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RESUMEN

EVALUACION DE LA PURGA GENETICA EN POBLACIONES
DE CENSO REDUCIDO

Introduccion

La depresion consanguinea puede ser decisiva para la extincion de poblaciones de censo
pequefio. Sin embargo, la consanguinidad también incrementa la seleccion contra los
deletéreos responsables de dicha depresion. A este incremento de la seleccion se le
denomina purga genética. Sus consecuencias pueden analizarse utilizando el modelo IP
(Garcia-Dorado 2012), que permite predecir la reduccion del lastre de consanguinidad y
de la depresion consanguinea atribuibles a la purga a través de un coeficiente de

consanguinidad purgado (g) que depende del coeficiente de purga (d).

Hasta la fecha se ha publicado una tnica estima de d para la purga en condiciones no
competitivas, obtenida en un experimento con Drosophila (Bersabé & Garcia-Dorado
2013). Sin embargo, existen evidencias de que d puede ser mayor en las condiciones mas
competitivas de las poblaciones silvestres que en cautividad. Ademas, es necesario
estimar d en las propias poblaciones amenazadas de interés, donde no es posible el disefio
experimental pero a menudo se dispone de medidas de la eficacia individual y registros

genealogicos.



Objetivos

- Estimar experimentalmente el coeficiente de purga en condiciones competitivas.

- Desarrollar una metodologia para aplicar el modelo IP a medidas de eficacia en
individuos con registros genealdgicos., y analizar las propiedades de las estimas

de d obtenidas usando dicha metodologia y su valor predictivo.

- Comparar la capacidad de nuestra metodologia para detectar, estimar y predecir

la purga con la de modelos previos basados en la consanguinidad ancestral.

Metodologia

El objetivo 1 se aborddé mediante un experimento de laboratorio con Drosophila
melanogaster, en el que se evaluo la evolucion del lastre de consanguinidad y de la
eficacia en dos poblaciones grandes y en conjuntos de lineas de censo reducido (N=40)

derivadas de ellas, todas mantenidas en condiciones altamente competitivas

El objetivo 2 incluye un andlisis tedrico que extiende la aplicabilidad del modelo IP previo
a cualquier conjunto de datos de eficacia con registros genealdgicos, el estudio analitico
de los sesgos en la estima de la tasa de depresion consanguinea, el desarrollo de una
metodologia no lineal de estimacién numérica y la programacion de un codigo de acceso

libre.

El objetivo 3 se aborda extendiendo la metodologia anterior para incluir modelos de purga
basados en la consanguinidad ancestral y analizando datos obtenidos mediante

simulacion.



Resultados

En el experimento con Drosophila realizado en condiciones competitivas obtuvimos
mucha mas purga que la previamente evaluada en condiciones no competitivas, con una

estima d = 0.3.

A continuacidn obtuvimos ecuaciones genealdgicas para el modelo IP y desarrollamos la
herramienta informatica PURGd que estima los parametros del modelo, es decir, d y la

tasa de depresion consanguinea.

Finalmente, al analizar con PURGA datos simulados, encontramos que las estimas IP
tienen en general buenas propiedades predictivas. De entre los modelos basados en la
consanguinidad ancestral, el modelo de Ballou puede ajustar los datos satisfactoriamente,
pero las estimas obtenidas para sus pardmetros tienen malas propiedades predictivas en

condiciones diferentes de aquellas en que se estimaron.

Conclusiones:

La purga puede ser muy eficaz, revirtiendo la depresion consanguinea en poblaciones
silvestres y actuando incluso contra deletéreos de efecto relativamente pequefo, y debe
por tanto ser tenida en cuenta en los programas de conservacion. El modelo IP y su
implementacion genealogica a través del programa PURGA es util para detectar y
cuantificar la purga genética a través del coeficiente d, y para predecir sus consecuencias
en diferentes situaciones, resultando mas adecuado que métodos anteriores basados en la

consanguinidad ancestral.






SUMMARY

EVALUATION OF GENETIC PURGING IN SMALL SIZED
POPULATIONS

Introduction

Inbreeding depression can be an important factor determining the extinction of small
sized populations. However, inbreeding also prompts selection against deleterious alleles
responsible of inbreeding depression. This increase in selection is referred to as genetic
purging. Its consequences can by analyzed by using the IP model (Garcia-Dorado 2012),
that allows to predict the reduction of both the inbreeding load and the inbreeding
depression due to purging by using a purged inbreeding coefficient (g) which depends on

the purging coefficient (d).

So far, only one estimate of d has been published in noncompetitive conditions, obtained
in an experiment carried out with Drosophila (Bersabé & Garcia-Dorado 2013). However,
evidence suggests that d could be higher in the more competitive conditions of wild
populations than in captive ones. Furthermore, it is necessary to estimate d in threatened
populations, where the experimental approach is not possible but individual measures of

fitness and pedigree records are often available.



Objectives

- To estimate the purging coefficient in an experiment where purging occurs in

highly competitive conditions.

- To develop a method in order to apply the IP model to fitness measures obtained
in individuals with pedigree records, and to analyze the properties of the estimates

of d obtained using this methodology as well as its predictive value.

- To compare the ability of the previous methodology to detect, estimate and

predict purging with that of previous models based on ancestral inbreeding.

Material and methods

Objective 1 was accomplished with a laboratory experiment using Drosophila
melanogaster, where the evolution of the inbreeding load and fitness was evaluated in
two large populations and in small lines (N=40) derived from them, maintained in highly

competitive conditions.

Objective 2 includes a theoretical analysis that extends the applicability of the IP model
to any set of pedigreed fitness data, the analytical study of the bias for the estimates of
the inbreeding depression rate, and the development of a numerical nonlineal estimation

method and a free access software.

Objective 3 is addressed by extending the previous methodology to purging models based

on ancestral inbreeding, and analyzing simulated data.



Results

In the experiments carried out with Drosophila in competitive conditions we obtained
much more purging than previously evaluated in noncompetitive conditions, with an

estimate d = 0.3.

Furthermore, we deduced genealogical equations for the IP model, and developed the
software PURGA that estimates the parameters in the model, i.e., d and the rate of

inbreeding depression.

Finally, after analyzing simulated data with PURGd, we found that IP estimates have good
predictive properties. Among models based on ancestral inbreeding, Ballou’s model can
fit data remarkably well, but its parameters have poor predictive properties in conditions

different from those where they were estimated.

Conclusions:

Purging can be efficient against inbreeding depression in wild populations, acting even
against deleterious alleles of small effect. In consequence, it must be taken into account
in conservation programs. The IP model and its genealogical implementation in PUGRd
are useful both to detect and quantify genetic purging through the coefficient d, as well
as to predict its consequences in different situations, being more appropriate than previous

models based on ancestral inbreeding.
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INTRODUCCION

EL LASTRE DE CONSANGUINIDAD Y LA DEPRESION
CONSANGUINEA

La eficacia biologica es el caracter cuantitativo sobre el que actiia la seleccion
natural, y su evolucion es determinante para la supervivencia de las poblaciones. Como
otros caracteres bioldgicos, la eficacia media de una poblacion depende de las frecuencias
génicas en los loci con efecto sobre la misma, moduladas fundamentalmente por la
seleccion, la deriva, la migracion y la mutacion. Como consecuencia de la accion de la
seleccion natural sobre la variabilidad surgida por mutacion, la gran mayoria de las
mutaciones deletéreas que segregan en poblaciones panmicticas grandes son al menos
parcialmente recesivas y estan a frecuencias bajas. Por tanto, causan un deterioro de la
media que puede ser mucho menor que el que corresponderia a su expresion en
homocigosis. Asi pues, una parte del deterioro de la eficacia media que podrian causar no
se expresa en la poblacion grande panmictica, constituyendo el lastre genético oculto en
heterocigosis. Habitualmente este lastre se conoce como lastre de consanguinidad porque
cualquier proceso que cause un incremento de la consanguinidad y, por tanto, de la
homocigosis, revelard una parte de dicho lastre oculto causando un deterioro de la eficacia
media conocido como depresion consanguinea. El lastre de consanguinidad se mide
comunmente como niumero B de equivalentes letales por gameto (Morton et al. 1956,
Charlesworth & Charlesworth 1999) y, en ausencia de seleccion, representa la tasa a la
que se deteriora la eficacia al aumentar la consanguinidad, es decir, la tasa de depresion

consanguinea. El fenomeno de la depresion consanguinea constituye un elemento clave
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en la evolucion de fendmenos esenciales, como el sexo, la recombinacion o los sistemas
reproductivos (Charlesworth & Charlesworth 1987, Charlesworth & Willis 2009, Garcia-
Dorado 2017). Asi mismo, como se expone a continuacion, la depresion consanguinea
puede ser un factor determinante del riesgo de extincion de poblaciones y especies y, por
tanto, es un elemento esencial en la genética de la conservacion de poblaciones

amenazadas.

Una caracteristica comudn de todas las poblaciones amenazadas es que su censo ha
sufrido alguna reduccion, a menudo debido a la accion humana, lo cual desencadena
diversos procesos estocasticos, tanto demograficos como genéticos, que pueden
comprometer su supervivencia dramaticamente (Lande 1988). En concreto, una
consecuencia directa de la reduccion del censo es el incremento de la consanguinidad v,
por tanto, de la frecuencia de los genotipos homocigotos a expensas de los heterocigotos,
proceso que también puede desencadenarse debido al incremento del grado de
fragmentacion poblacional asi como de otros patrones de falta de panmixia que
promuevan el apareamiento preferente entre individuos emparentados. Por tanto, uno de
los peligros a que se enfrentan las poblaciones amenazadas es la depresion consanguinea

de la eficacia biologica.

Los efectos perniciosos de la depresion consanguinea sobre la viabilidad y la
fecundidad son conocidos desde muy antiguo, y se ha documentado una extensa evidencia
de este fendbmeno en poblaciones experimentales y naturales, habiéndose obtenido
numerosas estimas del lastre de consanguinidad (Ralls e a/l. 1988, Hedrick & Kallinowski
2000, Keller & Waller 2002, Frankham 2005, O'Grady et al. 2006, Hedrick & Garcia-
Dorado 2016). Por ejemplo, la depresion consanguinea se ha detectado y evaluado

repetidas veces en poblaciones humanas (Morton et al. 1956, Bittles & Neel 1994). Asi,
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Morton y colaboradores (1956), en su trabajo pionero, que establecid el modelo genético
fundamental que da cuenta de la depresion consanguinea, obtuvieron una estima de 1.5 a
2.5 equivalentes letales en poblaciones humanas, que fue validada por trabajos posteriores
(Lee et al. 1996). En concordancia cualitativa con estas estimas, se han verificado las
graves consecuencias que tienen sobre la eficacia los sistemas endogdmicos que han
caracterizado a algunas familias y, particularmente a algunas dinastias reales (Ager 2005,

Berra et al. 2010, Alvarez et al. 2015).

El lastre de consanguinidad es particularmente elevado en poblaciones naturales,
con un valor medio en torno a B=6 equivalentes letales (O'Grady et al. 2006), como
cuatro veces superior a las estimas de un meta-analisis previo centrado en poblaciones
mantenidas en cautividad (Ralls ez al. 1988). Existen dos razones fundamentales para esta
diferencia. Por una parte, las poblaciones silvestres estan habitualmente sometidas a
ambientes mas adversos con condiciones mas competitiva, y existen evidencias de que
los efectos deletéreos de las mutaciones se exacerban en estas circunstancias (Crnokrak
& Roff 1999, Avila & Garcia-Dorado 2002, Yun & Agrawal 2014), por comparacion con
las condiciones de mantenimiento en cautividad donde el ambiente es mas favorable y
menos competitivo, disponiéndose incluso de cuidados veterinarios. Por otra parte, las
poblaciones cautivas se mantienen habitualmente con censos mucho menores que las
silvestres, y es posible que parte del lastre de consanguinidad se haya perdido como

consecuencia de dicho censo o de cuellos de botella ocurridos en el pasado.

En todo caso, el elevado lastre de consanguinidad de las poblaciones naturales
implica que la depresion consanguinea de las poblaciones silvestres amenazadas puede
comprometer de modo critico su viabilidad, haciéndose necesario considerar el control

de la depresion consanguinea como un elemento esencial de un programa de
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conservacion. La importancia de la depresion consanguinea en el deterioro de las
poblaciones amenazadas es una de las razones por las que el censo poblacional es
fundamental para elaborar directrices conservacionistas o determinar la viabilidad de una
poblacion amenazada. Asi por ejemplo, de los cinco criterios que establece la Union
Internacional para la Conservacion de la Naturaleza (IUCN) para determinar el grado de
amenaza a que esta sometida una poblacidn, tres hacen referencia directa al censo
poblacional (A, C y D), y uno de ellos (D) propone directamente un umbral de tamafo
poblacional que permite por si solo catalogar una especie como vulnerable (menos de
1000 individuos maduros), amenazada (menos de 250), o en estado critico de amenaza

(menos de 50) (IUCN, 2001).

El establecimiento de el llamado tamafio minimo viable poblacional (MVP) esta
también fuertemente condicionado por la depresion consanguinea (Shaffer 1981). El valor
aceptado del MVP es de gran trascendencia, pues podria usarse como criterio para dejar
de destinar recursos a la conservacion de poblaciones que no lo alcancen. Clasicamente,
siguiendo las recomendaciones de mejoradores animales, se ha considerado que el tamaio
minimo poblacional necesario para prevenir a corto o medio plazo la extincion causada
por depresion consanguinea correspondia a un censo efectivo de 50, lo cual impone este
censo como limite inferior del MVP (Franklin 1980, Soulé¢ 1980). Mds recientemente
algunos autores han recomendado aumentar esta valor a 100 (Frankham et al. 2014),
precisamente considerando que, con el elevado lastre de consanguinidad (B=6) obtenido
para poblaciones naturales (O'Grady et al. 2006), es necesario un censo efectivo de al
menos 100 para evitar que la caida de la eficacia bioldgica sea mayor del 10% tras 5
generaciones de consanguinidad. De aplicarse este criterio, muchas poblaciones
actualmente catalogadas por la IUCN como en estado critico de amenaza quedarian sin

cobertura por su presunta inviabilidad.
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LA PURGA GENETICA

Como acabamos de describir, la depresion consanguinea se produce
fundamentalmente debido a la expresion de los componentes recesivos de los alelos
deletéreos en los homocigotos generados por consanguinidad. Sin embargo, esta misma
expresion expone dichos componentes recesivos a la accion de la seleccion natural. Es
decir, el aumento de la consanguinidad permite a la seleccion natural actuar sobre
componentes de los efectos deletéreos que estaban previamente ocultos pero que se
expresan en los homocigotos generados por consanguinidad (Wang & Hill 1999). Esta
seleccion purificadora desencadenada por la consanguinidad se conoce como seleccion
purgadora, o simplemente purga genética, si bien el término “purga” se utilizd en
ocasiones en el pasado de forma mas inespecifica, para designar cualquier modo de
seleccion purificadora contra alelos deletéreos. La purga genética reduce pues la
frecuencia de los deletéreos parcial o totalmente recesivos, invalidando hasta cierto punto
las predicciones de Morton et al. (1956), obtenidas bajo un modelo en que el lastre de
consanguinidad representa la tasa de depresion consanguinea porque se ignoran los
efectos de la seleccion sobre el cambio en las frecuencias génicas. La reduccion de la
frecuencia media de los deletéreos atribuible a la purga tiene dos consecuencias
fundamentales. Por una parte, el lastre de consanguinidad se reducird mas de lo esperable
por simple deriva. Por otra, la depresion consanguinea esperada para la eficacia biologica

sera menor que la prediccion neutra del modelo de Morton et al.

