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ABSTRACT

Context. The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance esti-
mates do not support this association. Moreover, it has been identified as a spectroscopic binary, but existing data support contradictory
values for its orbital period.
Aims. We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to
NGC 2467.
Methods. A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the
photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least
two spectroscopic binaries, one of which is an eclipsing binary. We have developed our own program to fit four components to the
combined line shapes. Once the four radial velocities were derived, we obtained a model to fit the radial-velocity curves using the
Spectroscopic Binary Orbit Program (SBOP). We then implemented the radial velocities of the eclipsing binary and the light curves in
the Wilson-Devinney code iteratively to derive stellar parameters for its components. We were also able to analyse the non-eclipsing
binary, and to derive minimum masses for its components which dominate the system flux.
Results. HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by ∼ 0.09 arcsec
(or ∼ 500 AU) if the most likely distance to the system, ∼ 5 kpc, is considered. The presence of fainter companions is not excluded
by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901 ± 0.00000021 d. Its components are
hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a
shorter period of 1.0189569 ± 0.0000008 d. We derive masses of 14.6 ± 2.3 M⊙ for both components of the BaBb system. They are
almost identical; both stars are overfilling their respective Roche lobes, and share a common envelope in an overcontact configuration.
The non-eclipsing binary is a detached system composed of two stars with spectral types around O6 V with minimum masses of
10.8 M⊙ and 10.2 M⊙, and likely masses ≈ 30 M⊙.
Conclusions. HD 64315 provides a cautionary tale about high-mass star isolation and multiplicity. Its total mass is likely above 90M⊙,
but it seems to have formed without an accompanying cluster. It contains one the most massive overcontact binaries known, a likely
merger progenitor in a very wide multiple system.

Key words. stars: early-types – stars: fundamental parameters – binaries: close – stars: individual: HD 64315

1. Introduction

HD 64315 (HIP 38430, CD −26◦5115, V402 Pup) is the main
ionising source of the Galactic H ii region Sh2-311 (Sharpless
1959). This bright nebulosity (and hence the star itself) is appar-
ently connected to a number of dark and bright clouds, extend-
ing over almost 1◦ on the sky in the region of Puppis, which is
frequently referred to as NGC 2467. Originally, NGC 2467 was
believed to be a large cluster, but several authors have concluded

Send offprint requests to: J. Lorenzo, e-mail:
javihd64315@gmail.com
⋆ Based on observations obtained at the European Southern Ob-

servatory under programmes 078.D-0665(A), 082-D.0136 and 093.A-
9001(A). Based on observations made with the Nordic Optical Tele-
scope, operated on the island of La Palma jointly by Denmark, Finland,
Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque
de los Muchachos of the Instituto de Astrofísica de Canarias.

that it is actually the projection of a number of bright foreground
B- and A-type stars on top of a distant star-forming association
(Lodén 1966; Fenstein & Vázquez 1989). Within these clouds,
two compact young open clusters, Haffner 18 and Haffner
19, were also found to be illuminating smaller H ii regions.
Haffner 18 contains an O7 V star and probably three O9 stars
(Moreno-Corral et al. 2005). Haffner 19 only contains stars up to
B0–B1 (Munari & Carraro 1996). Examination of wide field im-
ages of the area very strongly conveys the impression of a single
star-forming region, including the two clusters and NGC 2467
(now understood only as the area surrounding HD 64315),
an idea also supported by analysis of Spitzer observations of
the area (Snider et al. 2009). Several authors have investigated
this hypothesis by deriving distances to the three clusters, ob-
taining discrepant results. FitzGerald & Moffat (1974) placed
Haffner 18 and Haffner 19 at 6.9 kpc, a much larger distance
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than the 3.7 – 4.4 kpc calculated for HD 64315 and its associated
H ii region (Georgelin & Georgelin 1970; Cruz-González et al.
1974; Pismis & Moreno 1976). More recent studies suggest that
Haffner 18 is more distant than Haffner 19 (Munari & Carraro
1996; Munari et al. 1998; Moreno-Corral et al. 2002, 2005;
Yadav et al. 2015), the latter having a distance more compatible,
but still larger than NGC 2467.

In the case of HD 64315, the few distance determi-
nations found in the literature (Cruz-González et al. 1974;
Pismis & Moreno 1976) are based on photometry and the as-
sumption that it is a single star. However, this star, initially
classified as O6Vn (Walborn 1982), was found to be a double-
lined spectroscopic binary by Solivella & Niemela (1986). By
using medium dispersion spectrograms obtained at CTIO be-
tween 1982 and 1984, Solivella & Niemela identified the two
components as ∼O6 stars and derived preliminary orbital ele-
ments for the binary system, obtaining a period of 1.34 days and
a mass ratio of ∼0.83. In view of this binary nature, all the stud-
ies mentioned above must have underestimated the distance to
the star.

With the aim of investigating the orbital and stellar proper-
ties of this binary system, we obtained extensive high-resolution,
high signal-to-noise ratio (S/N) spectra of HD 64315 with the
Fiber Extended Range Optical (FEROS; Kaufer et al. (1999))
and the FIbre-fed Echelle Spectrograph (FIES; Telting et al.
(2014)) spectrographs. In the analysis process, we found strong
signatures of more than two components present in the spectra,
which complicated the spectroscopic analysis of the star, but al-
lowed us to discover (in combination with other photometric and
spatial information) that HD 64315 is in fact a multiple system
comprising at least four components.

In this paper, we present observational evidence of the multi-
ple nature of HD 64315 and its implications for the distance de-
termination to this stellar system. The paper is structured as fol-
lows. The spectroscopic observations and the photometric data
are presented in Sect. 2. The spectra and their spectral classi-
fication are discussed in Sect. 3. A preliminary discussion on
the distance to the source is made in Sect. 4, based on the in-
terstellar lines present in the spectra. We then present evidence
in Sect. 5 showing that HD 64315 is composed of two spectro-
scopic binaries. In Sect. 6 we describe the procedure to extract
the radial velocities of each component from the spectra and de-
velop a comprehensive analysis to obtain the orbital and stellar
parameters for both binary systems. We conclude with the direct
estimation of the distance in Sect. 7. The discussion of results is
presented in Sect. 8, and our main conclusions are presented in
Sect. 9.

2. Observations

A total of 104 spectra grouped in 25 observing blocks (OBs)
were obtained in service mode at random phases between 2006
October and 2007 March with the FEROS instrument at the
ESO/MPG 2.2 m telescope1(see Table 1; spectra numbered from
1 to 25). This first set of spectra was complemented with seven
further OBs (14 spectra; see Table 1; spectra numbered from
26 to 32) obtained by CJE observations on 5 nights in 2009
March. This time, they were observed at specific phases, with
some of the OBs separated by only a few hours. The third
set of spectra was obtained in the framework of the IACOB

1 FEROS is a fixed configuration instrument (with R= 48000), giving
a wide wavelength coverage of 3600-9200 Å in one exposure.

project (Simón-Díaz et al. 2015) with the high-resolution FIbre-
fed Echelle Spectrograph (FIES) attached to the Nordic Opti-
cal Telescope (NOT), located at the Observatorio del Roque de
Los Muchachos (La Palma, Spain) between 2013 January 29
and 31 (11 spectra; see Table 1; spectra numbered from 33 to
43). Finally, the last group (see Table 1; nine spectra numbered
from 44 to 52) was also taken with FEROS by DM during a
long run in 2014 May. All the FEROS spectra were reduced
using the reduction pipeline that runs under the MIDAS envi-
ronment (Kaufer et al. 1999). The spectra from each observing
block were combined in order to have a higher signal-to-noise
ratio (S/N) and eliminate possible cosmic ray contamination.
Those taken with FIES were homogeneously reduced using the
FIEStool2 software in advanced mode. A complete set of bias,
flat, and arc frames obtained on each night were used to this
end. For wavelength calibration, we used arc spectra of a ThAr
lamp. In most cases the S/N of the target spectra is in excess of
70 per resolution element; half of them have a S/N above 100.
The spectra were normalised and heliocentric corrections were
applied using our own code developed in IDL. The final set of
spectra is summarised in Table 1, where we also show the expo-
sure time and S/N for every spectrum.

