribution that has been considered in this context is the
Skewed-Generalized-t (SGT) distribution proposed by Theodossiou (1998) [90] [see Bali,
Mo and Tang (2008) [8], Bali and Theodossiou (2007) [9] and Cheng and Hung (2011)
[21] for applications of the SGT distribution to VaR forecasting]. The SGT distribution
has the attractive feature of encompassing most of the distributions that are usually as-
sumed for standardized returns, such as Gaussian, Generalized Error Distribution (GED),
Student-t and Skewed Student-t distributions, for example. Recently, Ergen (2015) [41]
has considered the Skewed-t distribution proposed by Azzalini and Capitanio (2003) [7]
and Aas and Haff (2016) [1] propose to use the Generalized Hyperbolic Skew Student-t
distribution for unconditional and conditional VaR forecasting.

Another option is to calculate the conditional quantile using the EVT approach.
Danielsson and de Vries (2000) [30] and McNeil and Frey (2000) [75] propose to estimate
the quantiles of the innovations by applying EVT to the standardized returns, which are
i.i.d. if the conditional mean and variance are specified correctly. Chan and Gray (2006)
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[18] introduce a description of the conditional EVT and its application to the forecasting
of the VaR of daily electricity prices. In particular, McNeil and Frey (2000) [75] propose
first filtering the returns from estimating a GARCH model, then applying EVT to the
tails of the innovations while bootstrapping to the central part of the distribution. They
verify that the General Pareto distribution of EVT results in better estimates for ES than
the Gaussian model. Jalal and Rockinger (2008) [62] show that this procedure appears to
perform a remarkable job when combined with a well-chosen threshold estimation, such
as that in Gonzalo and Olmo (2004) [55].

Based on non-parametric methods, the quantiles of the innovations can be also es-
timated using bootstrap methods that do not assume any particular distribution (Ruiz
and Pascual, 2002 [86]). In particular, Barone-Adesi, Giannopoulus and Vosper (1999,
2002) [11] [12] propose a bootstrap method known as filtered historical simulation (FHS),
which is based on the idea of using random draws with replacement from the standard-
ized residuals and does not incorporate parameter uncertainty; see Engle (2003) [40] and
Pritsker (2006) [81] for implementations. Pascual, Ruiz and Romo (2006) [78] propose a
bootstrap procedure that allows for the incorporation of parameter uncertainty. Bootstrap
procedures have the advantage that they allow for the construction of confidence intervals
for VaR estimates. Kourema et al. (2011) [66] compare unconditional and conditional
historical simulation and EVT in VaR and ES estimation. They conclude that conditional
EVT model is more accurate and reliable for VaR forecasting, according to the rate of
violations and Wald, Kupiec and Christoffersen tests, and for ES forecasting, according
to an ES test proposed by them based on average difference between the realized returns
and the forecast ES.

With respect to ES backtesting Berkowitz (2001) [15], Kerkhof & Melenberg (2004)
[65] and Wong (2008) [95] proposed backtesting of risk measures based on size tail losses.
While Berkowitz’s censored Gaussian approach and Kerkhof & Melenberg’s functional
delta method rely on large samples for convergence to the required limiting distributions,
the saddlepoint techniques proposed by Wong are accurate and have reasonable test power
even if the sample size is small. The saddlepoint technique makes use of a small sample
asymptotic method that involves higher order moments of the underlying distribution and
is able to approximate to a very high degree of accuracy the required tail probability even
for very small sample sizes. But this test has a few disadvantages, such as the Gaussian
distribution assumption and the full distribution conditional standard deviation that is
used as the dispersion measure. To overcome these limitations, Emmer, Kratz & Tasche
(2013) [39] propose a new ES backtest based on a simple approximative approach to the
backtesting of ES from a representation of ES based on several VaR levels, by Righi &
Ceretta (2013) [82], which verifies whether the average deviation from the ES estimate
is zero but they consider the dispersion only for the exceptions rather than for the full
sample. Later, Acerbi & Szekely (2014) [4] introduce three model-free, non-parametric
backtest methodologies for ES that are shown to be more powerful than the Basel VaR
test. Graham & Pál (2014) [57] generalize Wong’s result in a tractable and intutive man-
ner to allow for any VaR modeling, and therefore distributional, approach. Costanzino &
Curran (2015) [26] developed a methodology that can be used to backtest any spectral risk
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measure, including ES. It is based on the idea that ES is an average of a continuum of VaR
levels. They explain an unconditional ES backtest. Later, Du & Escanciano (2015) [36]
propose backtest for ES based on cumulative violations, which are the natural analogue
of the commonly used conditional backtest for VaR, extending the results obtained by
Costanzino & Curran (2015) [26].

3.3 Background

3.3.1 The Mathematical Properties of Risk Measures

(The mathematical properties of risk measures have been extracted from Emmer, Kratz
and Tasche (2015) [39] and Ziegel (2016) [97].)

3.3.1.1 Coherence and Related Properties

Artzner et al. [3] state four axioms which any risk measure used for effective risk regu-
lation and management should satisfy. Such risk measures are then said to be coherent.
Coherence is a fundamental concept related to the acceptability of a risk measure.

A risk measure ρ is called coherent if it satisfies the following conditions,

• Homogeneity. ρ is homogeneous if for all variables Y and h ≥ 0 it holds that
ρ(hY ) = hρ(Y ).

• Subadditivity. ρ is subadditive if for all variables Y1 and Y2 it holds that ρ(Y1 +
Y2) ≤ ρ(Y1) + ρ(Y2).

• Monotonicity. ρ is monotonic if for all variables Y1 and Y2 it holds that Y1 ≤ Y2 ⇒
ρ(Y1) ≤ ρ(Y2)

• Translation invariance. ρ is translation invariant if for all variables Y and a ∈ R
it holds that ρ(Y − a) = ρ(Y )− a.

The concept of convex measure of risk is an extension of that of coherent risk measure.
A risk measure is convex if it satisfies the condition of monotonicity, translation and
convexity defined as

ρ(λY1 + (1− λ)Y2) ≤ λρ(Y1) + (1− λ)ρ(Y2)

for any λ ∈ (0, 1). It is also assumed that ρ(0) = 0 as a convenient normalization.
Here, we can notice the direct link with the notion of diversification: the risk of a

diversed portfolio, which in this case is λY1 + (1 − λ)Y2, is less or equal to the weighted
average of individual risk. Accordingly, it is not surprising that any positive homogeneous
and subadditive risk measure is also convex.

Comonotonic additivity is another property of risk measures that is mainly of interest
as a complementary property to subadditivity.

Two real-valued random variables Y1 and Y2 are said comonotonic if there exist a
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real-valued random variable X (the common risk factor) and monotonic non-decreasing
functions f1 and f2 such that

Y1 = f1(X) and Y2 = f2(X)

This simply means that, for instance, two risky positions Y1 and Y2 are perfectely and
also positively dependent on the same source of risk X. Comonotonicity may be consid-
ered the strongest possible dependence of random variables (Embrechts et al. [37]).

A risk measure ρ is comonotonically additive if for any comonotonic random vari-
ables Y1 and Y2 it holds that

ρ(Y1 + Y2) = ρ(Y1) + ρ(Y2)

The reason why this property extremely matters, is intuitive and related to the notion
of diversification.

As a matter of fact, if two different risky positions perfectly depend on the same risk
factor, they should not benefit from diversification effects.

Thus, in risk management, we should always use comonotonic additive risk measures.
A risk measure ρ is law-invariant if it depends entirely on the distribution of the random

variable associated to it. More precisely, let two random variables Y1 and Y2 and their
corresponding distribution functions FY1 , FY2 , a risk measure ρ(·) is a law-invariant risk
measure if

FY1 = FY2 ⇒ ρ(Y1) = ρ(Y2)

A direct consequence of this fact is that, whenever we deal with risk measures that
are not law-invariant, we could not evaluate the riskiness of a position through the loss
distribution.

3.3.1.2 Elicitability

An interesting criterion when estimating a risk measure is elicitability, introduced by Os-
band [77] and Lambert et al. [68], then by Gneiting [49]. We briefly recall its definition,
which is linked to the one of scoring function. It is also relevant a recent review on proba-
bilistic forecasting, including the notion of elicitability, by Gneiting and Katzfuss [50]. For
the definition of elicitability we first introduce the concept of strictly consistent scoring
functions.

A scoring function aims at assigning a numerical score to a single-valued point forecast
based on the predictive point and realization. A scoring function is a function

s : R× R → [0,∞)

(x, y) → s(x, y)

where x and y are the point forecasts and observations respectively.

Let ν be a functional on a class of probability measures P on R,

ν : P → 2R

P 7→ ν(P ) ⊂ R



176 3.3. Background

A scoring function s : R×R→ [0,∞) is consistent for the functional ν relative to
the class P if and only if, for all P ∈ P, t ∈ ν(P ) and x ∈ R,

EP [s(t, Y )] ≤ EP [s(x, Y )]

Y being the random variable defined on (Ω,F , P ).
The function s is strictly consistent if it is consistent and

EP [s(t, Y )] = EP [s(x, Y )]⇒ x ∈ ν(P )

The functional ν is elicitable relative to P if and only if there is a scoring function s
which is strictly consistent for ν relative to P.

Elicitability is a helpful criterion for the determination of optimal point forecasts:
the class of (strictly) consistent scoring functions for a functional is identical to the class
of functions under which (only) the functional is an optimal point forecast. Hence, if we
have found a strictly consistent scoring function for a functional ν, we can determine the
optimal forecast x̂ for ν(P ) by

x̂ = arg min
x

EP [s(x, Y )]

Hence elicitability of a functional of probability distributions may be interpreted as the
property that the functional can be estimated by generalized regression. Another prop-
erty, that makes elicitability an important concept, is that it can be used for comparing
the performance of different forecast methods.

3.3.1.3 Conditional Elicitability

So far we have only distinguished between elicitable and non-elicitable functionals. How-
ever, it turns out that some useful risk measures are not elicitable but ”2nd order” elicitable
in the following sense.

A functional ν of P is called conditionally elicitable if there exist functionals γ̃
and γ : D → 2R with D ⊂ P × 2R such that

(i) γ̃ is elicitable relative to P.

(ii) (P, γ̃(P )) ∈ D for all P ∈ P

(iii) for all c ∈ γ̃(P) the functional γc : Pc → 2R, P 7→ γ(P, c) ⊂ R is elicitable relative
to Pc = {P ∈ P : (P, c) ∈ D}, and

(iv) ν(P ) = γ(P, γ̃(P )) for all P ∈ P.

Sometimes, c and γ(P, c) respectively are single-valued. In this case we identify the one-
point sets c and γ(P, c) respectively with their unique elements.

Conditional elicitability is a helpful concept for the forecasting of some risk measures
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which are not elicitable. ES is an example of a risk measure whose conditional elicitability
provides the possibility to forecast it in two steps. Indeed, due to the elicitability of γ̃(P )
as fix and forecast γ(P, c) due to the elicitability of γc. Note that every elicitable functional
is conditionally elicitable.

3.3.1.4 Robustness

Another important issue when estimating risk measures is robustness. Without robustness,
results may not meaningful, since then small measurement errors in the loss distribution
can have a huge impact on the estimate of the risk measure. This is why we investigate
robustness in terms of continuity. Since most of the relevant risk measures are not continu-
ous with respect to the weak topology, we need stronger notion of convergence. Therefore,
and due to some scaling properties which are convenient in risk management, it is useful
to consider the Wasserstein distance when investigating the robustness of risk measures
(see Bellini et al. [14]).

The Wasserstein distance between two probability measures P and Q is defined as
follows,

dW (P,Q) = infE(|X − Y |) : X ∼ P, Y ∼ Q
When we call a risk measure robust with respect to the Wasserstein distance , we mean

continuity with respect to the Wasserstein distance in the following sense,
Let Pn, n ≥ 1, and P be probability measures, and Xn ∼ Pn, n ≥ 1 and P ∼ X. A

risk measure ρ is called continuous at X with respect to the Wasserstein distance if

lim
n→∞

dW (Xn, X) = 0⇒ lim
n→∞

|ρ(Xn)− ρ(X)| = 0

Cont et al. [25] use a different, potentially more intuitive concept of robustness which
takes the estimation procedure into account. They investigate robustness as the sensitivity
of the risk measure estimate to the addition of a new data point to the data set which is
used as basis for estimation. It turns out that for the same risk measure the estimation
method can have a significant impact on the sensitivity. For instance, the risk measure
estimate can react in a completely different way on an additional data point if we fit a
parametric model instead of using the empirical loss distribution. Thus, robustness in
the sense of Cont et al. relates more to sensitivity to outliers in the data sample than
to mere measurement errors. Cont et al. also show that there is a conflict between the
subadditivity and robustness of a risk measure.

In contrast to robustness based on continuity with respect to weak topology or Wasser-
stein distance, the concept of Cont et al. allows to distinguish between different degrees of
robustness. This concept may make it hard to decide whether or not a risk measure is still
reasonably risk sensitive or no longer robust with respect to data outliers in the estimation
sample. However, in finance and insurance, large values do occur and are not outliers or
measurement errors, but facts that are parts of the observed process itself. In particular,
in (re)insurance, one could argue that large claims are actually more accurately monitored
than small ones, and their values better estimated. Thus the question of robustness in the
sense of Cont et al. may not be so relevant in this context.
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3.3.2 Standard Risk Measures

Value-at-Risk (VaR) is a simple risk measure that tells us what loss will be exceeded only
a small percentage of time in the next K trading days (α · 100%). Thus, VaR for some
significance level α is implicitly defined from the probability of getting an even larger loss
as in Pr(rt+k < V aRαt+k) = α, where rt+k is the log-return of an asset in period t + k.
In short, V aRαt+k is defined as the number so that we would get a worse log-return only
with probability α. It is easy to obtain an analytical formulation for VaR. Suppose that
we are predicting the VaR for some α for 1-day ahead return, Pr(rt+1 < V aRαt+1) = α,
where rt+1 = µt+1 + σt+1zt+1. We subtract both terms by µt, and divide the resulting
by σt+1 returns and we obtain Pr(zt+1 < (V aRαt+1 − µt+1)/σt+1) = α, where µt+1 is
the conditional mean of an asset in period t + 1, σ2

t+1 is the conditional variance of an
asset in period t+ 1 and zt+1 represents the white noise time series of return innovations
which will follow a given probability distribution. This expression can be rewritten as,
F ((V aRαt+1 − µt+1)/σt+1) = α, isolating V aRαt+1 in this expression gives us,

V aRαt+1 = µt+1 + σt+1F
−1(α) (3.1)

where F denotes the probability distribution function of the return innovations zt. In
practical financial analysis the α-th quantile of the distribution of log-returns will be neg-
ative for low α values. Given the drawbacks of VaR as a risk measure, it is convenient to
compute the ES, which accounts for the magnitude of large losses as well as their occurring
probability. The ES is defined from VaR as ESαt+k = Et+k[rt+k|rt+k < V aRαt+k] and tells
us the expected value of day k loss, conditional on it being worse than the VaR. As VaR is
frequently negative, the expectation below its value is also negative. Extending the deduc-
tion of (3.1) to 1-day ahead, ES gives us the following, ESαt+1 = Et+1[rt+1|rt+1 < V aRαt+1],
from the fact that rt+1 = µt+1 + σt+1zt+1 and using the properties of the expectation op-
erator, ESαt+1 = µt+1 + σt+1Et+1[zt+1|zt+1 < (V aRαt+1 − µt+1)/σt+1], recalling from (3.1)
that V aRαt+1 = µt+1 + σt+1Et+1[zt+1|zt+1 < F−1(α)], we get 1,

ESαt+1 = µt+1 + σt+1Et+1[zt+1|zt+1 < F−1(α)] (3.2)

If we assume the existence of an absolutely continuous cdf F , ES is defined as

Et+1[zt+1|zt+1 < F−1(α)] =
1

α

∫ α

0
F−1(s)ds =

1

α

∫ F−1(α)

−∞
rf(r)dr

3.3.3 Properties of the Standard Risk Measures

The subadditivite property fails to hold for VaR in general, so VaR is not a coherent
measure. Indeed, examples (see e.g. Embrechts et al. [38]) can be given where it is
superadditive, i.e.

V aRα(

n∑
i=1

Yi) <

n∑
i=1

V aRα(Yi)

Whether or not VaR is subadditive depends on the properties of the joint loss distri-
butions. Three standard cases of subadditivity of VaR,

1We assume that V aRα and ESα are < 0.
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(i) The random variables are independent and identically distributed (iid) as well as
positively regularly varying.

(ii) The random variables have an elliptical distribution.

(iii) The random variables have an Archimedean survival dependence structure.

The lack of subadditivity contradicts the notion that there should be a diversification
benefit associated with merging portfolios. As a consequence, a decentralization of risk
management using VaR is difficult since we cannot be sure that by aggregating VaR
numbers for different portfolios or business units we will obtain a bound for the overall
risk of the enterprise. Moreover, VaR at level α gives no information about the severity
of tail losses which occur with a probability less than 1−α, in contrast to ES at the same
confidence level. When looking at aggregated risks

∑n
i=1 Yi, it is well known (Acerbi and

Tasche [5]) that the ES risk measure is coherent. In particular, in contrast to VaR, it is
generally subadditive.

With respect to the weak topology most of the common risk measures are discontinu-
ous. Therefore and due to some convenient scaling properties detailed in Proposition 2.1
of Stahl et al. [89], it is standard in risk management to consider robustness as continuity
with respect to the Wasserstein distance. According to them, ES is discontinuous with
respect to the weak topology whereas VaR at the level α is robust at F0 if F−1

0 is con-
tinuous at α. Stahl et al. observe that ES is continuous with respect to the Wasserstein
distance with constant C = max{ α

1−α ; 1−α
α }, which implies continuity with respect to the

Wasserstein distance.

With regard to robustness in the sense given in Cont et al. [25], these authors demon-
strate that historical ES is much more sensitive to the addition of a data point than VaR.
Moreover, in contrast to VaR, ES is sensitive to the data point’s size.

Finally, although ES is a coherent risk measure and, in contrast to VaR, is sensi-
tive to the severity of losses beyond VaR, a potential deficiency arises compared to VaR,
when it comes to forecasting and backtesting ES. Gneiting [49] showed that ES is not
elicitable. He proved that the existence of convex level sets is a necessary condition for
the elicitability of a risk measure and disproved the existence of convex level sets for the
ES. This means that it is not a possible to find a scoring function s(x, y) such that ES is
defined as the forecast x given a distribution Y that minimizes the scoring function s(x, y).

What Gneiting showed was that this was not possible to do for ES since the scor-
ing function does not exist. Following his findings, many others have interpreted this as
evidence that it is not possible to backtest ES at all. This can be seen in for example
Carver (2013) [17]. The paper by Gneiting changed the discussion of ES from how it could
be backtest to a question of whether it was even possible to do so.

Not all people have interpreted Gneiting’s findings as evidence that ES is not back-
testable. One of the outstanding issues after his findings was that successful attempts of
backtesting ES had been made before 2011. For example Kerkhof and Melenberg (2004)
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[65] found methods that performed better than comparable VaR backtests. Following
Gneiting’s findings, Emmer et al. (2013) [39], showed that ES is conditionally elicitable
for continuous distributions with finite means. ES consists of two elicitable components.
Backtesting can then be done by testing the two components separately. We let Y denote
a random variable with a parametric or empirical distribution from which the estimates
are drawn. They proposed using the following algorithm,

• Calculate the quantile as

V aRα(Y ) = arg min
x∈R

E[(α− 1{Y <x})(Y − x)]

• Calculate ESα(Y ) = E[Y |Y < V aRα] using the scoring function EP [(Y − x)2], with
probabilities P (A) = P (A|Y < V aRα). This gives

ESα(Y ) = arg min
x∈R

EP [(Y − x)2]

We know that VaR is elicitable (see Appendix A). If we first confirm this, then what is
left is simply a conditional expectation and expectations are always elicitable. In the same
paper, Emmer et al. (2013) [39] made a careful comparison of different measures and their
mathematical properties. They concluded that ES is the most appropriate risk measure
even though it is not elicitable. A similar discussion of the implications of different risk
measures and its effect on regulation can be found in Chen (2014) [20].

Acerbi and Szekely (2014) [4] argued in a recent article that even without the con-
ditional elicitability, ES is still backtestable. Elicitability is mainly a way to rank the
forecasting performance of different models. While VaR is elicitable, this property is not
exploited in a normal VaR backtest. In fact, VaR backtests are still based on counting
exceptions. If these tests are simple and entail the recording of just one number, it is
not because VaR is elicitable, but because quantiles define a Bernoulli random variable.
Any other elicitable statistic simply does not. This means that ES cannot be backtested
through any scoring function but there is no reason why this could not be done using
another method. This means that if we can find a backtest that does not exploit the
property of elicitability, there is no reason why backtest would not work.

Elicitability allows to compare in a natural way different models that forecast a statis-
tics in the exact same sequence of events, while recording only point predictions. Acerbi
and Szekely (2014) [4] put the following example: “if a bank A has multiple VaR models
in place for its P&L, the mean score can be used to select the best in class due to VaR
is elicitable. But this is model selection, not model testing. It’s a relative ranking not an
absolute validation”.

Regulators on the contrary need to validate individual models from different banks
on an absolute scale. To this purpose, elicitability would still require either the collection
of the predictive distributions or strong distributional assumptions, with no guarantee of
better power a priori.
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It is interesting to note that other important risk measures like the variance are not
elicitable either (Lambert et al. [68]). Emmer et al. (2015) [39] showed that variance is
conditionally elicitable for continuous distributions with finite second moments.

Property variance VaR ES

Coherence X

Comonotonic additivity X X

Robustness, weak topology X

Robustness, Wasserstein distance X X X

Elicitability X

Conditional Elicitability X X X

Table 3.1: Properties of standard risk measures (Emmer et al., 2015 [39])

3.3.4 Estimating risk: Conditional models for the full distribution

We now define the VaR and ES under conditional models. For that purpose, consider
that R is a stationary process with a fully parametric location-scale specification based on
the expectation, dispersion and random component; conforming to rt = µt + σtzt, where
for period t, rt is the returns of an asset, µt is the conditional mean (location), σt is the
conditional standard deviation (scale) and zt represents a zero location and unit scale
innovations white noise series, which can assume many probability distribution functions
F . Under this specification, the risk measures become,

V aRαt = µt + σtF
−1(α)

ESαt = µt + σt

(
1

α

∫ α

0
F−1(s)ds

)

SDα
t =

[
σ2
t

1

α

∫ α

0

(
F−1(s)−

(
1

α

∫ α

0
F−1(s)ds

))2

ds

]1/2

The last one is the dispersion around the expected value truncated by the VaR, the
SD measure. This will be considered for ES backtesting of Righi & Ceretta.

3.3.5 Estimating risk: Conditional models for extreme events

The other approach is to consider only extreme events, precisely those captured by risk
measures. In this regard, there is the Extreme Value Theory (EVT), which is concerned
with the distribution of the smallest order statistics and focuses only on the tail of the
returns distribution. For further reference on the EVT for modeling the distribution of
asset returns, see Longin (2005) [70]. Although the EVT is interesting in risk modeling,
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the stylized facts make the iid assumption inappropriate for most financial data. To solve
this issue, one should apply the EVT analysis to the filtered residuals zt, as proposed
by Diebold, Schuermann and Stroughair (2000) [34] and McNeil and Frey (2000) [75].
This is possible because under a correct model specification, the filtered residuals will
be approximately iid, an assumption for EVT modeling. Under iid assumption, consider
the distribution function of excess Y = u − Z 2 over a high, fixed threshold u 3, that is
Fu(y) = P (Y = u− Z ≤ y|Z < u) = [F (u)− F (u− y)]/[F (u)], y ≥ 0 4. For excesses over
the threshold, Pickands (1975) [80] elucidates that the generalized Pareto distribution
(GPD) arises naturally as the limit distribution of the scaled excesses of identical and
independently distributed (iid) random variables over high thresholds. We say that excess
Y = u− Z ∼ GPD(ξ, β) if

Fu(y) ≈ GPDξ,β(y) =


1−

(
1 +

ξy

β

)−1/ξ

, ξ 6= 0,

1− exp
(
− y
β

)
, ξ = 0.