Desde el punto de vista teorico, se han llevado a cabo diversos andlisis destinados
a analizar las consecuencias de la purga genética. Por una parte, Glémin (2003) utilizando
la teoria de difusion, ha obtenido predicciones sobre la reduccion en la frecuencia media

de deletéreos atribuible a la purga en una poblacion en equilibrio. Para ello distingue dos
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tipos de purga. Por una parte la que actiia sobre el exceso de homocigotos de una
poblacion de tamafio reducido, por comparacion con la homocigosis de la poblacion
infinita. Por otra parte, la que actiia sobre el exceso de homocigotos debido al
apareamiento entre parientes en una poblacion no panmictica respecto de otra panmictica
del mismo tamano. En ambos casos, evaltia la purga como la reduccion de la frecuencia
media de los alelos deletéreos con respecto a la frecuencia media de la poblacion en
equilibrio no purgada, que se toma como referencia. Su trabajo muestra que, en lo que
refiere a la purga atribuible al tamafio finito de una poblacion panmictica, el proceso
estocastico de cambio de frecuencias génicas (es decir, la deriva genética) puede interferir
con el proceso de purga, haciendo que en poblaciones pequeiias la purga solo sea eficiente
para alelos deletéreos muy recesivos. Por este motivo, la purga asi definida solo es eficaz
por encima de cierto valor umbral del censo, aunque su eficiencia disminuye cuando los
censos son tan elevados que el incremento de homocigosis respecto de la poblacion
infinita se vuelve irrelevante. Este modelo contribuye a explicar las diferentes causas de
la purga, y las limitaciones observadas en la deteccion de la misma en algunos trabajos
experimentales (Byers & Waller 1999). No obstante, debe notarse que, debido a esta
definicion de la eficiencia de la purga como reduccion de la frecuencia media de
deletéreos, una poblacion puede estar sometida a una purga mas eficiente que otra de
mayor censo, y aun asi presentar una eficacia media menor, por tener mayor frecuencia

de homocigotos.

Por otra parte, Garcia-Dorado (2012) analizé el efecto de la purga durante un
proceso en que se incrementa la consanguinidad, desarrollando ecuaciones sencillas que
predicen la evolucion de la eficacia media y del lastre de consanguinidad atribuible a los
efectos de la consanguinidad y la purga sobre la variabilidad genética inicial (predicciones

IP). Estas ecuaciones son funcién de un coeficiente de consanguinidad purgado g, un
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analogo al coeficiente de consanguinidad de Wright (F) que permite predecir la evolucion
de la homocigosis para los alelos deletéreos incorporando un célculo determinista de la
reduccion de la frecuencia génica de dichos deletéreos causada por la purga. A su vez, el
coeficiente g es funcidon de un coeficiente purga (d), que depende de la magnitud del
efectos de los alelos deletéreos que permanece oculto en heterocigosis a causa de la
recesividad. Las predicciones IP son validas tanto cuando la consanguinidad se produce
como consecuencia de una reduccion del censo poblacional como cuando se genera por
falta de panmixia, pudiendo calcularse en funcion del censo efectivo en el primer caso y
en funcion de las relaciones genealdgicas en ambos, si bien las ecuaciones derivadas hasta
el presente trabajo solo manejaban genealogias sin solapamiento de generaciones.
Ademas, en el mismo trabajo se desarrollaron también predicciones bajo un modelo mas
completo (predicciones Full Model, o FM) que tiene en cuenta la aparicion de mutaciones
deletéreas nuevas durante el proceso, asi como los efectos de la seleccion estandar no
purgadora, y que resulta mas exacto cuando la consanguinidad progresa lentamente o

estamos interesados en predicciones a largo plazo.

En este analisis IP, se considera que la purga es eficiente cuando la eficacia media
de la poblacion consanguinea es mayor a la esperada de acuerdo a la prediccion sin purga
de Morton y colaboradores (1956), o cuando el lastre de consanguinidad sufre una
reducciéon mayor que la esperada solo por deriva. El modelo IP muestra que cualquier
reduccion del censo conducird a un nuevo equilibrio con menor eficacia media que la
poblacion original, aunque la diferencia puede ser imperceptible si la reduccion del censo
es pequefia, pero aun asi la purga se considerara eficiente en la medida en que la eficacia
del nuevo equilibrio sea superior a la esperada solo por depresion consanguinea. No
obstante, el criterio de Glémin determinara que ha habido purga eficiente siempre que la

frecuencia media de deletéreos sea menor en el nuevo equilibrio, lo cual nunca se
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acompanara de un incremento neto de la eficacia esperada, ya que ésta depende de las

frecuencias genotipicas y no de las génicas.

Es interesante notar que la eficiencia de la purga tal como se define en el modelo
IP, aumenta con d y se reduce con el censo efectivo (N). De hecho, aunque el analisis IP
predice cierta purga siempre que d sea mayor que cero, se ha comprobado mediante
simulacion que la eficiencia de la purga se ve anulada por la deriva cuando el producto
Nd es del orden de la unidad o menor, en concordancia cualitativa con las conclusiones
de Glémin. Asi pues, la purga en poblaciones muy pequeiias solo serd eficiente contra
alelos letales (o deletéreos severos) de efecto quasi-recesivo. No obstante, cuando la
consanguinidad aumenta lentamente, la purga es mas eficiente pero también mas lenta,
pudiendo ser imperceptible durante las primeras generaciones pero causar después una
recuperacion de la depresion consanguinea inicial. Asi pues, la deteccion de la purga
contra deletéreos no severos tras una reduccion del censo, requerira datos de la eficacia
biologica durante periodos prolongados de consanguinidad con censos efectivos no

demasiado pequefios.

Desde el punto de vista practico, el modelo IP tiene la ventaja de permitir la
prediccion de la eficacia bioldgica de una forma sencilla, empleando una expresion
analoga a la de Morton, pero usando la consanguinidad purgada en lugar de la
consanguinidad de Wright. El obstaculo principal para el uso de esta expresion es que se
precisan estimas del coeficiente de purga, un parametro del que hasta la fecha se dispone

de informacion muy escasa.
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LA PURGA GENETICA: METODOS DE DETECCION Y
EVIDENCIA EMPIRICA SIN DATOS GENEALOGICOS

Existen distintas aproximaciones al problema de la deteccion de la purga genética
basadas en la observacion de alguna de sus consecuencias, como la reduccion de la
depresion consanguinea o del lastre de consanguinidad a valores inferiores a los esperados
en ausencia de seleccion. Por una parte, se han utilizado datos obtenidos de poblaciones
naturales o de disefios experimentales en que la purga se estudia en funcion de los efectos
de una reduccion del censo o de sistemas regulares de apareamientos no panmicticos. Sin
embargo, las evidencias no son del todo consistentes, tanto en lo que refiere a especies
animales como vegetales (Byers & Waller 1999, Crnokrak & Barrett 2002, Leberg &
Firmin 2008). En general, no suele detectarse purga durante procesos en que la tasa de
aumento de consanguinidad es elevada (i.e., el censo efectivo es muy reducido), con
excepcion de la purga contra deletéreos severos muy recesivos. Por ejemplo, en el caso
de lineas mantenidas mediante apareamientos entre hermanos solo es posible detectar
seleccion contra letales quasi-recesivos (Hedrick 1994, Frankham ef al. 2001). Por este
motivo, la capacidad de la purga para actuar contra deletéreos no severos ha sido

frecuentemente cuestionada (Frankham et al. 2014).

Sin embargo, es comun la deteccion de la purga durante incrementos lentos de la
consanguinidad, como es el caso de las poblaciones de censo efectivo moderado (Latter
et al. 1995, Crnokrak & Barrett 2002, Leberg & Firmin 2008). Asi, numerosos trabajos
han revelado que la eficiencia de la purga aumenta cuando la consanguinidad progresaba
de forma lenta. Por ejemplo, Pedersen y colaboradores (2005) encontraron que, con el
mismo nivel de consanguinidad (F=0.67), la depresion consanguinea para fecundidad en

lineas de Drosophila melanogaster era significativamente mayor para las lineas obtenidas
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mediante apareamientos entre hermanos durante cinco generaciones que en aquellas
mantenidas con un censo de cuatro durante nueve generaciones. Por su parte, Pekkala y
colaboradores (2012) llegaron a una conclusion similar en un trabajo con Drosophila
littoralis, donde lineas de censo N=10 presentaban una depresion consanguinea rapida y
una tasa de extincion considerable, mientras que la depresion era casi inapreciable en
lineas mantenidas con un censo cuatro veces mayor. En otro trabajo, Swindell y Bouzat
(2006) mostraron que la depresion consanguinea era sustancialmente menor para lineas
con el mismo coeficiente de consanguinidad (F=0.375), pero mayor consanguinidad
ancestral (F, = 0.531 frente a F,,=0.250), como sugeria Ballou (Ballou 1977, Swindell &
Bouzat 2006). Todo ello apunta a que en efecto la purga puede ser eficaz si la

consanguinidad progresa lentamente.

La deteccion de la purga también puede parecer inconsistente en escenarios
supuestamente propicios para valorar el alcance de la purga genética con datos de
poblaciones naturales, como son las poblaciones aisladas de animales insulares que han
sufrido cuellos de botellas. Por ejemplo, no se ha detectado purga en una poblacion insular
aislada de tordos (P. traversi), pero si en otra (Petroica australis rakiura), si bien ambas
contaban con una historia demografica que habria generado una importante
consanguinidad (Laws & Jamieson 2011, Kennedy et al. 2014). Sin embargo, en el primer
caso la consanguinidad se debe a cuellos de botella dréasticos, mientras que en el segundo,
en que si se detectd purga, se habia generado lentamente durante un periodo prolongado

con censos efectivos moderados.

En general, estos hallazgos son coherentes con las predicciones IP anteriormente
mencionadas, segun las cuales, cuando la consanguinidad aumenta mas lentamente la

purga se vuelve mads eficiente pero también mas lenta, pues su accidon requiere la
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acumulacion previa de cierta consanguinidad. Asi pues, a menudo no se detecta purga
porque la consanguinidad es demasiado rapida o porque, siendo relativamente lenta, no

se observa el proceso durante suficiente tiempo para que se manifiesten los efectos de la

purga.

Por otra parte, el modelo IP proporciona una herramienta para la deteccion y la
evaluacion de la purga a través de la obtencion de la estima de d que maximice el ajuste
de las predicciones IP a la evolucion observada de la eficacia media o del lastre de
consanguinidad. Con anterioridad al inicio de esta tesis, s6lo un experimento llevado a
cabo en D. melanogaster por Bersabé y Garcia-Dorado (2013) ha estimado el valor del
coeficiente de purga. Este estudio proporcionaba cierto soporte empirico al modelo, pues
las estimas que se obtuvieron de d, utilizadas en el modelo IP, producian predicciones que
se ajustaban a los resultados experimentales mucho mejor que las del modelo clasico sin
purga. Sin embargo, las lineas usadas en ese estudio tenian censos efectivos bajos (seis o
doce), de modo que solo podia esperarse detectar la accion de la purga contra deletéreos
relativamente severos con valores elevados de d. Ademas, esas lineas se mantuvieron en
condiciones no competitivas, y como consecuencia, tanto la tasa de depresion
consanguinea como la purga pudieron haber sido sustancialmente menores de lo esperado
en una poblacion silvestre en condiciones competitivas. Por tanto, es necesario llevar a
cabo un experimento que permita evaluar la purga genética en lineas con censos efectivos

mayores y en condiciones mas adversas o0 mas competitivas.
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LA PURGA GENETICA: METODOS DE DETECCION Y
EVIDENCIA EMPIRICA UTILIZANDO DATOS GENEALOGICOS

En lo que respecta a poblaciones amenazadas reales, generalmente no es posible
realizar experimentos disefiados para estimar los parametros genéticos que determinan
las consecuencias de la consanguinidad y la purga (6 y d). Sin embargo, es frecuente
disponer de informacidn genealdgica en programas de conservacion tanto ex situ como in
situ. De hecho, existe la posibilidad de reconstruir o completar genealogias a partir de
datos moleculares (Lynch & Ritland 1999, Fernandez & Toro 2006, Wang 2011), algo
que puede ser de gran interés, ya que las genealogias no solo permiten calcular
coeficientes de consanguinidad y parentesco sino también entender mejor la estructura
poblacional (Pemberton 2008), asi como patrones o eventos de dispersion (Norman &

Spong 2015) y estrategias reproductoras (Pemberton ef al. 1992, Wang ef al. 2011).

Por este motivo se han propuesto algunos métodos capaces de utilizar informacion
genealodgica en este sentido, de los cuales el mas utilizado hasta la fecha ha sido el

desarrollado por Ballou (1997).

Este autor defini6 un coeficiente de consanguinidad ancestral (F;) que mide el
porcentaje del genoma de un individuo que ha estado expuesto en homocigosis al menos
una vez en un ancestro. La utilidad de este coeficiente se debe a que los individuos que
tengan mas consanguinidad ancestral procederan de linajes en que ha habido mas
posibilidades de purga que aquellos que tengan el mismo nivel de consanguinidad
estandar (F), pero menor consanguinidad ancestral. Esta consideracion ha dado lugar al
desarrollo de diversos modelos predictivos (Ballou 1997, Boakes & Wang 2005). En
principio todos ellos se plantean como modelos lineales en que la eficacia se predice en

funcién de dos variables regresoras (/' y F,) y su correspondiente interaccion, o de
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diversos subconjuntos de los tres factores, aunque los analisis estadisticos estdn a menudo
basados en regresion logistica. Tanto Ballou (1997) como Boakes et al (2007) llevaron a
cabo andlisis utilizando datos de eficacia para individuos de las genealogias de varias
poblaciones animales de zoos, y encontraron un efecto de la purga que fue muy pequeno
a nivel global y significativo en pocas ocasiones. No obstante, Boakes y colaboradores
hacen notar que las poblaciones de este tipo estan sometidas a manejo genético y se
mantienen en condiciones benignas, factores que pueden entorpecer notablemente la

purga genética.

Por otra parte, Gulisija y Crow (2007), también desarrollaron un modelo para
evaluar la purga contra letales recesivos en genealogias cortas en funcion de otra medida
(O) de las oportunidades de purga. El valor de O en un individuo, calculable a partir de
la genealogia, representa la probabilidad de que un alelo de dicho individuo sea copia de
otro alelo que estuvo en homocigosis en algin ancestro. Utilizando este método,
analizaron un gran nimero de genealogias cortas de una poblacion de ganado vacuno, y
concluyeron que la purga en contra de letales recesivos durante seis generaciones habia
reducido la depresion consanguinea en un 12.6%. Estos autores consideran que su método
solo detecta la purga contra deletéreos de efecto grande, para los que la purga es mas
eficiente a corto plazo, pero que la purga contra alelos de efectos méas moderados podria

ser importante a largo plazo.

Tanto los métodos basados en el coeficiente de consanguinidad ancestral como el
método de Gulisija y Crow se basan en el ajuste a un modelo (en su planteamiento mas
sencillo un modelo lineal) en que las variables regresoras son coeficientes definidos de
acuerdo a consideraciones heuristicas acerca de la purga. Por el contrario, las predicciones

IP se deducen de un modelo genético en funcion del efecto de la purga genética sobre las
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frecuencias génicas, y donde la variable predictora que incorpora la posible purga (g)
puede calcularse en funcion de las genealogias. Asi pues, parece razonable esperar que
un método basado en el ajuste a estas predicciones tenga mayor sensibilidad, ademas de
proporcionar estimas de parametros con una utilidad predictiva (8 y d). No obstante, hasta
el presente trabajo subsistia el obstaculo practico de que el calculo genealdgico de g solo

estaba desarrollado para genealogias sin solapamiento de generaciones.

24



OBJETIVOS

La finalidad de esta tesis es ahondar en nuestro conocimiento sobre los efectos de
la purga genética en la evolucion de la eficacia de las poblaciones, y desarrollar
herramientas para su deteccion, evaluacion y prediccion que puedan ser utiles en ambitos
aplicados como lo es la conservacion de poblaciones amenazadas. Para ello utilizaremos
el modelo IP, en el cual la purga depende en tltima instancia del coeficiente de purga d
(Garcia-Dorado 2012), y que ha demostrado previamente en estudios de simulacion una
buena capacidad predictiva. Los objetivos concretos abordados son los que se exponen a

continuacion.

OBJETIVO 1.- Estimar el coeficiente de purga en condiciones competitivas en una
poblacion experimental de Drosophila melanogaster.