The spectroscopic observations were complemented with
photometric data from the All Sky Automated Survey3 (ASAS
Pojmanski 2003) and observations taken by the Hipparcos satel-
lite in the Hp band. There were a total of 544 photometric dat-
apoints extracted from the All Sky Automated Survey catalogue
(all in the V band). We chose the photometric data correspond-
ing to aperture MAG 2, which has the smallest intrinsic error
(σ =0.034 mag). They are displayed in Figure 1 (top panel).
The Hp passband embraces the V and B passbands. The trans-
formations from Hp to Johnson filters are comprehensively de-
scribed in Harmanec (1998). The number of photometric points
extracted from the Hipparcos catalogue is 149 for every pass-
band (shown in both panels of Figure 1). In total, we gathered
693 points in the V filter and 149 in the B filter. We observe
the same photometric variability in the data from the ASAS and
Hipparcos catalogues.
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Fig. 1: Photometric data extracted from the All Sky Automated
Survey (black dots) and Hipparcos catalogues (red dots). The V
passband is shown in the top panel. The lower panel shows the
B-band data.

2 http://www.not.iac.es/instruments/fies/fiestool/FIEStool.html
3 www.astrouw.edu.pl/asas
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Table 1: Log of spectroscopic observations. Spectra are num-
bered and sorted according to ascending dates and we have also
included the exposure time, S/N, and the instrument used.

# HJD UT date Exposure S/N Instrument
-2450000 year-month-day time (s)

1 4011.87680 2006-10-03 4×300 120 FEROS
2 4014.83998 2006-10-06 5×300 68 FEROS
3 4016.82509 2006-10-08 4×300 122 FEROS
4 4020.79661 2006-10-12 4×300 123 FEROS
5 4020.89005 2006-10-12 4×300 156 FEROS
6 4022.87611 2006-10-14 4×300 72 FEROS
7 4071.80481 2006-12-02 4×300 131 FEROS
8 4072.76861 2006-12-03 300 44 FEROS
9 4073.80821 2006-12-04 4×300 152 FEROS

10 4074.82240 2006-12-05 4×300 158 FEROS
11 4075.81631 2006-12-06 4×300 158 FEROS
12 4076.78727 2006-12-07 4×300 131 FEROS
13 4077.74138 2006-12-08 4×300 128 FEROS
14 4080.70283 2006-12-11 4×300 113 FEROS
15 4080.81634 2006-12-11 4×300 123 FEROS
16 4083.84377 2006-12-14 4×300 130 FEROS
17 4084.81600 2006-12-15 4×300 149 FEROS
18 4085.79417 2006-12-16 4×300 154 FEROS
19 4086.76633 2006-12-17 4×300 141 FEROS
20 4088.70577 2006-12-19 4×300 143 FEROS
21 4088.84428 2006-12-19 4×300 161 FEROS
22 4090.60271 2006-12-21 4×300 125 FEROS
23 4091.63779 2006-12-22 4×300 116 FEROS
24 4136.71099 2007-02-05 4×300 144 FEROS
25 4209.54994 2007-04-19 6×300 119 FEROS
26 4909.52528 2009-03-19 600 87 FEROS
27 4909.53300 2009-03-19 600 105 FEROS
28 4911.50573 2009-03-21 900 131 FEROS
29 4911.66461 2009-03-21 900 123 FEROS
30 4912.49930 2009-03-21 600 97 FEROS
31 4914.49464 2009-03-23 600 87 FEROS
32 4914.61375 2009-03-24 600 101 FEROS
33 6322.43998 2013-01-29 900 79 FIES
34 6322.49056 2013-01-29 900 84 FIES
35 6322.54242 2013-01-30 900 77 FIES
36 6322.60285 2013-01-30 900 75 FIES
37 6322.64116 2013-01-30 900 70 FIES
38 6323.43504 2013-01-30 1200 76 FIES
39 6323.48378 2013-01-30 1200 71 FIES
40 6323.51648 2013-01-31 1200 63 FIES
41 6323.55005 2013-01-31 1200 60 FIES
42 6323.59720 2013-01-31 1200 56 FIES
43 6323.61207 2013-01-31 1200 56 FIES
44 6789.47231 2014-05-11 900 82 FEROS
45 6789.55915 2014-05-12 900 78 FEROS
46 6790.48368 2014-05-12 900 86 FEROS
47 6791.47097 2014-05-13 900 98 FEROS
48 6792.47602 2014-05-14 900 96 FEROS
49 6792.53441 2014-05-15 600 77 FEROS
50 6793.45206 2014-05-15 300 63 FEROS
51 6794.47959 2014-05-16 300 56 FEROS
52 6796.48556 2014-05-18 600 82 FEROS

3. Description of the spectra

Figure 2 illustrates four representative examples of the spectrum
of HD 64315 at different phases. We plot the wavelength range
between 4300 Å and 4710 Å, where the main lines used to de-
fine the spectral type (SpT) in mid-O stars are found (see e.g.
Walborn & Fitzpatrick 1990). The first spectrum from the bot-
tom (#13) is probably similar to the one analysed by Walborn
(1982). Following the Morgan-Keenan (MK) system of spectral
classification this spectrum can be classified as ∼O6 Vn (where
the suffix n indicates that the lines are broad). Continuing to

the top of the figure, the third spectrum (#4) can be also clas-
sified as O6 V; however this time, the lines are narrower. In ad-
dition, the He ii 4686 line is now stronger than the He i 4471 Å
and He ii 4542 Å lines. Spectra with this type of morphology
have been given the ‘Vz’ qualifier (see e.g. Walborn 2007),
and hypothesised to correspond to lower (visual) luminosity and
younger ages (but see discussion by Sabín-Sanjulián et al. 2014).
In the two other spectra (#16 and #24), it becomes clear that the
star is a double-lined spectroscopic binary (as seen most clearly
in spectrum #24 in the He i 4471 Å line). Previous spectral classi-
fications are thus the consequence of the morphological analysis
of spectra obtained at phases in which the two components are
blended together.

More recently, Arias et al. (2016), accepting the multiplic-
ity of the system, classified HD 64315 as O5.5 V+O7 V, remov-
ing the system from the ‘Vz’ category. At classification resolu-
tion, only two components are identified. From a first inspec-
tion of some of the spectra with maximum separation between
both components (see e.g. spectra #16 and #24 in Figure 2), the
spectral types could be estimated as O6 and ∼O5 – O5.5 for the
components with stronger and fainter lines, respectively. Curi-
ously, the component with fainter lines seems to have an earlier
spectral type. In addition, the broadening of the lines from this
component is noticeably different in some of the spectra with a
similar separation between the two components. Indeed, a closer
inspection of the global spectrum at certain phases already gives
strong hints of the presence of more than two components, all
moving rather quickly in radial velocity.

4. Distance determination using interstellar lines

Before presenting the observational evidence for more than two
components in HD 64315 and its physical characterisation us-
ing the available spectroscopic and photometric datasets, we dis-
cuss the kinematic distance to HD 64315. Using the interstellar
Na i D lines (5890.0Å, 5895.9Å), we studied the radial velocity
distribution of the interstellar material in the direction towards
HD 64315 (l = 243◦.15; b = +0◦.36). We calculated the velocity
scale with respect to the local standard of rest (LSR) by assum-
ing that the Sun’s motion with respect to the LSR corresponds to
+16.6 km s−1 towards Galactic coordinates l = 53

◦

; b = +25
◦

.
The interstellar Na i D lines are shown in Figure 3 as normalised
flux as a function of LSR velocities. The two lines have a very
similar shape, showing two distinct components. Both compo-
nents display only positive velocities from +1 to +74 km s−1.
None of the components is saturated, and so we can determine
their centres. The broader feature is centred at +21 km s−1, while
the narrower feature is at +58 km s−1.