GPDξ,β(y) has support y ≥ 0 if ξ ≥ 0 and 0 ≤ y ≤ −β/ξ if ξ < 0 where β > 0 is scale
parameter and ξ is the tail shape parameter, which is crucial because it governs the tail
behavior of GPDξ,β(y). The case ξ > 0 corresponds to heavy-tailed distributions whose
tails decay like power functions, such as Pareto, Student-t, Cauchy, Burr, loggamma and
Fréchet distributions. In this case, the tail index parameter equal to 1/ξ corresponds to, for
example, the degrees of freedom of the Student-t distribution. The case ξ = 0 corresponds
to distributions like normal, exponential, gamma and lognormal, whose tails essentially
decay exponentially. The final group of distributions are short-tailed distributions (ξ < 0)
with a finite right endpoint, such as the uniform and beta distributions.

We assume the tail of the underlying distribution begins at the threshold u. From
our sample of T data a random number Tu will exceed this threshold. If we assume that
the Tu excesses over the threshold are iid with exact GPD distribution, Smith (1987) [88]
has shown that maximum likelihood estimates ξ̂ = ξ̂N and β̂ = β̂N of the GPD parameters
ξ and β are consistent and asymptotically normal as Tu →∞, provided ξ > −1/2. Under
the weaker assumption that the excesses are iid from Fu(y) which is only approximately
GPD he also obtains asymptotic normality results for ξ and β.

Consider now the following equality for points z < u in the left tail of F

F (z) = F (u)− Fu(u− z)F (u) = F (u)(1− Fu(u− z))

2Notice that we focus on the lower tail of the data. We have adapted all formulations to consider this
issue.

3The choice of u has a trade-off: very high u leads to an estimator with large variance, while low u
induces bias. The choice of u is the most important implementation issue in EVT.

4VaR and ES will be modeled using EVT concept of threshold exceedance. The peaks-over-threshold
(POT) models developed around this concept center on the analysis of the generalized Pareto distribution,
which may be understood as a limiting tail distribution for a wide variety of commonly studied continuous
distributions. The POT is the typical approach used in finance.
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If we estimate the first term on the right hand side of the equation using random
proportion of the data in the tail Tu/T , and if we estimate the second term by approxi-
mating the excess distribution with a generalized Pareto distribution fitted by maximum
likelihood, we get the tail estimator

F̂Z(z) =
Tu
T

(
1 + ξ̂

u− z
β̂

)−1/ξ̂

It is very important to note that the distribution F of the conditional model and
the distribution GPDξ,ν for {z} over threshold u are not linked. Thus, it is possible
to use distinct conditional models to filter data before applying the EVT to zT . In this
chapter, we assume that F can be different asymmetric distributions to maintain a pattern
with the distributions functions we used in the previous chapter. Thus, we have different
conditional EVT approaches. The risk measures are,

V aRαt = µt + σtF
−1
z,u (α) = µt + σt

(
u+

β

ξ

[
1−

(
α

Tu/T

)−ξ])

ESαt = µt + σt

(
1

α

∫ α

0
F−1
z,u (s)ds

)
=
V aRαt
1− ξ

−
(
β + ξu

1− ξ

)

SDα
t =

[
σ2
t

1

α

∫ α

0

(
F−1
z,u (s)−

(
1

α

∫ α

0
F−1
z,u (s)ds

))2

ds

]1/2

To sum up, for this purpose, McNeil & Frey proceed as follows: In the first step, they
filter the dependence in the returns series by computing the residual of a GARCH-type
model, which should be iid if the GARCH-type model correctly fits the data. In the second
step, they model the extreme behavior of the residual using the tail approach explained
previously. Finally, in order to produce a VaR estimate of the original return, they trace
back the steps by first producing the α-quantile estimate for the GARCH-type filtered
residuals and convert the α-quantile estimate to the original return using the conditional
forecast for the required horizon.

It is worth emphasizing that the GARCH-EVT approach incorporates the two in-
gredients required for an accurate evaluation of the conditional VaR, i.e. a model for the
dynamics of the first and second moments, and an appropriate model for the conditional
distribution. An obvious improvement of this approach as compared to the unconditional
EVT is that incorporates in the VaR changes in expected return and in volatility. For
instance, if we assume a change in volatility over the recent period, the GARCH-EVT
is able to incorporate this new feature in its VaR evaluation, whereas the unconditional
EVT remains stuck at the average level of volatility over the estimation sample.

McNeil & Frey (2000) [75] also provides a backtesting experiment, in which they com-
pare the performances of various methods to correctly reproduce the quantiles of several
asset returns. They show that the GARCH-EVT performs much better than uncondi-
tional EVT, suggesting that the ability to capture changes in volatility is crucial for VaR
computation.
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3.3.6 Estimating risk: Filtered Historical Simulation

Filtered Historical Simulation (FHS) method of Barone-Adesi et al. (1998, 1999) [10] [11]
applies statistical bootstrap on a parametric, dynamic model for return distributions, such
as GARCH-type model. This filtering allows h-day return distributions to be generated
from overlapping samples and we can also increase the number of observations used for
building the h-day portfolio return distribution through the use of the bootstrap. FHS is
in fact a hybrid method combining some attractive features of both historical and Monte
Carlo VaR models. We use this method to generate 1-day and 10-day return distributions.

Suppose that at a time s, we want to simulate returns for the next h days. We select
{z∗s+1, z

∗
s+2, ..., z

∗
s+h} at random with replacement from the set of standardized innovations

of our model {ẑ1, ẑ2, ..., ẑs} (statistical bootstrap). The data for time s is known. Using the
APARCH model to calculate future returns in h days for the dates t = s+1, s+2, ..., s+h
is as below:

σ∗t = (ω̂ + α̂1(|ε∗t−1| − γ̂1ε
∗
t−1)δ + β̂1(σ∗t−1)δ̂)1/δ̂ (3.3)

ε∗t = z∗t σ
∗
t (3.4)

r∗t = φ̂0 + φ̂1r
∗
t−1 + ε∗t (3.5)

The algorithm contains the following steps,

(i) Select a set {z∗s+1, z
∗
s+2, ..., z

∗
s+h} which has h elements and is chosen randomly with

replacement from {ẑ1, ẑ2, ..., ẑs}.

(ii) Assumed as initial values the last estimates: σ∗s = σ̂s and ε∗s = ε̂s.

(iii) Set up for t = s+ 1, s+ 2, ..., s+ h,

• Plug σ∗t−1 and ε∗t−1 in equation (3.3) and get σ∗t .

• Plug z∗t (obtained in step 1) and σ∗t (obtained previously) in equation (3.4) and
get ε∗t .

• Plug rt−1 (last return of the historical sample, i.e. rs) and ε∗t (obtained previ-
ously) in equation (3.5) and get r∗t .

• Then the simulated log return over a risk horizon of h days (r∗s:h) is the sum
r∗s+1 + r∗s+2 + ...+ r∗s+h

(iv) Repeating this procedure N times, in our case 5000, produces 5000 simulated h-day
returns.

We will have in s = 1, where we have used 2915 observations previously for estimating
the model and generate from in-sample standardized innovations (filtering out APARCH
and AR models) 5000 paths with length h periods using bootstrap and recover the h-day
density by cumulating returns, h-day VaR, h-day ES and h-day SD calculated as

V aRαt+h = Percentile
{
r∗i,s=1,s:h

N
i=1
, 100α

}
i = 1, 2, ..., N
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where r∗i,s=1,s:h
N
i=1

is the 5000 by 1 vector than contains the 10-day log-returns of the asset;

ESαt+h = (Nα)−1
N∑
i=1

(r∗i,s=1,s:h1{r∗s=1,s:h<V aR
α
t+h})

where 1 is the indicator function that assumes value 1 if the h-day returns are lower than
VaR and 0 otherwise. Thus, the ES is just the mean of the values below VaR;

SDα
t+h =

{
(Nα)−1

N∑
i=1

[(r∗i,s=1,s:h1{r∗i,s=1,s:h<V aR
α
t+h
})− ESαt+h]

}1/2

and, thus SD is just the standard deviation around the ES, considering only the values
below VaR.

We repeat all steps using recursive forecasts (expanding window) to estimate the model,
and h-day ahead out-of-sample forecasts are produced, where the sample is increasing by
one until s = 1260, the model are re-estimated each day, and h-day ahead forecasts are
produced. Therefore we are going to 1260 (the last five years of the sample) forecast of
h-day ahead VaR, ES and SD risk measures.

Under EVT approach, following the McNeil & Frey (2000) [75] approach, we fit the
left tail of the standardized innovations with the Generalized Pareto distribution (GPD)
and we estimate the parameters ξ and β. We generate patterns (5000 simulations) with
length h periods of returns from the fitted models and sampling innovations from in-sample
residuals (FHS) using a combination of bootstrap and GPD simulation according to the
following algorithm which was also proposed independently by Danielsson and de Vries
(2000) [31],

(i) Randomly select standardized innovations from the samples generated (N = 5000)
in s = 1.

(ii) If standardized innovations are less than threshold (u), sample a GPD(ξ̂, β̂) dis-
tributed excess z∗ from the left tail and return u− z∗.

(iii) Otherwise return standardized innovations themselves.

(iv) Finally, the procedure is the same as previously described, i.e. we trace back from
simulated standardized innovations to recover the returns and we end up with N
sequences of hypothetical daily returns for day s + 1 through day s + h. From
these hypothetical daily returns, we calculate the hypothetical h-day returns as
r∗s:h =

∑H
h=1 ri,s+h for i = 1, 2, ..., N . If we collect the N hypothetical h-day returns

in a set r∗i,s=1,s:h
N
i=1

, then we calculate the h-day VaR, 10-day ES and h-day SD, as
we have defined previously.

(v) We repeat this procedure for s+ 1, s+ 2, s+ 3, ..., s+ 1259 (out-of-sample period).

The advantages of FHS approach are 1) we capture current market conditions by means
of the volatility dynamics, 2) no assumptions need to be made on the distribution of the
return shocks and 3) the method allows for the compution of any risk measure for any
investment horizon of interest because we can generate as many h-day returns as we like.
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3.4 Data and Estimation Models

We work with daily percentage returns on assets over the sample period 10/02/2000 -
09/30/2016 (number of observations 4175). Daily returns are computed as 100 times the
difference of the log prices, i.e. 100[ln(Pt+1) − ln(Pt)]%. The financial assets considered
are: International Business Machines [IBM] ($), Banco Santander [SAN] (e), AXA [AXA]
(e) and BP [BP] (£). The data were extracted from Datastream.

Table 3.2 reports descriptive statistics for the daily percentage returns series. All of
them have a mean close to zero. Median returns are zero. SAN is the one with a wider total
range (max−min) and BP has a narrower range. The unconditional standard deviation
(S.D.) is around 2, being the highest one for AXA and the lowest one for IBM. According
to the skewness statistic, all assets have negative skewness, except AXA. For all assets
considered, the kurtosis statistic is large, implying that the distributions of those returns
have much thicker tails than Normal distribution. Similarly, the Jarque-Bera statistic
(J-B) is statistically significant, rejecting the assumption of normality in all cases.

Mean (%) Median (%) Max Min S.D. Skewness Kurtosis J-B

IBM 0.83 0 11.35 -16.89 1.58 -0.22 12.33 15194.87

SAN 1.56 0 20.88 -22.17 2.26 -0.07 10.50 9793.17

AXA 1.47 0 19.78 -20.35 2.69 0.19 10.24 9155.81

BP -0.69 0 10.58 -14.04 1.69 -0.19 8.01 4390.88

Table 3.2: Descriptive statistics for the daily percentage returns.

In order to perform a ES analysis we estimate volatility model APARCH (Ding,
Granger and Engle, 1993 [35]) under the different probability distributions assumed for the
innovations: Gaussian, Student-t, skewed Student-t, skewed generalized error and Johnson
SU

5. An AR(1) model was considered for the conditional mean return, which is sufficient
to produce serially uncorrelated innovations 6.

The APARCH model is particularly successful in capturing the heteroscedasticity ex-
hibited by the data due to the power of the conditional standard deviation is a free
parameter, which provides more flexibility to the dynamics of volatility.

For a given return series r1, ..., rT , the model adopted is

rt = φ0 + φ1rt−1 + εt εt = σtzt t = 1, 2, ...T

σδt = ω + α1(|εt−i| − γ1εt−i)
δ + β1(σt−j)

δ

5We provided a description of probability distributions in Appendices A.5 - A.9 of Chapter 2.
6All computations were performed with the rugarch package (version 1.3-4) of R software (version 3.1.1)

designed for the estimation and forecast of various univariate ARCH-type models. In the estimation of
EVT models, we use ismev (version 1.41) and evir (version 1.7-3) packages.
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where ω, αi, γi, βj and δ are additional parameters to be estimated. The parameter
γi reflects the leverage effect (−1 < γi < 1). A positive (resp. negative) value of γi means
that past negative (resp. positive) shocks have a deeper impact on current conditional
volatility than past positive (resp. negative) shocks. The parameter δ plays the role of a
Box-Cox transformation of σt(δ > 0).

For the EVT, we use 10% of the data as the threshold excess. For the conditional
models, a filter is necessary to model the conditional mean and the variance of data.
Thus, we estimate the AR(1)-APARCH(1,1) model, conforming to formulations. The z
represents a F distributed white noise series. As explained previously, we set F to be
Gaussian, Student-t, skewed Student-t, skewed generalized error and Johnson SU distri-
butions. In all models we jointly estimate by maximum likelihood the parameters in the
equation for the mean return, the equation for its conditional standard deviation and
the probability distribution for the return innovations. In addition, through the usual
diagnostics performed in linear and quadratic standardized residuals, we assess that the
information is properly filtered. Based on this filtering, the conditional models are esti-
mated as described in subsection 3.3.5

Table 3.3 presents the results of the estimation by the maximum likelihood method of
the generalized Pareto distribution parameters jointly with the respective parameters of
the distribution of innovation and of the model AR(1)-APARCH(1,1), for a given thresh-
old u, for each asset. For all asset returns, the estimated tail index ξ of generalized Pareto
distribution is positive. Left tails of these return distributions are fat, i.e. the probability
of occurrence of extreme loss is higher than what the Normal distribution predicts (tails
decrease polynomially). We observe that the tail indexes of IBM and SAN are higher than
ones of AXA and BP, i.e. the left tail of those returns is higher than of these ones.

As an example, we observe, in Table 3.4 the estimated parameters of AR(1)-APARCH(1,1)
model with JSU distribution for IBM 7. We observe that the autoregressive effect in the
volatility specification is strong, β1 is around 0.93, suggesting strong memory effects. The
coefficient γ1 was found to be positive and statistically significant, indicating the existence
of a leverage effect for negative returns in the conditional volatility specification. It is
also important that skewness parameter in the Johnson SU is less than 0, suggesting the
convenience of incorporating negative asymmetric to model innovations appropriately, al-
though this parameter is not significant at 5%, and the shape parameter is low, implying
high kurtosis. Finally, δ takes value 1.07, being significantly different from 2. This result
suggests that, instead of modeling the conditional variance, it might be better to model
the conditional standard deviation.

The maximum likelihood estimates of the generalized Pareto distribution parameters
are (ξ̂, β̂) = (0.39, 0.51), with standard errors of 0.12 and 0.07 respectively. In Figure 3.1,
we observe that for ξ̂ = 0.39 the maximum log-likelihood is reached (-91.877). Thus, the
model we have fitted is essentially a very heavy-tailed, infinite-variance model.

7To save space, we only report estimation results of the EVT-JSU-AR(1)-APARCH(1,1) model for IBM.
Results for alternative models and for another assets are available from the authors upon request.



188 3.4. Data and Estimation Models

Daily u ξ β (ξ) (β)

N IBM -1.041 0.392 0.493 0.121 0.072
SAN -1.239 0.240 0.522 0.103 0.070
AXA -1.139 0.048 0.712 0.067 0.079
BP -1.131 0.055 0.642 0.086 0.079

ST IBM -1.061 0.391 0.514 0.120 0.075
SAN -1.249 0.235 0.534 0.101 0.071
AXA -1.175 0.059 0.697 0.070 0.079
BP -1.158 0.072 0.635 0.089 0.080

SKST IBM -1.051 0.390 0.514 0.120 0.075
SAN -1.235 0.229 0.539 0.100 0.071
AXA -1.159 0.057 0.702 0.069 0.079
BP -1.154 0.078 0.627 0.090 0.079

SGED IBM -1.037 0.376 0.524 0.118 0.076
SAN -1.233 0.225 0.542 0.100 0.072
AXA -1.152 0.055 0.705 0.069 0.079
BP -1.145 0.072 0.628 0.089 0.079

JSU IBM -1.053 0.392 0.516 0.121 0.075
SAN -1.236 0.230 0.539 0.100 0.071
AXA -1.157 0.057 0.703 0.069 0.079
BP -1.152 0.074 0.631 0.089 0.079

Table 3.3: Estimated parameters of GPD with daily returns. u is the threshold, ξ is the
shape parameter, β is the scale parameter and (ξ) and (β) respectively correspond to the
standard error of shape parameter and scale parameter.

Estimate Std. Error t value Pr(> |t|)

φ0 -0.00049 0.01760 -0.02818 0.97752
φ1 -0.02048 0.01442 -1.41984 0.15565

ω 0.02108 0.02664 0.79118 0.42884
α1 0.07614 0.05961 1.27726 0.20151
β1 0.92882 0.06486 14.31942 0
γ1 0.50884 0.29529 1.72320 0.08485
δ 1.07512 0.27157 3.95886 0.00007

skew -0.09240 0.04808 -1.92187 0.05462
shape 1.52764 0.06332 24.12484 0

ξ 0.39168 0.12073 3.2442 0.00120
β 0.51558 0.07523 6.8532 0

Table 3.4: Parameter estimates of AR(1)-APARCH(1,1) model with JSU distribution for
IBM and with GPD for IBM residuals of the previous model.
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Figure 3.1: Profile likelihood for ξ in threshold excess model of percentage daily loss
filtered residuals of IBM with JSU-EVT model.

We consider tail from threshold u=1.0533 8. In this case, we have 126 exceedances
(10% of 1260 data). Figure 3.2 shows the fitted GPD model for the excess distribution,
Fu(y) where y = z − u, superimposed on points plotted at empirical estimates of excess
probabilities for each loss (126 losses); note the good correspondence between the empirical
estimates and the GPD curve 9 .

Figure 3.3 shows the estimation tail probabilities on logarithmic axes. The points on
the graph are the 126 threshold exceedances and are plotted at y-values corresponding
to the tail of the empirical distribution function; the smooth curve running through the
points is the tail estimator (defined in right tail)

1− F̂ (z) =
Tu
T

(
1 + ξ̂

z − u
β̂

)−1/ξ̂

3.5 Evaluating 1-day ES

3.5.1 A Review of Backtesting Approaches

Despite the ES advantages, it is still less used than VaR. The principal reason is that
backtesting ES is much harder than backtesting VaR. Recently, some ES backtesting pro-
cedures have been developed, like the residual approach introduced by McNeil and Frey
(2000) [75], the censored Gaussian approach proposed by Berkowitz (2001) [15], the func-
tional delta approach of Kerkhof and Melenberg (2004) [65], and the saddlepoint technique
introduced by Wong (2008) [95].

8In the following Figures 3.2 and 3.3, we plot the right tail. Losses are positives.
9All considered models whose filtered residuals have been fitted by GPD (EVT approach) show a very

similar fit of the GPD curve, specially when the filtered residuals come from asymmetric distributions.
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Figure 3.2: Empirical distribution of excess of IBM filtered residuals of AR(1)-
APARCH(1,1)-JSU and its fitted GPD.

Figure 3.3: The smooth curve through the points shows the estimated tail of the IBM
percentage loss filtered residuals of AR(1)-APARCH(1,1)-JSU using tail estimator. Points
are plotted at empirical tail probabilities calculated from empirical distribution function.
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However, these approaches present some drawbacks. The backtest of McNeil and
Frey (2000) [75], Berkowitz (2001) [15] and Kerkhof and Melenberg (2004) [65] rely on
asymptotic test statistics that might be inaccurate when the sample size is small, and
this could penalize financial institutions because of an incorrect estimation of ES. Fur-
ther, these tests compute the required p-value based on the full sample size rather than
conditional on the number of exceptions. The test proposed by Wong (2008) is robust to
these questions, making it possible to detect failure of a risk model based on just one or
two exceptions before any more data is observed. Nonetheless, the Wong (2008) backtest
[95] has some disadvantages, such as the Gaussian distribution assumption, and the use
of the full distribution conditional standard deviation as a dispersion measure. All the
mentioned procedures are limited to backtesting the ES estimation considering the whole
sample period.

Backtesting ES Definition Statistic Distribution Parametric

McNeil & Frey (2000) Residual Approach t Unknown Simulations X

Berkowitz (2001) Censored Gaussian Approach LRtail χ2
2 X

Kerkhof & Melenberg (2004) Functional Delta Approach ST N(0, 1) X

Wong (2008) VaR tail losses (Normal) TR Unknown Lugananni & Rice X

Emmer, Kratz & Tasche (2013) Quantile Approximation LRuc χ2
1

Righi & Ceretta (2013) Truncated tail distribution BTT Unknown Simulations X

Acerbi & Szekely (2014)
Testing ES after VaR Z1 Unknown Simulations
Testing ES directly Z2 Unknown Simulations
Estimating ES from realized ranks Z3 Unknown Simulations

Graham & Pál (2014) VaR tail losses (Exponential) TR Unknown Lugananni & Rice X

Costanzino & Curran (2015) Unconditional ES Spectral Risk Measure Test UES N(0, 1)

Du & Escanciano (2015) Conditional ES Spectral Risk Measure Test CES χ2
m

Table 3.5: Overview of ES backtesting procedures in literature.

In this chapter we use five approaches for evaluation of ES estimates, with six meth-
ods overall. The test of Righi & Ceretta [83] and the first two tests of Acerbi & Szekely
are straightforward, but require simulations, the test of Graham & Pál [57], which is an
extension of the Lugannani-Rice approach of Wong [95], the quantile-space unconditional
coverage test of Costanzino & Curran [26] for the family of Spectral Risk Measures, of
which ES is a member, and, finally, the conditional test of Du & Escanciano [36]. The last
two tests can be thought of as the continuous limit of the Emmer, Kratz & Tasche [39]
idea in that it is a joint test of a continuum of VaR levels.

3.5.1.1 The Righi & Ceretta Approach

(The Righi & Ceretta approach has been extracted from Righi & Ceretta (2013) [83].)

The ES backtest approach of Righi & Ceretta (2013) [83] extends and improves those
previously introduced in the literature in three main ways. First, they use the disper-
sion of the truncated distribution by the estimated VaR upper limit, instead of the whole
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probability function. Second, they do not limit the approach to the Gaussian case. They
permit other probability distribution functions and even an empirical distribution, making
this approach more flexible. Finally, their approach allows to separately test if each VaR
violation is significantly different from the ES, allowing a faster model of error verification,
which is extremely useful since prompt action is often required in order to avert extreme
financial losses due to market risk.

The Expectation term in (3.2) is the expectation of a truncated distribution of zt+1 with
upper limit F−1(α). Based on this idea, they propose that the dispersion around this ex-
pected value, truncated by the VaR should be considered for ES backtesting. They refer to
this dispersion as Shortfall Deviation (SD). The SD is the square root of the truncated vari-
ance for some quantile conditional to the probability α, i.e. SDα

t+k = (V AR[rt+k|rt+k <
V aRαt+k])

1/2. With a similar deduction of the ES, we obtain the 1-day ahead SD as,

SDα
t+k = (V ARt+k[rt+k|rt+k < V aRαt+k])

1/2, and since rt+1 = µt+1 + σt+1zt+1 then by

standardization we get, SDα
t+1 = (σ2

t+1V ARt+1[zt+1|zt+1 < (V aRαt+1 − µt+1)/σt+1])1/2.
Again, substituting the expression (3.1) in this formulation gives us,

SDα
t+1 = (σ2

t+1V ARt+1[zt+1|zt+1 < F−1(α)])1/2 (3.6)

The SD is a better estimate than the whole sample standard deviation because when
extreme negative returns occur, it is the risk in the left tail that risk managers and finan-
cial institutions are concerned about. Further, to precise how much a loss was far from
its expected value, one needs to use some dispersion measure intrinsic to this expectation
rather than linked with the absolute distribution expectation.