Este objetivo complementa el trabajo llevado a cabo por Bersabé y Garcia-Dorado (2013)
bajo condiciones de minima competitividad. Dado que, como se ha expuesto
anteriormente, los efectos deletéreos parecen ser mayores en condiciones mas
competitivas, nuestro propdsito es estimar el coeficiente de purga cuando las condiciones
de mantenimiento durante el aumento de la consanguinidad son mas parecidas a las
habituales en la naturaleza. Ademas, aqui utilizamos poblaciones con mayor censo
efectivo que Bersabé y Garcia-Dorado, lo cual nos da la oportunidad de estimar la purga
atribuible a deletéreos de efecto no severo. La informacion obtenida es importante para
evaluar las expectativas de purga en poblaciones amenazadas mantenidas in situ. Este
objetivo se aborda en el articulo "Estimation of genetic purging under competitive

conditions", publicado en el nimero 70 de la revista Evolution (International Journal of
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Organic Evolution), y constituye integramente el primer capitulo en esta tesis. El material

suplementario del mismo se incluye en esta tesis como Apéndice 1.

OBJETIVO 2.- Desarrollo de un método para detectar la purga en poblaciones con

registros genealégicos y de una herramienta informatica para su aplicacion

practica.

En primer lugar, Para acometer este objetivo, se adaptd el modelo de calculo del
coeficiente de parentesco purgado (Garcia-Dorado, 2012) para el analisis de genealogias
que incluyan generaciones solapadas. Ademas se dedujo un factor de correccion que
permite inferir la tasa de depresion consanguinea a partir del coeficiente de regresion del
logaritmo de la eficacia individual en el coeficiente de consanguinidad. Por tltimo se
desarroll6 una herramienta informatica en lenguaje C++, que hemos llamado PURGd,
para la deteccion y estima de la purga en poblaciones genealdgicas, y que esta disponible
para su descarga desde la web del grupo de "Mecanismos genéticos de la evolucion,
mejora y conservacion de las poblaciones" del Departamento de Genética de la

Universidad Complutense de Madrid (https://www.ucm.es/genetical/mecanismos). La

guia de usuario de este programa estd incluida en la tesis como Apéndice 2. Esta
herramienta propone, ademas del clasico analisis de regresion lineal de un modelo para
la eficacia logaritmica, un método numérico de ajuste al modelo predictivo exponencial.
Este objetivo constituye la materia del segundo capitulo de esta tesis, contenido en el
articulo "Predictive model and software for inbreeding-purging analysis of pedigreed

populations" publicado en la revista G3 (Genes, Genomes, Genetics).
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OBJETIVO 3.- Comparacién de diversos modelos de detecciéon de la purga y
evaluacion de su capacidad predictiva usando PURGd con datos simulados.

Para abordar este objetivo llevamos a cabo un andlisis de las propiedades de la
herramienta anterior (PURGA) analizando diversos aspectos de su rendimiento en analisis
de datos obtenidos mediante simulacion. Ademas, se implementaron en PURGA otros
métodos de deteccion de la purga basados en la consanguinidad ancestral de Ballou con
el fin de identificar la metodologia de analisis mas adecuado. Con objeto de obtener
predicciones de la eficacia media utilizando el método de Ballou, se dedujo una expresion
para predecir la evolucion esperada de la consanguinidad ancestral en poblaciones
panmicticas de censo constante. En todos los casos, se analizaron las diversas fuentes de
sesgo que pueden afectar las estimas, y se verifico la calidad de las predicciones obtenidas
utilizando dichas estimas. Este trabajo constituye el tercer capitulo de esta tesis, también
con formato de articulo y actualmente enviado para su publicacion. El material

suplementario del mismo se incluye en esta tesis como Apéndice 3.
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Abstract

Inbreeding depression for fitness traits is a key issue in evolutionary biology and
conservation genetics. The magnitude of inbreeding depression, though, may critically
depend on the efficiency of genetic purging, the elimination or recessive deleterious
mutations by natural selection after they are exposed by inbreeding. However, the
detection and quantification of genetic purging for nonlethal mutations is a rather difficult
task. Here we present two comprehensive sets of experiments with Drosophila aimed at
detecting genetic purging in competitive conditions and quantifying its magnitude. We
obtain, for the first time in competitive conditions, an estimate for the predictive
parameter, the purging coefficient (d), that quantifies the magnitude of genetic purging,
either against overall inbreeding depression (d ~ 0.3), or against the component ascribed
to nonlethal alleles (dn. =~ 0.2). We find that competitive fitness declines at a high rate
when inbreeding increases in the absence of purging. However, in moderate size
populations under competitive conditions, inbreeding depression need not be too dramatic
in the medium to short term, as the efficiency of purging is also very high. Furthermore,
we find that purging occurred under competitive conditions also reduced the inbreeding

depression that is expressed in the absence of competition.
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Introduction

The reduction of fitness due to inbreeding is a substantially ubiquitous phenomenon
that is relevant to evolutionary and conservation genetics and to animal breeding. This
general phenomenon is known as “inbreeding depression”, a term that we also use for the
amount of fitness decline caused by any given increase of inbreeding. Evidence
accumulated during the last decade has shown that inbreeding depression in wild
populations under competitive conditions uses to be about fourfold that previously
reported for captive populations maintained in benign conditions (Ralls et al. 1988; Keller
and Waller 2002; Kruuk et al. 2002; Liberg et al. 2005; O’Grady et al. 2006; Walling et
al. 2011; Kennedy et al. 2014), although there is substantial variation among populations

(Hedrick and Kalinowsky 2000).

The main cause of inbreeding depression is the large amount of genetic load that is
concealed in heterozygosis in noninbred populations due to the recessive components of
deleterious effects (Charlesworth and Willis 2009). Since this load is expressed under
inbreeding due to increased homozygosity, it is usually denoted inbreeding load B. Thus,
inbreeding depression is the expression of the previously concealed inbreeding load.
According to classical theory, B can be interpreted in terms of number of lethal
equivalents (Morton et al. 1956) and, under the simplifying assumptions of the model (no
linkage or epistasis), it equals the rate ¢ at which fitness would decline with increasing
inbreeding in the absence of selection. In fact, estimates of this rate of inbreeding
depression are used as estimates of the inbreeding load, and here both that rate and this

inbreeding load will be denoted by o.

However, the prediction of inbreeding depression requires taking into account

genetic purging, which is the selection prompted by inbreeding as it exposes the recessive
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component of deleterious effects in the homozygotes. Ignoring purging can have dramatic
effect, both when evaluating the evolutionary consequences of inbreeding and when
making recommendations in conservation to minimize them. However, under the same
simplifying assumptions as in Morton’s model (no linkage or epistasis), the joint
consequences of inbreeding and purging can be predicted using a simple theoretical
model (Garcia-Dorado 2012). This Inbreeding-Purging (IP) model provides good
approximations for the evolution of the mean and of the inbreeding load for fitness traits,
which depend on a purging coefficient (d) representing the recessive component of the
deleterious effects, responsible for both inbreeding depression and purging. Estimating
this parameter is essential in order to obtain predictions of the joint consequences of

inbreeding and purging.

The predictions of the IP model show that slow inbreeding leads to more efficient
purging, because natural selection has more opportunities to operate before a given
inbreeding level is attained, but also delays its effects. Thus, under slow inbreeding,
fitness depression can progress during some generations at a rate that is very similar to
that expected in the absence of selection, but fitness can later recover substantially due to
purging. As a consequence, purging could be of critical importance in practical situations,
even for populations where its consequences are negligible in experimental conditions.
Furthermore, this could explain why purging, although often observed, is not
systematically detected (Crnokrak and Barrett 2002; Leberg and Firmin 2008). For
example, the efficiency of purging for nonlethal genes is low with fast inbreeding (e.g.
full-sib mating; Hedrick 1994; Frankham et al. 2001), but this does not imply that it

should be also inefficient under slower inbreeding.

Similarly, it is not surprising to observe important inbreeding depression in the
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short term for populations whose size has been reduced to a Ne value that is still relatively
large, but this does not imply that fitness will not recover later, because purging requires
a large number of generations to become appreciable when Ne is large. Thus, Bryant et
al. (1999) detected substantial inbreeding depression after 5 generations with Ne = 90 for
housefly, but the depression observed at later generations was much smaller than expected
by ignoring purging (neutral prediction) on the basis of the early fitness decline (Bryant
etal. 1999). Also Kennedy et al. (2014) failed to detect purging for robins during a decade
of intensive monitoring in the wild with important inbreeding depression, but the rate of
inbreeding was small and F increased just about 5% during the whole period, so that a
decade could have not been enough for purging to occur (Kennedy et al. 2014). In general,
low purging efficiency has been detected under fast inbreeding, as very small Ne usually
induces purging just of lethal or severely deleterious alleles. On the contrary, relevant
purging has often been detected under slow inbreeding (Latter et al. 1995; Crnokrak and
Barrett 2002; Pedersen et al. 2005; Swindell and Bouzat 2006; Leberg and Firmin 2008;
Pekkala et al. 2012). Furthermore, genetic management protocols, as equalization of
family contributions or minimum Kkinship, can also be partially responsible for the
inefficiency of purging in other cases (Woodworth et al. 2002; Reed et al 2003). Very
small purging has also been detected in zoo populations with pedigree data (Ballou 1997;
Boakes et al. 2006), but the authors of these analyses warn that, in those populations,
management could diminish the efficiency of purging and, furthermore, purging might

have occurred prior to the analyzed period.

In addition, the detection of purging can often be difficult if there is a concurrent
adaptive processes. The reason is that adaptation is expected to be more efficient in the
large population used as control than in the small experimental populations, so that

purging is underestimated. Furthermore, there may be insufficient information about the
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amount of inbreeding depression that would be expected in the absence of purging, often
due to poor estimates of the initial inbreeding load or of the actual rates of inbreeding
(i.e., of the effective population size). In that case, it may not be possible to check whether

the observed inbreeding depression is smaller than predicted by ignoring purging.

Furthermore, the larger rates of inbreeding depression detected in the wild,
compared to captive populations, are likely to be due to larger recessive deleterious
components (d), either because alleles with large d values were already purged in captive
conditions due to a previous history of inbreeding, or because deleterious effects are
larger when expressed in harsh environments. One of the main differences between wild
and captive conditions is that competition is usually larger in the wild, where population
size is heavily constrained by resources limitation. In fact, the average effect of
deleterious mutation has been found to be particularly large when expressed in
competitive conditions (Avila and Garcia-Dorado, 2002), and it has been reported that
the inbreeding load in Drosophila is larger for fitness assayed in more competitive
conditions than in less competitive ones (Yun and Agrawal 2014). Therefore, purging can
be less efficient and more difficult to detect when operating in captive or noncompetitive

conditions.

Summarizing, the occasional failure to detect purging of nonlethal alleles, can usually
be ascribed to at least one of the following features: (i) inbreeding increases too fast to
allow efficient purging (i.e., Ne is exceedingly small so that Ned < 1 and genetic drift
overwhelms purging); (ii) inbreeding increases slow enough to allow for efficient purging
(Ne is large), but the number of generations of inbreeding analyzed is too small since, for
large Ne, it takes more generations for purging to act; (iii) inbreeding occurs under

managing strategies that reduce purging efficiency; (iv) inbreeding occurs in conjunction
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with adaptive processes; (V) there is no solid information about the effective population
size Ne and/or the inbreeding load ¢ in the base population; (vi) important previous
inbreeding is being disregarded, so that most purging may have occurred in the past; (vii)
purging was inefficient because it occurred under benign or noncompetitive conditions,
where both the rate of inbreeding depression and purging are smaller than in wild

competitive conditions.

Therefore, when predicting the consequences of inbreeding, there is no ground to
disregard purging just because it has not been consistently detected in every situation
studied. Detecting purging is experimentally demanding, as it requires monitoring the
evolution of fitness in the absence of substantial adaptive processes, for not too small
populations, during a considerable number of generations and in the absence of genetic
management. Optimally, we should also have good information on the inbreeding load in
the base population, and reliable information on the rate of inbreeding (i.e., on Ne). In
addition, the efficiency of purging should be evaluated in environmental conditions that
are similar to those of practical interest, particularly regarding competitive conditions. It is
difficult to obtain data that meet all these requirements, but this does not mean that, in real

cases, purging will not occur in its time given appropriate population sizes.

Thus, it is necessary to evaluate purging efficiency and to estimate the purging
coefficient operating in competitive conditions in experiments designed in the light of
theory. So far, the only estimate available for the purging coefficient comes from a
Drosophila experiment carefully designed for that purpose, where the consequences of
inbreeding and purging on egg to pupae viability were investigated in lines derived from a
wild population (Bersabé and Garcia-Dorado 2013, B&GD hereafter). However, these

lines were maintained under low density conditions, with no competition regarding
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fecundity or mating ability (single mating vials), and with small effective size Ne = 6 or 12.
The results provided strong evidences for purging, but suggested that purging of nonlethal
alleles was modest, so that a larger effective population size might have been more efficient

to estimate the purging coefficient applying to the nonlethal inbreeding load.

Here, we present results from two parallel and highly repeated experiments, each
performed using a different large laboratory population of Drosophila melanogaster that,
at some time, was used to derive a large set of lines maintained with moderate and stable
effective population size (Ne about 50), which continue being maintained under crowded
competitive conditions. In these large populations and small lines, we investigate the
evolution of the inbreeding load and of the mean for two fitness traits. One trait
(noncompetitive pupae productivity P, which includes fecundity and egg to pupae
viability components of fitness) is measured in noncompetitive conditions under
moderate culture density (single pairs per vial). The other trait (competitive productivity
W, which includes fecundity and egg to adult viability components) provides a measure
of competitive productivity relative to that of a marker strain under crowded culture
density. The analyses carried out provide the opportunity to assay the consequences of
purging operating in competitive conditions for two independent populations (i.e., genetic
backgrounds), and to estimate the corresponding purging coefficient d. Furthermore, one
of these populations analyzed is the same as that previously used by B&GD to estimate
purging under noncompetitive conditions, allowing particularly direct inferences on the
relevance of competition on inbreeding and purging. In addition, the effective size of the
small lines of these experiments is larger than in B&GD, allowing for efficient purging
even for mutations with only mild d values. On the light of theory, the period analyzed is
long enough for purging to have an important effect on the evolution of mean fitness for

lines of this effective size.
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We show that purging operating in competitive conditions is efficient even against

nonlethal deleterious alleles, both for competitive and for noncompetitive productivity

traits, and we discuss some consequences of these findings.

Methods

The essential features of the predictive model, experimental design and methods

are outlined in the following sections. More details are given in the Supporting

Information. Table 1 gives a glossary of terms used in the study.