There are few stars along similar lines of sight with well-
studied interstellar lines. HD 68761, with galactic coordinates
l = 254◦.37; b = −1◦.61, displays only one component in its in-
terstellar lines, centred at +8 km s−1. This star is situated at a dis-
tance <∼ 1.5 kpc (Hunter et al. 2006). HD 58978 (l = 237◦.41; b =
−2◦.99), has several distance estimates, ranging from ∼ 800 pc
to ∼ 1.7 kpc (Hunter et al. 2006). Its interstellar lines display a
main component centred at +11 km s−1 and a very weak compo-
nent with an edge velocity around +29 km s−1.

Gyulbudaghian & Akopian (2002) measured the velocities
of all catalogued molecular clouds in this area, finding that all
had velocities between +20 and +25 km s−1and typical distances
<∼ 1 kpc. All this suggests that the main component in the inter-
stellar lines of HD 64315 arises from relatively nearby clouds.
The clear separation of the second component suggests that the
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Fig. 2: Representative examples of the spectrum of HD 64315 at four different phases. Spectra are numbered for ease of identifica-
tion.

extinction is very low at intermediate distances. The second
component shows velocities corresponding to much higher dis-
tances.
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Fig. 3: Interstellar lines in the spectrum of HD 64315. The main
panel shows the components of the Na i D doublet (5889.95 Å
solid line; 5895.92 Å dashed line) in velocity space. The inset
shows the Galactic rotation curve along this line of sight. The
velocities are measured with respect to the local standard of rest
(LSR) assuming a solar motion of +16.6km s−1 towards Galactic
coordinates ℓ = 53◦; b = +25◦.

Pismis & Moreno (1976) found kinematic distances to the
H ii regions around HD 64315, Haffner 18 and Haffner 19. Their
observations were re-reduced by Moreno-Corral et al. (2002),
who find LSR values of +50, +58 and +50 km s−1, respectively.
However, Pismis & Moreno (1976) warn that the H ii velocity
close to HD 64315 seems to be affected by the expansion of
gas around the ionising star, with smaller values of vLSR in the
immediate vicinity of the star. This interpretation is borne out
by the presence of interstellar material with higher vLSR along
the line of sight. The data available can be interpreted as sug-
gesting that the actual radial velocity of the complex is at least
+58 km s−1, with the lower values measured at some points due
to expanding shells around the ionising stars. This agrees very

well with the shape of the weaker component of the interstellar
lines, centred at vLSR ≈ +58 km s−1. The inset in Figure 3 shows
the Galactic rotation curve in this direction, computed consider-
ing circular galactic rotation and adopting the rotation curve of
Reid et al. (2014). Along the line of sight towards HD 64315, all
radial velocity curves display only positive and monotonically
increasing values, from a distance around 0.25 kpc. Assuming
vLSR ≈ +58 km s−1, the kinematic distance estimate to HD 64315
corresponds to d ≈ 5 kpc, which we adopt as a preliminary dis-
tance.

5. Evidence for more than two components

5.1. Period determination

We carried out a timing analysis of the photometric data de-
scribed in Sect. 2. We used the period program inside the Starlink
suite for every passband. The Lomb-Scargle algorithm (Lomb
1976; Scargle 1982), in a range of frequencies 0 – 35.7 d−1,
gives a photometric period of 1.0189650 ± 0.000112 d and
1.018958± 0.000018 d for the B- and V-filter data, respectively.
The agreement between the two periods is excellent. These val-
ues are confirmed with the clean algorithm (Roberts et al. 1987),
which removes spurious periods caused by the window function.
The Lomb-Scargle periodogram in a range of frequencies 0 –
10 d−1 and an inset of the clean periodogram, up to ν = 5 d−1 are
shown in Figure 4. There is clearly only one peak above signifi-
cance.

Figure5 shows all the photometric data for both passbands
folded on the derived period. The corresponding light curves
in the V and B filters show an amplitude of ≈ 0.18 mag and
≈ 0.05 mag, respectively. Error bars of the data are also dis-
played in Figure 5, showing that most of the errors exceed the
amplitude of the light curves (probably due to the process of
transformation to the standard system). The shallow amplitudes
and short-period observed might suggest that the variability is
due to ellipsoidal light variations (Wilson & Sofia 1976). How-
ever, as we shall see, the light from the system is not dominated
by the binary producing the photometric variability, and the vari-
ations represent an eclipse.
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Fig. 4: Results of the Lomb-Scargle periodogram for the photo-
metric data in the V filter (left). The result of applying the clean
algorithm is shown (right). The frequency peak corresponds to
half the orbital period.
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Fig. 5: Photometric light curves (V filter, top; B filter, bottom),
including data and the corresponding error bars from ASAS
(blue open dots) and Hipparcos (black solid dots).

5.2. Spectroscopy and radial velocities

Solivella & Niemela (1986) determined a spectroscopic period
of 1.34 d, based on around 20 medium dispersion spectrograms,
presenting a large dispersion in radial velocities with respect
to the model curve fitted. The difficulty in obtaining a good
fit is evidenced by a difference of 40 km s−1 between the sys-
temic velocities of the two components. A more recent attempt
to characterise HD 64315 as an eclipsing binary was carried out
by our group (Lorenzo et al. 2010). We used the first 24 spec-
tra described in Table 1 and obtained a binary period of 2.71 d
(twice the period of Solivella & Niemela 1986), with the same
systemic velocity for the two stars. Even so, the radial velocity
curves showed an unacceptable standard deviation of 35 km s−1;
the residuals of the radial velocities increase at phases around
zero and 0.5 (i.e. near the eclipses). Given the total disagreement
between the photometric and spectroscopic period and the hints
of the presence of more stellar components, we decided to sched-
ule further observations so that some spectra were taken at the
same phases with respect to the photometric period (1.01896 d),
while other spectra were taken separated by just a couple of
hours, a very small phase shift with respect to the spectroscopic
period. With these constraints, we expected to reveal changes in

the morphology (line profiles), while keeping the components of
the eclipsing binary at the same radial velocity.

As a consequence of this successful strategy, observations
between 2009 March and 2014 May have been much more use-
ful to understand how many components the system has and how
each one of contributes to the combined spectrum. As examples,
in Figure 6, we show a set of pairs of spectra, represented by
the He i 4471 and He ii 4542 lines, which define spectral type for
O-type stars. Every pair was observed at a very similar phase
(φ), according to the photometric period, but they were obtained
on a different date. For instance, the spectra #30 and #47 (top
panel of Figure 6) were acquired with a time difference of more
than 5 years, but at phase φ ≈ 0.91 (according the period of the
eclipsing binary, 1.019 d). First of all, they do not show the same
morphology. Moreover, the line morphology is not typical of a
binary close to eclipse, where the radial velocity of both com-
ponents should be close to systemic velocity. Rather He ii 4542
shows a double line in spectrum #30. A comparable situation
happens for the pairs of spectra #7, #51 (φ=0.87) and #9, #52
(φ=0.83). However, the spectra #37, #8 (φ=0.81) have a time
difference of more than 6 years, but their profiles are morpho-
logically very similar.

We display a few more examples in Figure 6 to emphasise the
complexity of this stellar system. The only sensible conclusion
after all these observations is that the stars forming the spectro-
scopic binary (or, at least dominating the spectrum) are not the
same ones giving the photometric signal at 1.019 d. The 2.71 d
period found from the radial velocity analysis (Lorenzo et al.
2010) corresponds to a different binary.

Once we have established that there is a non-eclipsing SB2
binary giving the prevailing spectroscopic period of 2.71 days
and an eclipsing binary causing the photometric 1.019 d signal,
we can guess that the components of the SB2 system should be
more luminous than the stars in the eclipsing binary system, as
they dominate the combined flux. Since two stars with spectral
types not very far from O6 are seen, the spectral types of the
components of the eclipsing binary must be later than O7 V, so
that they are later than the secondary star in the non-eclipsing
binary system.