For each day in the forecast period which a violation in the predicted VaR occurs,
it is possible to estimate the expected loss, as well as its dispersion through the ES and
SD, respectively. In that sense, Righi & Ceretta propose to backtest if the day k violation
is significantly worse from that expected for certain α VaR quantile. To that end, they
use a backtest ratio as equation (3.7),

BTt+k =
rt+k − ESαt+k

SDα
t+k

(3.7)

In (3.7) we compute by how many units of the dispersion measure the occurred loss is
far from its expected value. This test has the null hypothesis BTt+k = 0 against the
alternative that BTt+k < 0. We use the test of Righi & Ceretta (2015) [82] and we fo-
cus on a single test for all of the out-sample observations, i.e. H0 : E(BTt) = 0 against
H1 : E(BTt) < 0. This is in contrast to Righi & Ceretta (2013) [83] who test for each day
of the out-of-sample period.

As rt+k = µt+k +σt+kzt+k then, substituting (3.2) and (3.6) in the expression (3.7) we
get,

BTt+k =
µt+k + σt+kzt+k − (µt+k + σt+kEt+k[zt+k|zt+k < F−1(α)])

(σ2
t+kV ARt+k[zt+k|zt+k < F−1(α)])1/2



Chapter 3. Testing ES estimation models: An extreme value theory approach 193

and simplifying the expression we obtain a simpler form for our backtest, as represented
by (3.8),

BTt+k =
zt+k − Et+k[zt+k|zt+k < F−1(α)]

(V ARt+k[zt+k|zt+k < F−1(α)])1/2
(3.8)

As we know from the GARCH-type model that zt+k ∼ i.i.d. F by definition, we
conclude that expression (3.8) has more tractable properties than (3.7) because instead
of zt+k, we do not know the real probability distribution function of rt+k. The proposed
backtest is a one-tailed test with the alternative hypothesis that the occurred loss is worse
than the expected one. To robustly obtain the statistical probability linked with the
calculated value of BTt+k, i.e. without the need to rely in any distribution assumption
about the ratio, Righi & Ceretta (2013) [83] use Monte Carlo simulations as the following
algorithm,

1. Generate N times n random variables uij ∼ iid F , i = 1, ..., n; j = 1, ..., N .

2. Calculate for each sample N , E[uij |uij < F−1(α)] and V AR[uij |uij < F−1(α)],
where F−1(α) denotes the α-quantile of uij .

3. For every uij < F−1(α), calculate BTij =
uij−E[uij |uij<F−1(α)]

(V AR[uij |uij<F−1(α)])1/2 .

4. Given a significance level α′, determine the critical value as the median of all BTij
series α′-th quantile.

5. Given the actual BTt+k, determine the test p-value as the median of Pr(BTij <
BTt+k).

3.5.1.2 The Acerbi & Szekely Approaches

(The Acerbi & Szekely approaches have been extracted from Acerbi & Szekely (2014) [4].)

Acerbi & Szekely (2014) [4] define three test statistics, each with slightly different
assumptions. Each test involves somewhat different null and alternative hypotheses. We
use two of the three tests proposed by them. In all cases, the general test procedure for
the test statistics Zi, i ∈ 1, 2 is the same. These tests are non-parametric and free from
distributional assumptions other than continuity, necessary conditions for any application
in banking regulation.

Starting with realized Zi(
−→
R ) score from T returns, where

−→
R ∈ RT is the vector

−→
R = {rt}

of all T observations and i ∈ 1, 2,

1. Simulate a set of iid trials following the distributions rjt ∼ Ft, ∀t = 1, ..., T , j =
1, ...,M for a suitably large M 10.

2. Compute the test statistics of interest from the simulation rjt , Z
j
i = Zi(r

j
t ), i ∈ 1, 2.

10In Acerbi & Szekely and Righi & Ceretta tests, we simulate 10000 process of length 1000.
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3. Estimate the quantile, or p-value, of the observed score p = 1
M

∑M
k=1 1{Zki <Z(

−→
R )}

The two test statistics are as follows 11

Statistic Z1: Testing ES after VaR.

Z1(
−→
R ) =

1

NT

T∑
t=1

Itrt
ESαt

− 1

if NT =
∑T

t=1 It > 0 where It = 1{rt<V aRαt } is the indicator of VaR breaches. The
null hypothesis is H0 : Pαt = Fαt ∀t where Fαt is the tail of the forecast cumulative
distributions for each day when rt < V aRα,Ft and Pαt represents the tail of (unknown) real
distributions from which the realized events rt are drawn. The alternative hypothesis is

H1 : ESα,Pt ≤ ESα,Ft ∀t and < for some t

V aRα,Pt = V aRα,Ft ∀t

We see that the predicted V aRα is still correct under H1, in line with the idea that this
test is subordinated to a preliminary VaR test. This test is in fact completely insensitive
to an excessive number of exceptions as it is an average taken over exceptions themselves.

Under these conditions EH0 [Z1|NT > 0] = 0 and EH1 [Z1|NT > 0] > 0. So, the re-

alized value Z1(
−→
R ) is expected to be zero, and it signals a problem when it is positive.

Statistic Z2: Testing ES directly.

Z2(
−→
R ) =

1

Tα

T∑
t=1

Itrt
ESαt

− 1

if NT > 0. H0 is as in the previous test and the alternative hypothesis is

H1 : ESα,Pt ≤ ESα,Ft ∀t and < for some t

V aRα,Pt ≤ V aRα,Ft ∀t

We note that EH0 [NT ] = Tα. We have again EH0 [Z2] = 0 and EH1 [Z2] > 0.

Unlike the Z1 statistic, the sum of the VaR breach event returns is divided by the
expected value. The Z2 statistic will tend to reject a large number of VaR breach events
of small magnitude. This leads to the difference in H1 between the two statistics; rejecting

the H0 of Z2(
−→
R ) includes rejecting V aRα,Ft as correctly specified.

11Here, the test statistics are defined to work with negative values of V aRα and ESα, but in Acerbi &
Szekely (2014), these tests were defined with positive ES values.
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3.5.1.3 The Graham & Pál Approach

(The Graham & Pál approach has been extracted from Graham & Pál (2014) [57] and
Wong (2010) [94].)

Graham & Pál (2014) [57] generalize Wong’s approach (2010) [94]. Wong’s backtest is
well-defined and used advanced statistical techniques to deal with the small number of VaR
violations usually found within a year’s worth of VaR forecasts. Unfortunately, though
Wong acknowledges the possibility of assuming otherwise, his backtest is not model- or
distribution-agnostic, as it assumes normal distributions. Graham & Pál generalize Wong’s
result in a tractable and intuitive manner to allow for any VaR modeling, and therefore
distributional, approach.

Their goal is to quantify how extreme each VaR violation is in relation to its forecast
distribution. The approach can be intuitively described as an extension of the “hit” time
series concept, wherein each of the “1” values (when VaR violation occurs) are modified so
as to measure the distance between each violation and its corresponding VaR threshold.
In other words, the nonzero time series values in our context are negative values consisting
of the difference between each percentile smaller than the VaR threshold percentile and
the VaR threshold percentile itself. If there is no VaR violation on a specific observation
date, then a value of zero will still be recorded.

Now that a time series of transformed tail losses has been formed, it remains to deter-
mine how to quantify its behavior. We would expect this series to be uniformly distributed
within the tail region if the series of forecast distributions accurately modeled the portfo-
lio’s P&L.

The remainder of the backtest consists of a number of steps. The first is to trans-
form the percentile time series into a suitable context under which we can easily compare
its average value to the one we would expect; that is, to the one that would occur if the
VaR forecast distributions accurately (or at least, conservatively) modeled their corre-
sponding realized P&L values. The second is to then derive an appropriate methodology
to compare the average of the sample time series of tail-loss values with the expectation
of the mean tail loss. By tail-loss we understand the difference of the losses beyond VaR
minus the VaR value itself. Finally, as there is a small expected number of VaR violations,
a small-sample asymptotic technique will be used to determine to what extent we can be
certain that the sample average VaR violation is not too extreme. This is, in fact, the
basis of the hypothesis test that forms the core of the backtest.

Tail Risk concept

The central risk concept that they employ within the backtest is that of tail risk,
as defined by Wong (2010) [94]. Tail Risk (TR), is related to VaR and ES in the following
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way,

TRα =

∫ q(α)

−∞
(r − q(α))f(r)dr = α(ESα − V aRα)

where V aRα = q(α) = F−1(α).

The tail risk will always be a negative quantity. We can consider α−1TR as the
difference between the ES and the VaR.

Given a sample of N returns r1, r2, ..., rN of R, the sample estimator for tail risk
at confidence level (1− α) may be calculated as

T̂Rα =
1

N

N∑
i=1

(ri − q(α))1{ri<q(α)} (3.9)

Proceeding from (3.9), we define the random variable X as

X = (R− q(α))1{R<q(α)}

and observe that the sample estimator for the mean of X is equal to the sample
estimator for the tail risk,

T̂Rα = X̄ =
1

N

N∑
i=1

Xi

We note that the range of X is range(X) = (−∞, 0]. It is also important to note that
the expected value of X is the theoretical tail risk of the portfolio, which is

E[X] = E[T̂Rα] = TRα = α(ESα − V aRα) (3.10)

Wong (2010) [94] incorporates TR as his test statistic by making the assumption of
normally distributed portfolios (though he notes that the small-sample asymptotic tech-
nique may be derived under nonnormal conditions). However, though perhaps still widely
modeled as such, return distributions may and do certainly deviate quite greatly from
assumptions of normality. Graham & Pál generalize Wong’s result by demonstrating how
the TR test statistic may be implemented even for dynamically updating asset/portfolio,
with forecast distribution the change from day to day.

Transformation of the random variable X

To understand how to proceed, we simply transform the realized losses and forecast
distributions through the probability integral transform (PIT) to ensure that our sample
estimator for the average tail risk is created through identically distributed sample val-
ues.12 The exact transformation is simple; it is necessary only to locate each VaR violation

12Rosenblatt (1952) [85], Crnkovic and Drachman (1996) [27], Diebold et al. (1998) [33] and Berkowitz
(2001) [15] are often credited with introducing PIT into the financial risk management backtesting litera-
ture.



Chapter 3. Testing ES estimation models: An extreme value theory approach 197

as a percentile value within its forecast distribution,

pt =

∫ yt

−∞
ft(u)du = Ft(yt) (3.11)

Using (3.11), we may now redefine the random variable X as follows

Xt = (Ft(yt)− Ft(qt(α)))1{yt<qt(α)} = (Ft(yt)− α)1{Ft(yt)<α} = (pt − α)1{pt<α} (3.12)

It is well-known that if the forecast CDFs Ft(·) are correct estimates of the real (though
unobservable, as they are dynamically changing) P&L distributions, then the series pt is
distributed uniformly U(0, 1). Moreover, if the sequence of forecast CDFs is correctly con-
ditionally calibrated, then the corresponding pt sequence is independent and identically
distributed (iid) U(0, 1) 13. Clearly, once X has been redefined as per (3.12) and under the
assumption of correctly conditionally calibrated forecast CDFs, X̄ = 1

T

∑T
t=1Xt is then

an average of iid random variables.

Though it is possible to state the hypothesis test for the revised random variable
X as defined (3.12), they choose to make a further transformation to the exponential
context. The reason is that the hypothetical distribution of Xt as defined in (3.9) has
a noncontinuous CDF with large mass at zero, and the form of the moment- and cumu-
lant generating functions necessitates the use of numerical techniques to obtain the saddle
point. In contrast, making an additional transformation to the exponential context allows
us to solve for the saddle point analytically; this solution is, moreover, well-defined over
the complete interval of interest for tail losses.

The more common approach in such cases might be to perform a transformation to the
normal context. This appears, for example, in Berkowitz (2001) [15], and Wong (2010)
[94] intentionally uses normal distributions as his starting point. However, a normal trans-
formation such as XN

t = (Φ−1(pt) − Φ−1(α))1{pt<α} where Φ(·) is the standard normal
CDF, would also require a numerical saddle-point solution. In fact, some experimenta-
tion has shown that, for sample mean losses very close to the threshold, this is the VaR,
standard numerical techniques are unable to solve for the saddle point under the normal
transformation.

In sum, the exponential approach renders much more tractable the calculations under-
lying the small-sample asymptotic technique used to derive the hypothesis test’s p-value,
and provides results consistent with those obtained under the normal transformation.

Redefining the random variable X, we obtain

Xt = (lnFt(yt)−lnFt(qt(α)))1{yt<qt(α)} = (ln pt−lnα)1{Ft(yt)<α} = (ln pt−lnα)1{ln pt<lnα}
(3.13)

where, as with (3.12), the transformations within the indicator function are possible due
to the monotonicity of the functions uses. Under this series of transformations, if the series

13Another necessary condition for the series to be iid is that the P&L time horizons do not overlap;
otherwise, serial interdependencies may occur within the data.
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{pt} is iid U(0, 1), then the series {ln pt} is iid Exp(−∞, 0) and {Xt} is then also clearly iid.

Distribution of Xt

Now we need to determine the exact distribution of {Xt}; knowing its CDF and PDF
allows us to determine its moments and cumulants, and these will be used both in deter-
mining its theoretical average value and in calculating its test statistic sample value using
the small-sample asymptotic technique described below. Under the assumption that the
sequence of forecast P&L distributions is correctly conditionally calibrated, we know that
{rt} := {ln pt} is iid Exp(−∞, 0) with PDF φE(·) and CDF ΦE(·) as follows

φE(r) =

{
er, −∞ < r < 0,

0, r ≥ 0.

and

ΦE(r) =

{
er, −∞ < r < 0,

1, r ≥ 0.

VaR and ES for the {rt} distribution are

V aR0 = qE(α) = lnα

ES0 =
1

α

∫ lnα

−∞
rφE(r)dr =

1

α

∫ lnα

−∞
rerdr =

1

α
(rer − er)|lnα−∞ = lnα− 1

 (3.14)

With X defined as per (3.13), we derive its CDF,

FX(x) = PX [X ≤ x]

= PφE [r ∈ R|(r − lnα)1{r<lnα} ≤ x]

=

{
PφE [r ≤ lnα+ x], x < 0,

PφE [r ≤ 0], x ≥ 0,

=

{
ΦE(lnα+ x), x < 0,

ΦE(0), x ≥ 0,

=

{
elnα+x, x < 0,

1, x ≥ 0,

=

{
αex, x < 0,

1, x ≥ 0.

This implies that the PDF of X may be defined in terms of φE and δ0, the Dirac delta
function with mass concentrates at zero,

fX(x) = PX [X = x] =


αex, x < 0,

(1− α)δ0, x = 0,

0, x > 0.
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Lugannani-Rice formula

We now derive the moment-generating and cumulant-generating functions of X, as
these will be needed in the calculation of the Lugannani-Rice formula. We state the rele-
vant results, when t > −1, noting only the care that must be taken around the origin in
the case of the moment-generating function,

M(t) = E[etX ] =

∫ 0

−∞
etxdFX(x) =

α

t+ 1
+ 1− α,

M ′(t) = − α

(t+ 1)2
, M ′′(t) =

2α

(t+ 1)3
, M ′′′(t) = − 6α

(t+ 1)4
,

K(t) = lnM(t), K ′(t) =
M ′(t)

M(t)
= − α

(t+ 1)[t(1− α) + 1]
,

K ′′(t) =
α[2t(1− α) + (2− α)]

(t+ 1)2[t(1− α) + 1]2
,

K ′′′(t) = 2α
(1− α)(t+ 1)[t(1− α) + 1]− [2t(1− α) + (2− α)]2

(t+ 1)3[t(1− α) + 1]3
.



(3.15)

We are now easily able to derive the mean of X as

µX = E[X] = M ′(0) = −α (3.16)

To highlight the consistency between (3.16), (3.14) and (3.10), we simply note that,

TR0 = α(ES0 − V aR0) = µX = −α (3.17)

It is also quite simple to calculate the variance of X as

σ2
X = var(X) = E[X2]− (E[X])2 = M ′′(0)− (M ′(0))2 = 2α− α2 (3.18)

It is now straightforward to analyze the sample mean of X in the context of (3.16) and
(3.18), using standard statistical asymptotic results. Indeed, given a sample {Xt} of size
T , the sample mean X̄ converge in distribution to standard normality as T tends to∞ by
the Central Limit Theorem. In other words, given population mean µX and variance σX
as per (3.16) and (3.18),

√
T

(
X̄ − µX
σX

)
d−→ N(0, 1) (3.19)

However, as Wong (2010) [94] notes, the above result (3.19) will generally never be
valid for sample sizes encountered in practice, due to the inherently nature of the test
statistic.

Instead, we now work towards a statement of the Lugannani-Rice formula [72]. As
a general approach using the saddle-point technique, Lugannani and Rice (1980) provide
a closed-form solution that can be used to accurately approximate the tail probability
or CDF of the sample mean of the iid random sample {X1, X2, ..., XT } drawn from any
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distribution having well-defined moments and cumulants to the third order, such as the
above-defined distribution X.

A general formula may be derived for the PDF of the sample mean X̄ = 1
T

∑T
t=1Xt

by considering the inversion formula when y < 0

fX̄(y) =
T

2π

∫ +∞

−∞
eT [K(it)−ity]dy

where fX̄(·) denotes the PDF of the sample mean and K(t) = lnM(t) is the cumulant-
generating function of fX(·). Then the tail probability can be written as

P[X̄ > y] =

∫ 0

y
fX̄(u)du =

1

2πi

∫ s+i∞

s−i∞
eT [K(z)−zy]z−1dz

where s is the saddlepoint, chosen to satisfy

K ′(s) =
M ′(s)

M(s)
= y

for y < 0.

Omitting the remainder details 14, we now simply state Lugannani & Rice’s result,
first defining, for readability,

η = s
√
TK ′′(s) and ς = sgn(s)

√
2T (sx̄−K(s)), K ′(s) = x̄

where sgn(s) equals zero when s = 0, and takes the sign of s when s 6= 0. According
to Lugannani & Rice, then, the tail probability of exceeding the sample mean x̄ 6= µX is
given by

P[X̄ > x̄] = 1− Φ(ς) + φ(ς)

(
1

η
− 1

ς
+O(T−3/2)

)
where Φ(·) and φ(·) represent the standard normal CDF and PDF, respectively. The case
x̄ = µX is rarely encountered in practice, but in this case

P[X̄ > µx] =
1

2
− K ′′′(0)

6
√

2πT [K ′′(0)]3
+O(T−3/2)

Backtest implementation

They now explicitly formulate the hypothesis test. Though they could use the tail
loss TRα = α(ESα− V aRα) as the test statistic, they follow Wong (2010) [94] and define
as the test statistic the standardized variable

z = α−1TRα = ESα − V aRα
14For more details, Lugannani and Rice (1980) [72], Daniels (1987) [28] and Wong (2010) [94].
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Therefore, under the exponential tail distribution null hypothesis obtained after trans-
forming to (3.13), and with α = 0.01, we have that

z0 = α−1TR0 = ES0 − V aR0 = −1, ie. TR0 = −0.01

as we observed (3.17). If the theoretical tail risk TR0 predicted by the model is more

negative than the sample tail risk T̂Rα, then the risk model is said to “ ’capture’ the tail
risk ”, or to “provide sufficient risk coverage”. Otherwise, we may describe the risk model
as “having failed to capture the tail risk”, based on the empirical tail risk backtest.

Accordingly, a one-tailed regulatory backtest to check whether the risk model provides
sufficient risk coverage may be formulated in terms of z, with the null and alternative
hypotheses defined as follows:

H0 : z ≥ z0, ie. TRα ≥ TR0

H1 : z < z0, ie. TRα < TR0

• We wish to asses the evidence in the observed statistical value ẑ for H0.

• The test should measure how surprising the observed value ẑ (or, equivalently x̄ =
αẑ) is when H0 is assumed to be true. It is accepted that ẑ is surprising whenever
ẑ lies in a region of low probability for each distribution in the model for which H0

is true.

• In terms of the distribution of X̄, it means that we should examine the left tail of
the distribution.

• Explicitly, the null hypothesis is rejected if the realized value of the sample statistic
ẑ = α−1T̂R = α−1x̄T is significantly less than z0 = −1 under the exponential tail
assumption. This is equivalent to x̄T = αẑ being significantly less than -0.01,

ẑ = α−1T̂R << −1 = z0

or equivalently,

x̄T = αẑ << −0.01⇒ we reject H0

In this case, we will tend to see at least one of two occurrences in the sample data:

1. A large number of (not necessarily extreme) negative xt sample values, each
representing one of the (not necessarily extreme) VaR violations.

2. a (not necessarily large) number of extreme negative xt sample values, ie. ex-
treme VaR violations.

• The p-value of the hypothesis test is simply given by the Lugannani-Rice formula as

p− value = P[X̄ ≤ x̄T ] = 1− P[X̄ > x̄T ]
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As Wong (2010) [94] notes, a two-tailed hypothesis test can be formulated in terms of z,
with the null and alternative hypothesis as follows

H0 : z = z0

H1 : z 6= z0

Strictly speaking, the two-tailed hypothesis identifies whether a given sample of VaR
violations is consistent with the tail distribution under the null hypothesis that the risk
model is correct. The null hypothesis is rejected if the realized value of the sample statistic
ẑ is significantly less than or significantly more than z0 = −1.

Summary

Based on the above methodology, it is possible to construct a conceptually flexible,
theoretically robust and operationally feasible backtest implementation. The step-by-step
procedure is

1. Transform the realized asset/portfolio P&L values to the exponential context

xt =

{
lnFt(yt)− lnα, yt < V aRt,α = F−1

t (α),

0, yt ≥ V aRt,α = F−1
t (α).

2. Having constructed the sample {xt} drawn from X, we now construct the sample
mean x̄ as

x̄ =
1

T

T∑
t=1

xt

3. We solve the saddle-point equation, recalling the moments and cumulants previously
determined in (3.15),

K ′(s) =
M ′(s)

M(s)
= − α

(s+ 1)[s(1− α) + 1]
= x̄ for x̄ < 0

The unique solution s in the interval (−1,∞) is then given by,

s =
(α− 2) +

√
∆

2(1− α)
for ∆ = α2 +

4α

x̄
(α− 1) > 0, x̄ < 0

We now calculate the required components of the hypothesis test,

η = s
√
TK ′′(s) = −sx̄ 4

√
∆

√
αT

α
and ς = sgn(s)

√
2T (sx̄−K(s))

where sgn(s) takes the sign of s if s 6= 0, and is 0 otherwise.
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4. We now calculate the Lugannani-Rice formula. The theoretical mean is µX =
M ′(0) = −α. In the case that x̄ 6= µX , the Lugannani-Rice p-value is

p− value = P[X̄ ≤ x̄] = Φ(ς)− φ(ς)

(
1

η
− 1

ς

)
where Φ(·) and φ(·) represent the standard normal CDF and PDF, respectively.
The case x̄ = µX is hardly ever encountered in practice, though, as previously
mentioned, it should be included in any implementation,

p− value = P[X̄ ≤ µX ] =
1

2
+

K ′′′(0)

6
√

2πT [K ′′(0)]3

5. We now perform the hypothesis analysis (one-tailed),

H0 : TRα ≥ TR0

H1 : TRα < TR0

The null hypothesis is that the risk model provides sufficient tail risk coverage,
whereas the alternative hypothesis is that the risk model provides insufficient tail
risk coverage.

3.5.1.4 The Costanzino & Curran and Du & Escanciano Approaches

(These approaches have been extracted from Costanzino & Curran (2015) [26] and Du &
Escanciano (2015) [36].)

Du & Escanciano (2015) [36] propose backtest for ES based on cumulative violations,
which are the natural analogue of the commonly used backtest for VaR. It is well-known
that for each coverage level, violations should be unpredictable if the risk model is appro-
priate, i.e. centered violations should be a martingale difference sequence (mds). Indeed,
rather than just one mds, centered violations form a class of mds indexed by the coverage
level. The integral of the violations over the coverage level in the left tail, which they
refer to as cumulative violations, also form a mds. The cumulative violation process ac-
cumulates all violations in the left tail, just like the ES accumulates the VaR in the left
tail. They suggest a Box-Pierce test to check for the mds property. Their Box-Pierce test
is analogue for ES of the conditional backtest proposed by Christoffersen (1998) [22] and
Berkowitz, Christoffersen and Pelletier (2011) [16] for VaR.