Models
Inbreeding-Purging model: it takes into account the consequences
IP of inbreeding and purging
Full-model: it takes into account the consequences of inbreeding,
FM purging, mutation and standard selection
Traits
® Fitness
P Noncompetitive pupae productivity
W Competitive productivity
Parameters
N Population size
Ne Effective population size
Rate of inbreeding depression used as an estimate of the inbreeding
load (in the absence of selection and for independent loci with no
epistasis, the rate of inbreeding depression equals the inbreeding
load). Subscript t stands for generation number and no subscript t
Ot implies it refers to a base population.
Lethal component of the inbreeding load, either for W (i.e., overall
lethal inbreeding load) or for P (inbreeding load due to lethals
oL expressed in the egg to pupae phase)
ONL Component of the inbreeding load not ascribed to lethal alleles
d Purging coefficient against overall inbreeding load
Purging coefficient against inbreeding load ascribed to nonlethal
dne alleles
F Inbreeding coefficient
Fst Fixation index
g Purged inbreeding coefficient

Table 1. Glossary of parameters and subscripts used in the paper.
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THE INBREEDING -PURGING (IP) MODEL

When a stable population undergoes a reduction in effective size to a new stable
value Ne, it experiences an increase in inbreeding that causes inbreeding depression, but
also experiences purging. i.e., some increase in the intensity of selection against the
(partially) recessive deleterious alleles responsible for inbreeding depression. According
to the Inbreeding-Purging (I1P) approach (Garcia-Dorado 2012), the joint consequences
of inbreeding and purging upon a fitness trait @ can be approximately predicted as a
function of the purged inbreeding coefficient g, which is equivalent to the standard
Wright’s inbreeding coefficient (F) corrected for the reduction of the frequency of
deleterious alleles induced by purging. In this experiment, two different fitness traits will
be used for o (P and W; see below). The evolution of g depends on the effective
population size (Ne) and on a purging coefficient d. Regarding a single locus, d equals the
recessive component of the deleterious allele, that is, it equals half the difference between
the fitness disadvantage of the homozygotes and twice the disadvantage of the
heterozygotes (see Supporting Information). Therefore, it amounts to d. = 0.5 for
recessive lethal alleles. This purged inbreeding coefficient can be predicted through

generations (t) as
g { U/(2Ne) + [1-1/(2Ne) 1 gt1 } (1 —2d Fr1)

where F is the standard Wright’s inbreeding coefficient, Ft = 1 — [1 — 1/(2Ne)]". Then,
the evolution of average fitness, with initial value o, can be predicted through

generations as

®t = o exXp[-o g,

where J is the rate at which fitness declines with increasing inbreeding in the absence of
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selection and, for independent loci and no epistasis, equals the load concealed in
heterozygosis in the initial population, often denoted inbreeding load B. The evolution of

the inbreeding load can be predicted as

a=00t(1-Fy)/Fe

It has been shown through extensive computer simulation, using a large variety of
distributions for the deleterious effects, that this IP model formulated for a single locus
provides a good approximation for overall purging caused by many loci with different
fitness effects (Garcia-Dorado 2012). This requires using an effective purging coefficient
d (purging coefficient hereafter) that applies to the set of loci responsible for inbreeding
depression and that can be empirically estimated by fitting fitness data to IP predictions.
As shown in the Supporting Information, such overall IP predictions can be improved by
separately accounting for purging against the lethal inbreeding load (éL , with purging
coefficient d.~ 0.5) and the nonlethal inbreeding load (dn, with overall nonlethal purging

coefficient dni). Our aim is to estimate both d and dn purging coefficients.

Furthermore, we must note that IP predictions are approximations that ignore both
the standard nonpurging natural selection that would operate for a noninbred equilibrium
population of the same size (standard selection hereafter) and the continuous appearance
of deleterious mutations. These two factors determine the inbreeding load under the new
mutation-selection-drift (MSD) balance to be attained in the long term for the new
population size. The consequences of new deleterious mutation together with standard
selection, inbreeding and purging, can be predicted using the Full-Model (FM) equations,
also provided by Garcia-Dorado (2012). The difference between IP and FM predictions
regarding the evolution of mean for fitness traits in our lines is expected to be negligible,

as these lines are not so small that fixation of new deleterious mutations is relevant to
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fitness decline, or that the population can retain substantial inbreeding load in the new
MSD equilibrium. However, the effective size of our large laboratory populations,
although smaller than that of the original wild population, is still substantially large
(~1000), so that these populations could harbor a nonnegligible inbreeding load at the
MSD balance (6*) (Garcia-Dorado et al. 2006, Amador et al. 2010). Therefore, FM
predictions for the evolution of the inbreeding load in our large populations (&) could in
principle be substantially different from IP predictions. Thus, when analyzing the
evolution of & in a large population, we will also obtain FM predictions. Since, as
explained in the Supporting Information, this requires extrapolating the asymptotic
inbreeding load from a different laboratory experiment, the d and dn. estimates obtained
using the FM approach should be interpreted as rough approximations, but are useful to

illustrate possible biases derived from the use of the simpler IP approach.

BASIC EXPERIMENTAL DESIGN

In what follows we will describe two experiments carried out in two laboratories
(Vigo and Madrid) under similar designs using Drosophila melanogaster (Fig. 1). For
each experiment, a wild population was captured, maintained in the lab with large size
for a long period, and used at a given generation to obtain a large set of small populations
(lines) that were thereafter maintained synchronously to the large population. In order to
evaluate the consequences of inbreeding and purging and to estimate the purging
coefficient, we analyzed the evolution of the inbreeding load (6) and of the mean for two

fitness traits in these populations and lines.
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For the large laboratory populations, a subscript denotes the number of generations
since their capture from the wild. For the lines, the subscript gives the number of
generations since they were founded from the large laboratory population. When
analyzing the evolution of the inbreeding load in a large population, the base population
was assumed to be the original wild one. However, when analyzing the evolution of the
lines, the base population was assumed to be the corresponding large laboratory
population at the generation in which the lines were derived (Fig. 1). To avoid ambiguity,
the inbreeding load in these “base populations” is denoted by o (or & and L) with no

subscript (egs. S1-S7).

Large population Vigo Madrid
Large. Census size 3000 2600
population Number of generations 136 123
Generation for the assay of:
& Productivity (P) 22,50,103,111 112
U Productivity (W) 83
g Lethal analysis 128 57
L:;izl(:tai:? DD 000 D Lines Vigo Madrid
Number of lines 20 64
l l l Census size per line 100 80
l l l Number of generations 42 40

Generation for the assay of:

Large DD . D Productivity (P) 25 30

population Productivity (W) - 10,2030,40
Lethal analysis 42
Microsatellites 5,10,25 10,20

Figure 1. Experimental design. In each of the experiments, a large population was maintained
for a long period. At generations 86 (Vigo) and 83 (Madrid), a set of lines of small size was
founded from each large population and subsequently maintained. Analyses of egg to pupa
noncompetitive productivity (P), competitive productivity (W) relative to a marker strain, lethal
chromosomes and genotyping for microsatellites was carried out at different moments in the large

populations or small lines.
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ORIGIN AND MAINTENANCE OF POPULATIONS AND LINES

Vigo experiment

A laboratory population was founded from about 1000 females captured in a wine
cellar close to Vigo and maintained in 30 bottles. About 50 males and 50 females mated
and lay eggs in each bottle per generation. Progeny was sampled from these bottles and
mixed according to a circular scheme to produce the next generation, such that the ith
bottle was formed by about 50 flies from the ith bottle and 50 from the ith+1 bottle from
the previous generation. Thus, the large population was maintained with about 3000 flies

per generation.

At generation 86, 1000 males and 1000 females were sampled from the large
population to establish 20 lines, each maintained thereafter in a single bottle with exactly
50 male and 50 female parents during 42 generations synchronously to the large

population.

Madrid experiment

A population was founded from 276 females captured in Segura Viudas cellar
(Penedés) and maintained in similar conditions as in the Vigo experiment, in 32 bottles
with 40 males and 40 females per bottle (thus, a total of 2560 flies per generation). At
generation 83, 64 lines were founded, and each was thereafter similarly maintained in a
single bottle with 40 male and 40 female parents during 40 generations, synchronously to

the large population.
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FITNESS TRAITS ASSAYED

Noncompetitive pupae productivity P

In both experiments, noncompetitive pupae productivity (P) was assayed for single
4-days old females mated in individual vials to single males. P was measured as the
number of pupae produced in the vial after 11 days. This trait includes egg to pupae
viability and female fecundity fitness components, assayed under relatively low density,

and in the absence of competition regarding fecundity or mating success.

Competitive productivity W

Competitive productivity (W) was assayed for groups of 20 females in Madrid
experiment. Previously, groups of four males and four females, all of them four days old,
were mated for three days in a single vial. Then groups of 20 inseminated females were
placed in a bottle with 20 inseminated females from a curly (Cy/If) laboratory strain in a
single evaluation bottle. Then W was computed as the ratio of the number of offspring
contributed by the assayed population or line (wild progeny) to the number of offspring
contributed by the marker strain plus 1. This trait includes egg to adult viability and
female fecundity fitness components, both assayed in crowded competitive conditions.
Since each female had ample opportunity of being inseminated before being transferred

to the evaluation bottles, W does not include competitive components for mating success.

ESTIMATES OF THE EFFECTIVE POPULATION SIZE

Both in Vigo and Madrid experiments, the effective population size (Ne) of the lines
was inferred from the evolution of Fst for nine microsatellite loci at several generations

(generations 5, 10 and 25 for Vigo lines; 10 and 20 for Madrid lines).

43



EVALUATION OF THE OVERALL INBREEDING LOAD

The inbreeding load for noncompetitive pupae productivity (P) (i.e., the rate ¢ of
inbreeding depression expected in the absence of selection) was estimated in the large
population of Vigo experiment at generations 22, 50, 103 and 111. In each of these
generations (t), average P was estimated using outbred (Po) and inbred (P) individuals,

as described in the Supporting Information, so that 6: = In(Po / Py) / F+.

An analogous evaluation was made at generation 112 in the large population of
Madrid experiment. The inbreeding load for W was estimated in the large Madrid

population at generation 83 (i.e., in the base population of the lines).

ESTIMATION OF THE LETHAL AND NONLETHAL
COMPONENTS OF THE INBREEDING LOAD

Vigo experiment

At generation 128, 549 chromosomes Il were sampled from the large Vigo
population and tested for lethality using a classical design with the Cy/If marker strain, in
order to estimate the proportion of lethal chromosomes II. As explained in the Supporting
Information, this allows to estimate the lethal component of the inbreeding load for P
(i.e., the &L inbreeding load ascribed to alleles that are lethal during the egg to pupae
phase). Synchronously, three randomly selected lines were assayed in a similar way (149,

169 and 166 chromosomes, respectively).

In addition, during this test we registered the ratio of the number of wild (+/+) to
Curly (Cy/+) offspring in the vials corresponding to nonlethal chromosomes, which
measures the mean fitness of nonlethal wild chromosomes Il in homozygosis relative to

that of Cy/+ heterozygous individuals.
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Madrid experiment

At generation 57 after the capture of the Madrid laboratory population, 447
chromosomes Il were sampled from the large population and tested for lethality using the
same protocol as in Vigo experiment. This allows to estimate the lethal inbreeding load
(oL), both for W (i.e., the overall lethal inbreeding load) and for P (i.e., the inbreeding
load ascribed to alleles that are lethal during the egg to pupae phase). The overall lethal
inbreeding load at generation t = 57, both for W and P, were used as proxies for those at

generation 83 corresponding to the base population of the lines.

In both experiments, the nonlethal component of the inbreeding load for P or W at
any generation was obtained by subtraction (on. = 0 — o), using the appropriate lethal

inbreeding load for each trait.

EVALUATION OF THE FITNESS DECLINE IN THE LINES

Vigo experiment

Noncompetitive pupae productivity (P) was synchronously evaluated for the large
population and the lines 25 generations after their foundation. Both for the population and
for each line, sampled individuals were randomly mated in single pair vials for three

generations and P was assayed for the last two generations (assays 1 and 2).

Madrid experiment

Noncompetitive pupae productivity (P) was assayed at generation 30 for the lines

and, synchronously, at generation 113 for the large population.

Competitive productivity (W) was assayed in each line at generations 10, 20, 30

and 40. In each case, it was synchronously assayed in the large population, which was
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used as a control. In each of these four assays, the mean for competitive productivity W
is given as the ratio of the mean of the lines to the synchronous estimate in the large

population.

INFERENCE OF THE PURGING COEFFICIENTS

Inference for trait P, obtained from the evolution of J in the large
Vigo population

We computed IP predictions for the evolution of the inbreeding load J: (eq. S4) for
a grid of ¢ (i.e., the initial inbreeding load) and d values (see Supporting Information).
From this grid, we obtained the joint Least Square (LS) estimates for these two parameters
that better fit the observed evolution of d:. The procedure was repeated by accounting

separately for lethal and nonlethal depression (eq. S5), in order to obtain estimates of the

nonlethal purging coefficient dnL.

In addition, using the previous estimates of the initial inbreeding load, and
additional assumptions on its asymptotic value (o*; see Supporting Information), rough
LS estimates for the purging coefficients d and dn. were obtained in a similar way using

the FM approach (egs. S6 and S7).

Statistical contrasts and confidence intervals (Cl) for the estimates of d were
obtained using the F distributed statistic derived from the likelihood ratio test (Casella
and Berger 2001). This gives only approximate results, due to the limited number of 6

values and to the likely departures from normality for their sampling errors.

46



Inference for trait W, obtained from the evolution of the trait’s mean

in Madrid lines

A LS estimate for the overall purging coefficient d was obtained by computing IP
predictions (eq. S1 for W, with Wp = 1) for a grid of d values, searching for the d estimate
that produced the best fitting between the mean relative W observed in generations 10,
20, 30 and 40 and the corresponding IP predictions. Similarly, a LS estimate was obtained
for the nonlethal purging coefficient, dnc, by fitting observed values of relative W to
predictions separately accounting for purging against the lethal and nonlethal inbreeding

load (eq. S3).

Statistical contrasts and approximate confidence intervals for the estimates of d

were again performed using the F statistic derived from the likelihood ratio test.

Results

THE EFFECTIVE SIZE OF THE LINES AND OF THE LARGE
POPULATIONS

Table 2 gives the effective population size estimated from microsatellite analysis in
Vigo and Madrid lines. We estimated the per line effective population size under the
maintenance conditions of the lines (one bottle per line) as the average of the three
estimates in the case of Vigo and of the two estimates in Madrid experiment, which gives
effective population sizes of Ne = 52 and 43, respectively. This gives Ne ~ 1000 in the
large Vigo population (maintained with 20 bottles and ~3000 individuals), and Ne ~ 1376

in the large Madrid population (maintained with 32 bottles and 2560 individuals).
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Generation Ne Confidence limits

Vigo 5 59 44 - 88
10 34 23-50

25 63 57 -69

Madrid 10 45 40 -51
20 42 32-54

Table 2. Estimates of the effective population size (Ne) in Vigo (N = 100) and Madrid (N = 80)
lines, obtained from microsatellite data at different generations since the start of the lines, and

their 95% confidence bootstrap limits.

PURGING FOR NONCOMPETITIVE PUPAE PRODUCTIVITY P

The lethal Inbreeding load in Vigo experiment

Ninety-six lethal chromosomes Il were detected out of 549 chromosomes sampled
from the large laboratory population at generation 128, which gives a lethal inbreeding

load 6L128 = 0.316 for P (see Supporting Information).

Analogously, the synchronous estimates of the lethal component of the inbreeding
load for P in the three lines analyzed (t = 42) were 0.091, 0.142 and 0.200. Thus, the
average lethal inbreeding load in the lines (0.14) was about half that of the large

population.

In addition, the mean relative fitness for nonlethal chromosomes Il in homozygosis,
estimated in the large population during the lethal analysis, was 0.442 + 0.009,
significantly smaller than that of the lines (0.485 + 0.009, P < 0.00018). This implies that,
excluding lethal alleles, the fitness of homozygous chromosomes Il was about 10% larger

in the lines than in the large population, which should be ascribed to purging in the lines.
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Evolution of the Inbreeding load for P in the large Vigo population:
Evidence of purging

Figure 2 gives the estimates obtained for the overall inbreeding load for
noncompetitive pupae productivity (P) in the large Vigo population, plotted against
generation number t. The observed decline of & was practically linear on t so that, at any
generation within the time interval corresponding to these estimates, the expected rate of

inbreeding depression in Vigo large population could reasonably be inferred using the

linear regression of & on t estimated from these observations. This gives

E(&) = 2.04520 — 0.01308 t, 1)

with standard errors 0.03579 and 0.00044 for the intercept and the slope, respectively.

Figure 2. Evolution of the inbreeding load for P in Vigo large laboratory population. Dots:
experimental estimates; green: linear regression fitting experimental estimates; dark blue: neutral
prediction; red: Inbreeding-Purging (IP) prediction considering overall purging upon lethal and
nonlethal components; light blue: Full-Model (FM) prediction also based on overall purging (IP
and FM predictions obtained by separately accounting for purging against the lethal and nonlethal
inbreeding load are not shown but virtually overlap the corresponding IP and FM predictions

plotted here).
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Figure 2 also shows different predictions for the evolution of &, computed using
our estimate of the effective population size (Ne = 1000). It shows that, for Ne = 1000 and
in the absence of purging (d = 0), & is expected to decline almost linearly on t during all
the experiment with a small slope ~9/2Ne = —9 x 10 (where ¢ is the initial inbreeding
load). However, the estimated o declined much faster, the slope (—0.01308 + 0.000445)
being significantly larger than that expected in the absence of selection (p < 6.6 x107),

which implies substantial purging.