5.3. Interferometry and parallax

Using Speckle interferometry obtained over a period of a decade,
Mason et al. (2009) derived the angular separation of HD 64315,
resolving at least two components with a separation of 0′′.091.
In Sect. 4, we discussed the distance to HD 64315 and esti-
mated d ≈ 5 kpc. At this distance, the geometric distance be-
tween the components would be 455 AU (≈ 100 000 R⊙). This
separation is certainly not consistent with the short orbital pe-
riods that we have found. Furthermore, Tokovinin et al. (2010)
obtained Speckle interferometry images of HD 64315 (see Fig-
ure 12 in the mentioned study) suggesting that the system may
consist of three visual components in a linear configuration
(Tokovinin et al. 2010). The fit of the x-axis scan with two com-
ponents is marginal, but experiments with three component made
little or no improvement (Aldoretta et al. 2015). Therefore the
two visual components resolved represent two systems of com-
parable (but not equal) brightness that are either in a very wide
orbit or are not bound. The simplest possibility is that each the
visual components represents one of the two binaries that we
have identified (one in the photometric signal and the other in
the spectra). Hereafter, we name the non-eclipsing binary sys-
tem A, composed of stars Aa and Ab, while the eclipsing binary
is known as B, with components Ba and Bb. Both are spectro-
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Fig. 6: Comparison of several pairs of spectra taken on different
nights, but corresponding to the same phase (blue numbers) of
the 1.019 d photometric period. The presence of more than two
components is obvious.

scopic binaries (SB2), but the lines corresponding to Ba and Bb
are mostly hidden within the complex and broad profiles gen-
erated by the more luminous components of system A. In the
following section (Sect. 6), we describe the technique developed
to disentangle the spectra and the subsequent orbital analysis.

6. HD 64315, a double spectroscopic binary

6.1. Determination of radial velocities

In Sect. 5, we presented inescapable evidence that HD 64315
is a double spectroscopic binary, with the non-eclipsing binary
(nEB = A) composed of two mid-O stars and the eclipsing bi-
nary (EB = B) containing two stars of lower temperature. The
orbital period of B is obviously the photometric period derived
in Sect. 5.1, while the orbital period of A must be around
2.71 d. Our spectroscopic monitoring (see Table 1) covers al-
most 8 years, during which time A has completed more than
1 000 orbital cycles.

Every one of the four components contributes to every
spectrum with its flux. Since we see them in the He i, He ii
and Balmer lines, all components are O-type stars. Accord-
ing to the classical criteria for O-type spectral classification by
Walborn & Fitzpatrick (1990), the ratio between the He i 4471 Å
and He ii 4542Å lines is sensitive to temperature and thus we

chose these lines to fit the spectral line shape with multiple func-
tions. The spectral line of a single star can be approximated with
a Gaussian function, characterised by three parameters: ampli-
tude, width and centroid of the peak. Even though line shapes
in isolated stars present more complex profiles, the many added
complications that are discussed below call for the choice of a
simple Gaussian shape. The amplitude and width are dependent
on the spectral line, and the centroid is dependent on the time
when the spectrum was taken (i.e. the radial velocity of the com-
ponent at that time). Since we have analysed two spectral lines
in 52 spectra and we require four Gaussian functions to fit each
line profile, our model must have eight widths, eight amplitudes,
and 52 positions of the centre of the peaks. Our unknowns are
ten orbital parameters: period, zero point of ephemeris, systemic
velocity, and semi-amplitude of the velocity curve for each bi-
nary (PA, T0,A, v0,A, KAa, KAb, PB, T0,B, v0,B, KBa, KBb). From
the light curves, two of these parameters, PB and T0,B, are well
determined. This means that we know the phases corresponding
to the orbital period of EB for every spectrum. Moreover, given
the short orbital periods and large stellar sizes, we can assume
that both binary systems are circularised and synchronised, and
so both eccentricities are zero. To derive the radial velocities, we
solve the inverse problem: we vary the free orbital parameters
until the sum of four Gaussian functions matches the shape of
the line observed. The minimization function is constrained by
the expression for the radial velocity due to the orbital motion
derived from the Kepler laws (see Eq. 2.45 in Hilditch 2001).
From an analytical point of view, if we consider that fiα(v) is
the normalised flux of a spectral line i in the spectrum numbered
α, with a dependence on velocity v, and giαX(v) is the Gaussian
function which represents the flux distribution for star X (Aa,
Ab, Ba, Bb) of the spectral line i (where i can be one of two
spectral lines; He i 4471Å or He ii 4542Å) in the spectrum α, and
finally Miα(v) is the sum of the four Gaussian functions, repre-
senting the overall line, given by

Miα(v) =
4∑

X=1

(1 − giαX(v)) , (1)

the function to minimise F(v) would be equivalent to

F(v) =
∑

α,i

| fiα(v) − Miα(v)| (2)

The function F(v) was implemented via the Python interface
called lmfit. This package builds complex fitting models for non-
linear least-squares problems. Spectra were transformed to the
velocity space, in a range from −600 km s−1to +500 km s−1, and
rebinned to 200 bins. The remaining free orbital parameters, PA,
T0,A, v0,A, KAa, KAb, v0,B, KBa and KBb, were bounded. The six-
teen free parameters to characterise the widths and heights of ev-
ery Gaussian function were constrained using our knowledge of
the system: given that PA is longer than PB and the orbits are syn-
chronised, the rotational velocities of Ba and Bb will be higher
than the rotational velocities of Aa and Ab, and so we expect that
Gaussians corresponding to Ba and Bb are wider than those for
Aa and Ab. We consider that the flux of the stars is constant dur-
ing an orbital cycle and that the stars do not pulsate. Finally, we
do not take into account the Struve-Sahade (Struve et al. 1958)
and Rossiter-Mclaughlin (Rossiter 1924; McLaughlin 1924) ef-
fects.

The resulting models (104 in total = 2 spectral lines x 52
spectra) are displayed in Figure 7. In each panel, we can see the
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four Gaussian functions, representing the contribution of every
component to the spectral line. The positions of the peaks are
the radial velocities of the different components. To evaluate the
goodness of the fit, we present the Pearson product-moment cor-
relation coefficient R2 for every fit in Table 2. The coefficient
R2 is > 0.9 in ≈ 42% of the models for the He i line, and just
8% of them have R2<0.7. In the case of the He ii line, ≈ 62%
of the models have R2 > 0.9 and only 2% present R2 < 0.7. We
did not find any correlation between the best fits and the orbital
phases, or the observing campaigns. Radial velocities are shown
in Table 3. In the next section, we use these four sets of radial
velocities to derive orbital and stellar parameters.

Table 2: Pearson product-moment correlation coefficient R2 for
every line and spectrum.

♯ R2 (He i) R2 (He ii) ♯ R2 (He i) R2 (He ii)

1 0.9658 0.9732 27 0.9161 0.8906
2 0.9080 0.9758 28 0.8847 0.8661
3 0.9622 0.9710 29 0.9072 0.8784
4 0.9908 0.9947 30 0.9278 0.9373
5 0.9853 0.9854 31 0.8759 0.8660
6 0.8761 0.8916 32 0.9421 0.8825
7 0.7351 0.8326 33 0.8006 0.9583
8 0.7357 0.8810 34 0.7078 0.9559
9 0.9803 0.9895 35 0.6737 0.9359
10 0.8315 0.9744 36 0.6231 0.9060
11 0.9258 0.9736 37 0.5603 0.8708
12 0.5886 0.6960 38 0.9376 0.9827
13 0.9638 0.9666 39 0.9507 0.9764
14 0.8986 0.9369 40 0.9113 0.9535
15 0.8891 0.9649 41 0.8898 0.9421
16 0.7631 0.9373 42 0.8169 0.9231
17 0.8054 0.8816 43 0.7397 0.9035
18 0.8165 0.8603 44 0.8923 0.8645
19 0.8498 0.9027 45 0.9299 0.8972
20 0.9868 0.9903 46 0.9155 0.8770
21 0.9453 0.9962 47 0.8925 0.8754
22 0.8163 0.9823 48 0.9089 0.9248
23 0.8849 0.8668 49 0.9488 0.9575
24 0.9044 0.9746 50 0.9255 0.8428
25 0.7900 0.8872 51 0.9279 0.9180
26 0.8968 0.8978 52 0.9147 0.9147

6.2. Orbital analysis

6.2.1. Non-eclipsing binary (AaAb)

We determined the orbital parameters from the radial velocities
derived (Figure 7). We used the Spectroscopic Binary Orbit Pro-
gram (SBOP) by Etzel (2004). The guess parameters are those
obtained by the fit described in Sect. 6.1. The radial velocity
curve and residuals are displayed in Figure 8. The orbit is circu-
lar, as this was an initial assumption. In the case of system A, we
cannot determine the absolute parameters, as we do not know
the inclination of the system with respect to the line of sight,
but we can obtain a minimum mass for every component. The
spectroscopic period determined is very similar to that obtained
in Lorenzo et al. (2010), but now the uncertainty is very small,
and the residuals are very low, less than 1 km s−1. These are not
the real uncertainties that can be derived from the observations,
because, as explained in Sect. 6.1, we imposed a constraint on
the model to determine the radial velocities. Radial velocities
ordered by phase are shown in Table 4. The parameters derived
are shown in Table 5. The mass ratio is 0.9366, very close to

Table 3: Radial velocities of HD 64315 derived from the fitting
of the four Gaussian functions in both spectral lines (He i 4471Å
and He ii 4542Å) for every spectrum.