This approach is developed from Costanzino & Curran (2015) [26]. Their method-
ology can be used to backtest any spectral risk measure 15, including ES. It is based on

15Spectral risk measures are a class of coherent measures, which can be thought of weighing VaR by
a spectrum φ ∈ L1([0, 1]), which is an admissible risk spectrum if, i) φ is non-negative, ii) φ is non-
increasing, and iii) ||φ||1 = 1. Let X a random variable with cdf FX and φ an admissible risk spectrum,
we say that Mφ defined by Mφ =

∫ 1

0
φ(p)V aR(p)dp is a spectral risk measure with risk spectrum φ. If

φ(p) = Diracα(p), we obtain MDiracα = V aRα but Diracα(p) is not an admissible risk spectrum for
violation of properties ii) and iii). For this reason, VaR is not a spectral risk measure. For more details,
Costanzino & Curran (2015) [26].
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the idea that ES is an average of a continuum of VaR levels. Indeed, Emmer, Kratz &
Tasche (2015) [39] were the first to suggest that, despite not being directly elicitable, ES is
indirectly elicitable since it can be approximated by several VaR estimates. They suggest
approximating ES by

ESαt =
1

α

∫ α

0
V aRνt dν u

1

4
(V aR

α/4
t + V aR

α/2
t + V aR

3α/4
t + V aRαt )

and then backtesting ES by backtesting the individual VaRs at the four different con-
fidence levels. However, this leads to a possible ambiguous decision making framework.
The Costanzino & Curran Coverage Test can be thought of as the continuous limit of
the Emmer, Kratz & Tasche idea in that it is a joint test of a continuum of VaR levels.
Furthermore, the general methodology is perfectly compatible with the VaR coverage test
in the sense that if the spectrum φ converges to the point mass at α, ie. φSR → δα, the test
converges to the VaR coverage test despite the fact that δα is not a spectral risk measure
(for more details [26]).

Unlike the test proposed by Du & Escanciano [36], the test proposed by Costanzino &
Curran [26] does not test independence, but they are the first to propose a coverage test for
Spectral Risk Measures essentially amounts to a joint test of a continuum of weighted VaR
quantiles and gives a single decision at a fixed confidence level. The key of the method is
to show that the Spectral Measure Failure Rate is asymptotically Normal under the null
hypothesis and therefore admits a formal Z-test.

The cumulative violation process

The cumulative violation process is defined as

Ht(α) =
1

α

∫ α

0
ht(u)du

where ht(u) = 1(rt≤V aRt(u)) is the u-violation or hit at time t.

Since ht(u) has mean u, by Fubini’s Theorem Ht(α) has mean 1/α
∫ α

0 udu = α/2.
Moreover, again by Fubini’s Theorem, the mds property of the class {ht(α) − α : α ∈
[0, 1]}∞t=1 is preserved by integration, which means that {Ht(α)− α/2}∞t=1 is also mds.

For computational purposes, it is convenient to define ut = F (rt,Ωt−1) where F (·,Ωt−1)
denote the conditional cumulative distribution function (cdf) of rt given Ωt−1 . Using that
ht(u) = 1(rt≤V aRt(u)) = 1(ut≤u), we obtain 16,

Ht(α) =
1

α

∫ α

0
1(ut≤u)du =

1

α
(α− ut)1(ut≤α) (3.20)

Like violations, cumulative violations are distribution-free, since {ut}∞t=1 comprises
a sample of independent and identically distributed (iid) U(0, 1) variables. Acerbi &

16Ht(α) = 1
α

∫ α
0
1(ut≤u)du = 1

α
1(ut≤α)

∫ α
0
1(ut≤u)du = 1

α
1(ut≤α)

∫ α
ut

1du = 1
α
1(ut≤α)(α− ut).
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Tasche (2002) [4] and Emmer, Kratz and Tasche (2014) [39] used the representation
ESt(α) = 1/α

∫ α
0 V aRt(u)du to approximate the integral with a Riemann sum with four

terms. Working with violations avoids approximations, as the integral in (3.20) can be
computed exactly. Unlike violations, cumulative violations are also zero, but when a vio-
lation occurs, the cumulative violation measures how far is the actual value of rt from its
quantile, through the term α− ut = F (F−1(α,Ωt−1),Ωt−1)− F (rt,Ωt−1).

The variables {ut}∞t=1 necessary to construct {Ht(α)}∞t=1 are generally unknown, since
the distribution of the data F is unknown. In practice, researchers and risk managers
specify a parametric conditional distribution F (·,Ωt−1, θ0), where θ0 is some unknown pa-
rameter in Θ ⊂ Rp, and proceed to estimate θ0 before producing VaR and ES forecasts.

With the parametric model, we can define the “generalized errors”,

ut(θ0) = F (rt,Ωt−1, θ0)

and the associated cumulative violations,

Ht(α, θ0) =
1

α
(α− ut(θ0))1(ut≤α)

Very much like for VaRs, the arguments above provide a theoretical justification for
backtesting ES by checking whether {Ht(α, θ0)− α/2}∞t=1 have zero mean (unconditional
ES backtest) and whether {Ht(α, θ0)−α/2}∞t=1 are uncorrelated (conditional ES backtest).

The unconditional backtest

The unconditional backtest for ES is a standard t-test for the null hypothesis

H0u = E(Ht(α, θ0)) = α/2

Note that a simple calculations show that E[H2
t (α, θ0)] = α/3, and hence, V ar(Ht(α)) =

α(1/3− α/4). Therefore, a simple t-test statistic is as follows

UES =

√
n(H̄(α)− α/2)√
α(1/3− α/4)

where n is the size of the out-of-sample period which is used to evaluate (backtest) the
ES model and H̄(α) denotes the sample mean of {Ĥt(α)}nt=1, i.e.

H̄(α) =
1

n

n∑
t=1

Ĥt(α)

The UES statistic has a standard normal limit distribution when the estimation period

is much larger than the evaluation period, UES
d→ N(0, 1).
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The conditional backtest

Next, the conditional backtest has the following null hypothesis,

H0c : E[Ht(α, θ0)− α/2|Ωt−1] = 0

which is the analogue of the null hypothesis of conditional backtest for VaR. Define the
lag-j autocovariance and autocorrelation of Ht(α) for j ≥ 0 by

γj = Cov(Ht(α), Ht−j(α)) and ρj =
γj
γ0

respectively. We drop the dependence of γj and other related quantities on α for simplicity
of notation. The sample counterparts of γj and ρj based on a sample {Ht(α)}nt=1 are 17

γnj =
1

n− j

n∑
t=1+j

(Ht(α)− α/2)(Ht−j(α)− α/2) and ρnj =
γnj
γn0

Notice that ρj = 0 for j ≥ 1 under H0c. Simple conditional tests can be constructed
using ρ̂nj , for example the Box-Pierce test statistic

CES(m) = n
m∑
j=1

ρ̂2
nj

The CES statistic has a chi-square distribution with m degrees of freedom when the

estimation period is much larger than the evaluation period, CES(m)
d→ χ2

m.

3.5.2 Full sample analysis

First, we calculate VaR and ES estimates by the parametric approach. We restrict our
attention to the left tail of the distribution and the 1%, 2.5% and 5% significance levels.
We choose to work with these α’s because these values are the significance levels most
commonly used in the literature. In all cases we show out-of-sample VaR and ES esti-
mates over the last five years in the sample: 2012-2016 (1260 data). Every day we compute
1-day ahead VaR and ES, estimating each model every 50 days. The latter choice tries to
reduce the computational cost while avoiding frequent parameter variation due in part to
pure noise.

Table 3.6 displays the descriptive statistics for the in-sample (10/02/2000-12/02/2011)
and out-of-sample (12/05/2011-09/30/2016) periods. It gives an overview of the behavior

17Notice that we use the conditional mean restriction in the definition of autocorrelations. As a result,
test bases on γnj are expected to have power against deviations from H0c, where Ht(α) are uncorrelated
but have mean different from α/2. It is also possible consider a test that desegregates power against
deviations from zero autocorrelations of Ht(α) and power against deviations from H0u, analogue for ES of
the conditional backtests proposed by Christoffersen (1998) [22]. One could also consider tests that do not
use the unconditional mean restriction in the definition of autocorrelations, for example, using the sample
mean of cumulative violations.
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of asset distributions for time horizons. Skewness is negative, except for SAN and AXA in
the in-sample period. Likewise, kurtosis is higher than 3 for all assets in both periods of
time. We are thus confronted with leptokurtic distributions, i.e. with fat tails in compar-
ison with the Normal distribution. These distributions do not follow Normal distribution
as shown by the Jarque-Bera statistic (JB stat). These statistics suggest that, the study
of the behavior of the extremes in the left tails of these leptokurtic distributions seems
justified as it should allow better estimation of extreme variations of financial returns.
VaR and ES estimates based on the assumption of a Normal distribution of returns must
then be rejected and we need to compute them under a non-Normal framework using EVT
framework, for example.

In-Sample Out-of-Sample

Daily IBM SAN AXA BP IBM SAN AXA BP

No. Obs. 2915 2915 2915 2915 1260 1260 1260 1260
Mean (%) 1.79 -2.18 -3.94 -0.89 -1.41 -0.13 4.26 -0.26
Median (%) 0.00 0.00 0.00 0.00 0.00 1.94 11.04 0.00
St. Dev 1.74 2.31 2.96 1.80 1.18 2.13 1.93 1.43
Skewness -0.12 0.27 0.31 -0.19 -1.00 -1.09 -0.72 -0.16
Kurtosis 11.47 9.09 9.33 7.87 9.77 14.79 9.10 6.84
Maximum 11.35 20.88 19.78 10.58 4.91 10.14 7.28 6.93
10 percentile -1.73 -2.63 -3.07 -1.96 -1.24 -2.43 -2.09 -1.60
5 percentile -2.66 -3.67 -4.60 -2.73 -1.73 -3.38 -3.22 -2.31
1 percentile -5.13 -6.68 -8.46 -5.32 -3.59 -4.97 -4.96 -3.59
Minimum -16.89 -12.72 -20.35 -14.04 -8.64 -22.17 -16.82 -9.08
JB stat 8724.16 4548.12 4918.84 2902.54 2614.85 7549.73 2063.42 780.63

Table 3.6: Descriptive statistics for the log-returns (%) of four indexes for in-sample and
out-of-sample period. JB stat is the statistic of Jarque-Bera test.

We estimate both risk measures, not only with the full distribution but also using only
extreme events. The estimation exercise was explained in subsections 3.3.4 and 3.3.5.

Figure 3.4 shows IBM daily percentage returns (1260 data) and the out-of-sample
V aR1% and V aR5% calculated with AR(1) model with JSU-APARCH(1,1) as well as with
JSU-APARCH(1,1) innovation, fitting a GPD density in the tail of the distribution (EVT).
The differences in VaR calculated with the two models are not significant for the 5% quan-
tile but they become more important for the 1% quantile. In the latter case, the VaR with
EVT indicate higher losses than VaR without EVT.

Figure 3.5 shows the ES1% and ES5% estimates with EVT and without EVT. In this
case, differences are significant, especially for the more extreme quantiles. ES measures
the average losses exceeding the VaR and we observe that the GPD distribution considers
greater losses than JSU for the tail of the distribution.

It is interesting to look at how the ratio of the two risk measures estimated under EVT
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Figure 3.4: IBM daily percentage returns and V aR1% and V aR5% calculated with all
sample as well as using only extreme values.

approach behaves for large values of the quantile probability α.

lim
α→0

=
ESα
V aRα

=

{
(1− ξ)−1, ξ ≥ 0,

1, ξ < 0.

so that the shape parameter ξ of the GPD effectively determines the ratio when we go far
enough out into the tail.

Figure 3.6 shows the evolution of the ratio ESα and V aRα calculated with EVT from
model JSU-APARCH for IBM, with parameter ξ = 0.392. When α → 0, this ratio tends
to (1− ξ)−1 = 1.644.

Tables 3.8 - 3.11 present the average value of the estimated ES 18, the violations ratio
(Viol.) of the underlying VaR and the backtesting results for the distinct models.

The results across assets indicate that there are too many variations regarding the
ES estimation models in all of the dimensions of our analysis. Although there are certain
exceptions, our discussion here is focused on the general patterns that appear in the re-
sults. In what concerns parsimony of ESt

19, the conditional EVT-based models present
“more negative” values than do conditional models not based on EVT, as indicated by

18We have obtained out-of-sample 1-day ES series whose average value is shown in the first column of
these tables.

19We are talking about parsimony, when we want to refer to the behavior of the ES series, since this
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Figure 3.5: IBM daily percentage returns and ES1% and ES5% calculated with all sample
as well as using only extreme values.

Figure 3.6: Evolution of the ESα/V aRα ratio calculated with EVT from model JSU-
APARCH for IBM.
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the averages for the ES estimates. In addition, the 1% significance level presents more
differences in ES estimates than does the 5% significance level. This analysis of the parsi-
mony is related to the complete out-of-sample period (5 years, 1260 data). Furthermore,
an ES model should be precise when violations occur, but it is not always like this. Re-
garding VaR violation rates, we observe that the conditional EVT-based models present
more violations than what is theoretically expected. Most of these models obtain cor-
rect ES estimates, as we observe in backtest results, but their VaR predictions, in some
cases, underestimate risk, for example AXA and SAN at the 2.5% and 5% significance
levels, but with all models we obtain a lower violation rate than this obtained with the
homologous model not based on EVT. In general, we can say that conditional EVT-based
models estimate the quantile correctly, corroborating Kuester, Mittnik and Paolella (2006)
[67], which attest to the superiority of this type of model. On the other hand, conditional
models with heavy-tailed distributions also perform very well, corroborating Mabrouk and
Saadi (2012) [73]. It is very important to note that these tests are one-sided by nature
and focus on risk underestimation, except the tests of Costanzino & Curran and Du &
Escanciano. Therefore, in those tests risk overestimation does not lead to a rejection of
the null hypothesis.

In general, we observe that conditional EVT-based models obtain the best results in
ES estimation according to the different ES backtests. In many cases, we obtain p-values
close to 1 with EVT-based models. The success of the EVT models for the ES estimation
corroborates Marinelli et al. (2007) [74], Jalal and Rockinger (2008) [62] and Wong et al.
(2012) [93]. If we focus on the conditional models not based on EVT, we observe that JSU
and SKST are the best probability distributions for ES estimation according to Righi &
Ceretta test [83] and Graham & Pál test [57] and SGED and JSU according to Acerbi &
Szekely tests [4] and Costanzino & Curran and Du & Escanciano tests. Besides, in the
Acerbi & Szekely tests we obtain p-values for Z2 greater than the p-values for Z1 at the
5% significance level. The second test of Acerbi & Szekely (Z2) tests ES directly and
jointly evaluates frequency and magnitude of α-tail events as shown by the relationship
Z2 = (1 + Z1)NT /Tα − 1 if NT =

∑T
t=1 It > 0 where It = 1{rt<V aRαt } is the indicator of

VaR breaches. Remember that EH0 [NT ] = Tα. The difference between both is that Z1
is insensitive to an excessive number of exceptions as it is an average taken over excesses
themselves, whereas null hypothesis of Z2 test is not rejecting if not only the magnitude
but also the frequency of the excesses is statistically equal to the expected one 20.

At the 1% significance level, p-values of Acerbi & Szekely tests for the conditional

models are very close to 0. In these cases, we obtain positive realized value Z1(
−→
R ) and

Z2(
−→
R ), instead of being equal to zero. In short, we reject H0 because of risk underesti-

mation.

The p-values obtained in Graham & Pál test show, like Acerbi & Szekely, large differ-

series changes over time thanks to the parsimonious model used for the volatility, in our case, APARCH
model.

20Acerbi & Szekely (2014) show that Z2 test is the most powerful in the case of alternative hypothesis
with different volatility, while Z1 is the most powerful in the case of the different tail index.
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ences between conditional models based on EVT and not based on EVT, in favor of the
first ones.

The Righi & Ceretta, Acerbi & Szekely and Graham & Pál tests are one-tail tests,
i.e. only risk underestimation lead to a rejection of the null hypothesis. We indicate
in bold face the p-values of the test in which we have obtained statistics with opposite
sign to the collected in the alternative hypothesis. In the Righi & Ceretta test we have
H0 : E(BTt) = 0 against H1 : E(BTt) < 0 but with some models we obtain E(BTt) > 0, i.e.
most excesses are between VaR and ES, not beyond ES, especially, under EVT approach.
In the first test of Acerbi & Szekely we have H0 : E(Z1) = 0 against H1 : E(Z1) > 0 and in
the second one, H0 : E(Z2) = 0 against H1 : E(Z2) > 0, but with some models, especially
models based on EVT, we obtain E(Z1) < 0 and E(Z2) < 0, respectively, i.e. in the first
test, the average of the realized excesses is lower than forecast ES and in the second one,
not only the average taken over excesses but also the number of excesses is lower than
expected according to forecast VaR and ES. Finally, in the Graham & Pál test we have
H0 : TRα = TR0 against H1 : TRα < TR0 where TR0 is equal to −α under exponential
assumption and the null hypothesis is rejected if the realized value of the sample statistic
T̂Rα is significantly less than the theoretical tail risk TR0. If we obtain TRα > TR0, we
will say that the risk model captures the tail risk or provide sufficient risk coverage, but
sometimes it is possible a significant risk overestimation not identified in this contrast.
This happens when the logarithmic difference between the probabilities of excess and the
VaR probability (α) does not follow an exponential distribution (this series follows an
exponential distribution if the forecast CDF is correct estimates of the real and unobserv-
able P&L distribution) but another distribution with thicker tails than the exponential is
obtained. In most cases, the distance from a statistic equal to zero is not very large, so it
would not lead to a significant overestimation of the risk, but it is important to keep in
mind that sometimes the EVT approach, and to a lesser extent non-EVT-based models,
can produce risk overestimation does not identified with these tests.

The tests of Costanzino & Curran and Du & Escanciano are two-tail tests, i.e. both,
risk underestimation and overestimation lead to a rejection of the null hypothesis. These
tests are based on cumulative violation process. Unlike violations, cumulative violations
Ht

21 contain information on the tail risk and, therefore, provide a more complete de-
scription of the risk involved. Besides, its main advantage is that the distribution of
the test statistic is available for finite out-of-sample size which leads to better size and
power properties compared to another tests. Table 3.7 reports the expected value of viola-

tions (nα), the number of violations
(
V (α) =

∑n
t=1 ĥt(α)

)
and the cumulative violations(

CV (α) =
∑n

t=1 Ĥt(α)
)

. Comparing V (α) and CV (α) with AR(1)-APARCH(1,1)-JSU

model based on EVT and not based on EVT for IBM, we observe that with EVT ap-
proach the number of V aR5% violations and of V aR2.5% violations increase, but for 2.5%,
the losses are less than with model not based on EVT. At 1% significance level, we ob-
tain the same number of violations (13) but we get smaller losses with EVT approach.

21In subsection 3.3.4, in “The Costanzino & Curran and Du & Escanciano Approaches” is the explanation
of how to calculate Ht.
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Comparing IBM and SAN, for SAN we obtain in general a greater number of violations
and larger losses, except at 1% significance level. For this significance level, for IBM we
obtain a greater number of violations and larger losses with JSU-EVT, and we obtain 17
violations for SAN versus 13 for IBM but 7.06 versus 10.41 of losses with JSU probability
distribution. Table 3.7 shows significant discrepancies between violations and cumulative
violations at the different coverage levels.

In Tables 3.8 - 3.11, according to p-values obtained in Costanzino & Curran and
Du & Escanciano tests, we do not reject the null hypothesis of conditional test with all
considered models, except for SAN with models not based on EVT, i.e. the cumulative
violations calculated for SAN is having autocorrelation for the first five lags when those
are calculated at 1% significance level. Regarding the unconditional test, in general we
do not reject the null hypothesis with all considered models, except for IBM with models
not based on EVT for ES1% considering at 5% significance level for the hypothesis con-
trast, for SAN, AXA and BP with Normal distribution for ES1%, for SAN and AXA with
Normal and Student-t distributions for ES2.5% and for AXA with Normal and Student-t
distributions for ES5%.

IBM SAN

JSU JSU-EVT JSU JSU-EVT

nα 63 63 63 63
V(0.05) 51 64 63 66
CV(0.05) 26.56 30.03 32.32 31.48

nα 31.5 31.5 31.5 31.5
V(0.025) 24 29 34 33
CV(0.025) 16.05 14.72 17.63 15.04

nα 12.6 12.6 12.6 12.6
V(0.01) 13 13 17 11
CV(0.01) 10.41 7.63 7.06 4.73

Table 3.7: Descriptive Analysis of Violations for IBM and SAN with AR(1)-APARCH(1,1)-
JSU and with AR(1)-APARCH(1,1)-EVT-JSU.

Figures 3.7 and 3.8 plot the cumulative violations {Ĥt(0.05)}, {Ĥt(0.025)} and {Ĥt(0.01)}
of the individual stocks IBM and SAN respectively in the out-of-sample period with JSU-
APARCH and JSU-EVT-APARCH models. We do not observe large values of {Ĥt(α)},
but we observe some clusters of cumulative violations, which suggest deviations from the
martingale difference sequence mds hypothesis that would be implied by an appropriate
ES forecast. In fact, we reject null hypothesis E(Ĥt(0.01)) 6= α/2 at 5% significance level,
only with JSU-APARCH for IBM, because UES p-value is equal to 0.02. We observe, in
general, for SAN and with models not based on EVT more cumulative violations than for
IBM and with models based on EVT.