Inference of the purging coefficients for P in the large Vigo

population

The estimates of purging coefficients obtained by LS fitting of the evolution of ot
to IP predictions are given in Table 3. Using overall IP predictions (eq. S4), the LS
estimate of the initial inbreeding load is ¢ = 1.85 and that for the purging coefficient is d
=0.30, with a narrow approximate 95% CI (0.28-0.33). IP predictions using this estimate

fit very well the observed values (Fig. 2).

Predictions were also obtained by separately accounting for the lethal and nonlethal
components of the inbreeding load for P. Since we do not have an estimate of the initial
lethal inbreeding load in Vigo population, we assumed that, based on consistent empirical
evidence for Drosophila viability (Simmons and Crow 1977), 50% of the inbreeding load
in the original wild population was due to lethal alleles. LS estimates fitting the 1P model
(eqg. S5) give dn. = 0.19, and the same initial inbreeding load as before (6= 1.85; i.e., &
= 0.925, one = 0.925). This gives predictions that virtually overlap those computed in

terms of overall d and are therefore not shown in Figure 2.
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Trait | Purging Estimate | Experiment Data Generations | Effective Initial o Assumptions
coefficient | (95% CI) assayed size
P d 0.30 Vigo ot decline 22, 50, 10002 1.85P
(0.28;0.33) (large population) 103, 111
P dne 0.19 Vigo ot decline 22, 50, 10004 1.85° Initially éLp) = d(p)/2
(0.14;0.26) (large population) 103, 111
W d 0.27 Madrid W in the lines | 10, 20, 30, 40 432 2.884
(0.08;0.5) (vs large
population)
W dne 0.24 Madrid W in the lines | 10, 20, 30, 40 432 2.884° In the base population
(0.06;0.5) (vs large of the lines & = 0.441°
population)

Table 3: IP estimates of the purging coefficient for noncompetitive (P) and competitive (W) productivity.

2 Independently estimated in this experiment
® This is the estimate of the initial o obtained by least square simultaneously to that of d

¢ This a.ssumes that & in the large population at t = 83 (lines foundation) is approximately the estimate obtained at generation t = 57



Figure 2 also shows the FM prediction (eq. S6), computed using the corresponding
LS estimate of the overall effective purging coefficient d = 0.47 (95% CI 0.34-0.50).
Accounting separately for purging against the lethal and nonlethal inbreeding load of P,
this model gives dn. = 0.44 (95% CI 0.25-0.50; predictions not shown as they virtually
overlap overall FM predictions for d = 0.47). These large FM predictions rely on
extrapolations regarding the inbreeding load expected in the long term at the new MSD
balance: (o* = 0.33, with o * = 0.15 and &* = 0.18; see Supporting Information).
Therefore, they should be taken with caution, although it is worth noticing that the FM
approach predicts o py12s = 0.28, which is consistent with the estimate of the lethal
inbreeding load obtained at generation 128 from the lethal analysis (0.316). In any case,
these FM estimates illustrate that purging coefficients estimated by fitting the decline of

ot to 1P predictions can be considered conservatively low.

Inference of the initial inbreeding load for P in Vigo lines

Based on the remarkable linearity for the decline of & observed in the large Vigo
population, the inbreeding load at t = 86 (when the lines were derived) can be reasonably
inferred using the estimated linear regression (eq. (1)), which gives E(ds) = 0.92.
Therefore, we will use 6= 0.92 as the inbreeding load in the base population of Vigo
lines. Its lethal component was predicted using the FM approach, also for the large
population at generation 86 as shown in the Supporting Information, and the nonlethal

one can be obtained by subtraction. These values are given in Table 4.
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0 &l o’

Noncompetitive pupae

productivity (P)
Vigo 0.920 0.425 0.495
Madrid 1.402 0.333 1.070

Competitive productivity (W)
Madrid 2.884 0.441 2.443
(0.696)  (0.044) (0.698)

Table 4: Inbreeding load for noncompetitive productivity and for competitive productivity in
the base populations of Vigo and Madrid lines.
2 Qverall inbreeding load; ° lethal inbreeding load; ¢ nonlethal inbreeding load. Standard errors

derived from bootstrap analyses are given in parenthesis.

The decline of noncompetitive pupae productivity (P) in Vigo lines

Means for noncompetitive pupae productivity (P), synchronously evaluated for
the large population and the lines in samples obtained 25 generations after the lines were
founded, are given in Table 5, which also shows predictions for the mean of the lines
computed using the synchronous mean of the large population as a noninbred control and
assuming o = 0.920, on. = 0.495 (Table 4) and Ne = 52. In these lines, both the
consequences of standard selection and the decline expected from fixation of new
deleterious mutation by generation 25 should be negligible, due to their modest effective
size. Therefore, the IP approach is expected to give satisfactory predictions for the decline

of P, so that FM predictions are not discussed.

All the lines survived through the whole experiment and, on the average, they
showed no decline for P compared to the large population. The table also shows that the
mean productivity P of the lines was highly significantly larger than neutral predictions
(those computed ignoring purging) and than IP predictions computed using the purging

coefficients formerly estimated by B&GD under noncompetitive conditions. On the
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Table 5. Mean for noncompetitive pupae productivity P (£ standard error) in the two assays of Vigo lines at generation 25, and in one assay in
Madrid lines at generation 30, and synchronous mean for their corresponding large population. Neutral predictions (ignoring purging) and IP

expectations are also given (see text for explanations).

Observed  Observed Neutral  IP predictions for lines average P obtained using d or dn,
prediction either estimated by B&GD or in Vigo experiment
Assay Large Lines Lines d=0.092 d=03° dv=0.08¢  dn.=0.19¢
population B&GD Vigo B&GD Vigo
79.23 78.63 65.03*** 68.61*** 73.68 " 72.34** 73.90"
Vigo 1 (£2.14) (£1.37)
. 87.30 89.08 71.66*** 75.60*** 81.19** 79.71%** 81.43**
VIgoZ  o0g)  (+L187)
. 81.14 66.92 56.84*** 61.18 * 7351 * 65.70 " 70.50 ™
Madrid

(£1.99)  (£2.27)

*** stands for p< 0.001, ** for p<0.01, * for p<0.05 and ns for nonsignificant (always for the tests about whether the mean observed in the lines
is larger than expected with no purging or with the purging coefficients estimated in B&GD, or is different than predicted using the purging
coefficients estimated here from the decline in Jt in the large Vigo population)

4Bersabé & Garcia-Dorado estimate for d for noncompetitive conditions

®our IP estimate for overall d

¢ Bersabé & Garcia-Dorado inference for the upper bound of dn. for noncompetitive conditions

dour IP estimate of dc



contrary, the average productivity P of the lines in the first assay was not significantly different
from the IP predictions computed with any of the purging coefficients estimated from the decline
of ¢t in the large population of this experiment, although it was significantly larger in the second

assay (in the edge of significance when using the FM estimates of d or dn).

Overall, these results show that purging has completely erased the negative impact of
inbreeding depression on P in Vigo lines. They are in agreement with purging coefficients larger
than B&GD estimates obtained for purging under noncompetitive conditions, and on the order of
those estimated from the decline of o in the Vigo population maintained under competitive
conditions, and they suggest that d and dn. estimates were conservative when obtained under the

IP approach.

Inference of the initial inbreeding load for P in Madrid lines

The inbreeding load for noncompetitive productivity, estimated at generation 112 in the
large Madrid population, was 0.848 (with bootstrap error 0.142), but we do not have an estimate
obtained at the time the lines were founded. Due to the similitude between this design and that of
Vigo experiment, it seems reasonable to consider that the inbreeding load for productivity should
decline in Madrid large population roughly at the same rate as in Vigo experiment. Therefore, from
the linear regression of & on generation number estimated in Vigo experiment (eg. 1), & would be
expected to drop from generation 83 to generation 112 by a 0.604 factor. Thus, for the base
population of Madrid lines, we could infer 6~ 0.8483 / 0.6040 = 1.402 (Table 4). We used the
lethal component of the inbreeding load obtained for P at generation 57 in the large Madrid
population (457 = 0.333) as an approximation for that of generation 83, although this can induce
some underestimation of the nonlethal inbreeding load and of the corresponding purging
coefficients. Thus, in the base population of Madrid lines, we obtained & = 0.333 and dn. = J — oL

=1.070 (Table 4).

55



The decline of noncompetitive pupae productivity (P) in Madrid lines

Madrid lines were assayed for productivity at generation 30, synchronously to the control.
Means are given in Table 5. Predictions were computed assuming Ne = 43 and the initial inbreeding
load of P inferred for Madrid lines (6 = 1.403, on. = 1.070; Table 4). The mean for P in Madrid
lines was larger than the neutral expectation (p < 5 x107°) and also larger than predictions
computed using B&GD estimates of the purging coefficient, nonsignificantly when using the
upper bound dn. = 0.08, although significantly when using the corresponding point estimate dn. =
0.02 (p <0.017; not shown in the Table). The mean for P in the lines was nonsignificantly different
from predictions computed accounting separately for purging against lethal and nonlethal loads by
using our Vigo estimate dn. = 0.19, but was smaller than predictions computed considering overall

purging (d = 0.3) or using purging coefficients estimated under the FM approach (not shown).

Overall, the decline for average P in Madrid lines is more consistent with the purging
coefficients estimated for the Vigo population, maintained in similar competitive conditions, than
with the smaller purging coefficients estimated by B&GD in lines from the same Madrid

population but maintained in noncompetitive conditions.

PURGING FOR COMPETITIVE PRODUCTIVITY W

Initial inbreeding load for W in Madrid lines

The estimate of the inbreeding load for W in the large Madrid population was directly
obtained at generation t = 83, when the lines were derived. Thus, this estimate (0s3 = 2.884 £+ 0.696,
see Table 4) is the inbreeding load at the base population of Madrid lines. Since, out of the 447
chromosomes Il assayed at generation 57, 82 were lethal, the lethal inbreeding load was ds7 =
0.44. Again, we used this estimate as an approximation of that for t = 83 which, as explained above,

implies a conservatively low estimate for dn.. Therefore, for the base population of the lines, the
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estimates of the inbreeding load for W were 6=2.88, . = 0.44 and &L= 06— oL~ 2.44 (Table 4).

Evolution of the mean and estimation of the purging coefficients for W in

Madrid lines.

Figure 3 gives mean competitive productivity for the lines, relative to the synchronous
estimate in the large laboratory population. None of the lines was extinct through the experiment.
The figure shows neutral predictions obtained ignoring purging (solid line) using Ne =43 and 6 =
2.884. The figure also shows IP predictions (dashed line) obtained by separately considering
purging against the lethal and nonlethal fractions of the inbreeding load (& = 0.441 and oL =
2.443, respectively). They are computed using the LS estimate dn. = 0.24 obtained from these
data. This dn. estimate would be significantly larger than 0.06 (p < 0.05). The LS estimate of the
overall effective purging coefficient was d = 0.27. This approach fits the data almost as well as the
previous one, and produces predictions (not shown) that virtually overlap those shown in Figure 3
for dne = 0.24. This d = 0.27 estimate would be significantly larger than 0.09 (p < 0.05). Therefore,
purging coefficients in Madrid lines were larger than those estimated by B&GD for smaller lines
maintained under noncompetitive conditions, and are within the range of estimates obtained for P

in Vigo lines.
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Figure 3. Mean of the averages of competitive productivity, W, relative to the control population against
generation number for Madrid lines. Large dots give observed means; small dots delimit one standard error
intervals. Solid line: neutral prediction. Dashed line: inbreeding-purging (IP) prediction obtained by
separately accounting for purging against the lethal (&= 0.4406, d_= 0.5) and nonlethal (&= 2.4434, dn.
= 0.24) inbreeding load.

Discussion

INBREEDING DEPRESSION IN COMPETITIVE vs NONCOMPETITIVE
CONDITIONS

We have analyzed the consequences of purging on the evolution of the inbreeding load and
of the mean of two fitness traits (P and W) in two different Drosophila populations maintained
under crowded competitive conditions. We will begin considering whether the inbreeding load (o)
for these two traits is representative of that for overall fitness under captive or wild-like
competitive conditions. In Madrid large population, 83 generations after its capture, the ¢ value

for competitive productivity W was twice that inferred for noncompetitive one P (Table 4). In
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principle, this could be partly ascribed to inbreeding depression for pupae to adult viability, as this
fitness component is included in W but not in P. However, ¢ had been estimated for this same
population just after its capture, both for egg to pupae viability (EPV) and for egg to adult viability
(EAV), and the two estimates were quite similar (0 = 1.6 and ¢ = 1.8, respectively; the first estimate
reported by B&GD while the second one is a personal communication of the authors). This implies
that the rate of inbreeding depression for pupae to adult viability was small, so that the larger
inbreeding load for W should be ascribed to the competitive nature of this trait, in agreement with

previous experimental evidence (Yun and Agrawal 2014).

Furthermore, the rate of decline for & observed in Figure 2 suggests that the overall
inbreeding load in Madrid large population could have been about twice when it was captured than
when estimated at generation 83. In fact, if J: was reduced in Madrid population by the same factor
as in Vigo one (both for P and W), equation (1) would imply an initial inbreeding load ¢ = 2.99
for P and ¢ = 6.15 for W in Madrid large population, both values well above the initial estimate
reported by B&GD for EPV in the same population (6 = 1.6). This implies that P and W are more
comprehensive fitness measures than EPV. Our estimate 6 ~ 6 for competitive productivity is in
agreement with the values reported for fitness in the wild (O’Grady et al. 2006), suggesting that
high competition is a main determinant of the larger inbreeding load found in the wild, compared

to captive conditions.

EVIDENCE FOR PURGING

Next we will consider the evidences for purging in our populations and lines maintained in
competitive conditions, and the corresponding estimates of the purging coefficients, and we will
compare these results with those reported by B&GD in a different set of lines of the same Madrid
population. These authors obtained d ~ 0.09 and, taking into account the small effective size of

their lines (Ne = 6 or 12), they concluded that the purging coefficient against nonlethal alleles
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should have been in the range 0.02 < dn. < 0.08. However, in B&GD experiment, lines were
maintained by mating individual couples in separate, relatively large vials. Then, the expected
number of offspring contributed by each single mated couple was made proportional to its pupae
productivity. Thus, in B&GD experiment, purging acted upon pupae productivity under

noncompetitive conditions.

Purging for noncompetitive pupae productivity P was inferred in Vigo experiment from the
evolution of ¢ in the large population, which declined almost linearly through the experiment (Fig.
2). The slope of this decline is not consistent with the neutral expectation, but agrees with
inbreeding-purging predictions (I1P) for purging coefficient d ~ 0.3 against the pool of nonlethal
and recessive lethal alleles. The purging coefficient against nonlethal alleles was estimated by
assuming that these alleles contributed half the initial inbreeding load. This supposition is based
on the empirical observation, consistent through Drosophila literature, that lethal inbreeding load
usually accounts for 40% - 50% of the overall viability inbreeding load of wild populations
(Simmons and Crow 1977; Bersabé and Garcia-Dorado 2013). In our case, the actual contribution
of o, to initial o could have been somewhat below 50%, both because this value is in the upper end
of the observed range and because our trait P includes fecundity components, while the lethal
inbreeding load estimated is ascribed just to alleles that have lethal effects on viability. However,
if oL contributed less than 50% to the initial overall ¢, by assuming a 50% contribution we will
underestimate on. and dn.. Therefore, we consider that our dne ~ 0.2 value is a conservative
estimate. Thus, it can be concluded that purging coefficients estimated in Vigo experiment were

larger than those previously reported by B&GD.

Considerably larger estimates were obtained under the FM approach (d =0.47; dn. =0.44),
which takes into account standard selection and continuous mutation, asymptotically leading to a

new equilibrium with nonnull inbreeding load. These FM estimates involve extrapolations
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regarding the amount of inbreeding load expected in the long term, and, in the case of the estimate
of dn, regarding the lethal and nonlethal components of that load. However, these FM estimates
illustrate that the estimates of d and dn. obtained using the IP model are expected to be biased
downwards. In contrast to FM estimates, the IP estimate of d involves no extrapolation of
parameters, and that for dn. only involves the conservative assumption that ¢ accounts for 50% of
the initial load. Therefore, the IP estimates of d and of dn. obtained in Vigo experiment for P can

be considered reliable and conservative estimates of the corresponding purging coefficients.