♯ RVAa RVAb RVBa RVBb ♯ RVAa RVAb RVBa RVBb

1 -130 283 -29 126 27 73 67 47 53
2 -118 271 109 -7 28 -132 286 142 -39
3 14 130 181 -77 29 -128 281 -84 180
4 83 56 276 -170 30 187 -55 176 -72
5 127 10 194 -90 31 -106 258 225 -120
6 -131 284 248 -142 32 -72 222 68 32
7 -105 257 231 -125 33 143 -8 206 -101
8 260 -133 274 -167 34 120 16 255 -149
9 -22 168 260 -154 35 96 42 285 -178
10 6 139 264 -158 36 68 72 289 -182
11 257 -129 278 -172 37 50 91 275 -169
12 -111 263 291 -184 38 -120 273 177 -74
13 103 35 275 -169 39 -110 263 232 -127
14 208 -78 189 -85 40 -103 255 260 -154
15 243 -114 284 -177 41 -94 245 280 -174
16 270 -144 269 -163 42 -80 230 291 -185
17 -84 235 231 -125 43 -75 225 291 -184
18 67 73 185 -81 44 -123 276 122 -20
19 230 -100 122 -20 45 -106 258 -5 104
20 160 -26 -22 120 46 251 -124 133 -31
21 213 -82 176 -73 47 20 123 175 -72
22 -132 285 -172 266 48 -39 186 193 -89
23 238 -110 -162 256 49 -15 160 115 -13
24 -128 281 144 -41 50 272 -146 239 -133
25 -109 261 -20 118 51 -95 246 230 -125
26 69 71 59 41 52 200 -69 258 -152

unity. The systemic velocity is the same for both radial velocity
curves. When transformed to the LSR, it is +55 km s−1, in very
good agreement with the velocity of the H ii nebula within which
HD 64315 is embedded (Sect. 4).

Recently, Arias et al. (2016) classified HD 64315 as O5.5 V
+O7 V. This classification does not take into account the con-
tribution to the spectrum of the eclipsing binary (Ba and Bb).
Our results suggest that Aa and Ab are indeed quite similar in
mass and temperature. If we calculate the sizes of their Roche
lobes, following Eggleton (1983), we find Rlobe

Aa = 11.5 R⊙ and
Rlobe

Ab = 11.2 R⊙. We can estimate the projected rotational ve-
locity by assuming that the two stars just fill their lobe radii. In
this case, it would be ∼ 150 km s−1 for both components. As the
stars may not fill their Roche lobes, their actual rotational ve-
locity will be higher, in agreement with the expectation of syn-
chronisation. The lack of eclipse implies a lower limit on the
orbital inclination. If the stars fill their Roche lobes, it will be
around 45◦. For this inclination, the masses of the two compo-
nents are 31 M⊙ and 29 M⊙. As these masses are consistent with
calibrations for a spectral type O6 V (Martins et al. 2005), we
do not expect the inclination to be much lower. This strongly
suggests that all the assumptions are approximately correct. The
semi-major axis of the binary system would then be 32R⊙. Given
these orbital parameters, this system is not a contact binary (see
Figure 9), but a detached binary system. However, given esti-
mates for synchronisation times in stars with radiative envelopes
(Zahn 1975; Claret & Cunha 1997), the assumption of synchro-
nisation is fully justified, and so our assumption that the lines
of both components of A are narrower than those of Ba and Bb
is correct. As mentioned in Sect. 3, the component with fainter
lines seems to have an earlier spectral type in some spectra. With
our solution, this can be understood as follows: the components
both have approximately the same spectral type, around O6 V,
but they appear slightly different in different spectra because
changes in the width and height of spectral lines are caused by
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Fig. 7: Final fit: the observed lines (blue), the sum of four Gaussian functions (black), four Gaussian functions in every spectral line
(Aa:blue; Ab:red; Ba:green; Bb:magenta). Numbers represent the order of the spectrum (for every pair: left He i and right He ii)
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Fig. 8: Radial velocity curves for the non-eclipsing binary (A),
fitted to the observational data and shown against orbital phase
(blue line: star Aa; red line: star Ab). The red dotted line corre-
sponds to the systemic velocity. The residuals are shown in the
top panel.

the many confusing effects inherent to this kind of early-type
close binary (such as Struve-Sahade or tidal distortion) with the
added complication of the contribution of the eclipsing binary
sibling.

6.2.2. Eclipsing binary (BaBb)

We derived the radial velocity curve (see Figure 10) and the
corresponding orbital parameters, by using SBOP and the same
methodology as in Sect. 6.2.1. The mass ratio, semi-major
axis and systemic velocities obtained were included as guess

Table 4: Radial velocities in phase of the non-eclipsing binary
(A).

♯ phase RVAa RVAb ♯ phase RVAa RVAb

36 0.0016 68 72 32 0.3772 -72 222
37 0.0157 50 91 48 0.4102 -39 186
47 0.0393 20 123 49 0.4318 -15 160
3 0.0446 14 130 10 0.4487 6 139
9 0.0744 -22 168 18 0.4979 67 73
17 0.1369 -84 235 26 0.4993 69 71
51 0.1497 -95 246 27 0.5022 73 67
25 0.1705 -109 261 4 0.5103 83 56
12 0.1739 -111 263 13 0.5260 103 35
1 0.2184 -130 283 5 0.5448 127 10
28 0.2302 -132 286 20 0.5724 160 -26
22 0.2725 -132 285 30 0.5969 187 -55
6 0.2777 -131 284 14 0.6189 208 -78
29 0.2888 -128 281 21 0.6235 213 -82
24 0.2890 -128 281 23 0.6545 238 -110
44 0.3017 -123 276 15 0.6608 243 -114
38 0.3087 -120 273 46 0.6749 251 -124
2 0.3119 -118 271 8 0.6907 260 -133
39 0.3267 -110 263 50 0.7704 272 -146
31 0.3333 -106 258 16 0.7781 270 -144
45 0.3338 -106 258 11 0.8155 257 -129
7 0.3350 -105 257 19 0.8567 230 -100
40 0.3387 -103 255 52 0.8900 200 -69
41 0.3511 -94 245 33 0.9414 143 -8
42 0.3685 -80 230 34 0.9601 120 16
43 0.3740 -75 225 35 0.9792 96 42

parameters in the generalised Wilson-Devinney (WD) code
(Wilson & Devinney 1971) in its 2010 version. The period and
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Table 5: Stellar parameters of the non-eclipsing binary
(HD 64315 AaAb) derived from the radial velocity curves.

Aa Ab

Orbital period (day) 2.70962901 ± 0.00000021
Zero point of ephemeris (HJD) 2454022.12350± 0.00012
Eccentricity 0 (assumed)
Longitude of periastron (◦) 90 270
Systemic velocity (km s−1) 69.98 ± 0.03
Semi-amplitude of velocity (km s−1) 203.74±0.06 217.52 ± 0.06
Projected semimajor axis (R⊙) 10.907 ± 0.003 11.644 ± 0.003
Minimun mass (M⊙) 10.838 ± 0.005 10.151± 0.005
Mass ratio (M2/M1) 0.9366 ± 0.0006

Fig. 9: Representative drawing of HD 64315 AaAb at different
phases created with the phoebe 2.0-alpha code via the Python
interface. The secondary is slightly greyer and smaller to differ-
entiate it from the primary.

zero point ephemeris derived from the spectroscopic data are
1.018965 d and HJD 2452550.6272, respectively. Radial veloci-
ties ordered according to the phase are shown in Table 6. The tiny
residuals are a consequence of the same procedure discussed in
Sect. 6.2.1.
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Fig. 10: Radial velocity curves fitted to the observational data
and shown against orbital phase (blue line: Ba; red line: Bb).
The red dotted line corresponds to the systemic velocity. The
residuals are shown in the top panel.