Chapter 3. Testing ES estimation models: An extreme value theory approach 213

IBM 1% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -3.249 0.014 0.00 0.01 0.01 0.00 0.00 0.65 0.97
ST -4.205 0.010 0.07 0.00 0.00 0.00 0.01 0.72 0.99
SKST -4.266 0.010 0.07 0.00 0.00 0.00 0.02 0.73 0.99
SGED -3.921 0.010 0.02 0.00 0.00 0.00 0.01 0.72 0.99
JSU -4.206 0.010 0.06 0.00 0.00 0.00 0.02 0.73 0.99
N-EVT -5.931 0.010 0.38 0.96 1.00 0.30 0.26 0.76 0.99
ST-EVT -6.059 0.010 0.35 0.92 0.99 0.30 0.26 0.77 0.99
SKST-EVT -6.050 0.010 0.35 0.93 1.00 0.30 0.26 0.77 0.99
SGED-EVT -5.923 0.010 0.34 0.89 0.98 0.29 0.25 0.77 0.99
JSU-EVT -6.052 0.010 0.34 0.90 1.00 0.30 0.26 0.76 0.99

IBM 2.5% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -2.847 0.022 0.01 0.01 0.03 0.00 0.13 0.79 0.84
ST -3.305 0.024 0.13 0.03 0.05 0.01 0.29 0.86 0.89
SKST -3.350 0.021 0.12 0.01 0.08 0.03 0.39 1.00 0.91
SGED -3.255 0.018 0.05 0.01 0.32 0.00 0.48 0.63 0.91
JSU -3.352 0.019 0.10 0.01 0.32 0.02 0.46 0.81 0.92
N-EVT -4.042 0.022 0.36 0.79 0.95 0.49 0.35 0.70 0.91
ST-EVT -4.122 0.022 0.31 0.68 0.94 0.47 0.38 1.00 0.93
SKST-EVT -4.116 0.024 0.34 0.73 0.96 0.47 0.38 0.99 0.93
SGED-EVT -4.056 0.022 0.32 0.66 0.92 0.48 0.35 0.69 0.91
JSU-EVT -4.116 0.023 0.32 0.68 0.99 0.47 0.38 1.00 0.93

IBM 5% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -2.510 0.037 0.05 0.04 0.49 0.00 0.17 0.37 0.55
ST -2.699 0.044 0.18 0.13 0.40 0.09 0.33 0.11 0.41
SKST -2.734 0.044 0.20 0.11 0.39 0.16 0.22 0.11 0.40
SGED -2.738 0.037 0.15 0.07 0.75 0.02 0.06 0.36 0.58
JSU -2.752 0.040 0.18 0.11 0.67 0.15 0.14 0.13 0.42
N-EVT -3.003 0.053 0.48 0.69 0.90 0.52 0.41 0.41 0.67
ST-EVT -3.055 0.049 0.40 0.70 0.97 0.54 0.37 0.13 0.46
SKST-EVT -3.050 0.050 0.41 0.76 0.96 0.54 0.37 0.13 0.46
SGED-EVT -3.015 0.053 0.44 0.69 0.96 0.54 0.36 0.23 0.59
JSU-EVT -3.050 0.051 0.41 0.63 0.93 0.54 0.37 0.13 0.45

Table 3.8: Mean estimates, violations ratio and backtesting results (p-values) for ES esti-
mates from all the models for IBM. BTT is the test of Righi & Ceretta, Z1 and Z2 are the
tests of Acerbi & Szekely, TR is the test of Graham & Pál, and UES , CES(1) and CES(5)
are the unconditional and the conditional (lags = 1 and lags = 5) tests of Costanzino &
Curran and Du & Escanciano. The p-values in bold indicate that the statistics obtained
in these tests have an opposite sign to that specified in the alternative hypothesis.
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SAN 1% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -5.319 0.021 0.05 0.01 0.00 0.00 0.00 0.58 0.06
ST -6.143 0.015 0.14 0.01 0.00 0.01 0.06 0.70 0.00
SKST -6.400 0.014 0.16 0.01 0.00 0.03 0.28 0.77 0.00
SGED -6.174 0.014 0.11 0.01 0.01 0.00 0.22 0.77 0.00
JSU -6.473 0.013 0.17 0.01 0.00 0.02 0.35 0.79 0.00
N-EVT -7.757 0.009 0.96 0.99 1.00 0.52 0.24 0.84 0.09
ST-EVT -7.811 0.009 0.96 0.99 1.00 0.52 0.22 0.85 0.07
SKST-EVT -7.766 0.009 0.96 0.97 0.99 0.52 0.22 0.85 0.06
SGED-EVT -7.724 0.009 0.97 1.00 1.00 0.52 0.22 0.85 0.08
JSU-EVT -7.771 0.009 0.96 0.99 0.99 0.52 0.22 0.85 0.07

SAN 2.5% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -4.667 0.033 0.08 0.02 0.02 0.00 0.00 0.44 0.52
ST -5.096 0.033 0.20 0.06 0.01 0.01 0.04 0.43 0.35
SKST -5.294 0.028 0.19 0.09 0.07 0.04 0.20 0.44 0.24
SGED -5.232 0.027 0.17 0.04 0.03 0.00 0.27 0.46 0.20
JSU -5.354 0.027 0.20 0.03 0.03 0.05 0.28 0.45 0.20
N-EVT -5.805 0.028 0.96 0.96 0.99 0.53 0.43 0.48 0.17
ST-EVT -5.842 0.026 0.94 0.95 0.99 0.53 0.42 0.48 0.14
SKST-EVT -5.814 0.026 0.94 0.93 0.95 0.54 0.41 0.48 0.14
SGED-EVT -5.788 0.026 0.95 0.94 0.97 0.54 0.41 0.48 0.15
JSU-EVT -5.816 0.026 0.94 0.96 0.99 0.54 0.41 0.48 0.14

SAN 5% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -4.120 0.052 0.14 0.06 0.06 0.00 0.07 0.70 0.52
ST -4.322 0.056 0.23 0.15 0.06 0.01 0.09 0.99 0.48
SKST -4.477 0.050 0.23 0.06 0.05 0.09 0.34 0.82 0.52
SGED -4.479 0.050 0.24 0.12 0.16 0.01 0.47 0.60 0.52
JSU -4.518 0.050 0.24 0.12 0.13 0.11 0.43 0.77 0.53
N-EVT -4.589 0.053 0.93 0.95 0.97 0.50 0.49 0.72 0.60
ST-EVT -4.609 0.052 0.91 0.92 0.97 0.51 0.50 0.82 0.53
SKST-EVT -4.586 0.052 0.92 0.90 0.94 0.51 0.50 0.86 0.55
SGED-EVT -4.567 0.052 0.92 0.98 0.99 0.51 0.49 0.77 0.57
JSU-EVT -4.588 0.052 0.91 0.93 0.96 0.51 0.50 0.84 0.55

Table 3.9: Mean estimates, violations ratio and backtesting results (p-values) for ES esti-
mates from all the models for SAN. BTT is the test of Righi & Ceretta, Z1 and Z2 are the
tests of Acerbi & Szekely, TR is the test of Graham & Pál, and UES , CES(1) and CES(5)
are the unconditional and the conditional (lags = 1 and lags = 5) tests of Costanzino &
Curran and Du & Escanciano.The p-values in bold indicate that the statistics obtained in
these tests have an opposite sign to that specified in the alternative hypothesis.
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AXA 1% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -5.042 0.021 0.13 0.03 0.00 0.00 0.00 0.68 0.84
ST -5.623 0.017 0.25 0.06 0.01 0.03 0.08 0.70 0.99
SKST -5.774 0.013 0.19 0.01 0.00 0.09 0.25 0.75 0.99
SGED -5.606 0.014 0.18 0.00 0.00 0.00 0.21 0.76 0.99
JSU -5.807 0.012 0.20 0.02 0.01 0.09 0.32 0.76 0.99
N-EVT -6.399 0.009 1.00 1.00 1.00 0.66 0.12 0.84 1.00
ST-EVT -6.460 0.009 1.00 1.00 1.00 0.66 0.13 0.84 1.00
SKST-EVT -6.448 0.009 1.00 0.99 0.99 0.66 0.13 0.84 1.00
SGED-EVT -6.429 0.009 1.00 0.99 1.00 0.66 0.12 0.84 1.00
JSU-EVT -6.447 0.009 1.00 1.00 1.00 0.66 0.13 0.84 1.00

AXA 2.5% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -4.425 0.034 0.15 0.05 0.03 0.00 0.00 0.41 0.55
ST -4.727 0.033 0.24 0.08 0.03 0.01 0.01 0.33 0.55
SKST -4.846 0.032 0.26 0.09 0.02 0.06 0.06 0.29 0.58
SGED -4.801 0.032 0.26 0.04 0.99 0.01 0.11 0.35 0.64
JSU -4.876 0.032 0.28 0.11 0.00 0.07 0.10 0.29 0.60
N-EVT -4.989 0.027 1.00 0.99 1.00 0.70 0.27 0.57 0.82
ST-EVT -5.035 0.027 1.00 1.00 1.00 0.68 0.31 0.31 0.73
SKST-EVT -5.023 0.027 1.00 0.97 0.99 0.69 0.30 0.29 0.72
SGED-EVT -5.009 0.026 1.00 0.97 1.00 0.69 0.29 0.37 0.75
JSU-EVT -5.022 0.027 1.00 0.95 1.00 0.69 0.30 0.30 0.72

AXA 5% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -3.908 0.056 0.20 0.13 0.07 0.00 0.01 0.66 0.52
ST -4.046 0.057 0.26 0.24 0.10 0.01 0.02 0.70 0.59
SKST -4.141 0.056 0.29 0.12 0.07 0.07 0.13 0.61 0.56
SGED -4.148 0.052 0.27 0.08 0.04 0.02 0.24 0.55 0.55
JSU -4.164 0.056 0.29 0.17 0.08 0.09 0.17 0.59 0.56
N-EVT -3.962 0.056 1.00 0.96 1.00 0.57 0.45 0.58 0.51
ST-EVT -4.008 0.055 1.00 0.95 0.98 0.56 0.44 0.55 0.55
SKST-EVT -3.994 0.056 1.00 0.95 0.98 0.56 0.45 0.55 0.55
SGED-EVT -3.981 0.056 1.00 0.96 0.99 0.56 0.45 0.55 0.52
JSU-EVT -3.992 0.056 1.00 0.95 0.95 0.57 0.45 0.55 0.55

Table 3.10: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for AXA. BTT is the test of Righi & Ceretta, Z1 and Z2

are the tests of Acerbi & Szekely, TR is the test of Graham & Pál, and UES , CES(1)
and CES(5) are the unconditional and the conditional (lags = 1 and lags = 5) tests
of Costanzino & Curran and Du & Escanciano. The p-values in bold indicate that the
statistics obtained in these tests have an opposite sign to that specified in the alternative
hypothesis.
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BP 1% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -3.696 0.014 0.06 0.03 0.02 0.00 0.00 0.69 0.98
ST -4.283 0.012 0.20 0.01 0.00 0.06 0.12 0.74 0.99
SKST -4.372 0.012 0.22 0.00 0.01 0.11 0.20 0.76 0.99
SGED -4.213 0.011 0.16 0.02 0.04 0.02 0.19 0.78 1.00
JSU -4.384 0.012 0.24 0.02 0.01 0.10 0.24 0.77 0.99
N-EVT -4.585 0.007 0.64 0.99 1.00 0.39 0.45 0.82 1.00
ST-EVT -4.696 0.007 0.55 0.98 0.99 0.41 0.47 0.81 1.00
SKST-EVT -4.698 0.007 0.56 0.99 1.00 0.41 0.47 0.81 1.00
SGED-EVT -4.651 0.007 0.58 0.98 1.00 0.41 0.45 0.82 1.00
JSU-EVT -4.689 0.007 0.56 0.99 1.00 0.41 0.46 0.81 1.00

BP 2.5% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -3.243 0.031 0.18 0.07 0.03 0.00 0.05 1.00 0.89
ST -3.550 0.029 0.29 0.13 0.04 0.10 0.23 0.83 0.92
SKST -3.619 0.028 0.30 0.18 0.06 0.20 0.42 0.78 0.94
SGED -3.577 0.025 0.26 0.07 0.25 0.09 0.44 0.77 0.94
JSU -3.637 0.028 0.31 0.20 0.11 0.22 0.50 0.77 0.94
N-EVT -3.631 0.024 0.90 0.97 0.99 0.59 0.25 0.88 0.94
ST-EVT -3.704 0.025 0.80 0.96 0.99 0.58 0.27 0.69 0.95
SKST-EVT -3.702 0.026 0.81 0.95 1.00 0.58 0.28 0.70 0.94
SGED-EVT -3.671 0.025 0.84 0.98 0.99 0.58 0.27 0.80 0.95
JSU-EVT -3.698 0.025 0.81 0.99 1.00 0.58 0.28 0.71 0.95

BP 5% significance level

1-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -2.862 0.044 0.17 0.11 0.49 0.00 0.24 0.69 0.66
ST -3.010 0.047 0.26 0.12 0.39 0.13 0.28 0.79 0.60
SKST -3.064 0.044 0.26 0.11 0.63 0.24 0.43 0.79 0.64
SGED -3.068 0.043 0.27 0.18 0.81 0.18 0.40 0.75 0.68
JSU -3.079 0.044 0.27 0.13 0.74 0.27 0.49 0.79 0.65
N-EVT -2.940 0.049 0.81 0.90 0.96 0.55 0.43 0.74 0.64
ST-EVT -2.996 0.048 0.70 0.90 0.97 0.53 0.44 0.82 0.63
SKST-EVT -2.995 0.048 0.71 0.90 0.99 0.52 0.45 0.81 0.63
SGED-EVT -2.972 0.048 0.73 0.91 0.97 0.53 0.45 0.79 0.64
JSU-EVT -2.991 0.047 0.70 0.93 0.98 0.53 0.45 0.81 0.63

Table 3.11: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for BP. BTT is the test of Righi & Ceretta, Z1 and Z2

are the tests of Acerbi & Szekely, TR is the test of Graham & Pál, and UES , CES(1)
and CES(5) are the unconditional and the conditional (lags = 1 and lags = 5) tests
of Costanzino & Curran and Du & Escanciano.The p-values in bold indicate that the
statistics obtained in these tests have an opposite sign to that specified in the alternative
hypothesis.
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Figures 3.9 and 3.10 show insignificant autocorrelations from {Ĥt(0.01)} for IBM serie
but some significant autocorrelations for SAN with both models, in fact the p-value of
CES(5) statistic with JSU-APARCH is equal to 0. In this case, the number of extreme
losses and the average losses is not very large but these are highly correlated. In general,
for IBM with both models, autocorrelations are close to zero for the first twelve lags, i.e.
Cov(Ht(α), Ht−j(α)) = 0.

Figure 3.7: Cumulative hits (violations) of IBM with model JSU-APARCH and JSU-EVT-
APARCH for different α.

Figure 3.11 shows the tail-distributions with their respective estimated parameters for
IBM. We observe that the Normal distribution tends to underestimate the weight of the
extreme returns contained in the distribution tails. The GPD is suitable to capture tail
risk, and it avoids underestimating extreme risks.

Now, we calculate VaR, ES and SD estimates by FHS approach as described in sub-
section 3.3.6. Then, we evaluate the performance results of one-day out-of-sample ES
forecasts using the test of Righi & Ceretta and the two tests of Acerbi & Szekely because
these are more suitable for non-parametric VaR and ES forecasts. In FHS we obtain the
VaR as the percentile of the return distribution and the ES as the mean of values below
the VaR, we do not assume any volatility specification and/or probability distribution for
the calculation of VaR and ES. The other tests, the Graham & Pál test and Costanzino &
Curran and Du & Escanciano tests are suitable if we estimate VaR and ES by parametric
approach.

Tables 3.12 - 3.15 show the average value of the estimated ES, the violations ratio
(Viol.) of the underlying VaR and the backtesting results for the distinct models. If we
compare these tables with Tables 3.8 - 3.11, we observe that (i) in what concerns parsi-
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Figure 3.8: Cumulative hits (violations) of SAN with model JSU-APARCH and JSU-
EVT-APARCH for different α.

Figure 3.9: Sample autocorrelations of cumulative hits (violations) of IBM under model
JSU-APARCH and JSU-EVT-APARCH for different values of α.
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Figure 3.10: Sample autocorrelations of cumulative hits (violations) of SAN under model
JSU-APARCH and JSU-EVT-APARCH for different values of α.

Figure 3.11: Tail-distributions for IBM. N is the Normal distribution, ST is the Student-
t(4.67), SKST is the Skewed Student-t(0.97, 4.69), SGED is the Skewed Generalized Er-
ror(0.99, 1.15) and JSU is the Johnson SU (-0.092, 1.53) distribution.



220 3.5. Evaluating 1-day ES

mony of ESt, the conditional EVT-based models do not always present ”more negatives”
values than do conditional models not based on EVT, as indicated by the averages for
the ES estimates. Besides, the differences in average value of the ES are more similar
among models than when we forecast ES by parametric approach (Tables 3.8 - 3.11) for
the out-of-sample period (5 years, 1260 data), (ii) regarding VaR violation rates, in some
models we observe an underestimation of risk, for example SAN at the 2.5% significance
level and AXA at the 2.5% and 5% significance levels for all models, and unlike Tables
3.8 - 3.11, we do not obtain in all models based on EVT a lower violation rate than this
obtained with the homologous model not based on EVT, and (iii) according to p-values
of tests, models based on EVT, especially SKST, SGED and JSU are preferred in terms
of ES backtesting for the three significance levels, although this model is possible that the
risk is overestimated. Models not based on EVT are not suitable in terms of ES forecasts
because we reject the null hypothesis of Z1 and Z2 test at 5% significance level for ES1%

and ES2.5% calculated for IBM and SAN returns and we reject the null hypothesis of Z2

test at significance level for ES1% and ES2.5% calculated for AXA returns. For BP, we
obtain a good ES performance at 5% significance level with all models, based or not based
on EVT, although ES is possibly overestimated regarding Z2 test. But, the best models
are N-EVT and SGED-EVT for this asset.

If we compare parametric and FHS approaches, we observe that the conclusions ob-
tained on ES performance are similar, although the differences between conditional models
based on EVT and not based on EVT are more significant with the parametric approach
due to that FHS is a semi-parametric approach and the power and flexibility of conditional
volatility models is diluted by historical simulation. The dilution depends on the number
of realizations or paths generated by the standardized residuals. A considerable number
of realizations are necessary in order to obtain robust results.

3.5.3 Pre-crisis and crisis periods

In this section we divide the full sample in two sub-samples. The pre-crisis period is de-
fined so as to have the same number of observations as the crisis period (1239 data points).
And we leave the 2007-2009 period for the out-of-sample crisis period. In Table 3.16, we
show the time intervals for the pre-crisis and crisis periods for in-sample and out-of-sample
evaluation.

Tables 3.17 - 3.20 and 3.21 - 3.24 show the average value of the estimated ES, the
violations ratio of the underlying VaR and the backtesting results for the distinct models
for the pre-crisis and crisis periods, respectively, using parametric approach.

For all assets and models, we observe in the pre-crisis period an average ES estimate
lower than during the crisis and we also observe ratios of violations closer to the respective
significance level (α) compared to those in crisis period. For instance, for IBM in the pre-
crisis period, for 1% significance level the violations ratio of the different models is between
1.2%−1.5%, for 2.5% significance level the violations ratio is between 1.9%−2.7%, and for
5% significance level the violations ratio is between 3.3%− 5%, while in the crisis period



Chapter 3. Testing ES estimation models: An extreme value theory approach 221

IBM 1% significance level

FHS 1-day ES Viol BTT Z1 Z2

N -4.553 0.011 0.15 0.02 0.02
ST -4.629 0.011 0.11 0.00 0.00
SKST -4.627 0.010 0.10 0.02 0.02
SGED -4.577 0.010 0.13 0.02 0.02
JSU -4.619 0.011 0.15 0.00 0.12
N-EVT -4.490 0.010 1.00 0.90 0.97
ST-EVT -4.592 0.011 0.12 0.14 0.97
SKST-EVT -4.575 0.011 0.12 0.10 0.97
SGED-EVT -4.519 0.011 0.09 0.08 1.00
JSU-EVT -4.573 0.011 0.12 0.00 0.97

IBM 2.5% significance level

FHS 1-day ES Viol BTT Z1 Z2

N -3.474 0.021 0.19 0.02 0.29
ST -3.486 0.021 0.14 0.03 0.26
SKST -3.485 0.022 0.16 0.01 0.13
SGED -3.471 0.021 0.19 0.03 0.30
JSU -3.481 0.022 0.18 0.03 0.45
N-EVT -3.471 0.021 1.00 0.80 0.87
ST-EVT -3.492 0.021 0.14 0.37 0.94
SKST-EVT -3.481 0.022 0.17 0.42 0.88
SGED-EVT -3.466 0.021 0.14 0.31 0.93
JSU-EVT -3.482 0.022 0.17 0.16 0.88

IBM 5% significance level

FHS 1-day ES Viol BTT Z1 Z2

N -2.791 0.042 0.27 0.14 0.68
ST -2.784 0.044 0.21 0.13 0.50
SKST -2.782 0.043 0.22 0.05 0.43
SGED -2.780 0.043 0.26 0.10 0.51
JSU -2.781 0.044 0.24 0.12 0.45
N-EVT -2.792 0.042 1.00 0.75 0.75
ST-EVT -2.792 0.044 0.25 0.44 0.74
SKST-EVT -2.784 0.045 0.26 0.42 0.80
SGED-EVT -2.784 0.044 0.25 0.39 0.82
JSU-EVT -2.786 0.044 0.25 0.52 0.79

Table 3.12: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for IBM and for 1-day returns calculated by FHS. BTT is
the test of Righi & Ceretta and Z1 and Z2 are the tests of Acerbi & Szekely. The p-values
in bold indicate that the statistics obtained in these tests have an opposite sign to that
specified in the alternative hypothesis.
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SAN 1% significance level

FHS 1-day ES Viol BTT Z1 Z2

N -6.147 0.013 0.12 0.01 0.00
ST -6.159 0.013 0.08 0.02 0.01
SKST -6.149 0.013 0.05 0.00 0.00
SGED -6.144 0.013 0.06 0.01 0.00
JSU -6.150 0.013 0.06 0.00 0.00
N-EVT -6.203 0.014 0.14 0.49 0.93
ST-EVT -6.206 0.014 0.14 0.60 0.89
SKST-EVT -6.215 0.014 0.11 0.53 0.94
SGED-EVT -6.214 0.015 0.13 0.58 0.94
JSU-EVT -6.216 0.014 0.11 0.47 0.89

SAN 2.5% significance level

FHS 1-day ES Viol BTT Z1 Z2

N -5.254 0.028 0.19 0.05 0.03
ST -5.255 0.028 0.17 0.01 0.00
SKST -5.250 0.026 0.13 0.04 0.03
SGED -5.254 0.026 0.15 0.02 0.02
JSU -5.251 0.026 0.14 0.03 0.03
N-EVT -5.264 0.026 0.22 0.45 0.77
ST-EVT -5.263 0.025 0.19 0.43 0.80
SKST-EVT -5.266 0.027 0.21 0.52 0.82
SGED-EVT -5.268 0.028 0.22 0.58 0.85
JSU-EVT -5.267 0.027 0.21 0.49 0.86

SAN 5% significance level

FHS 1-day ES Viol BTT Z1 Z2

N -4.512 0.052 0.28 0.17 0.16
ST -4.507 0.051 0.23 0.09 0.08
SKST -4.503 0.048 0.20 0.15 0.21
SGED -4.508 0.048 0.23 0.06 0.17
JSU -4.505 0.048 0.20 0.10 0.17
N-EVT -4.506 0.049 0.35 0.38 0.71
ST-EVT -4.503 0.049 0.31 0.55 0.81
SKST-EVT -4.503 0.050 0.32 0.37 0.68
SGED-EVT -4.507 0.049 0.31 0.39 0.77
JSU-EVT -4.504 0.050 0.32 0.43 0.76

Table 3.13: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for SAN and for 1-day returns calculated by FHS. BTT is
the test of Righi & Ceretta and Z1 and Z2 are the tests of Acerbi & Szekely. The p-values
in bold indicate that the statistics obtained in these tests have an opposite sign to that
specified in the alternative hypothesis.
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AXA 1% significance level

FHS 1-day ES Viol BTT Z1 Z2

N -5.954 0.014 0.26 0.08 0.00
ST -5.978 0.015 0.27 0.22 0.00
SKST -5.986 0.017 0.31 0.24 0.00
SGED -5.965 0.015 0.29 0.05 0.00
JSU -5.985 0.017 0.34 0.29 0.00
N-EVT -5.867 0.012 0.25 0.70 0.94
ST-EVT -5.879 0.012 0.27 0.58 0.87
SKST-EVT -5.900 0.010 0.19 0.73 0.94
SGED-EVT -5.888 0.010 0.18 0.66 0.91
JSU-EVT -5.900 0.010 0.19 0.63 0.93

AXA 2.5% significance level

FHS 1-day ES Viol BTT Z1 Z2

N -4.889 0.034 0.32 0.13 0.03
ST -4.883 0.034 0.29 0.07 0.00
SKST -4.889 0.033 0.28 0.13 0.00
SGED -4.887 0.034 0.32 0.16 0.03
JSU -4.889 0.033 0.29 0.11 0.00
N-EVT -4.923 0.034 0.50 0.59 0.80
ST-EVT -4.919 0.034 0.48 0.61 0.82
SKST-EVT -4.931 0.033 0.47 0.62 0.75
SGED-EVT -4.929 0.033 0.46 0.58 0.80
JSU-EVT -4.932 0.033 0.47 0.58 0.81

AXA 5% significance level

FHS 1-day ES Viol BTT Z1 Z2

N -4.166 0.055 0.31 0.19 0.10
ST -4.159 0.056 0.29 0.20 0.07
SKST -4.162 0.057 0.29 0.21 0.10
SGED -4.162 0.057 0.31 0.15 0.04
JSU -4.162 0.057 0.29 0.18 0.07
N-EVT -4.186 0.055 0.47 0.57 0.83
ST-EVT -4.177 0.056 0.45 0.48 0.78
SKST-EVT -4.184 0.056 0.47 0.42 0.76
SGED-EVT -4.186 0.056 0.46 0.56 0.81
JSU-EVT -4.185 0.057 0.48 0.44 0.74

Table 3.14: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for AXA and for 1-day returns calculated by FHS. BTT is
the test of Righi & Ceretta and Z1 and Z2 are the tests of Acerbi & Szekely. The p-values
in bold indicate that the statistics obtained in these tests have an opposite sign to that
specified in the alternative hypothesis.
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BP 1% significance level

FHS 1-day ES Viol BTT Z1 Z2

N -4.234 0.010 0.17 0.03 0.09
ST -4.241 0.013 0.18 0.03 0.02
SKST -4.254 0.012 0.20 0.00 0.00
SGED -4.244 0.011 0.23 0.05 0.07
JSU -4.253 0.012 0.22 0.02 0.00
N-EVT -4.315 0.010 0.20 0.50 0.92
ST-EVT -4.314 0.012 0.24 0.54 0.92
SKST-EVT -4.316 0.011 0.18 0.58 0.92
SGED-EVT -4.313 0.011 0.18 0.47 0.94
JSU-EVT -4.315 0.011 0.19 0.54 0.90

BP 2.5% significance level

FHS 1-day ES Viol BTT Z1 Z2

N -3.579 0.022 0.23 0.08 0.66
ST -3.572 0.023 0.20 0.07 0.40
SKST -3.583 0.027 0.27 0.13 0.04
SGED -3.581 0.024 0.26 0.06 0.41
JSU -3.583 0.026 0.26 0.14 0.14
N-EVT -3.622 0.025 0.38 0.51 0.81
ST-EVT -3.619 0.028 0.39 0.55 0.87
SKST-EVT -3.619 0.027 0.37 0.61 0.86
SGED-EVT -3.616 0.026 0.35 0.58 0.88
JSU-EVT -4.315 0.027 0.37 0.52 0.78

BP 5% significance level

FHS 1-day ES Viol BTT Z1 Z2

N -3.067 0.044 0.29 0.21 0.76
ST -3.062 0.044 0.24 0.17 0.82
SKST -3.070 0.044 0.26 0.14 0.61
SGED -3.068 0.045 0.29 0.12 0.64
JSU -3.069 0.044 0.26 0.13 0.73
N-EVT -3.079 0.044 0.40 0.58 0.84
ST-EVT -3.076 0.044 0.35 0.50 0.77
SKST-EVT -3.074 0.044 0.34 0.46 0.76
SGED-EVT -3.072 0.043 0.33 0.53 0.85
JSU-EVT -3.074 0.044 0.34 0.44 0.74

Table 3.15: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for BP and for 1-day returns calculated by FHS. BTT is the
test of Righi & Ceretta and Z1 and Z2 are the tests of Acerbi & Szekely. The p-values
in bold indicate that the statistics obtained in these tests have an opposite sign to that
specified in the alternative hypothesis.
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Daily
In-Sample Out-of-Sample

Start End T Start End T N

pre-crisis 10/02/2000 06/30/2005 1239 07/01/2005 06/29/2007 521 1760
crisis 10/01/2002 06/29/2007 1239 07/02/2007 06/29/2009 521 1760
full sample 10/02/2000 12/02/2011 2915 12/05/2011 09/30/2016 1260 4175

Table 3.16: Sample information about the different considered periods.

those figures are between 1.2% − 1.7%, between 3.3% − 5%, and between 6.1% − 8.6%,
respectively. We observe two facts: (i) As we increase the level of significance the dif-
ferences between the violations ratio in pre-crisis and crisis periods increase, and (ii) in
the pre-crisis period some models achieve a ratio of violations equal to the expected ratio
(α): for BP data at α = 0.01 significance, that is the case for N and ST models and for
all models based on EVT except JSU-EVT; for the SGED-EVT model when analyzing
IBM data at α = 0.025, and for all models based on EVT for AXA data. At α = 0.05
significance, that obtains for all models based on EVT for IBM data, for all models based
on EVT except N-EVT for SAN data, for the SGED-EVT model for AXA data, and for
the JSU-EVT model for BP data. In general, during the pre-crisis period, models based
on EVT, especially with SGED and JSU distributions, perform the best in terms of the
violations ratio.