Furthermore, after 25 generations with Ne = 52, average P in Vigo lines was larger than
predicted by ignoring purging or by assuming B&GD purging coefficients (Table 5). In the first
evaluation (assay 1), this mean was close to the predictions computed using our IP estimates of d
and dn.. In the second evaluation (assay 2) it was even larger, suggesting purging coefficients
closer to the FM estimates. However, these results should be taken with caution, as the predictions
for average P in the lines rely on the inference of the initial ¢ of the lines. Furthermore, the estimate
of dwv also depends on using the estimate obtained at generation 57 for the o, value at generation
83, although this is expected to underestimate dn. so that it can be considered a conservative
decision. In any case, the evolution of the mean for noncompetitive pupae productivity in Vigo
lines is consistent with the purging coefficients estimated from the decline of & in the large
population since its capture from the wild. This is so despite the 86 generations elapsed between
the capture of the large populations and the foundation of the lines. Thus, during those 86
generations owas roughly halved due to slow purging (Fig. 2), but the purging coefficient was not

substantially reduced.

As an additional proof of efficient purging against nonlethal alleles in Vigo lines, the fitness
of nonlethal chromosomes Il in homozygosis in these lines at generation 42 was about 10% larger

than in the synchronous large population. Thus, the fitness of an individual homozygote for the
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whole autosomal genome but carrying no lethal alleles, would be expected to be about 21% higher
in the lines than in the large population. This should be ascribed to purging which, during this
period, was more efficient in reducing the average frequencies of (partially) recessive deleterious
alleles in the lines than in the large laboratory population (Glémin 2003), although it would be
expected to be more efficient preventing long term decline for outbred fitness in the large

population (Wang et al. 1999; Garcia-Dorado 2012; Bersabé and Garcia-Dorado 2013).

The mean productivity P of Madrid lines, maintained with Ne = 43 and evaluated at
generation 30, showed a relatively larger decline, but was still more consistent with purging
coefficients on the order of those estimated for this trait in Vigo experiment than with predictions
assuming no purging or based on B&GD estimates obtained for the Madrid population in

noncompetitive conditions.

Purging for competitive productivity W was inferred in Madrid experiment from the
evolution of mean W in the small lines (Ne = 43) over 40 generations, compared to the large
population that is used as a control. The evolution of mean W was, again, inconsistent with neutral
predictions, and implied important purging coefficients (d = 0.27, dne = 0.24) on the order of those
estimated for P in Vigo experiment and larger than those estimated by B&GD for the same genetic

background but under noncompetitive conditions (Fig. 3).

It must be noted that all d estimates have been obtained using our estimated effective
population sizes as if they were known values. Furthermore, the estimate of d obtained for W was
conditional to the ¢ value previously estimated in the base population. Thus, although our estimates
of d are conservatively small, the corresponding confidence intervals we report are conditional to
our estimates of the effective population size (and, in the case of W, on the estimate of the initial
0), and unconditional confidence intervals should be somewhat larger. Even so, our estimates

consistently indicate that purging was a very important force reducing the inbreeding load and the
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depression of mean fitness in competitive conditions.

The efficiency of purging in the present experiments could have been larger than in B&GD
because alleles with d < 0.08 could have escaped purging in B&GD due to the smaller Ne and
larger drift in that experiment. However, this seems unlikely, as the nonlethal effective purging
coefficient estimated from the decline of d; in the large Vigo population was dn. =~ 0.2 and the
overall purging coefficient was d =~ 0.3, for both fitness traits and for both small and moderate
population sizes. Furthermore, no decline of mean P was observed in Vigo lines, which suggests
that most inbreeding load was due to deleterious alleles with individual purging coefficient such

that Ned > 1 (i.e., d > 0.02).

It is also worth noticing that, in B&GD, IP predictions for the evolution of the mean
computed by considering overall purging, fitted the data worse than those computed by taking
separately into account purging of lethal and nonlethal alleles. However, our data for mean W fitted
both predictions similarly. This should be due to a smaller contribution of recessive lethals to
overall ¢ for W than for viability, partly because the estimate of J. includes just alleles with lethal
effect on viability, while on. includes inbreeding load from most fitness components, excluding
mating success. Therefore, the proportional contribution of recessive lethal alleles to the
inbreeding load for competitive W is small, d and dn. are relatively similar, and the data fit
similarly both IP predictions. This supports the use of the simpler IP method, based on overall ¢
and d values, as a reasonable approximation when dealing with fitness measures that are more

comprehensive than viability and are assayed at competitive conditions.

Overall, our results imply that, in more crowded (wild-like) conditions, inbreeding
depression was larger, but purging was also more efficient. These results are in agreement with
experimental evidence, showing that deleterious mutations arisen in mutation accumulation

experiments have larger average effects on competitive fitness than on noncompetitive viability,
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and can be efficiently purged under competitive conditions in populations with effective size

similar to that of the lines of the present experiments (Avila and Garcia-Dorado 2002).

Interestingly, we found that purging in competitive conditions is efficient against inbreeding
depression expressed both in competitive (W) and noncompetitive (P) conditions. Thus, the larger
inbreeding load estimated in more competitive conditions should be ascribed, to a good extent, to
the same deleterious alleles as in noncompetitive conditions but with larger effects, rather than to
a different genetic basis. This is in apparent contradiction with the common notion that adaptation
to captive conditions should entail some misadaptation in the wild, due to adaptive tradeoffs
(Agrawal et al. 2010, Woodworth et al. 2002, Frankham 2008). However, our data are not
inconsistent with current views. First, tradeoffs between adaptations to alternative environments
are not ubiquitous. To take an example particularly relevant to our case, they were not detected in
Drosophila populations maintained under different crowding conditions (Sanchez-Molano and
Garcia-Dorado 2011). Second, a small fraction of the alleles responsible for inbreeding load can
have opposite fitness effects under competitive and noncompetitive conditions. In this case, a
change in the competitive conditions would promote an increase in the frequency of rare alleles
prompting adaptation to the new situation. As the frequency of those alleles increases, they will
make a much larger contribution to the fitness additive variance than the bulk of rare alleles that
are unconditionally deleterious, leading to a transitory negative correlation between fitness in
competitive and noncompetitive conditions. Third, alleles with opposing fitness effects under
different competitive conditions can show no associations between the sign of their effect and that
of their dominance, and therefore could not contribute to inbreeding depression. Furthermore,
these alleles could determine most genetic correlation because they can be relatively common, due
to some kind of environmental heterogeneity for competitive conditions (Agrawal 2010). Thus,
our results are not in contradiction with previous experimental data, and can be consistent with the

existence of adaptive tradeoffs caused by alleles with fitness effect of opposite sign under different
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competitive conditions.

The larger d value detected for purging in competitive conditions, compared to
noncompetitive estimates by B&GD, might partly be explained if alleles responsible for the
inbreeding depression of EPV had smaller d than those responsible for the inbreeding depression
of fecundity components included in P and W but not in EPV. However, empirical evidence
indicates that fecundity traits show small inbreeding depression in Drosophila (Fernandez et al.
2003). Thus, most likely, alleles determining inbreeding depression for noncompetitive EPV have
larger d values productivity under competitive conditions. This may occur because some
deleterious alleles have a larger effect on competitive than on noncompetitive viability. In addition,
it may occur because some alleles that are deleterious for viability have larger pleiotropic side
effects on fecundity under competitive than under noncompetitive conditions, and they could also
have pleiotropic side effects on mating ability that would scape purging in the noncompetitive
B&GD experiment. Disentangling these possible direct and pleiotropic effects would be relevant
to evolutionary issues. For example, the existence of pleiotropic side effects on mating success for
alleles affecting viability would be useful to assess the role of the “good genes” hypothesis in
sexual selection (Agrawal 2001; Siller 2001; Lumley et al. 2015). Our results imply that alleles
responsible for inbreeding depression of noncompetitive viability have larger concealed
deleterious effects on competitive fitness (larger d) but, unfortunately, they do not allow to
ascertain whether this is due to larger effect on competitive viability or to larger pleiotropic side

effects for other fitness components.

Summarizing, our experiments reveal that the inbreeding load is larger for competitive than
for noncompetitive fitness measures, and that most inbreeding load is due to alleles that are
deleterious both in competitive and noncompetitive conditions. However, we also find that purging

iIs much more efficient when operating in competitive conditions. In the case of our lines, with
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effective population sizes about 40-50, that efficiency halts or reverts fitness decline up to values
very close to those of the original population. The evolution of the inbreeding load and of the mean
imply that purging is efficient against nonlethal alleles, with dn. ~ 0.2, but they reasonably fit
simple IP predictions computed considering purging upon the overall set of lethal and nonlethal
alleles with purging coefficients d ~ 0.3. Furthermore, slow purging can cause considerable
depletion of the inbreeding load with little reduction of the purging coefficient, so that the potential
for purging in the future should not be assumed to be irrelevant just because a population had a

recent history of moderate demographic decline.

IMPLICATIONS FOR CONSERVATION AND EVOLUTION

The results obtained here are relevant to conservation practice. For example, it has been
recently suggested that the genetic rule of thumb for the minimum viable population size should
be doubled from 50 to 100 in order to prevent inbreeding depression (Franklin 1980; Hedrick and
Kalinowsky 2000; ; Jamieson and Allendorf 2012; Frankham et al. 2014; Franklin et al. 2014).
However, our results support the view that the Ne = 50 rule remains appropriate as far as the initial
reproductive potential is not too low (Garcia-Dorado 2015). Thus, although larger population sizes
should always be intended, our results support conservation efforts even in small populations, and
emphasize the convenience of breeding endangered populations in competitive conditions that are

similar to those found in the wild, encouraging the intensification of in situ conservation.

From an evolutionary point of view, the remarkable efficiency of purging detected in our
experiments suggests that the mutational load in sexual populations of small or moderate size can
be substantially smaller than in asexual ones, which can account for part of the proposed
advantages of sexual reproduction (Haag and Roze 2007). The same phenomenon can be expected
when inbreeding is caused by spatial population structure or by breeding strategies that impose
some restriction to panmixia, with the advantage that these situations would not necessarily induce
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drift (Agrawal and Chasnov 2001; Roze and Rousset 2004; Avila et al. 2010). Furthermore, our
results imply that inbreeding depression in competitive conditions is largely due to alleles with a
large recessive deleterious component (i.e., large d value that favors purging), in agreement with
the estimates of the average deleterious effects and coefficient of dominance of deleterious
mutations (Garcia-Dorado and Caballero 2000; Garcia-Dorado et al. 2004). This means that each
individual may carry not too many (partially) recessive deleterious alleles, an scenario that
involves weak linkage and is therefore favorable to explain the evolution of diploidy, since an
allele extending the diploid phase will enjoy some advantage from the masking of recessive
deleterious effects without becoming increasingly loaded with too many linked deleterious alleles
(Otto and Gerstein 2008). In summary, our results show that purging needs to be considered as an
important factor for the evolution of main biological properties, as diploidy, sex, population

structure or breeding strategies, as well as for the persistency of endangered populations.
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Abstract

The inbreeding depression of fitness traits can be a major threat for the survival of
populations experiencing inbreeding. However, its accurate prediction requires taking into account
the genetic purging induced by inbreeding, which can be achieved using a “purged inbreeding
coefficient”. We have developed a method to compute purged inbreeding at the individual level in
pedigreed populations with overlapping generations. Furthermore, we derive the inbreeding
depression slope for individual logarithmic fitness, which is larger than that for the logarithm of
the population fitness average. In addition, we provide a new software PURGd based on these
theoretical results that allows analyzing pedigree data to detect purging and to estimate the purging
coefficient, which is the parameter necessary to predict the joint consequences of inbreeding and
purging. The software also calculates the purged inbreeding coefficient for each individual, as well
as standard and ancestral inbreeding. Analysis of simulation data show that this software produces
reasonably accurate estimates for the inbreeding depression rate and for the purging coefficient

that are useful for predictive purposes.
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Introduction

Due to the increase in the frequency of homozygous genotypes for (partially) recessive
deleterious alleles under inbreeding, inbreeding depression is a major threat for the survival of
small populations (Falconer and Mackay 1996, Saccheri et al. 1998, Hedrick and Kalinowski
2000, Frankham 2005). However, as these alleles become more exposed under inbreeding, an
increase in the efficiency of natural selection against them is also expected, which is known as
genetic purging and tends to reduce the frequency of deleterious alleles and, consequently, the
fitness decline induced by inbreeding (Templeton and Read 1984, Hedrick 1994, Ballou 1997,

Garcia-Dorado 2012, 2015).

The first models developed to detect the consequences of purging on inbreeding depression
from pedigree data accounted for purging by using an ancestral purging coefficient Fa that
represents the proportion of an individual’s genome that is expected to have been exposed to
homozygosis by descent in at least one ancestor (Ballou 1997, Boakes and Wang 2005). The
rational is that, due to genetic purging, inbred individuals with inbred ancestors would have fewer

deleterious alleles than individuals with the same inbreeding but noninbred ancestors.

More recently, a theoretical Inbreeding-Purging (IP) approach has been developed that
predicts the evolution of fitness under inbreeding by taking purging into account by means of a
purged inbreeding coefficient g. This IP model considers that purging acts against a purging
coefficient (d) that quantifies the component of the deleterious effects that are only expressed
under inbreeding (Garcia-Dorado 2012). For asingle locus model, d represents the per copy excess
of the deleterious effect in the homozygous over that expected on an additive hypothesis, and its
value ranges from d=0 (no purging) to d=0.5 (purging against recessive lethal alleles). In practice,

as d varies across loci, a single value, known as the effective purging coefficient (denoted by de in
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Garcia-Dorado 2012; here denoted by d for simplicity), can be used to compute approximate
predictions for the overall consequences of purging over the whole genome. Estimating this
effective d value is of main interest as it will provide a measure of the purging occurred, and will

allow us to use the model to predict the expected evolution of fitness.

Until now, the only empirical estimates of the purging coefficient d have been obtained from
the evolution of fitness average in Drosophila bottlenecked populations (Bersabé and Garcia-
Dorado 2013; Lopez-Cortegano et al. 2016). However, in conservation practice, fitness data are
often available for pedigreed populations. Two versions of the IP model were originally proposed,
one aimed to predict mean fitness as a function of the number of generations under a reduced
effective population size Ne, the other one aimed to predict individual fitness from pedigree
information. Nonetheless, the latter version was only developed for data with nonoverlapping

generations, which imposes serious limitations to its use in experimental and conservation practice.

Here we extend the IP model to compute the purged inbreeding coefficient g for individuals
in pedigrees with overlapping generations. Furthermore, we derive a new expression that gives the
expected individual log-fitness as a function of g and of the initial inbreeding load 3, deriving the
slope of inbreeding depression for individual logarithmic fitness, which is larger than that for the
logarithm of average population fitness. In addition, we present the new free software PURGA,
based on this IP approach, that is able to use data for fitness traits in pedigreed samples to test for
purging and to estimate the corresponding effective purging coefficient d. This software also
estimates the inbreeding depression rate for individual fitness, and computes the standard (F),

ancestral (Fa) and purged (g) inbreeding coefficients for the pedigreed individuals.
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The Model

THE RATE OF INBREEDING DEPRESSION ESTIMATED FROM
INDIVIDUAL FITNESS

In order to analyze and interpret the consequences of inbreeding and purging at an individual level,
we must first consider the relationship between individual fitness and inbreeding in a neutral model

with no natural selection.

Assume a population where a number of deleterious alleles segregate at a low frequency g
at different loci acting multiplicatively on fitness. Here onwards we will concentrate just on
(partially) recessive deleterious alleles, which are assumed to be responsible for inbreeding
depression. Each locus has two alternative alleles, the wild one and the mutant deleterious allele.
It has three genotypes, with average fitness 1, 1-hs and 1-s for the wild homozygous genotype, the
heterozygous genotype and the deleterious homozygous genotype, respectively. Therefore, the
population inbreeding load, which can be measured by the number of lethal equivalents (Morton

et al. 1956), is
8=22dq(1-q), 1)
where d=s(1/2-h), and the sum is over all the relevant loci.