We obtained the light curve and radial velocity curve mod-
els by computing the parameters via differential corrections until
all free parameter adjustment of light curves and radial velocity
curves is reached according to the least-squares criterion. We as-
sumed that stars Ba and Bb form a contact system, in which case
circularisation and synchronisation are acceptable approxima-
tions. We chose mode 1 of the WD code, corresponding to over-

Table 6: Radial velocities in phase of the eclipsing binary (B).

♯ phase RVBa RVBb ♯ phase RVBa RVBb

27 0.0017 47 53 43 0.7619 291 -184
45 0.0368 -5 104 36 0.7715 289 -182
25 0.0467 -20 118 11 0.8022 278 -172
1 0.0527 -29 126 4 0.8065 276 -170

29 0.0936 -84 180 37 0.8091 275 -169
22 0.3134 -172 266 8 0.8112 274 -167
23 0.3292 -162 256 10 0.8268 264 -158
20 0.4518 -22 120 9 0.8315 260 -154
19 0.5484 122 -20 52 0.8343 258 -152
24 0.5635 144 -41 6 0.8473 248 -142
21 0.5877 176 -73 50 0.8573 239 -133
38 0.5881 177 -74 7 0.8653 231 -125
18 0.5944 185 -81 51 0.8656 230 -125
14 0.5977 189 -85 31 0.8710 225 -120
33 0.6117 206 -101 5 0.8983 194 -90
17 0.6344 231 -125 48 0.8993 193 -89
39 0.6360 232 -127 3 0.9089 181 -77
34 0.6613 255 -149 30 0.9128 176 -72
40 0.6681 260 -154 47 0.9130 175 -72
16 0.6803 269 -163 28 0.9377 142 -39
13 0.6914 275 -169 46 0.9441 133 -31
41 0.7010 280 -174 44 0.9515 122 -20
15 0.7091 284 -177 49 0.9566 115 -13
35 0.7122 285 -178 2 0.9608 109 -7
42 0.7473 291 -185 32 0.9879 68 32
12 0.7551 291 -184 26 0.9942 59 41

contact binaries. In this case, the surface potentials are the same
for both stars (Ω1 = Ω2). The radiative model for both compo-
nents of the binary system is an atmosphere model by Kurucz
(1993). The surface is divided into a grid of 40×40 elements for
each star. To improve the convergence of the solution, we chose
symmetrical derivatives (Wilson & Sofia 1976). The code can
apply the detailed reflection model of Wilson (1990), a treatment
especially recommended with overcontact binaries. We have also
considered proximity effects on both stars. A square root limb-
darkening law was applied during the process, as it is an or-
der of magnitude more precise than the linear law (van Hamme
1993). The bolometric albedos of both components were fixed
at A1 = A2 = 1, because the atmospheres are expected to be
in radiative equilibrium (von Zeipel 1924). Because of local en-
ergy conservation, this also implies gravity brightening expo-
nents g1 = g2 = 1. Other constraints applied are described
in mode 1 of the WD code. Both temperatures were fixed to
32 000 K, in agreement with the expectation of a spectral type
not later than O9.5 V nor earlier than O8.5 V (as both compo-
nents have to be O-type stars, and at the same time considerably
fainter than the ∼O6 V components that dominate the spectrum).
The temperature ratio is not an adjustable parameter during the
convergence process. This is a compulsory constraint due to the
morphology of the binary star, where both components share a
volume of their Roche lobes and thermal contact is assumed. The
third light is included due to the presence of the binary system
A.

The process to convergence of all free parameters is itera-
tive and simultaneous for all observables analysed, i.e. the ra-
dial velocity curves and light curves. The criterion for conver-
gence adopted is as follows. For three consecutive iterations, all
adjustable parameters must be within two standard deviations.
Once convergence is reached, five solutions are derived by vary-
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ing the parameters within the standard deviation and fitting the
observations again. We choose the fit with the smallest disper-
sion as a final solution.

Light curve models are shown in Figure11. Their shape phe-
nomenologically corresponds to an eclipsing variable of the EW
type; there is no plateau between the eclipses. The light curve
exhibits a continuous and monotone shape along the cycle. This
shape of the model light curve confirms that the two stars are
overfilling and sharing their Roche lobes. Light curves show a
significant dispersion. As a consequence, it is difficult to visu-
ally distinguish which one of the two minima is deeper. For a
best estimate of the difference in depth, we averaged all photo-
metric data points between φ = 0.99 and 0.01, and all points
between φ = 0.49 and 0.51, obtaining a difference of 5 milli-
magnitudes for the V filter and 2 millimagnitudes for the B filter.
The latter value is not significant because of the small number
of points. Both differences are smaller than the intrinsic disper-
sion (σV = 0.02; σB = 0.006) of the corresponding light curves,
and so we have to conclude that both minima are of equal depth.
Residuals are under 0.08 mag for the V filter and under 0.02 mag
for the B filter, showing a reasonably good fit in either case, in
spite of the low quality of the photometric data.
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Fig. 11: Light curve model fitted to the observational data and
residuals in V filter (above) and B filter (below).

The linear ephemeris equation, where the epoch of succes-
sive times of primary-eclipse minima (phase zero), Tmin, is cal-
culated from the period and zero-time ephemeris derived from
the light curves, is

Tmin = HJD (2452550.62838± 0.00018)

+ (1d.0189569 ± 0d.0000008)× E

All the stellar and orbital parameters are shown in Table 7.
The difference between the spectroscopic and photometric pe-
riod is about seven-tenths of one second, and the zero-time
ephemeris derived from spectroscopic and photometric data dif-
fer by about 100 s, demonstrating excellent agreement, given
the complex methodology and low quality of the data. The sys-
temic velocity transformed to the LSR coordinates would be
+35 km s−1, significantly different from the systemic velocity
of the non-eclipsing binary (AaAb). Both components have the
same mass, 14.6 M⊙. In view of this, we assume that both com-
ponents have spectral type O9.5 V. As is typical in this kind of
early-type overcontact system, the surface effective gravity ob-
tained is quite high, typical of zero-age main-sequence (ZAMS)
stars.

Table 7: Stellar parameters for the eclipsing binary
(HD 64315 BaBb) derived from the combined analysis of
the radial velocity curves and photometric light curves.

Ba Bb

Orbital period (day) 1.0189569 ± 0.0000008
Zero point of ephemeris (HJD) 2452550.62838± 0.0018
Eccentricity 0 (assumed)
Inclination (◦) 48.2 ± 1.4
Longitude of periastron (◦) 90 270
Systemic velocity (km s−1) 50.4 ± 9.2
Semi-amplitude of velocity (km s−1) 243.0±15.7 243.2 ± 15.7
Semi-major axis (R⊙) 13.1 ± 0.7
Surface normalised potential 3.58 ± 0.10
Mass (M⊙) 14.6 ± 2.3 14.6± 2.3
Mass ratio (M2/M1) 1.00 ± 0.06
Mean equatorial radius (R⊙) 5.52 ± 0.55 5.33 ± 0.52
Polar radius (R⊙) 4.96 ± 0.47 4.82 ± 0.45
Side radius (R⊙) 5.26 ± 0.55 5.08 ± 0.52
Back radius (R⊙) 5.84 ± 0.77 5.57 ± 0.69
Projected rotational velocitya (km s−1) 203 ± 15 198 ± 14
Surface effective gravityb (log g) 4.19 ± 0.05 4.16 ± 0.05
Luminosity ratio (V-filter)(L2/L1) 0.897 ± 0.023
Luminosity ratio (B-filter)(L2/L1) 0.889 ± 0.033
Third light (V-filter) (l3) 0.462 ± 0.044
Third light (B-filter) (l3) 0.579 ± 0.018

Notes. (a) calculated from the mean equatorial radius ; (b) calculated from the side radius

The radii derived from the surface potential show that the two
stars are sharing their atmosphere. We provide a representative
drawing (see Figure 12) where we can see how the atmosphere
of the two stars overlap.