If we compare the results obtained in the ES tests in pre-crisis and crisis periods,
we observe (i) asymmetric distributions are preferred to symmetric distributions (with or
without EVT) in pre-crisis and crisis period to obtain a better ES performance, (ii) among
conditional models do not based on EVT are preferred SGED and JSU for the three sig-
nificance levels both pre-crisis and crisis, except in pre-crisis for IBM at 1% significance
level that SKST is preferred and in crisis for BP at 1% that ST is preferred, (iii) among
conditional EVT models are also preferred SGED and JSU for the three significance levels
and both pre-crisis and crisis, except for IBM that N-EVT model is preferred for the three
significance levels, especially in crisis period, (iv) in general, in pre-crisis period the p-
values obtained in all tests are higher than those obtained in crisis period, which implies a
greater probability of assuming that the null hypothesis is not false, and (v) the differences
between p-values obtained in pre-crisis and crisis period for ES based on the conditional
EVT models are lower than those for ES do not based on conditional EVT models. In
general, both pre-crisis and crisis, models based on EVT, especially with SGED and JSU
are preferred in terms of ES backtesting.

If we compare the results obtained in each ES test individually, we observe: (i) ac-
cording to the Righi & Ceretta test, the N-EVT and SGED-EVT models are suitable
in terms of ES performance in both periods, and in pre-crisis JSU-EVT is also suitable,
(ii) according to the first test of Acerbi & Szekely, that it is insensitive to an excessive
number of exceptions, the N-EVT and SGED-EVT models play an important role in ES
performance and it is possible to not reject H0 if there are a large number of exceptions of
small magnitude; according to the second test of Acerbi & Szekely, where rejecting the H0
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includes rejecting V aR as correctly specified, the SGED-EVT model has predominance in
the ES performance, (iii) according to Graham & Pál test, JSU model performs the best
at capturing tail risk as measured by ES and (iv) according to Du & Escanciano test, JSU
and SKST-EVT models generally lead to not rejecting H0, implying that the cumulative
violation process has mean equal to zero, with more probability than other EVT-based
models; if we consider models not based on EVT, SGED and JSU are appropriate, because
the cumulative violations do not display significant autocorrelation. Note that for AXA
the cumulative violations have significant autocorrelation (in 5 lags) at 1% and 5% signif-
icance level in the pre-crisis but not in the crisis period and for IBM and BP, cumulative
violations have significant autocorrelation for the three significance levels at both 1 and
5 lags in the crisis period but not in the pre-crisis period. In this sense, the number of
extreme losses may not be large, but the average loss can be large and highly correlated.
Therefore, this last test is able to better detect the problems of the commonly used risk
models during the 2008 financial crisis. In addition, at a difference of conditional VaR
backtests (Christoffersen, 1998) [22], we consider not only the clusters of tail events but
also their magnitude. To sum up, we conclude that models with SGED and JSU, either
based or not based on EVT, are preferred because they have more flexibility to capture
the risk in periods of crisis and not crisis. We should also point out that the N-EVT model
also yields good results, especially with the Rigui & Ceretta and Acerbi & Szekely tests.
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IBM 1% significance level

pre-crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -2.582 0.015 0.09 0.03 0.00 0.00 0.00 0.74 0.99
ST -3.170 0.013 0.35 0.57 0.00 0.33 0.27 0.82 1.00
SKST -3.224 0.012 0.31 0.37 0.02 0.35 0.28 0.82 1.00
SGED -3.103 0.012 0.30 0.04 0.01 0.27 0.26 0.83 1.00
JSU -3.218 0.012 0.34 0.34 0.02 0.36 0.31 0.82 1.00
N-EVT -3.175 0.013 0.38 0.88 1.00 0.37 0.31 0.82 1.00
ST-EVT -3.253 0.012 0.18 0.02 1.00 0.35 0.32 0.83 1.00
SKST-EVT -3.253 0.012 0.18 0.03 1.00 0.35 0.32 0.83 1.00
SGED-EVT -3.220 0.012 0.23 0.03 1.00 0.36 0.31 0.83 1.00
JSU-EVT -3.254 0.012 0.19 0.02 0.99 0.35 0.31 0.83 1.00

IBM 2.5% significance level

pre-crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -2.268 0.027 0.14 0.09 0.07 0.01 0.17 0.65 0.96
ST -2.532 0.023 0.26 0.07 0.53 0.39 0.46 0.68 0.97
SKST -2.573 0.019 0.22 0.07 0.96 0.40 0.48 0.69 0.98
SGED -2.591 0.019 0.23 0.07 0.96 0.38 0.46 0.71 0.98
JSU -2.595 0.019 0.23 0.07 0.94 0.43 0.48 0.70 0.98
N-EVT -2.590 0.027 0.36 0.59 0.98 0.40 0.45 0.67 0.97
ST-EVT -2.616 0.023 0.21 0.06 1.00 0.42 0.50 0.69 0.98
SKST-EVT -2.618 0.023 0.22 0.08 0.99 0.42 0.50 0.69 0.98
SGED-EVT -2.612 0.025 0.28 0.09 0.99 0.41 0.50 0.69 0.98
JSU-EVT -2.623 0.023 0.22 0.06 1.00 0.42 0.50 0.69 0.98

IBM 5% significance level

pre-crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -2.004 0.038 0.16 0.10 0.90 0.05 0.40 0.49 0.89
ST -2.094 0.040 0.26 0.15 0.85 0.53 0.31 0.46 0.86
SKST -2.125 0.040 0.27 0.21 0.84 0.56 0.29 0.47 0.87
SGED -2.190 0.033 0.24 0.10 0.92 0.61 0.17 0.52 0.90
JSU -2.152 0.040 0.28 0.29 0.87 0.61 0.23 0.49 0.88
N-EVT -2.134 0.050 0.42 0.80 0.97 0.46 0.45 0.40 0.90
ST-EVT -2.137 0.050 0.30 0.23 0.98 0.50 0.39 0.41 0.86
SKST-EVT -2.140 0.050 0.31 0.35 0.98 0.50 0.39 0.41 0.86
SGED-EVT -2.144 0.050 0.35 0.54 0.98 0.49 0.40 0.41 0.87
JSU-EVT -2.145 0.050 0.32 0.34 0.96 0.50 0.39 0.41 0.86

Table 3.17: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for IBM and for pre-crisis period. BTT is the test of Righi
& Ceretta, Z1 and Z2 are the tests of Acerbi & Szekely, TR is the test of Graham &
Pál, and UES , CES(1) and CES(5) are the unconditional and the conditional (lags = 1
and lags = 5) tests of Costanzino & Curran and Du & Escanciano. The p-values in bold
indicate that the statistics obtained in these tests have an opposite sign to that specified
in the alternative hypothesis.
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SAN 1% significance level

pre-crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -2.964 0.021 0.22 0.08 0.00 0.01 0.00 0.73 0.25
ST -3.350 0.017 0.40 0.78 0.00 0.25 0.06 0.71 0.17
SKST -3.515 0.017 0.52 0.94 0.00 0.52 0.30 0.76 0.21
SGED -3.418 0.017 0.50 0.95 0.01 0.44 0.23 0.76 0.20
JSU -3.581 0.017 0.57 1.00 0.00 0.63 0.45 0.77 0.24
N-EVT -3.250 0.015 0.78 0.97 0.99 0.34 0.15 0.76 0.24
ST-EVT -3.305 0.017 0.64 0.99 1.00 0.37 0.18 0.76 0.16
SKST-EVT -3.270 0.017 0.71 0.98 1.00 0.36 0.17 0.75 0.19
SGED-EVT -3.278 0.017 0.71 1.00 1.00 0.37 0.17 0.75 0.19
JSU-EVT -3.266 0.017 0.71 0.98 1.00 0.36 0.17 0.75 0.18

SAN 2.5% significance level

pre-crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -2.599 0.027 0.14 0.01 0.01 0.01 0.02 0.54 0.09
ST -2.791 0.029 0.27 0.09 0.02 0.15 0.07 0.66 0.16
SKST -2.926 0.027 0.32 0.19 0.13 0.33 0.20 0.78 0.24
SGED -2.905 0.027 0.32 0.24 0.09 0.31 0.20 0.84 0.23
JSU -2.976 0.027 0.35 0.36 0.13 0.42 0.26 0.84 0.26
N-EVT -2.793 0.027 0.61 0.97 1.00 0.27 0.20 0.85 0.16
ST-EVT -2.822 0.027 0.47 0.80 0.99 0.28 0.20 0.87 0.28
SKST-EVT -2.806 0.027 0.54 0.92 0.99 0.27 0.19 0.86 0.29
SGED-EVT -2.805 0.027 0.53 0.9 0.99 0.27 0.19 0.86 0.23
JSU-EVT -2.804 0.027 0.54 0.97 1.00 0.27 0.19 0.87 0.28

SAN 5% significance level

pre-crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -2.292 0.052 0.25 0.17 0.12 0.04 0.29 0.55 0.08
ST -2.374 0.056 0.31 0.30 0.10 0.20 0.24 0.72 0.11
SKST -2.484 0.050 0.34 0.36 0.46 0.45 0.48 0.61 0.11
SGED -2.491 0.050 0.36 0.39 0.40 0.47 0.40 0.58 0.11
JSU -2.519 0.050 0.36 0.43 0.54 0.53 0.42 0.61 0.11
N-EVT -2.392 0.048 0.61 0.91 0.99 0.43 0.39 0.58 0.08
ST-EVT -2.411 0.050 0.49 0.79 0.97 0.42 0.44 0.62 0.13
SKST-EVT -2.403 0.050 0.56 0.89 1.00 0.42 0.42 0.60 0.12
SGED-EVT -2.398 0.050 0.55 0.81 1.00 0.42 0.43 0.60 0.10
JSU-EVT -2.401 0.050 0.56 0.84 0.99 0.42 0.42 0.61 0.12

Table 3.18: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for SAN and for pre-crisis period. BTT is the test of Righi
& Ceretta, Z1 and Z2 are the tests of Acerbi & Szekely, TR is the test of Graham &
Pál, and UES , CES(1) and CES(5) are the unconditional and the conditional (lags = 1
and lags = 5) tests of Costanzino & Curran and Du & Escanciano. The p-values in bold
indicate that the statistics obtained in these tests have an opposite sign to that specified
in the alternative hypothesis.
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AXA 1% significance level

pre-crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -3.884 0.013 0.15 0.02 0.01 0.01 0.06 0.79 0.00
ST -4.184 0.013 0.29 0.10 0.00 0.17 0.24 0.83 0.00
SKST -4.286 0.012 0.26 0.04 0.00 0.23 0.34 0.85 0.00
SGED -4.255 0.012 0.26 0.03 0.01 0.18 0.36 0.86 0.00
JSU -4.328 0.010 0.23 0.03 0.19 0.26 0.39 0.86 0.00
N-EVT -4.330 0.012 1.00 0.97 0.99 0.41 0.44 0.86 0.01
ST-EVT -4.350 0.012 1.00 0.99 0.99 0.41 0.44 0.86 0.00
SKST-EVT -4.340 0.012 1.00 0.98 0.99 0.41 0.44 0.86 0.01
SGED-EVT -4.330 0.012 1.00 0.98 1.00 0.41 0.44 0.86 0.01
JSU-EVT -4.334 0.012 1.00 0.99 1.00 0.40 0.44 0.86 0.01

AXA 2.5% significance level

pre-crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -3.408 0.021 0.16 0.05 0.63 0.05 0.37 0.68 0.06
ST -3.546 0.023 0.25 0.05 0.51 0.27 0.48 0.69 0.03
SKST -3.629 0.021 0.26 0.06 0.88 0.36 0.43 0.71 0.02
SGED -3.657 0.021 0.28 0.08 0.89 0.33 0.36 0.73 0.01
JSU -3.664 0.021 0.28 0.09 0.90 0.40 0.38 0.72 0.01
N-EVT -3.461 0.025 0.97 0.94 0.97 0.44 0.49 0.67 0.05
ST-EVT -3.472 0.025 0.93 0.99 1.00 0.44 0.50 0.67 0.04
SKST-EVT -3.468 0.025 0.94 0.94 0.99 0.44 0.50 0.67 0.04
SGED-EVT -3.459 0.025 0.95 0.93 0.99 0.44 0.49 0.67 0.04
JSU-EVT -3.464 0.025 0.94 0.98 1.00 0.44 0.50 0.67 0.04

AXA 5% significance level

pre-crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -3.009 0.036 0.22 0.14 0.92 0.17 0.28 0.50 0.37
ST -3.052 0.040 0.28 0.20 0.87 0.43 0.30 0.46 0.38
SKST -3.121 0.038 0.30 0.17 0.93 0.54 0.22 0.49 0.31
SGED -3.169 0.033 0.26 0.13 0.98 0.58 0.14 0.53 0.25
JSU -3.147 0.038 0.31 0.20 0.94 0.59 0.19 0.50 0.28
N-EVT -2.832 0.048 0.95 0.89 0.94 0.47 0.47 0.63 0.55
ST-EVT -2.842 0.048 0.90 0.88 0.95 0.47 0.49 0.71 0.56
SKST-EVT -2.839 0.048 0.91 0.94 0.99 0.47 0.48 0.68 0.55
SGED-EVT -2.829 0.050 0.94 0.92 0.99 0.47 0.48 0.62 0.54
JSU-EVT -2.835 0.048 0.91 0.86 0.95 0.47 0.48 0.67 0.55

Table 3.19: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for AXA and for pre-crisis period. BTT is the test of Righi
& Ceretta, Z1 and Z2 are the tests of Acerbi & Szekely, TR is the test of Graham &
Pál, and UES , CES(1) and CES(5) are the unconditional and the conditional (lags = 1
and lags = 5) tests of Costanzino & Curran and Du & Escanciano. The p-values in bold
indicate that the statistics obtained in these tests have an opposite sign to that specified
in the alternative hypothesis.
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BP 1% significance level

pre-crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -3.361 0.010 0.36 0.40 0.46 0.41 0.42 0.73 1.00
ST -3.621 0.010 0.55 0.97 0.71 0.72 0.30 0.89 1.00
SKST -3.717 0.006 0.46 0.86 0.99 0.79 0.23 0.90 1.00
SGED -3.668 0.006 0.45 0.84 1.00 0.77 0.24 0.90 1.00
JSU -3.218 0.012 0.51 0.93 1.00 0.83 0.19 0.91 1.00
N-EVT -3.155 0.010 0.80 0.97 1.00 0.37 0.39 0.68 1.00
ST-EVT -3.144 0.010 0.80 0.95 1.00 0.37 0.40 0.76 1.00
SKST-EVT -3.146 0.010 0.82 0.98 1.00 0.37 0.39 0.73 1.00
SGED-EVT -3.150 0.010 0.82 0.99 0.99 0.38 0.39 0.72 1.00
JSU-EVT -3.254 0.012 0.83 0.97 1.00 0.37 0.39 0.72 1.00

BP 2.5% significance level

pre-crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -2.946 0.021 0.34 0.25 0.92 0.47 0.45 0.03 0.41
ST -3.086 0.019 0.39 0.56 0.97 0.73 0.29 0.05 0.49
SKST -3.167 0.019 0.45 0.78 0.97 0.80 0.22 0.06 0.54
SGED -3.160 0.017 0.42 0.72 0.95 0.81 0.20 0.06 0.57
JSU -2.595 0.019 0.40 0.67 1.00 0.84 0.18 0.07 0.58
N-EVT -2.741 0.021 0.85 0.93 1.00 0.43 0.50 0.04 0.42
ST-EVT -2.737 0.021 0.84 0.96 0.98 0.43 0.48 0.04 0.46
SKST-EVT -2.738 0.021 0.85 0.94 0.99 0.43 0.50 0.04 0.46
SGED-EVT -2.738 0.021 0.85 0.97 0.99 0.42 0.50 0.04 0.45
JSU-EVT -2.623 0.023 0.85 0.95 0.96 0.42 0.50 0.04 0.46

BP 5% significance level

pre-crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -2.598 0.044 0.38 0.48 0.83 0.56 0.34 0.20 0.58
ST -2.667 0.046 0.43 0.73 0.86 0.73 0.30 0.22 0.60
SKST -2.734 0.042 0.45 0.80 0.91 0.82 0.21 0.19 0.59
SGED -2.743 0.040 0.44 0.78 0.97 0.84 0.16 0.16 0.58
JSU -2.152 0.040 0.47 0.79 0.91 0.86 0.17 0.17 0.59
N-EVT -2.379 0.048 0.80 0.96 0.99 0.46 0.47 0.27 0.61
ST-EVT -2.375 0.048 0.79 0.89 1.00 0.47 0.45 0.26 0.62
SKST-EVT -2.378 0.046 0.79 0.96 1.00 0.46 0.47 0.27 0.62
SGED-EVT -2.378 0.048 0.80 0.96 1.00 0.46 0.47 0.27 0.62
JSU-EVT -2.145 0.050 0.79 0.89 0.98 0.46 0.47 0.27 0.62

Table 3.20: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for BP and for pre-crisis period. BTT is the test of Righi
& Ceretta, Z1 and Z2 are the tests of Acerbi & Szekely, TR is the test of Graham &
Pál, and UES , CES(1) and CES(5) are the unconditional and the conditional (lags = 1
and lags = 5) tests of Costanzino & Curran and Du & Escanciano. The p-values in bold
indicate that the statistics obtained in these tests have an opposite sign to that specified
in the alternative hypothesis.
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IBM 1% significance level

crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -4.620 0.017 0.26 0.09 0.00 0.05 0.04 0.00 0.04
ST -5.707 0.013 0.27 0.03 0.01 0.62 0.45 0.00 0.00
SKST -5.664 0.015 0.27 0.04 0.00 0.61 0.47 0.00 0.00
SGED -5.433 0.012 0.15 0.02 0.02 0.56 0.46 0.00 0.02
JSU -5.591 0.013 0.22 0.01 0.00 0.61 0.45 0.00 0.00
N-EVT -4.633 0.013 1.00 1.00 1.00 0.40 0.43 0.02 0.34
ST-EVT -4.524 0.015 0.91 1.00 1.00 0.33 0.34 0.00 0.00
SKST-EVT -4.519 0.015 0.90 1.00 1.00 0.33 0.34 0.00 0.00
SGED-EVT -4.570 0.012 0.74 0.97 1.00 0.36 0.39 0.00 0.01
JSU-EVT -4.511 0.015 0.90 0.99 1.00 0.33 0.35 0.00 0.00

IBM 2.5% significance level

crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -4.049 0.038 0.28 0.06 0.01 0.05 0.08 0.02 0.24
ST -4.544 0.048 0.37 0.61 0.01 0.56 0.46 0.00 0.04
SKST -4.512 0.050 0.36 0.61 0.00 0.54 0.43 0.00 0.04
SGED -4.532 0.038 0.35 0.26 0.02 0.56 0.46 0.00 0.04
JSU -4.508 0.048 0.36 0.49 0.02 0.57 0.48 0.00 0.03
N-EVT -3.937 0.033 1.00 0.97 1.00 0.45 0.48 0.00 0.10
ST-EVT -3.833 0.046 0.99 0.99 0.99 0.47 0.39 0.00 0.01
SKST-EVT -3.830 0.046 0.98 1.00 1.00 0.47 0.39 0.00 0.01
SGED-EVT -3.881 0.036 0.96 0.98 0.98 0.47 0.42 0.00 0.02
JSU-EVT -3.825 0.046 0.98 0.98 0.99 0.47 0.39 0.00 0.01

IBM 5% significance level

crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -3.570 0.071 0.32 0.28 0.04 0.06 0.13 0.37 0.09
ST -3.745 0.083 0.32 0.34 0.04 0.39 0.21 0.08 0.01
SKST -3.721 0.086 0.32 0.31 0.02 0.37 0.20 0.09 0.01
SGED -3.827 0.071 0.34 0.36 0.03 0.48 0.39 0.11 0.03
JSU -3.735 0.083 0.32 0.35 0.03 0.41 0.25 0.08 0.01
N-EVT -3.363 0.061 0.99 0.97 0.98 0.46 0.50 0.19 0.15
ST-EVT -3.248 0.065 0.90 0.99 0.99 0.50 0.40 0.03 0.02
SKST-EVT -3.245 0.069 0.91 0.96 0.98 0.51 0.40 0.03 0.02
SGED-EVT -3.301 0.065 0.94 0.97 0.99 0.49 0.43 0.09 0.07
JSU-EVT -3.243 0.067 0.89 0.96 0.98 0.51 0.40 0.03 0.02