For simplicity, we will assume that the initial frequency of each deleterious allele is small
enough that homozygous genotypes are only produced due to inbreeding. Furthermore, in this
section, we will also assume completely recessive gene action (h=0; s=2d). This assumption

smooths the explanation below, but is not necessary for the validity of the conclusions.

After some inbreeding, the fitness of an individual that is homozygous by descent for
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deleterious alleles at n loci is
W = Wya(1—)(1 —2a)", (2)

where Wmax is the maximum possible fitness value and ¢is the proportional reduction of the fitness
of that individual due to all kind of environmental and genetic factors, excluding inbreeding

depression.

If the inbreeding load is due to many loosely linked deleterious loci and deleterious alleles
segregate at low frequency, the number n; of deleterious alleles in homozygosis for an individual
i with standard Wright's inbreeding coefficient Fi should be Poisson distributed. Since the
probability of being homozygous for a deleterious allele in noninbred individuals is assumed to be
negligible, the expected value of this number should be is E(ni) = £ Fiq(1-q) (Falconer and Mackay
1996). Thus, substituting Xq(1-q) from Equation (1), we obtain that the mean of this Poisson

distribution is
A=E()=Fol2d 3)

Therefore, from Equation 2, and assuming that sand F are independent, the expected fitness

of an individual i that has genealogical inbreeding Fi is
e_)‘ln
E(W) =EWo) Yo (1 —2d)"

where E(Wo) = E[Wmax(1-£)] is the expected fitness of a noninbred individual. The equation above

can be rewritten as

—Aln e)lzd
L (1-2d)",

EW) =EWo) e T, —

and can be rearranged as
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e—A1-2d) [A(1-2d)]™

n!

E(Wi) =E(Wo) e **x7,

Noting that Y%, e (1724 [3(1 — 2d)]"/n! adds up all the probabilities for a Poisson
distribution with mean A(1-2d) (i.e., it equals 1), and since A = F; 6 / 2d (Equation 3), we obtain

the exponential expression

E(W) =E(Wo) e 8Fi 4)

and, similarly, the average fitness of a population with average inbreeding Ft in generation t , as
far as the number of loci homozygous for a deleterious allele per individual can be assumed to be

Poisson distributed with mean A = F; 6/ 2d, is

E(W;)=E(Wo) e %% )

In order to estimate & from observed inbreeding depression, logarithms are usually taken in
Equations 4 or 5 to obtain a linear model of the kind In(W) = In(Wo) - 6 F. However, since the
average of the logarithms of a variable is smaller than the logarithm of the average (see Jensen’s
inequality), applying this procedure to individual fitness values can produce important upwards
bias in the estimate of 5. Thus, from Equation 2, the logarithm of fitness (log-fitness hereafter) for

an individual that is homozygous by descent for n deleterious alleles is
In(W) = In[W,,0,, (1 — )] + In[(1 — 2d)™],

so that, using the Poisson distribution of nj, the expected value for log-fitness for an individual i

that has genealogical inbreeding Fi is

e~ AAn

n '’

E[In(Wi)] = E[In(Wo)] + X5 In[(1 — 2d)"] (6)
where the intercept E[In(Wo)] = E{In[Wmax (1-£)} represents the average of individual log-fitness
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at the noninbred population. Since the second term equals In(1-2d)E(ni), using Equation 3,

Equation 6 gives
E[In(W)] = E[In(Wo )] + =22 5F, ™

On the other hand, in agreement with classical theory (Morton et al. 1956), Equations 4 and

Equation 5 imply
In [E(Wi )] =In [E(Wo)] - 5Fi (8)
and
In [E(Wt)] = In [E(Wo)] - 5 F 9)

It is interesting to note that, as indicated by Morton et al., the two equations above produce
good approximation as far as each individual locus makes a small contribution to the overall

expected inbreeding load.

Equation 8 allows to estimate ¢ from the decline in average fitness for a given inbreeding
level, as in designs where fitness is measured in a sample of outbred and a sample of inbred
individuals (for example, full sib offspring). Equation 9 allows to estimate ¢, generally using
linear regression, from the decline in average fitness through generations of inbreeding, as in a
population that has experienced a reduction in size. Both approaches induce no bias in the estimate
of 5, as far natural selection can be ignored and sample sizes are sufficiently large that the expected

value of the logarithm of the sample’s average is close to the logarithm of the expected average

(i.e., to IN[E(W: )] or INn[E(Wi )].

However, Equation 5 shows that the slope of linear regression for the logarithm of individual

fitness on individual inbreeding is

82



In(1-24d)
2d

b=

5, (10)

In(1-24d)

where the limit of
2d

as d approaches 0 is -1. Therefore, unless d is very small, -b provides

an upwardly biased estimate for the inbreeding load é.

Here we present a software package (PURGA) that estimates the purging coefficient and the
inbreeding load from the relationship between individual fitness and individual inbreeding using
two alternative approaches. The first approach estimates b from the linear regression of log
individual fitness on individual genealogical inbreeding. The second approach estimates & by
numerical least squares (LS) from untransformed fitness, directly using Equation 4. In addition to
allowing the use of individual fitness data including 0 values (as in the case of a dichotomous 0-1

variable for dead-alive records), this procedure allows to directly estimate d, instead of b.

THE INBREEDING-PURGING (IP) MODEL: COMPUTING PURGED
INBREEDING AND PURGED COANCESTRY FROM PEDIGREES

According to the IP approach, in order to incorporate the consequences of purging, the
evolution of fitness under inbreeding should be predicted by replacing the standard inbreeding
coefficient F with a purged inbreeding coefficient g where F is weighted by the reduction in

frequency of deleterious alleles induced by purging. Thus, Equations 4 and Equation 5 become:
E(W) =E(Wo) e %9, (12)

E(Wy) =E(Wo) e~%9¢, (12)
Garcia-Dorado (2012) derived equations allowing to compute gi for individuals in
pedigrees with nonoverlapping generations. These gi values depend on the pedigree and on the d
value defined above as d=s(1/2-h), which here represent the purging coefficient. For multilocus

models where d varies across loci, it has been empirically shown using extensive simulations that
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d can be replaced with an effective purging coefficient that accounts for purging across the
whole genome to a good approximation. This effective purging coefficient was denoted de in
Garcia-Dorado (2012) but here, for simplicity, it will be denoted d and referred to just as purging

coefficient.

In what follows we derive more general expressions to compute approximate gi values for

individuals in arbitrary pedigrees that can include overlapping generations.

The purged inbreeding coefficient g; is defined as gi = E(Fi gi)/qo, were E stands for
“expected value” and qo (i) is the frequency of the deleterious alleles in the base population
(expected in individual i). In other words, (qo gi) is the probability that individual i is homozygous
by descent for the deleterious allele. In order to settle notation, we will use A and B to denote
individual X’s parents, C and D to denote individual A’s parents, and E and H to denote individual

B’s parents, as shown in Figure 1.

S
N

Figure 1: General pedigree notation

Let f(A,B) be Malécot’s coancestry between individuals A and B; i.e., the probability that a
random allele from a neutral locus in A and, independently, a random allele from the same locus
in B are identical by descent (IBD) (Malécot 1948). By analogy to Garcia-Dorado 2012, we will
assume that the probability that two copies sampled from different individuals are IBD is

unaffected by the fitness values of the copies.
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As in Garcia-Dorado 2012, let y(A,B) be the purged coancestry between A and B, which are
assumed to have survived purging selection. In other words, [qo y(A,B)] is the probability that two
alleles, one randomly sampled from A and the other independently sampled from B at the same
locus, are identical by descent for the deleterious allele. Therefore, the purged inbreeding
coefficient for an individual X that has still not undergone purging, can be computed as the purged

coancestry between their parents; i.e., gx= {A,B).

Note that qo - (A, B) could be defined as the probability that an allele randomly sampled
from A is deleterious and identical by descent to another allele randomly sampled from B; i.e., ¢ ’a
f(A,B), where ¢’ denotes the frequency of the deleterious allele in individual A conditional to it
having survived purging selection. Alternatively, [qo - (A, B)] could also be defined as the
probability that an allele randomly sampled from B is deleterious and identical by descent to an
allele randomly sampled from A (i.e., ¢ '8 f(AB,). Therefore, by averaging both alternatives we

obtain
dQo- (A, B)=%(q’a+ ¢'8) f(AB) (13)

Finally, let y(A,B|E) be the purged coancestry between A and B conditional to sampling
from B the copy inherited from E. In other words, [qo y(A,B|E)] is the probability that one allele

randomly sampled from A is deleterious and identical by descent to the copy that B inherited from

E.

Therefore, [qo - y(A, B)] is the probability that the copy sampled from B was inherited from
E (i.e., ¥2) and then the two copies (one sampled from A and the other one from B) are identical
by descent for a deleterious allele, plus the analogous probability corresponding to sampling from

B the copy inherited from H, i.e.:

o Y(AB)=%do y(A BIE) +%qo v(A BIH) (14)

85



Thus, we need a systematic procedure to compute y(A, B|E) that can be recurrently used to
obtain y(A,B) and gx. To achieve this, we note that the probability that one allele randomly

sampled from A and the copy that B inherited from E are identical by descent for the deleterious

allele can be computed in two ways:

i) After B survives purging, the copy in B inherited from E is the deleterious allele.
Since purging is expected to reduce deleterious frequency in B by a factor (1-2d Fg) (Garcia-
Dorado 2012), this occurs with probability ¢’= - [1-2-d-Fs] . Furthermore, this copy is identical
by descent to that sampled from A. Taking into account that f(A,E) is assumed to be independent
on the allelic state (i.e., is the same for deleterious as for wild alleles), this occurs with probability
gt - [1-2-d-Fs] - f(AE)

i) The copy sampled from A is deleterious and is identical by descent to the copy that

B has inherited from E. This occurs with probability ¢’a - f(A,E)

Thus, we compute [qo - (A, B|E)] by averaging these two probabilities above, which gives
Qo y(A,BIE)="2(q'4 + q'E)f(A/E) —q’E-f(A,E)d-Fs (15)

Now, if inbreeding progresses slowly, the last ¢ 'E in the above expression can be replaced with %2

(g’a + ¢’&) toagood approximation, and Equation 15 approaches
Qo y(ABIE)~[2 (¢’4 + q’E)f(A,E)] (1~ d-Fs) (16)
which, applying Equation 13 to A and E, gives the approximate expression
y(A,BE)=y (A E) (1- d-Fs) (17)

Therefore, substituting the conditional purged coancestry given by Equation 17 into

Equation 14, we obtain
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v(AB)= % [y (A,E) +y (A, H)] (1- d-Fg), (18)

As in the case of classical Malécot’s coancestry ( f ), purged inbreeding arises from the
pedigree knots where y(A,B) happens to represent a self-coancesty (A and B are the same

individual). In those cases, as previously shown (Garcia-Dorado 2012),

Y(AA) =% [1 + ga][1 - 2d Fa] (19)

Equation 18 is analogous to the classical recurrent expression that gives the coancestry
between A and B as the average coancestry between A (which should not be younger than B) and
both parents of B (f(A, B) = [f(A, E) + f(A, H)]), except that Equation 18 accounts for the purging
occurred in B. Thus, Equation 18 can be recurrently used together with Equation 19 to compute
purged coancestry between pairs of individuals that have survived purging, which equates the

purged inbreeding expected for their offspring (g9x = y(A,B))

To compare this approach with that previously derived for nonoverlapping generations, we

note that, analogously to Equation 18, we can write

YA E) =% [y(CE)+y(D.E)] (1 -dFa), (20)

and

v(A, H) =% [y(C,H)+y(D,H)] (1-d Fa), (21)

And, substituting Equations 20 and 21 into Equation 18, we obtain

Y(A, B) =% [y(C,E)+ y(D,E)+ y(C,H) + y(D,H)](1-d Fa)(1-d Fg) .

This expression slightly overrates the purged coancestries (and, therefore, the purged inbreeding

coefficients) derived by Garcia-Dorado (2012) for nonoverlapping generations, which gave
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(A, B) =% [y(C,E) + v(D,E) + y(C,H) + y(D,H)] [1 - d (Fa+Fe)] (22)

The overrate is due to the use of the approximation ¢ e =% (¢g’a + ¢ e) to derive Equation 16,
which, on the average, underrates the deleterious frequency against which purging is operating.
The bias should however be small, since the squared term (d? Fa Fs) can only be important for
large d and F values, which implies small is y and g values. Using simulated pedigrees in
bottlenecked populations with nonoverlapping generations, we have found that the correlation
between y(A, B) computed from Equation 18 and from Garcia-Dorado 2012 were always larger
than 0.999 for a wide range of different purging coefficients from d=0 to d=0.5 (results not

shown).

Finally, it must be noted that, for IP predictions to be reliable, drift should be relatively
unimportant, compared to purging. Thus, when considering the consequences of inbreeding and
purging on average fitness, predictions are reliable for dNe > 1, where Ne is the drift effective
population size (Garcia-Dorado 2012). For panmictic populations of constant size, drift effective
size is equal to inbreeding effective size (Ne = 1/ 2AF, where AF is the per generation inbreeding
rate), so that we can expect IP predictions to be reliable if, through the whole process, d > 2AF.
This rate can be computed for consecutive time periods with length equal to the average generation
interval. Thus, at each interval AF = (F’- F) /(1 - F), where F and F’ are the average inbreeding

in the population at the beginning and the end of the interval.

DATA AVAILABILITY

The authors state that all data necessary for confirming the conclusions presented in the
article are represented fully within the article. PURGd software and example data are available in

https://www.ucm.es/genetical/mecanismos.
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The Software

We  present a new  software  package (PURGd, available  from
https://www.ucm.es/genetical/mecanismos) that uses the IP model to jointly estimate the effective
purging coefficient, d, and the inbreeding load in the base population, or its related parameter, b,
defined in Equation 10, that better account for the fitness values of a set of pedigreed individuals.

Additional details are given in the user’s guide included in the package.

The program computes standard coancestry and inbreeding (f and F values), as well as
Ballou’s ancestral inbreeding coefficient (Fa) for each individual. Furthermore, for each d value
considered, it recurrently uses Equation 18, Equation19 and Equation 22 to compute the
corresponding purged inbreeding coefficients (g). Using these coefficients, the program obtains
LS estimates for the d value, and for the remaining parameters in the model. As the predictive
model may incorporate additional factors potentially affecting fitness, and since fitness is assumed
to be a multiplicative trait, Equation 11 is generalized to include an arbitrary number of additional

factors (say x, z...), giving the general model
E(W)= W0 (1 —g;) ePr8it Baxi+Bszi (23)

where B1= -5 is the regression coefficient on purged inbreeding g, g is a function of d, and the
remaining fBj values measure the effect of the corresponding additional factors, which may include

the maternal purged inbreeding coefficient.

This software numerically searches the d value that minimizes the squared deviations from
observed fitness to model predictions (i.e., for the least square LS estimate). However, regarding
the remaining parameters, the model can be fitted using two different approaches, as explained
below. In the first one (linear regression method, LR), for each d value considered, a linear

regression model is fitted for log-transformed fitness. In the second one (numerical nonlinear
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regression method, NNLR), the above model for untransformed fitness (Equation 23) is
numerically explored searching for the joint numerical LS estimates of d and of the nonlinear
regression coefficients. Although this NNLR method is computationally more demanding, the
program runs quickly and has low RAM requirements under both approaches. Optionally, the
initial average for fitness or log-fitness and/or for the regression coefficient on g can be introduced

by the user, allowing to incorporate independent estimates of these parameters when available.

Additionally, the software will also give the results for the corresponding analysis
conditional to d=0, so that the user can observe the consequences of considering/ignoring purging
in the analysis and can check how the model improves under the estimate of d, compared to the

assumption of no purging (d=0).