7. Direct distance estimation

Eclipsing binaries allow the derivation of geometrical distances
to the systems, which can be very precise (e.g. Southworth et al.
2004; Vilardell et al. 2010). In overcontact binaries, there are
many complications, owing to the interaction and geometri-
cal distortion, but a direct distance estimate is still possible
from the stellar parameters. In HD 64315, we find the added
complication of a third body (the detached non-eclipsing bi-
nary) that is brighter than the eclipsing binary. For the cal-
culation, we assumed effective temperatures of 32 000 K for
components Ba and Bb, and 40 000 K for components Aa and
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Fig. 12: Representative drawing of HD 64315 BaBb to scale at
quadrature phase, created with the phoebe 2.0-alpha code via the
Python interface.

Ab. This is an approximation based on qualitative criteria de-
scribed in Sects. 6.2.1 and 6.2.2 and the SpT-Teff calibrations
by Martins et al. (2005). The apparent magnitudes of every star
(for every passband) were calculated and included in Table 8.
We assumed the uncertainties to be twice the standard deviation
of the corresponding light curve. Then, we estimated a distance-
dependent flux, in standard physical units, including those prox-
imity effects supported by the model and accepting constraints
relative to the radii of components of Aa and Ab (Rlobe

Aa = 11.5R⊙

and Rlobe
Ab = 11.2 R⊙). This procedure, although approximate, is

more accurate than the simple use of the mean radii. We follow
the procedure described in Vilardell et al. (2010). The parame-
ters used are shown in Table 8, together with our estimates of
distance, 4.7 ± 0.6 kpc, for the non-eclipsing binary (AaAb) and
5.0 ± 0.8 kpc for the eclipsing binary (BaBb). Both values are
fully consistent. The errors are mainly due to the relatively large
uncertainties in the extinction and the bolometric correction.

8. Discussion

HD 64315 presents evident difficulties in the determination of its
orbital and stellar parameters. Firstly, all components have broad
and shallow spectral lines, because of their high rotational ve-
locities. As a consequence, cross-correlation techniques are dif-
ficult to apply because the peaks of the spectral lines for every
component are not distinguishable, thereby increasing the uncer-
tainties. Moreover, the short periods of both binaries add further
complication to any disentangling process. As an example, in
Figure 13 we show radial velocity curves for all components as
a function of time (HJD= 2454072−2454077). Spectra 8, 9, 10
and 11 are marked on the radial velocity curve with their cor-
responding times. The spectral lines of He ii corresponding to
these four spectra are displayed together with the contribution of
every component and the sum of these Gaussian functions. Ap-
parently, radial velocities in spectra #8 and #11 are very similar
quantitatively, but the morphology of the spectral lines is totally
different: while #11 shows two peaks, #8 shows an erratic pro-
file aggravated by its low S/N. In the case of spectra #9 and #10,
we note the asymmetries of the spectral lines, and how a spec-
tral line showing a single peak can hide four lines coming from
the four components. The contributions of Ba and Bb to the pro-
file are shallow and weak, and, given the higher orbital velocity
of system B, on many occasions appear as very faint extended
wings on the sides of the lines due to system A or, when their ra-
dial velocities are low, are completely lost inside the lines from
A.

Despite these difficulties, our methodology is able to de-
rive orbital and stellar parameters with a very limited set of as-

sumptions. We find that HD 64315 is a quadruple star, consist-
ing of two binary systems separated by about 100 000 R⊙ (455
A.U.) at a distance of around 5 kpc. The non-eclipsing system
(O6 V+O6 V) is a detached system, However, the inclination de-
rived suggests that the two components are not far from filling
their respective Roche lobes, and we have used this approxima-
tion for some estimates.

The eclipsing binary (O9.5 V+O9.5 V) is a contact system
with a very short period. We consider this object a very strong
merger progenitor candidate. To estimate when the merger will
take place, we assume that the coalescence of the two compo-
nents will occur when the outer Roche lobe radius is reached.
Application of the equation derived by Yakut & Eggleton (2005)
leads to an outer Roche lobe radius for HD 64315 Ba of 6.3 R⊙.
If we assume that the Kevin-Helmholtz time is the merging time
scale, the duration of the merger will be 26 000 years. The two
components of HD 64315 B are already overfilling the volume
of their Roche lobe, presenting an overlapping volume between
them. If we take, for comparison a Geneva track (Georgy et al.
2013) for a 15 M⊙ with Z = 0.01 andΩ/Ωcrit = 0.568 (equivalent
to v/vcrit =0.4), we see that a polar radius ≈ 5R⊙ (as we find from
our solution) corresponds to an age around 3Myr (in good accord
with the presence of an H ii region around the star). If the star
was isolated and stellar evolution was the only driver of shape
changes, an equatorial radius ≈ 6.3 R⊙ would be reached by an
age of<∼ 8Myr. However, in the case of HD 64315 Ba, we see that
the distortion from a spherical shape is much larger than caused
by rotation alone. Alternatively, a decrease of 2 000 K in its Teff
would also imply overfilling the outer Roche lobe. Again, the
evolutionary timescale for an isolated star to achieve that stage
is a few Myr.

In the case of HD 64315 Aa, the outer Roche lobe radius of
HD 64315 Aa is 15.1 R⊙, and so the stars are very far away from
the merging condition, as expected, given the much longer pe-
riod. For two stars of this size, the merging timescale would be
around 10 000 years. In both cases, the merger happens in about
of the lifetime of an individual star with the same spectral type.

The two spectroscopic binaries that we have observed must
correspond to the two objects separated by speckle interferom-
etry, as we do not see any stationary component in the spec-
tra. There may be further components, but then they have to be
fainter than binary B. With a separation of ≈ 455 AU, the two
systems must orbit each other with a period of ∼ 1000 years.
They are thus likely gravitationally bound.

8.1. Astrophysical context

It is difficult to find stellar objects with similar characteristics
in the literature, as most of the quadruple system studied corre-
spond to visual binaries or systems with much lower masses. A
notable example is the quadruple system QZ Car (Mayer et al.
2001), composed of binaries A (O9.7 I+b2 v, PA = 21 d) and
B (O8 III+o9 v, PB = 6 d). It presents several differences with
HD 64315: the primaries in the two binaries within QZ Car are
evolved stars, and the secondaries are rather less massive. More-
over, the common orbit has a period likely measured in decades
rather than centuries.

During the last decade, several studies have found the mul-
tiple nature of systems previously believed to be binaries, for
example, LY Aur (Mayer et al. 2013) or SZ Cam (Tamajo et al.
2012), the latter in the central dense region of the open clus-
ter NGC 1502. We expect that many binary systems known to
present spectral asymmetries without explanation or deviating
radial velocities will be found to be multiple in the near future
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Table 8: Parameters used to estimate the distance to HD 64315.

Binary properties non-eclipsing binary (A) eclipsing binary (B)

mV (mag) 9.32 ± 0.04 11.31 ± 0.04
mB (mag) 9.63 ± 0.012 11.62 ± 0.012
E(B − V) (mag) 0.62 ± 0.04 0.60 ± 0.04
AV 1.93 ± 0.23 1.86 ± 0.22
MV (mag) −5.97 ± 0.18 −4.04 ± 0.26
(V0 − MV ) (mag) 13.36 ± 0.29 13.5 ± 0.3
distance (pc) 4700 ± 600 5000 ± 800

Component properties star Aa star Ab star Ba star Bb

log (L/ L⊙) 5.46 ± 0.08 5.43 ± 0.08 4.46 ± 0.11 4.42 ± 0.11
MV (mag) −5.25 ± 0.18 −5.19 ± 0.18 −3.34 ± 0.26 −3.23 ± 0.26
(B − V)0 (mag) −0.311 ± 0.005 −0.311 ± 0.005 −0.290 ± 0.006 −0.290 ± 0.007

(cf. Rappaport et al. 2013; Lohr 2015), probably resulting in a
need to review statistics about percentages of binary and multi-
ple stars in young clusters.