Table 3.21: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for IBM and for crisis period. BTT is the test of Righi &
Ceretta, Z1 and Z2 are the tests of Acerbi & Szekely, TR is the test of Graham & Pál,
and UES , CES(1) and CES(5) are the unconditional and the conditional (lags = 1 and
lags = 5) tests of Costanzino & Curran and Du & Escanciano. The p-values in bold
indicate that the statistics obtained in these tests have an opposite sign to that specified
in the alternative hypothesis.
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SAN 1% significance level

crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -6.654 0.019 0.15 0.01 0.00 0.01 0.02 0.75 0.70
ST -8.090 0.013 0.42 0.88 0.01 0.51 0.47 0.86 1.00
SKST -8.293 0.013 0.47 0.96 0.01 0.58 0.39 0.88 1.00
SGED -7.829 0.015 0.45 0.86 0.00 0.44 0.46 0.87 1.00
JSU -8.353 0.010 0.40 0.72 0.59 0.58 0.34 0.89 1.00
N-EVT -7.128 0.012 1.00 0.99 0.99 0.40 0.48 0.87 1.00
ST-EVT -7.018 0.013 1.00 0.99 0.99 0.40 0.48 0.87 1.00
SKST-EVT -7.018 0.013 1.00 0.99 0.99 0.40 0.48 0.87 1.00
SGED-EVT -6.918 0.010 1.00 1.00 1.00 0.40 0.47 0.87 1.00
JSU-EVT -6.996 0.013 1.00 0.99 0.99 0.40 0.48 0.87 1.00

SAN 2.5% significance level

crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -5.831 0.050 0.30 0.12 0.02 0.01 0.04 0.52 0.10
ST -6.610 0.040 0.44 0.80 0.00 0.42 0.36 0.61 0.32
SKST -6.767 0.036 0.45 0.84 0.02 0.52 0.48 0.64 0.46
SGED -6.596 0.035 0.41 0.61 0.00 0.46 0.49 0.66 0.58
JSU -6.838 0.035 0.45 0.85 0.03 0.58 0.45 0.66 0.53
N-EVT -5.969 0.025 1.00 0.99 0.99 0.48 0.41 0.69 0.40
ST-EVT -5.904 0.025 1.00 0.99 0.99 0.48 0.41 0.69 0.62
SKST-EVT -5.904 0.027 1.00 1.00 1.00 0.48 0.41 0.69 0.63
SGED-EVT -5.830 0.025 1.00 1.00 1.00 0.49 0.40 0.69 0.69
JSU-EVT -5.889 0.025 1.00 0.99 1.00 0.48 0.41 0.69 0.64

SAN 5% significance level

crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -5.139 0.086 0.32 0.27 0.01 0.01 0.01 0.33 0.01
ST -5.545 0.088 0.42 0.64 0.02 0.15 0.02 0.33 0.02
SKST -5.667 0.083 0.43 0.84 0.02 0.24 0.07 0.35 0.02
SGED -5.616 0.081 0.43 0.73 0.01 0.26 0.12 0.40 0.02
JSU -5.726 0.083 0.45 0.79 0.01 0.30 0.10 0.36 0.02
N-EVT -5.106 0.058 1.00 0.97 0.98 0.51 0.44 0.37 0.03
ST-EVT -5.063 0.060 1.00 0.99 1.00 0.52 0.42 0.38 0.05
SKST-EVT -5.063 0.060 1.00 0.97 0.98 0.52 0.43 0.38 0.04
SGED-EVT -4.989 0.060 1.00 0.99 0.99 0.54 0.40 0.39 0.06
JSU-EVT -5.047 0.060 1.00 0.97 0.99 0.52 0.42 0.38 0.05

Table 3.22: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for SAN and for crisis period. BTT is the test of Righi &
Ceretta, Z1 and Z2 are the tests of Acerbi & Szekely, TR is the test of Graham & Pál,
and UES , CES(1) and CES(5) are the unconditional and the conditional (lags = 1 and
lags = 5) tests of Costanzino & Curran and Du & Escanciano. The p-values in bold
indicate that the statistics obtained in these tests have an opposite sign to that specified
in the alternative hypothesis.
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AXA 1% significance level

crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -9.217 0.021 0.09 0.02 0.00 0.00 0.06 0.79 1.00
ST -10.337 0.017 0.20 0.01 0.00 0.10 0.26 0.84 1.00
SKST -10.372 0.015 0.18 0.03 0.00 0.09 0.25 0.84 1.00
SGED -10.175 0.012 0.07 0.02 0.01 0.04 0.28 0.85 1.00
JSU -10.412 0.013 0.16 0.02 0.00 0.09 0.27 0.84 0.88
N-EVT -10.697 0.012 1.00 0.99 1.00 0.40 0.46 0.88 1.00
ST-EVT -11.258 0.012 1.00 1.00 1.00 0.42 0.44 0.88 1.00
SKST-EVT -11.276 0.012 1.00 0.99 0.99 0.42 0.44 0.88 1.00
SGED-EVT -10.887 0.012 1.00 1.00 1.00 0.41 0.45 0.88 1.00
JSU-EVT -11.201 0.012 1.00 1.00 1.00 0.42 0.44 1.00 1.00

AXA 2.5% significance level

crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -8.080 0.040 0.16 0.03 0.00 0.00 0.08 0.05 0.43
ST -8.672 0.038 0.25 0.11 0.05 0.14 0.28 0.08 0.54
SKST -8.701 0.038 0.27 0.15 0.03 0.12 0.25 0.06 0.49
SGED -8.697 0.038 0.28 0.11 0.00 0.08 0.35 0.15 0.74
JSU -8.750 0.038 0.29 0.17 0.02 0.13 0.29 0.08 0.40
N-EVT -8.511 0.036 1.00 1.00 1.00 0.53 0.36 0.52 0.97
ST-EVT -8.876 0.033 1.00 0.98 0.98 0.50 0.41 0.38 0.93
SKST-EVT -8.890 0.033 1.00 0.97 0.97 0.50 0.41 0.37 0.93
SGED-EVT -8.635 0.033 1.00 0.98 0.99 0.52 0.38 0.49 0.96
JSU-EVT -8.840 0.033 1.00 0.99 1.00 0.51 0.40 0.57 0.94

AXA 5% significance level

crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -7.125 0.065 0.21 0.09 0.01 0.01 0.14 0.08 0.33
ST -7.411 0.071 0.30 0.26 0.02 0.14 0.22 0.05 0.28
SKST -7.435 0.069 0.30 0.26 0.02 0.12 0.20 0.05 0.28
SGED -7.500 0.063 0.29 0.22 0.06 0.11 0.30 0.06 0.30
JSU -7.478 0.069 0.31 0.28 0.06 0.13 0.24 0.05 0.03
N-EVT -6.996 0.060 1.00 0.96 0.98 0.49 0.50 0.04 0.29
ST-EVT -7.301 0.058 1.00 0.96 0.98 0.49 0.49 0.03 0.24
SKST-EVT -7.314 0.058 1.00 0.96 0.97 0.49 0.49 0.03 0.24
SGED-EVT -7.104 0.058 1.00 0.96 0.96 0.49 0.50 0.04 0.27
JSU-EVT -7.273 0.058 1.00 0.95 0.99 0.49 0.49 0.28 0.25

Table 3.23: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for AXA and for crisis period. BTT is the test of Righi
& Ceretta, Z1 and Z2 are the tests of Acerbi & Szekely, TR is the test of Graham &
Pál, and UES , CES(1) and CES(5) are the unconditional and the conditional (lags = 1
and lags = 5) tests of Costanzino & Curran and Du & Escanciano. The p-values in bold
indicate that the statistics obtained in these tests have an opposite sign to that specified
in the alternative hypothesis.
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BP 1% significance level

crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -5.048 0.031 0.26 0.08 0.00 0.01 0.00 0.65 0.00
ST -5.498 0.025 0.38 0.57 0.00 0.20 0.09 0.75 0.01
SKST -5.419 0.025 0.34 0.37 0.00 0.17 0.06 0.74 0.00
SGED -5.303 0.029 0.36 0.35 0.00 0.11 0.05 0.75 0.00
JSU -5.439 0.025 0.37 0.43 0.00 0.18 0.07 0.75 0.00
N-EVT -5.159 0.012 1.00 1.00 1.00 0.42 0.49 0.87 1.00
ST-EVT -5.019 0.017 1.00 1.00 1.00 0.40 0.48 0.88 1.00
SKST-EVT -5.013 0.017 1.00 0.98 0.99 0.41 0.48 0.88 1.00
SGED-EVT -5.052 0.015 1.00 1.00 1.00 0.41 0.49 0.88 1.00
JSU-EVT -5.022 0.017 1.00 1.00 1.00 0.40 0.48 0.88 1.00

BP 2.5% significance level

crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -4.425 0.048 0.22 0.07 0.01 0.00 0.00 0.45 0.01
ST -4.656 0.046 0.30 0.24 0.01 0.07 0.01 0.46 0.00
SKST -4.593 0.048 0.30 0.18 0.01 0.05 0.01 0.45 0.00
SGED -4.569 0.050 0.30 0.28 0.01 0.04 0.01 0.48 0.00
JSU -4.619 0.048 0.31 0.29 0.00 0.06 0.01 0.46 0.00
N-EVT -4.418 0.031 1.00 0.99 1.00 0.40 0.39 0.62 0.00
ST-EVT -4.330 0.031 1.00 1.00 1.00 0.40 0.41 0.63 0.00
SKST-EVT -4.325 0.031 1.00 0.99 0.99 0.40 0.41 0.63 0.00
SGED-EVT -4.346 0.031 1.00 1.00 1.00 0.40 0.40 0.63 0.00
JSU-EVT -4.332 0.031 1.00 1.00 1.00 0.40 0.41 0.63 0.00

BP 5% significance level

crisis ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -3.902 0.077 0.25 0.11 0.01 0.00 0.00 0.61 0.01
ST -4.005 0.075 0.28 0.24 0.00 0.03 0.01 0.48 0.01
SKST -3.955 0.077 0.28 0.14 0.00 0.02 0.01 0.50 0.01
SGED -3.969 0.077 0.28 0.20 0.02 0.02 0.01 0.48 0.00
JSU -3.980 0.075 0.28 0.16 0.02 0.03 0.01 0.49 0.01
N-EVT -3.777 0.052 0.99 0.98 1.00 0.42 0.46 0.37 0.00
ST-EVT -3.710 0.054 0.98 0.98 1.00 0.42 0.46 0.37 0.00
SKST-EVT -3.706 0.054 0.98 0.99 1.00 0.42 0.45 0.36 0.00
SGED-EVT -3.720 0.054 0.99 0.98 1.00 0.43 0.46 0.37 0.00
JSU-EVT -3.712 0.054 0.98 0.97 0.99 0.42 0.46 0.37 0.00

Table 3.24: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for BP and for crisis period. BTT is the test of Righi &
Ceretta, Z1 and Z2 are the tests of Acerbi & Szekely, TR is the test of Graham & Pál,
and UES , CES(1) and CES(5) are the unconditional and the conditional (lags = 1 and
lags = 5) tests of Costanzino & Curran and Du & Escanciano. The p-values in bold
indicate that the statistics obtained in these tests have an opposite sign to that specified
in the alternative hypothesis.
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3.6 Evaluating 10-day ES

Not much work has been done on implementation of extreme value theory for ES estima-
tion beyond a one-day horizon, although risk horizons longer than one day are particularly
important for risk liquidity management, for long term strategic asset allocation and for
capital requirements, since the Basel Committee [13] obliges banks to compute their level
of risk over a 10-day horizon. This motivates our analysis in this section on different
methods to estimate ES for risk horizons longer than 1-day.

3.6.1 Scaling law

It is well-known that the variance of a Gaussian variable follows a simple scaling law.
Indeed, the Basel Committee, in its 1996 Amendment (Basel II), states that it will accept
a simple

√
h scaling of 1-day VaR for deriving the 10-day VaR required in calculating

market risk and the related risk capital, and the Basel Committee in 2016 (Basel III)
proposes using the square root of time scaling assumption to calculate ES for risk hori-
zons longer than one-day. However, the stylized facts on financial market volatility and
research findings have repeatedly shown that the 10-day VaR is not likely to be the same
as
√

10·1-day VaR. First, the dynamics of a stationary volatility process suggests that if
the current level of volatility is higher than unconditional volatility, the subsequent daily
volatility forecasts will decline and convergence to unconditional volatility, and the con-
trary will happen when the initial volatility is lower than the unconditional one, with the
rate of convergence being a function of the degree of volatility persistence. When initial
volatility is higher than unconditional volatility, the scaling factor should be less than√

10. In practice, due to volatility asymmetry and other predictive variables that might
be included in the volatility model, it is always better to calculate σ̂2

t+1, σ̂2
t+2,..., σ̂2

t+10

separately. The 10-day VaR and 10-day ES is then produced using the 10-day volatility
estimate computed from the sum

∑10
i=1 σ̂

2
t+i.

Second, financial asset returns are not normally distributed. Danielsson and de Vries
(1997)[30] show that the scaling parameter for quantiles derived using the EVT method
increases at the approximate rate of hξ, which is typically less than the square-root-of-time
adjustment. In stable distributions like GPD, the whole probability distribution, including
the quantiles, and not just the standard deviation, scales as hξ 22. The Feller convolution
theorem explains this different scaling factor for VaR and ES estimates based on EVT 23.

In view of the conflicting empirical findings, one possible solution is to build models
using 10-day return data. This again highlights the difficulty that arises from the incon-
sistency between the rule use to estimate VaR for calculating risk capital and the one
applied to VaR estimation for backtesting.

22A random variable X has a stable distribution if the sum of n independent copies of X is a random
variable that has the same type of distribution. Only the Normal, Cauchy and Lévy distributions are
stable.

23If X and Y are both Pareto distributed (i.i.d.), then for a sufficiently large a one has P (X + Y <
a) ≈ 2ca−1/ξ = P (X < a) + P (Y < a) where ĉ = Tu

T
u1/ξ. This theorem established the additivity rule for

Pareto-distributed random variables.
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To sum up, scaling corresponds to an i.i.d. stable distribution assumption for re-
turns and its use is incorrect for other distributions. Furthermore, this type of scaling is
theoretically incorrect for volatility adjustment when we use a volatility model with mean
reversion because it assumes that volatility remains constant or fluctuates around a local
mean over the risk horizon and does not mean-revert at all. Obviously, under the scaling
rule, the longer the risk horizon, the higher the error in VaR estimation.

3.6.2 Filtered Historical Simulation

An alternative for VaR and ES estimations at risk horizons longer than one-day is Filtered
Historical Simulation (FHS). Barone-Adesi et al. (1998, 1999) [10] [11] extend the idea of
volatility adjustment to multi-step historical simulation, using overlapping data in a way
that does not create blunt tails for the h-day portfolio return distribution. Their idea is to
use a parametric dynamic model of return volatility to simulate log returns on each day
over the risk horizon 24.

Filtered Historical Simulation applies a statistical bootstrap on a parametric, dynamic
model for return distributions. This filtering allows h-day return distributions to be gen-
erated from overlapping samples, since the bootstrap allows us to increasing the number
of observations used for building the h-day return distribution. Whilst the standard his-
torical approach is sometimes limited to the 1-day horizon because we simply do not have
enough relevant historical data to use non-overlapping h-day returns. On the other hand,
if we used overlapping h-day returns, that would distort the tail behavior of the return
distributions, leading to significant error in VaR and ES estimates at extreme quantiles.

Tables 3.25 - 3.28 show the average value of the estimated ES, the violations ratio
of the underlying VaR and the backtesting results for the distinct models for 10-day ES
calculated by FHS. In this case, the entire out-of-sample is 1260 observations, but we
have 1250 10-day ES which we can compare to the realized 10-day returns (we loose 10
observations).

If we compare these tables with Tables 3.8 - 3.11 and Tables 3.12 - 3.15 calculated for
1-day ES by parametric and FHS approaches, respectively, we observe: (i) as expected,
the average ES estimates at 10-day horizon are greater than 1-day estimates, (ii) according
to parsimony, i.e. ES series obtained with the different models used, which in our case
are parsimonious models, the conditional EVT-based models present more negative values
than the conditional models not based on EVT and at the 1% significance level differences
in parsimony are larger than at the 5% signification but not as large as those presented for
1-day ES, (iii) regarding VaR violation rates, all models have a number of violations closer
to the theoretical number even lower than this, (iv) if we focus on the conditional models
not based on EVT, we observe that models with asymmetric distributions are better for
10-day ES estimation under all tests, except for ES1% calculated for IBM according to
Z2 test, (v) if we focus on the conditional models based on EVT, we observe that the

24 We provide a description about this approach in subsection 3.3.6



Chapter 3. Testing ES estimation models: An extreme value theory approach 237

differences in performance between models that differ in the probability distribution for
returns are not significant; in some cases as with Rigui & Ceretta and Acerbi & Szekely
tests we obtain p-values close to 1; and (vi) for AXA and BP the differences between
models, either based on or not on EVT, are not so huge. In this sense, these all models
are suitable for 10-day ES estimation although it is possible a risk overestimation.

3.6.3 10-day historical returns

Under the historical return approach, 10-day returns are obtained as the sum of daily
logarithmic returns over non-overlapping 10-day time intervals. The logarithmic transfor-
mation allows us to obtain continuously compound returns by sums and we can estimate
ES over 10-day horizon without multiplying by a scaling factor.

The drawback of this method is that we might not have enough data to obtain precise
parameter estimates and to perform ES backtesting. This is specially a problem under
the EVT approach.

In our analysis, if we maintained the out-of-sample period (12/05/2011-09/30/2016)
we would lack enough data for backtesting the 10-day ES, since we would only have 64
non-overlapping 10-day returns. To solve this, we enlarge the out-of-sample period from
10/03/2008 to 09/30/2016 (105 data) even though that will shorten the in-sample period.
Therefore, the implied results will not be comparable with those of Tables 3.25 - 3.28.

In Tables 3.29 - 3.32, we observe that (i) in what concerns parsimony, conditional
EVT-based models produce less negative forecasted ES values than the conditional mod-
els not based on EVT as indicated by the average ES estimates, (ii) violation rates are not
so good in some cases because many models underestimate risk, with their VaR estimates
producing more excesses than expected, especially at 2.5% significance level; notice that
some models produce no violations at 1% significance level, (iii) conditional models based
on EVT are better suited for risk measurement than those not based on EVT in terms
of their ES estimates, (iv) ES models based on EVT with asymmetric distributions are
better suited for risk measurement in terms of ES estimates, except at 1% significance
level, where N-EVT is also a good performing model and (v) according to Costanzino &
Curran [26] and Du & Escanciano [36] tests, the cumulative violations have autocorrela-
tion with all models for IBM (at 2.5% and 5% significance levels); in this sense none of the
considered models is able to capture the volatility clusters that are prevalent in financial
assets, neither in quantity nor in magnitude.
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IBM 1% significance level

FHS 10-day ES Viol BTT Z1 Z2

N -14.157 0.016 0.55 0.97 0.01
ST -13.595 0.021 0.45 0.88 0.00
SKST -13.598 0.020 0.45 0.94 0.01
SGED -13.831 0.011 0.48 0.97 0.00
JSU -13.546 0.021 0.46 0.96 0.00
N-EVT -14.364 0.016 0.85 0.87 0.94
ST-EVT -13.907 0.018 0.56 0.89 0.98
SKST-EVT -13.937 0.018 0.52 0.85 0.97
SGED-EVT -14.059 0.018 0.66 0.93 0.97
JSU-EVT -13.802 0.018 0.56 0.91 0.96

IBM 2.5% significance level

FHS 10-day ES Viol BTT Z1 Z2

N -11.334 0.026 0.36 0.27 0.14
ST -10.978 0.027 0.22 0.09 0.05
SKST -10.977 0.028 0.25 0.06 0.01
SGED -11.134 0.017 0.31 0.10 0.06
JSU -10.940 0.027 0.24 0.07 0.03
N-EVT -11.402 0.025 0.39 0.68 0.88
ST-EVT -11.098 0.028 0.30 0.54 0.85
SKST-EVT -11.111 0.026 0.26 0.63 0.92
SGED-EVT -11.211 0.026 0.29 0.60 0.88
JSU-EVT -11.025 0.027 0.28 0.60 0.91

IBM 5% significance level

FHS 10-day ES Viol BTT Z1 Z2

N -9.335 0.047 0.36 0.35 0.64
ST -9.093 0.046 0.23 0.16 0.49
SKST -9.083 0.047 0.24 0.16 0.27
SGED -9.205 0.030 0.31 0.24 0.45
JSU -9.063 0.046 0.25 0.16 0.41
N-EVT -9.139 0.046 0.56 0.52 0.80
ST-EVT -9.142 0.046 0.29 0.50 0.80
SKST-EVT -9.148 0.046 0.28 0.50 0.79
SGED-EVT -9.227 0.047 0.32 0.45 0.80
JSU-EVT -9.089 0.046 0.29 0.53 0.80

Table 3.25: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for IBM and for 10-day returns calculated by FHS. BTT is
the test of Righi & Ceretta and Z1 and Z2 are the tests of Acerbi & Szekely. The p-values
in bold indicate that the statistics obtained in these tests have an opposite sign to that
specified in the alternative hypothesis.
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SAN 1% significance level

FHS 10-day ES Viol BTT Z1 Z2

N -23.026 0.010 0.40 0.73 0.53
ST -23.074 0.010 0.33 0.50 0.53
SKST -22.838 0.010 0.32 0.32 0.44
SGED -22.973 0.010 0.37 0.61 0.56
JSU -22.897 0.010 0.35 0.56 0.54
N-EVT -22.919 0.010 0.69 0.73 0.88
ST-EVT -22.919 0.009 0.42 0.80 0.94
SKST-EVT -22.689 0.009 0.41 0.70 0.92
SGED-EVT -22.845 0.010 0.53 0.71 0.92
JSU-EVT -22.757 0.009 0.50 0.80 0.94

SAN 2.5% significance level

FHS 10-day ES Viol BTT Z1 Z2

N -18.846 0.022 0.38 0.47 0.88
ST -18.926 0.021 0.32 0.32 0.92
SKST -18.722 0.022 0.32 0.24 0.91
SGED -18.805 0.022 0.36 0.37 0.92
JSU -18.767 0.022 0.33 0.38 0.94
N-EVT -18.784 0.022 0.63 0.46 0.75
ST-EVT -18.840 0.021 0.48 0.52 0.83
SKST-EVT -18.650 0.021 0.47 0.56 0.82
SGED-EVT -18.734 0.022 0.53 0.63 0.87
JSU-EVT -18.696 0.021 0.50 0.57 0.80

SAN 5% significance level

FHS 10-day ES Viol BTT Z1 Z2

N -15.757 0.046 0.40 0.65 0.77
ST -15.847 0.045 0.36 0.55 0.86
SKST -15.667 0.046 0.36 0.57 0.81
SGED -15.720 0.046 0.38 0.55 0.88
JSU -15.702 0.045 0.35 0.51 0.91
N-EVT -15.715 0.047 0.66 0.49 0.76
ST-EVT -15.794 0.045 0.55 0.49 0.69
SKST-EVT -15.627 0.046 0.57 0.42 0.71
SGED-EVT -15.676 0.045 0.55 0.54 0.78
JSU-EVT -15.656 0.046 0.58 0.55 0.82

Table 3.26: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for SAN and for 10-day returns calculated by FHS. BTT is
the test of Righi & Ceretta and Z1 and Z2 are the tests of Acerbi & Szekely. The p-values
in bold indicate that the statistics obtained in these tests have an opposite sign to that
specified in the alternative hypothesis.
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AXA 1% significance level

FHS 10-day ES Viol BTT Z1 Z2

N -21.784 0.006 0.43 0.70 1.00
ST -21.546 0.006 0.41 0.64 0.99
SKST -21.542 0.007 0.36 0.70 1.00
SGED -21.669 0.006 0.42 0.72 1.00
JSU -21.527 0.006 0.36 0.46 0.99
N-EVT -21.757 0.006 0.72 0.79 0.95
ST-EVT -21.503 0.006 0.68 0.77 0.93
SKST-EVT -21.487 0.008 0.84 0.83 0.95
SGED-EVT -21.643 0.006 0.71 0.74 0.92
JSU-EVT -21.517 0.006 0.64 0.77 0.94

AXA 2.5% significance level

FHS 10-day ES Viol BTT Z1 Z2

N -18.015 0.015 0.40 0.66 0.96
ST -17.868 0.016 0.38 0.66 0.95
SKST -17.851 0.014 0.33 0.30 1.00
SGED -17.941 0.015 0.39 0.67 0.98
JSU -17.853 0.016 0.39 0.74 0.95
N-EVT -18.005 0.016 0.71 0.63 0.91
ST-EVT -17.839 0.015 0.62 0.72 0.91
SKST-EVT -17.824 0.012 0.50 0.68 0.95
SGED-EVT -17.932 0.017 0.72 0.60 0.87
JSU-EVT -17.845 0.016 0.66 0.76 0.88

AXA 5% significance level

FHS 10-day ES Viol BTT Z1 Z2

N -15.177 0.034 0.42 0.64 0.98
ST -15.085 0.035 0.41 0.60 0.90
SKST -15.067 0.032 0.37 0.61 0.98
SGED -15.128 0.034 0.41 0.66 0.99
JSU -15.074 0.034 0.40 0.78 0.95
N-EVT -15.174 0.030 0.65 0.63 0.85
ST-EVT -15.069 0.034 0.65 0.64 0.80
SKST-EVT -15.053 0.033 0.64 0.55 0.80
SGED-EVT -15.127 0.031 0.63 0.43 0.82
JSU-EVT -15.070 0.031 0.61 0.45 0.77

Table 3.27: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for AXA and for 10-day returns calculated by FHS. BTT is
the test of Righi & Ceretta and Z1 and Z2 are the tests of Acerbi & Szekely. The p-values
in bold indicate that the statistics obtained in these tests have an opposite sign to that
specified in the alternative hypothesis.
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BP 1% significance level

FHS 10-day ES Viol BTT Z1 Z2

N -14.368 0.005 0.56 0.94 1.00
ST -14.579 0.004 0.59 0.97 1.00
SKST -14.559 0.005 0.64 0.95 1.00
SGED -14.522 0.005 0.63 0.95 1.00
JSU -14.528 0.004 0.57 0.99 1.00
N-EVT -14.531 0.006 0.82 0.81 0.98
ST-EVT -14.590 0.006 0.91 0.84 0.94
SKST-EVT -14.507 0.006 0.88 0.82 0.97
SGED-EVT -14.543 0.006 0.86 0.80 0.96
JSU-EVT -14.540 0.004 0.73 0.85 0.96

BP 2.5% significance level

FHS 10-day ES Viol BTT Z1 Z2

N -11.967 0.015 0.53 0.91 0.98
ST -12.115 0.014 0.56 0.97 0.99
SKST -12.095 0.014 0.56 0.91 1.00
SGED -12.086 0.013 0.50 0.92 0.99
JSU -12.080 0.015 0.56 0.93 1.00
N-EVT -11.992 0.014 0.72 0.58 0.92
ST-EVT -12.126 0.014 0.71 0.63 0.90
SKST-EVT -12.070 0.014 0.74 0.64 0.85
SGED-EVT -12.104 0.014 0.69 0.63 0.88
JSU-EVT -12.090 0.014 0.70 0.67 0.86

BP 5% significance level

FHS 10-day ES Viol BTT Z1 Z2

N -10.144 0.038 0.50 0.81 0.95
ST -10.250 0.041 0.56 0.94 0.97
SKST -10.233 0.039 0.50 0.79 0.95
SGED -10.239 0.038 0.50 0.88 0.99
JSU -10.225 0.042 0.53 0.87 0.92
N-EVT -10.164 0.042 0.73 0.45 0.77
ST-EVT -10.261 0.042 0.71 0.61 0.86
SKST-EVT -10.219 0.042 0.71 0.58 0.77
SGED-EVT -10.253 0.038 0.68 0.60 0.83
JSU-EVT -10.234 0.040 0.68 0.56 0.83

Table 3.28: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for BP and for 10-day returns calculated by FHS. BTT is
the test of Righi & Ceretta and Z1 and Z2 are the tests of Acerbi & Szekely. The p-values
in bold indicate that the statistics obtained in these tests have an opposite sign to that
specified in the alternative hypothesis.
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IBM 1% significance level

10-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -11.239 0.029 0.13 0.02 0.00 0.02 0.04 0.85 1.00
ST -13.983 0.019 0.35 0.49 0.00 0.23 0.30 0.92 1.00
SKST -15.061 0.010 0.20 0.02 0.16 0.28 0.34 0.92 1.00
SGED -13.791 0.010 0.09 0.00 0.00 0.20 0.28 0.92 1.00
JSU -15.099 0.010 0.21 0.03 0.10 0.28 0.34 0.92 1.00
N-EVT -17.144 0.010 1.00 1.00 1.00 0.44 0.49 0.92 1.00
ST-EVT -15.390 0.010 1.00 1.00 1.00 0.37 0.43 0.92 1.00
SKST-EVT -16.246 0.010 1.00 0.99 0.99 0.39 0.44 0.92 1.00
SGED-EVT -17.710 0.010 1.00 0.99 0.99 0.42 0.48 0.92 1.00
JSU-EVT -16.495 0.010 1.00 0.99 0.99 0.39 0.45 0.92 1.00

IBM 2.5% significance level

10-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -9.846 0.038 0.10 0.08 0.03 0.02 0.06 0.71 0.99
ST -11.018 0.038 0.31 0.22 0.00 0.23 0.26 0.78 1.00
SKST -11.859 0.029 0.30 0.16 0.30 0.31 0.38 0.82 1.00
SGED -11.504 0.029 0.25 0.05 0.13 0.26 0.39 0.83 1.00
JSU -12.019 0.029 0.31 0.08 0.32 0.34 0.43 0.83 1.00
N-EVT -12.344 0.038 1.00 0.95 0.95 0.44 0.42 0.80 1.00
ST-EVT -11.179 0.029 1.00 0.99 0.99 0.42 0.48 0.84 1.00
SKST-EVT -11.676 0.029 1.00 0.96 0.98 0.43 0.47 0.83 1.00
SGED-EVT -12.557 0.029 1.00 0.97 0.98 0.44 0.45 0.82 1.00
JSU-EVT -11.820 0.029 1.00 1.00 1.00 0.43 0.46 0.83 1.00

IBM 5% significance level

10-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -8.676 0.048 0.09 0.03 0.03 0.04 0.18 0.63 0.97
ST -9.000 0.048 0.21 0.07 0.09 0.24 0.31 0.64 0.97
SKST -9.670 0.048 0.26 0.14 0.14 0.33 0.40 0.67 0.98
SGED -9.704 0.048 0.25 0.12 0.13 0.30 0.43 0.68 0.98
JSU -9.834 0.048 0.28 0.13 0.17 0.36 0.44 0.68 0.98
N-EVT -9.399 0.048 1.00 0.90 0.95 0.39 0.36 0.64 0.97
ST-EVT -8.446 0.048 1.00 0.91 0.95 0.42 0.44 0.67 0.98
SKST-EVT -8.806 0.048 1.00 0.94 0.94 0.41 0.43 0.66 0.98
SGED-EVT -9.473 0.048 0.99 0.97 0.97 0.40 0.39 0.65 0.97
JSU-EVT -8.910 0.048 1.00 0.95 0.95 0.41 0.42 0.66 0.98

Table 3.29: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for IBM and for 10-day returns calculated as the sum of
10 daily logarithmic returns not overlapped. BTT is the test of Righi & Ceretta, Z1 and
Z2 are the tests of Acerbi & Szekely, TR is the test of Graham & Pál, and UES , CES(1)
and CES(5) are the unconditional and the conditional (lags = 1 and lags = 5) tests
of Costanzino & Curran and Du & Escanciano. The p-values in bold indicate that the
statistics obtained in these tests have an opposite sign to that specified in the alternative
hypothesis.
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SAN 1% significance level

10-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -17.410 0.019 0.43 0.74 0.00 0.30 0.30 0.89 1.00
ST -19.553 0.019 0.70 0.98 0.02 0.48 0.44 0.92 1.00
SKST -22.571 0.000 - - - - - - -
SGED -22.462 0.000 - - - - - - -
JSU -23.318 0.000 - - - - - - -
N-EVT -15.567 0.019 1.00 0.99 0.99 0.43 0.49 0.92 1.00
ST-EVT -18.570 0.019 1.00 0.99 0.99 0.50 0.43 0.92 1.00
SKST-EVT -14.438 0.019 1.00 1.00 1.00 0.40 0.46 0.92 1.00
SGED-EVT -14.060 0.019 1.00 1.00 1.00 0.39 0.44 0.92 1.00
JSU-EVT -14.877 0.010 1.00 1.00 1.00 0.41 0.46 0.92 1.00

SAN 2.5% significance level

10-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -15.288 0.029 0.27 0.08 0.28 0.25 0.23 0.78 0.99
ST -15.974 0.029 0.36 0.57 0.54 0.37 0.31 0.77 0.99
SKST -18.497 0.019 0.57 0.97 1.00 0.70 0.29 0.87 1.00
SGED -18.881 0.019 0.65 0.99 1.00 0.74 0.29 0.89 1.00
JSU -19.062 0.019 0.62 0.99 1.00 0.71 0.27 0.88 1.00
N-EVT -12.752 0.029 1.00 0.99 0.99 0.33 0.28 0.78 0.99
ST-EVT -14.660 0.029 1.00 0.95 0.99 0.36 0.29 0.77 0.99
SKST-EVT -11.940 0.029 1.00 0.99 0.99 0.33 0.30 0.78 1.00
SGED-EVT -11.699 0.029 1.00 0.99 0.99 0.33 0.29 0.78 1.00
JSU-EVT -12.246 0.029 1.00 0.98 0.98 0.34 0.30 0.78 1.00

SAN 5% significance level

10-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -13.506 0.029 0.14 0.07 0.96 0.37 0.46 0.76 0.99
ST -13.400 0.048 0.34 0.32 0.40 0.45 0.49 0.72 0.99
SKST -15.497 0.029 0.37 0.41 1.00 0.71 0.29 0.77 0.99
SGED -16.024 0.029 0.42 0.86 0.99 0.75 0.25 0.77 0.99
JSU -15.894 0.029 0.40 0.84 1.00 0.72 0.28 0.77 0.99
N-EVT -10.556 0.048 1.00 0.93 0.95 0.42 0.48 0.74 0.99
ST-EVT -12.098 0.048 1.00 0.93 0.93 0.43 0.48 0.71 0.98
SKST-EVT -9.912 0.038 1.00 0.99 1.00 0.43 0.46 0.75 0.99
SGED-EVT -9.704 0.038 1.00 0.97 0.97 0.43 0.18 0.75 0.99
JSU-EVT -10.152 0.038 1.00 0.98 1.00 0.43 0.46 0.75 0.99

Table 3.30: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for SAN and for 10-day returns calculated as the sum of
10 daily logarithmic returns not overlapped. BTT is the test of Righi & Ceretta, Z1 and
Z2 are the tests of Acerbi & Szekely, TR is the test of Graham & Pál, and UES , CES(1)
and CES(5) are the unconditional and the conditional (lags = 1 and lags = 5) tests
of Costanzino & Curran and Du & Escanciano. The hyphen means that there are no
violations. The p-values in bold indicate that the statistics obtained in these tests have
an opposite sign to that specified in the alternative hypothesis.
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AXA 1% significance level

10-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -14.922 0.029 0.57 0.88 0.00 0.13 0.04 0.81 0.95
ST -18.896 0.010 0.61 0.98 0.89 0.52 0.40 0.92 1.00
SKST -21.686 0.000 - - - - - - -
SGED -20.187 0.000 - - - - - - -
JSU -21.777 0.000 - - - - - - -
N-EVT -15.926 0.010 1.00 1.00 1.00 0.62 0.28 0.92 1.00
ST-EVT -21.074 0.019 1.00 0.98 0.98 0.49 0.44 0.92 1.00
SKST-EVT -21.874 0.019 1.00 1.00 1.00 0.48 0.44 0.92 1.00
SGED-EVT -12.745 0.010 1.00 0.99 0.99 0.34 0.39 0.92 1.00
JSU-EVT -18.746 0.019 1.00 1.00 1.00 0.45 0.48 0.92 1.00

AXA 2.5% significance level

10-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -13.084 0.048 0.39 0.47 0.00 0.10 0.05 0.70 0.18
ST -15.122 0.029 0.42 0.84 0.74 0.46 0.43 0.80 0.00
SKST -17.456 0.019 0.62 1.00 1.00 0.73 0.26 0.88 0.19
SGED -16.992 0.019 0.61 0.99 1.00 0.72 0.27 0.88 0.36
JSU -17.684 0.019 0.65 1.00 1.00 0.76 0.23 0.89 0.48
N-EVT -13.139 0.029 1.00 1.00 1.00 0.47 0.41 0.79 0.56
ST-EVT -16.505 0.029 1.00 0.97 0.97 0.39 0.35 0.79 0.00
SKST-EVT -17.095 0.029 0.99 0.97 0.97 0.40 0.36 0.79 0.00
SGED-EVT -10.826 0.029 1.00 0.98 0.99 0.36 0.41 0.83 0.00
JSU-EVT -14.950 0.029 1.00 0.98 0.98 0.38 0.36 0.80 0.00

AXA 5% significance level

10-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -11.539 0.057 0.24 0.18 0.05 0.09 0.08 0.55 0.38
ST -12.500 0.057 0.38 0.66 0.11 0.45 0.43 0.66 0.03
SKST -14.443 0.038 0.49 0.98 1.00 0.77 0.23 0.79 0.00
SGED -14.441 0.038 0.48 0.95 0.98 0.76 0.24 0.78 0.00
JSU -14.673 0.038 0.51 0.97 0.99 0.79 0.22 0.79 0.00
N-EVT -11.055 0.048 1.00 0.95 0.97 0.46 0.43 0.66 0.23
ST-EVT -13.899 0.057 0.99 0.97 0.99 0.43 0.45 0.68 0.02
SKST-EVT -14.431 0.057 0.98 0.91 0.91 0.43 0.44 0.69 0.02
SGED-EVT -9.134 0.048 1.00 0.98 0.99 0.46 0.40 0.77 0.01
JSU-EVT -12.625 0.057 1.00 0.94 0.95 0.43 0.48 0.70 0.02

Table 3.31: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for AXA and for 10-day returns calculated as the sum of
10 daily logarithmic returns not overlapped. BTT is the test of Righi & Ceretta, Z1 and
Z2 are the tests of Acerbi & Szekely, TR is the test of Graham & Pál, and UES , CES(1)
and CES(5) are the unconditional and the conditional (lags = 1 and lags = 5) tests
of Costanzino & Curran and Du & Escanciano. The hyphen means that there are no
violations. The p-values in bold indicate that the statistics obtained in these tests have
an opposite sign to that specified in the alternative hypothesis.
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BP 1% significance level

10-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -11.594 0.010 0.67 0.99 0.80 0.61 0.28 0.92 1.00
ST -12.068 0.010 0.53 0.93 0.67 0.65 0.23 0.92 0.92
SKST -14.786 0.000 - - - - - - -
SGED -14.408 0.000 - - - - - - -
JSU -15.314 0.000 - - - - - - -
N-EVT -7.773 0.010 1.00 0.99 0.99 0.28 0.34 0.92 1.00
ST-EVT -8.448 0.010 1.00 1.00 1.00 0.28 0.34 1.00 1.00
SKST-EVT -7.312 0.010 1.00 0.99 0.99 0.28 0.34 0.92 1.00
SGED-EVT -6.860 0.010 1.00 1.00 1.00 0.25 0.32 0.92 1.00
JSU-EVT -7.551 0.010 1.00 1.00 1.00 0.28 0.34 0.92 1.00

BP 2.5% significance level

10-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -10.193 0.010 0.27 0.12 0.99 0.70 0.25 0.92 1.00
ST -10.388 0.010 0.20 0.06 1.00 0.73 0.23 0.92 0.90
SKST -12.501 0.010 0.85 1.00 1.00 0.90 0.11 0.92 1.00
SGED -12.360 0.010 0.87 0.99 1.00 0.91 0.10 0.92 1.00
JSU -12.795 0.010 0.85 0.98 1.00 0.89 0.12 0.92 1.00
N-EVT -6.748 0.029 1.00 0.97 0.97 0.44 0.36 0.91 1.00
ST-EVT -7.221 0.029 1.00 0.97 0.99 0.43 0.39 1.00 1.00
SKST-EVT -6.410 0.029 1.00 1.00 1.00 0.40 0.44 0.88 1.00
SGED-EVT -6.115 0.029 1.00 1.00 1.00 0.39 0.41 0.89 1.00
JSU-EVT -6.589 0.029 1.00 1.00 1.00 0.41 0.44 0.88 1.00

BP 5% significance level

10-day ES Viol BTT Z1 Z2 TR UES CES(1) CES(5)

N -9.017 0.029 0.39 0.52 0.97 0.82 0.15 0.84 1.00
ST -9.046 0.029 0.35 0.48 0.98 0.84 0.14 0.85 0.77
SKST -10.702 0.029 0.69 1.00 1.00 0.95 0.07 0.88 1.00
SGED -10.677 0.029 0.72 0.98 1.00 0.95 0.07 0.88 1.00
JSU -10.851 0.029 0.69 0.96 0.99 0.94 0.08 0.87 1.00
N-EVT -5.795 0.029 1.00 0.95 0.98 0.50 0.37 0.91 0.99
ST-EVT -6.204 0.038 1.00 0.97 0.98 0.53 0.33 1.00 0.99
SKST-EVT -5.475 0.057 1.00 0.95 0.96 0.48 0.40 0.73 0.99
SGED-EVT -5.244 0.038 1.00 0.98 0.98 0.46 0.42 0.70 0.98
JSU-EVT -5.619 0.057 1.00 0.97 0.98 0.48 0.39 0.73 0.99

Table 3.32: Mean estimates, violations ratio and backtesting results (p-values) for ES
estimates from all the models for BP and for 10-day returns calculated as the sum of 10
daily logarithmic returns not overlapped. BTT is the test of Righi & Ceretta, Z1 and
Z2 are the tests of Acerbi & Szekely, TR is the test of Graham & Pál, and UES , CES(1)
and CES(5) are the unconditional and the conditional (lags = 1 and lags = 5) tests
of Costanzino & Curran and Du & Escanciano. The hyphen means that there are no
violations. The p-values in bold indicate that the statistics obtained in these tests have
an opposite sign to that specified in the alternative hypothesis.
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3.7 Conclusions

In spite of the substantial theoretical evidence documenting the superiority of ES over VaR
as a measure of risk, financial institutions and regulators have only recently embraced ES
as an alternative to VaR for financial risk management. One of the major obstacles in this
transition has been the unavailability of simple tools for the evaluation of ES forecasts.
While the Basel rules for VaR tests are based on counting the number of exceptions, as-
sessing the adequacy of a ES model requires the consideration of the size of tail losses
beyond the VaR boundary. Different approaches have been proposed in the literature for
ES backtesting in the last few years but, to the best of our knowledge, this is the first
extensive comparison of a variety of ES backtesting procedures.

We use daily market closing prices for 10/02/2000 to 09/30/2016 on IBM, Santander,
AXA and BP, and we consider some flexible families of asymmetric distributions for as-
set returns that include more standard probability distributions as special cases. Normal
and Student’s t distributions are considered as a benchmark for comparison. Given the
evidence in Garcia-Jorcano and Novales (2017) [46] we use an APARCH volatility spec-
ification for all assets. We start by exploring which probability distribution seems to be
more appropriate to model asset returns in order to get good ES estimates. Following the
standard risk management methodology, once we estimate the dynamics of returns and
the parameters of the probability distribution for the innovations, we forecast returns and
volatility and apply a parametric approach to estimate 1- and 10-day ahead VaR and ES.
After that, we use a variety of tests recently proposed for ES model validation.

As the true temporal dependency of financial returns is a complex issue, the stan-
dard approach to risk management can be improved by considering a two-step procedure
that applies Extreme Value Theory (EVT): First, filtering the returns through a more or
less complex GARCH model and second, estimating an extreme value theory type of den-
sity for the tail of the distribution of return innovations, using their assumed iid structure.
This two-step procedure was proposed by McNeil & Frey (2000)[75] and it leads to a sig-
nificant improvement, since VaR and ES estimates then incorporate changes in expected
returns and volatility over time. So, we substitute the Generalized Pareto Distribution for
the type of probability distributions mentioned above for return innovations. As in the
standard approach, we then forecast VaR and ES at different significance levels and 1- and
10-day horizons and compare the results with those obtained under the standard approach.

In standard conditional models fitted to the full distribution of return innovations
we observe that the Skewed Generalized Error distribution and the Johnson SU distri-
bution play an important role in capturing tail risk. This is because some stylized facts
of financial returns, such as volatility clusters, heavy tails and asymmetry are collected
suitably by these asymmetric distributions. When we apply EVT to return innovations by
modeling the tail with a GPD we obtain good ES forecasts regardless of the probability
distribution used for returns. So, it looks as if considering just the return innovations
in the tail of the distribution is more important than discriminating among probability
distributions when estimating ES. Besides, each combination of APARCH volatility and
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probability distribution under the EVT approach dominates the similar specification under
the standard approach that fits the full distribution. Furthermore, the conditional EVT
models are more accurate and reliable than standard conditional models for predicting
losses beyond the VaR during both pre-crisis and crisis periods.

All the results mentioned, in terms of the preference for SGED and Johnson SU distri-
butions, or for the dominance of conditional EVT models over more standard conditional
models for VaR and ES estimation, are valid not only for a 1-day horizon but also over a
10-day horizon. Since the standard historical approach is often limited to the 1-day hori-
zon because of the lack of enough historical data, Filtered Historical Simulation based on
bootstrapping allows us to use overlapping samples. That way, we increase the number of
available observations for building the 10-day return distribution and estimate the 10-day
ES. This avoids the systematic underestimation of risk, increasing with the time horizon,
that arises when we apply the scaling law.

The ES tests we consider focus on a possible underestimation of risk, except for
Costanzino & Curran and Du & Escanciano tests which are two-tailed tests. We note,
however, that in some cases backtesting does not reject the model specification because the
sample evidence is against both the null and the alternative hypothesis. In other words,
some ES models are not rejected because they overestimate risk. When using ES to build
the institution’s reserves to cover potential losses in times of crisis, the underestimation
may be fatal, but overestimation will lead to inefficient use of capital. This is a relevant
consideration that should be taken into account for ES model validation.
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A Elicitability of VaR

We say that ψ is elicitable if it is the minimised value of some scoring function s(x, y)
according to

ψ = arg min
x

E[s(x, Y )] (21)

where Y is the distribution representing verified observations. The distribution can be
empirical, parametric or simulated. Furthermore, as we saw, for elicitability to hold, the
scoring function has to be strictly consitent.

We can show that V aRα(Y ) is elicitable through the scoring function

s(x, y) = (1(x≥y) − α)(x− y) (22)

According to (21) this is true if we can show that

V aRα(Y ) = arg min
x

E[(1(x≥y) − α)(x− Y )]

Hence, if we minimise E[(1(x≥y) − α)(x − Y )] and show that get V aRα(Y ) as the
minimizer, this proves that VaR is elicitable through its scoring function (22). We use
1(x≥y) = θ(x− y) where θ(x) is the Heaviside step function equal to one when x ≥ 0 and
zero otherwise. We can write (22) as

s(x, y) = (θ(x− y)− α)(x− y)

From this we get,

E[s(x, Y )] = E[(θ(x− Y )− α)(x− Y )]

We can write this as

E[(θ(x− Y )− α)(x− Y )] =

∫
(θ(x− y)− α)(x− y)fY (y)dy

= (1− α)

∫ x

−∞
(x− y)fY (y)dy − α

∫ ∞
x

(x− y)fY (y)dy

We now want to take the first derivative of E[s(x, Y )], set it equal to 0 and solve for
x. We want to calculate

d

dx

(
(1− α)

∫ x

−∞
(x− y)fY (y)dy − α

∫ ∞
x

(x− y)fY (y)dy

)
(23)

We take the derivative of the two terms in (23) independently. From the first term, by
using Leibniz’s rule, we get that

d

dx

(
(1− α)

∫ x

−∞
(x− y)fY (y)dy

)
= (1−α)

(∫ x

−∞
fY (y)dy + (x− x)fY (x)− 0fY (−∞)(x+∞)

)
=

= (1− α)

∫ x

∞
fY (y)dy
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Similarly for the second term, we get

d

dx

(
−α

∫ ∞(x−y)

x
fY (y)dy

)
= −α

∫ ∞
x

fY (y)dy

We can now add the two terms together and get

d

dx
E[s(x, y)] = (1− α)

∫ x

−∞
fY (y)dy − α

∫ ∞
x

fY (y)dy =

=

∫ x

−∞
fY (y)dy − α

We set this equal to zero and find

α =

∫ x

−∞
fY (y)dy

x = F−1
Y (α)

which defines V aRα(Y ). Thus, we have prove that V aRα(Y ) is elicitable through its
scoring function.
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