The two binaries within HD 64315, on the other hand,
present quite typical characteristics. A system very similar
to HD 64315 A is DH Cep. It has a very similar orbital pe-
riod of 2.8 d. The components are classified as O5.5 V and
O6.5 V, and their masses, as derived by Hilditch et al. (1996),
are around 33 M⊙ for the primary and 30 M⊙ for the secondary.
As in HD 64315 A, DH Cep is not an eclipsing binary and
the measured rotational velocities are around 150 km s−1. Since
DH Cep is not complicated by the presence of a second binary,
Hilditch et al. (1996) can derive accurate radii, finding values
≈ 8.5 R⊙ for both components, well within their Roche lobes.

HD 64315 B is an overcontact system, and one of the most
massive ones known. Among systems containing O-type stars,
only OGLE SMC-SC10 108086 has a shorter orbital period of
0.88 d (Hilditch et al. 2005). With masses of 14 and 17 M⊙, this
SMC system is quite similar to HD 64315 B. The more mas-
sive LMC system VFTS 352 has an orbital period of 1.12 d
(Almeida et al. 2015). Another massive binary with a shorter
period, GU Mon, contains later-type components (B1 V+B1 V)
with lower masses of around 9 M⊙ (Lorenzo et al. 2016). All
these objects have been considered likely merger binaries.
HD 64315 B is exceptional among them, because of its mem-
bership in a multiple system. Its eventual merger will lead to the
formation of a hierarchical triple system where all the compo-
nents have about equal masses.

8.2. Formation and environment

We present different estimates of the distance to HD 64315,
all agreeing on ≈ 5 kpc. Previous studies had not considered
the multiple nature of the system and had obtained distances
<∼ 4 kpc, based on calibrations of the luminosity for the spec-
tral type assumed. From the interstellar lines seen in our spec-
tra, we have identified a local component with a kinematic dis-
tance of ∼ 5 kpc. The direct distance estimation has also given
distances of 4.7 ± 0.6 kpc and 5.0 ± 0.8 kpc for the two bi-
nary systems. All measurements are clearly compatible. This
new value brings HD 64315 to the same distance as most re-
cent estimates for Haffner 18 (Yadav et al. 2015, and references
therein). However, several recent papers point to a rather higher
distance for Haffner 19, which is visually closer to HD 64315
(only 4′.5 away) and, unlike Haffner 18, contains an O-type star.
We must look with some scepticism to these long distance deter-
minations for Haffner 19, not only because of the morphological

reasons presented by Snider et al. (2009), but also because the
ionised gas around the cluster has essentially the same radial ve-
locity as that of Sh2-311. It would be extremely surprising to
see a distant very young cluster without any associated nebulos-
ity through the molecular cloud associated with Sh2-311, espe-
cially if we consider the low reddening, E(B − V) ≈ 0.6 mag,
to Haffner 19. Pending accurate Gaia distances, we advance that
Sh2-311, at a Galactocentric distance of ∼ 12 kpc, has a subsolar
composition, in agreement with the Galactic abundance gradi-
ent (García-Rojas et al. 2005; Rodríguez & García-Rojas 2010)
and thus the use of solar abundance tracks may result in overes-
timated distances.

HD 64315 lies in isolation near the centre of Sh2-311. Obser-
vations by Yadav et al. (2015) show that most of the bright stars
in its surroundings are foreground late-B objects. Indeed, using
photometry of a circular area of radius ∼ 3′ around HD 64315
they only find two objects with colours compatible with a young
population associated w the H ii region until they reach ∼ 4 mag
fainter. Given our total MV ≈ −6, this means that there are at
most two O-type or early-B stars (earlier than ∼B2) in the im-
mediate vicinity of HD 64315. This is a very unusual config-
uration for a star sitting in the middle of an H ii region with
active star formation (Snider et al. 2009), since generally the
mass of the most massive star in a cluster correlates with clus-
ter mass (Weidner et al. 2010). Against a deterministic interpre-
tation of this correlation, Oey et al. (2013) presented a sample
of 14 OB stars in the SMC that meet strong criteria for having
formed under extremely sparse star-forming conditions in the
field. HD 64315 can be interpreted as a Galactic equivalent to
these objects, However, it also represents a cautionary tale about
the meaning of an ‘isolated’ star.

Was this complex multiple system born in isolation in the
middle of Sh2-311? Though unusual, this scenario looks quite
likely. The only possible alternative, if Haffner 19 is really at
the same distance as HD 64315, against recent analyses, is that
HD 64315 is a runaway from this cluster. However, it is ex-
tremely difficult to conceive a dynamical interaction that can re-
sult in the ejection of such a wide binary without disrupting it.
Of course, if the two binaries are not physically bound, the ejec-
tion scenario also breaks down, because they should have been
ejected individually in exactly the same direction with exactly
the same velocity, an even more improbable occurrence. Finally,
the systemic radial velocity of binary A, which contains most
of the system mass, is quite similar to that of the surrounding
medium, again suggesting in situ formation.

We cannot exclude the possibility that HD 64315 is really a
compact cluster; most of the mass is concentrated in the two ob-
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served binaries. Lower-mass components would not be observ-
able in the glare of this very bright system. However, in any case,
it is highly unlikely that HD 64315 is surrounded by a cluster
with ∼ 1 000 M⊙, as is usual for other O6 V stars (Weidner et al.
2010).

Binary separation in multiple stars is a possible indicator
to discern between two of the main mechanisms proposed for
stellar formation. Turbulent fragmentation leads to initial sepa-
rations > 500 AU (Offner et al. 2010), while disk fragmentation
produces initial separations < 500 AU. Unfortunately, the sep-
aration between the binaries A and B is around 500 AU, just
between the predictions of the two theories. Another criterion
used to distinguish between these two formation scenarios is the
alignment of the stellar spin (Offner et al. 2016). When formed
via disk fragmentation, stars have common angular momenta
and therefore aligned stellar spin. The fact that the inclinations
of the two binaries are quite similar supports in this case the disk
fragmentation model, even though this argument has no statisti-
cal significance on its own.
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Fig. 13: Radial velocity curves of the four stars of HD 64315 in
time (above; Aa: blue, Ab: red, Ba: green, Bb: magenta). The
He II line of each spectrum is shown (solid black line) compared
to the model from all components (dashed line).

9. Summary and conclusions

By using a complex procedure to analyse 52 high-resolution
spectra, we are able to confirm that HD 64315 contains two
binary systems, one of which is an eclipsing binary. The non-
eclipsing binary (system A) has a period of 2.7 d, and is quite
similar to the well-studied DH Cep. Its components are hotter
and more luminous than those of the eclipsing binary (system
B), and dominate the appearance of the system. System A is a de-
tached binary composed of two stars with spectral types around
O6 V, with minimum masses of 10.8 M⊙ and 10.2 M⊙, and likely
masses ≈ 30 M⊙. The eclipsing binary has a shorter period of
1.0 d, and produces a weak, but observable effect in the sys-
tem light curve. We have derived masses of 14.6 ± 2.3 M⊙ for
both components, which are late O-type stars. They are almost
identical: they overfill their respective Roche lobes and share a
common envelope. System B is thus one of the most massive
overcontact binaries known, and a very likely merger progenitor.
Its merger within such a complex system may lead to the for-
mation of a hierarchical triple system with three stars of similar
masses.

We are not able to rule out an accompanying low-mass com-
pact cluster with current observations, but HD 64315 has few
nearby OB-type companions and does not appear to have been
ejected from a nearby open cluster. It thus seems likely that
the system, with a total mass above 90 M⊙, formed in relative
isolation near the centre of the Sh2-311 H ii region. In sum-
mary, HD 64315 is potentially a massive hierarchical system that
formed in a sparse environment, which nicely highlights the need
for detailed studies of multiplicity in apparently ‘isolated’ stars.
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