LR METHOD

To perform LR analysis, the model represented by Equation 23 is linearized by taking

logarithms. This leads to the linear predictive equation

IN(Wi) = bo+bigi +hoxi+hbazi....,

where the different b values estimate the corresponding regression coefficients. Since logarithms
are taken for individual fitness, instead of for average fitness, by analogy to Equation 7, the

intercept bo estimates E[In(Wo)], and by estimates [In(1-2d)/2d]6 (Equation 10).

However, as it has been noticed (Garcia-Dorado 2012), the IP model is a conservative
approach that tends to underrate the long term fitness expected from inbreeding and purging. For
this reason, when the estimate of the expected log-fitness for noninbred individuals (bo) is obtained
jointly with by and with the purging coefficient (d), the method tends to overfit the model by

estimating a too low initial fitness and, simultaneously, too small values for the decline of log
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fitness with Fi (i.e., for -b1) and for the purging coefficient d. Thus, this procedure tends to give by
and d estimates that will produce poor predictions when extrapolated to populations with different
rates of inbreeding, or to periods of different length. On the contrary, when E[In(Wo)] is not
simultaneously estimated, the estimates b and d have much smaller bias and good predictive

properties.

Therefore, bo is obtained by PURGA in a previous step as the average of log-fitness for
noninbred individuals with noninbred ancestors (F = Fa = 0), or is introduced by the user as a
known value. Then, in a second step, the software searches for the d value that optimizes the fitting

of the data to the linear regression equation

Yi = bigi +hoxi+bozi....

where the dependent variable is Yi = In( W ) — bo, so that regression is forced through the origin.

Regression analysis is performed for all the possible d values in a grid corresponding to the
interval 0 <d <0.5 with step 0.01, which is the default accuracy. If higher accuracy is requested,
PURGd first finds a preliminary estimate with precision 0.01 as before, and then uses the Golden

Section Search (GSS) algorithm in an interval + 0.01 around that estimate (Press et al 1992).

Finally, the software returns the d estimate that minimizes the residual sum-of-squares in
the corresponding LR analysis of individual log-fitness. For each analysis, the program also gives
the corresponding results of the above LR, with statistic contrasts assuming normality and
independence of residual errors, and with the adjusted determination coefficient and the corrected
Akaike information criterion, computed taking into account how many parameters are being

estimated in the whole process.

Table 1 reproduces the software’s output for LR approach, where estimates have been

averaged for the analysis of a set of 50 simulated lines. Each line is derived from a large panmictic
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population at the Mutation-Selection-Drift balance (N=1000), and is maintained with size N=10
during 50 generations. Completely recessive deleterious mutations with homozygous effect s=0.3
occur at a rate of 0.1 new mutations per gamete and generation in unlinked sites. Since h=0, this
implies that the theoretical value for the purging coefficient is d=0.15. The simulation details can
be found in Bersabé et al. 2016. Output is presented for two different simulation sets. In the first
one, natural selection is operating during the maintenance of the lines, so that purging is expected
to occur. In the second set, natural selection is relaxed, implying no purging. To achieve this, when
simulating each offspring all individuals had the same probability of being sampled as parents of
the next generation regardless their fitness values. The software estimates a purging coefficient d
=0.102 + 0.009 in the first case, and d = 0.003 + 0.001 in the second one (SE computed from the
50 replicates). Therefore, the method has discriminated between situations with or without
purging, although it has underestimated the actual purging coefficient. Furthermore, for lines
undergoing purging, the data fit much better the IP model prediction, computed using the
corresponding estimate of d, than that conditional to d=0 that assumes no purging, as shown by

the higher determination coefficient and the smaller residual sum of squares and Akaike criterion.
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Pedigree file  Analysis d coefficient RSS p-value (F) aR2  AlCc InW0  SD(Inw0) b(g) SD[b(g)] p-value(t)
Purged_lines  IP model 0.102 147.291 <1.0e-16 0.758 804.642 -0.124 0.206 -3.298 0.081 <1.0e-16
No- purging model 0 253.130 <1.0e-16 0.586 1069.500 -0.124 0.206 -1.222  0.041 <1.0e-16
Relaxed_lines 1P model 0.003 188.396 <1.0e-16 0.966 921.812 -0.122 0.201 -5.177 0.040 <1.0e-16
No-purging model 0 195.72  <1.0e-16 0.964 944204 -0.122 0.201 -4.965 0.039 <1.0e-16

Table 1. Averaged results obtained using the linear regression method (LR) for the set of 50 simulated lines described in the main text that were
maintained with size N=10during 50 generations, where the true values for the inbreeding load and the purging coefficients in the base population are
8=4.217 and d=0.15, respectively. These results are shown in the same format as in the PURGd output. Pedigree File, name of the data file; Analysis, the model
used in the analysis; d coefficient, the purging coefficient estimated in the IP analysis or assumed by the No-purging model; RSS, residual sum of squares; P-value
(F), the P-value in the F-test for the regression analysis; aR2, adjusted determination coefficient; AlCc, the corrected Akaike Information Criterion; InW,, the
estimate of the expected log-fitness in the base noninbred population; SD(InW,), SD of InWp; b(g), linear regression coefficient on g (it is denoted by in the predictive

equation and estimates [In(1-2d)/2d]5, as defined in Equation 10; its expected value in this case is -5.014, very close to the IP estimate obtained for the relaxed

lines); SD[b(g)], SD of b(g); P-value(t), P-value for the t-test on the significance of this linear regression coefficient.



The analysis of additional simulated lines maintained with size N=50 (not shown)
produced similar results, again discriminating between purged and relaxed lines and
providing better fitting for purged lines when using the corresponding estimates of d. For
purged lines, the estimate for the regression coefficient of fitness on purged inbreeding
was b(g) = -3.590 +0.276 which, solving Equation 10, gives an estimate 6 =3.019 for the
inbreeding load, close to the value obtained for N=10 (6 =2.774), but the estimate for the

purging coefficient was larger (d = 0.218 + 0.029).

NNLR METHOD

The previous logarithmic transformation cannot be applied to fitness traits
presenting null values, as in the case binary of 0/1 variables for death/alive records. In
such cases, inbreeding depression has previously been analyzed using a logit
transformation of fitness in order to perform multiple logistic regression (Ballou, 1997,
Boakes and Wang 2005). However, that statistical approach assumes a model of the kind
In[Wi/(1-Wi)] = Bo - B1 gi, while our genetic model has the form In(Wi ) = Bo- B1 gi.
Therefore, PURGd gives the user the option of obtaining LS estimates for the parameters
in the genetic model given by Equation 23 by numerically optimizing the fitting of the

untransformed fitness data to the predictions of the nonlinear regression equation given

by

Wi — WO eb1gi + by x; + bz z;...

where the different b values are the estimates of the corresponding  parameter in
Equation 23, so that b estimates -8, and Wo is the estimate of the expected fitness value

for the noninbred base population. For the same reasons as in the LR method, Wo is

obtained in a previous step as the average W for the set of individuals with F = F,=0, or
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is introduced by the user.

After estimating Wo, the Numerical Least Square option of PURGd uses the
Artificial Bee Colony (ABC) algorithm (Karaboga and Basturk 2007) to search
simultaneously for the LS estimate of the purging coefficient d (where each d value
considered determines a set of gi values) and for the set of b coefficients that produces

the lowest residual sum of squares (RSS), calculated as:

RSS = ;(Wi— Wo eb19i+ b2 x;+b3z;.. )2

This algorithm has been successfully used for estimating parameters in nonlinear
systems in different kinds of disciplines such as image processing, engineering or neural
networks among others (Karaboga et al. 2014) using ~500 generations and 250 bees in
the colony. Although we have always found consistent solutions, it is recommended to
repeat analysis several times to check for the stability of the method, and to change

running parameters and range values, looking for a consistent solution.

Therefore, the output gives a LS estimate for d and for the remaining 8; parameters
in the model (Equation 23). An important advantage of this approach is that, besides
allowing to deal with O fitness values, -b1 directly estimates the inbreeding load o, instead
of estimating -[In(1-2d)/2d]6. Furthermore, although LS estimates for nonlinear
regression are not expected to be unbiased, preliminary unpublished simulated results
suggest that this method usually gives estimates of the purging coefficient and of the
inbreeding load that produce predictions at least as accurate as those obtained using
estimates computed from linear regression on log-fitness data, though it is
computationally more demanding. Although this approach does not allow to perform

standard F-Tests for statistical significance, the RSS and the corrected Akaike
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information criterion values (the later again relying on the assumption of normality and
independence for residual errors) are reported in the output as a measure of the fitting

quality.

Table 2 reproduces the software’s output for this NNLR approach, where estimates
have been averaged for the analysis of the same sets of simulated lines analyzed in Table
1. In this case the estimates of the purging coefficient for lines maintained with natural
selection is d = 0.092 + 0.007, and that obtained for lines maintained under relaxed
selection is d = 0.007 £ 0.001, again discriminating between purging and no purging cases
but underestimating the purging coefficient (SE again empirically estimated from the 50
replicated lines). As in the LR method, the data for simulated lines undergoing purging

fit much better the 1P model than the d=0 no-purging model.

For simulated lines maintained with size N=50 (not shown), NNLR analysis of data
discriminated between purged and relaxed lines, and provided better fitting for purged
lines when using the corresponding estimates of d, as in the case of the LR analysis.
Again, the estimate for the inbreeding load for purged lines (6 = -b(g) = 2.756 + 0.241),
was very close to that estimated for N=10, but the estimate for the purging coefficient

was larger (d=0.190 + 0.005).
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Pedigree file  Analysis d coefficient RSS AlCc WO SD(W0) b(g)

Purged_lines  IP model 0.092 16.996 -326.399 0.902 0.152 -2.898
No- purging model 0 28.387 -71.356 0.902 0.152 -1.202
Relaxed_lines 1P model 0.007 4,072 -1037.943 0.903 0.154 -4.533
No-purging model 0 4145 -1033.899 0.903 0.154 -4.443

Table 2. Averaged results obtained using the numerical nonlinear regression method
(NNLR) for the set of 50 simulated lines described in the main text that were maintained
with size N=10 during 50 generations, where the true values for the inbreeding load and the
purging coefficients in the base population are 8=4.217 and d=0.15, respectively. These
results are shown in the same format as in the PURGd output. Pedigree File, name of the data file;
Analysis, the model used in the analysis; d coefficient, the purging coefficient estimated in the IP
analysis or assumed by the No-purging model; RSS, residual sum of squares; AlCc, the corrected
Akaike Information Criterion; W, the estimate of the expected fitness in the base noninbred
population; SD(Wo), SD of Wo; b(g), nonlinear regression coefficient on g that estimates the

inbreeding load (n(g), denoted by in the predictive equation, estimates -3).

PREDICTIVE VALUE OF THE ESTIMATES

Figure 2 gives the evolution of fitness against generation number and the
corresponding IP predictions, computed for each set of lines using in Equation 12 the
corresponding estimates of & and d obtained by the software. Good fitting is observed
for N=10 and for N=50 regardless whether LR or NNLR are used, both for the relaxed

lines and for those maintained under purging.
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Figure 2. Evolution of mean fitness through generations for simulated lines maintained with size
N=10 (analysis given in Tables 1 and 2) or N=50 during 50 generations (red solid lines), together
with IP predictions computed using the estimates obtained by PURGd from the linear regression
method (LR, green dashed lines) or the numerical nonlinear regression method (NNLR, blue
dotted lines). Results are given both for lines that have undergone purging (thick lines), and for
lines for which natural selection was relaxed while they were maintained with reduced size (thin

lines, which largely overlap with each other).

Discussion

In the present work we derive a theoretical approach to analyze the fitness data for
pedigreed individuals in order to estimate the inbreeding load & and the purging
coefficient d necessary to predict the joint consequences of inbreeding and purging.
Furthermore, we present PURGd, a free software implementing this theoretical approach,
and illustrate its performance analyzing some results obtained by the software for

simulated data.

In the first place, since the inbreeding depression rate is usually estimated from log-

fitness data, we derive the expected regression slope of individual log-fitness on
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individual inbreeding in the absence of selection, which amounts to b = [In(1-2d)/2d]s.
Therefore, using —b as an estimate of the inbreeding load &6 implies upwardly biased
estimation. This first result is interesting because increased effort in field studies related
to conservation of endangered species, together with molecular technics, allow to record
and/or reconstruct pedigrees in wild populations and offers an interesting opportunity to
study inbreeding depression in the wild (Keller and Waller 2002), but can induce
upwardly biased estimates due to the use of log transformed individual fitness. The bias
is expected to be small if d values are low, but the large inbreeding depression rate
estimated in wild populations are likely to be associated to relatively large d values and,
therefore, to substantial bias (Kruuk et al., 2002; Liberg et al., 2005; O’Grady et al. 2006;
Walling et al., 2011; Kennedy et al., 2014; Hedrick et al. 2016). This phenomenon can
contribute to enhance the perceived difference between the inbreeding load expressed in
wild populations compared to estimates based on the assay of mean fitness for groups of
individuals with different average inbreeding, as is often the case in experimental
conditions. In order to avoid this bias, an alternative estimation approach is suggested,
based on the numerical LS analysis of the original predictive IP model for untransformed
fitness. This approach is implemented in the PURGd software, and is used to analyze

some simulated data.

In the second place, in order to estimate the purging coefficients (d) from individual
fitness data, we present general expressions to compute purged inbreeding (g) from
pedigrees with overlapping generations. Although these expressions involve some

approximations, we have found that they produce reliable values for individual g.

Other methods for detecting purging from fitness measured in pedigreed individuals

have been previously devised, based on the idea that the ancestral purging Fa of an
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individual is someway related to the opportunities of purging upon its genome in previous
generations. Using F and F, different linear models have been proposed that have, in
some occasions, detected small levels of purging in simulated and real pedigrees of
captive breeding populations (Ballou 1997, Lacy and Ballou 1998, Boakes and Wang
2005, Swindell et al. 2006, Boakes et al. 2007, Ceballos and Alvarez 2013). However,
these methods were based on the analysis of statistical models that are not supported by
a predictive genetic model. In addition, a logit transformation was applied to fitness, just
on statistical grounds. Therefore, these models could fit fitness data poorly. More
importantly, they do not allow to estimate a purging parameter that can be used for
predictive purposes. On the contrary, our method is based on the predictive IP model that
was derived on the basis of the genetic mechanisms of inbreeding depression and purging,
so that it is expected to fit the data better, and to allow the estimation of a parameter that
can be used for predictive purposes: the effective purging coefficient d. However, the
model involves some approximations and usually produces conservative predictions
underrating the consequences of purging. Therefore, statistical methods based on this IP

model can overfit the model by inducing some bias in the estimates.

For illustrative purposes we have presented here the analysis of a set of simulated
data for a simple situation where inbreeding and purging occur due to a reduction in
population size (Table 1 and Table 2). For N=10, the inbreeding load computed using
Equation 1 in the base simulated population was 6=4.217. The LR method estimates d =
0.102 + 0.009 and b=-3.298 + 0.096 (SE computed from the 50 replicates analyzed),
which using the true simulated value for d (0.15) into Equation 6 gives an estimate of the
inbreeding load 6=2.774. Thus both the inbreeding load and the purging coefficient are
underestimated when they are jointly estimated. The & and d estimates obtained using the

numerical method are very similar (2.898 + 0.115 and 0,092 + 0.007, respectively). Under
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both methods, the data fit the IP model much better than the no-purging (d=0) model. In
parallel, we present the analysis for a similar set of simulated lines where selection and,
therefore, purging, had been relaxed during the inbreeding period. It is worth noticing that
the estimates of the purging coefficient d given by PURGA for these relaxed lines are
virtually zero, showing that the method detects whether purging is occurring or not.
Furthermore, when natural selection is relaxed during the maintenance of the reduced size
lines, the LR approach gives b = - 5.177 + 0.165 so that the estimate of & is 4.354, and
the o estimate obtained using the numerical approach is very similar (4.533). Thus, the
underestimation of 5 observed when purging is operating in the lines, can be ascribed to
regression overfitting the data through the underestimation of both & and d, due to the
approximate nature of the IP model. It should be noted that some underestimation of d
could also occur because, for Nd on the order of 1 or smaller, purging efficiency may be
somewhat reduced due to genetic drift (Garcia-Dorado 2012). On the contrary, d
estimates obtained for simulated purged lines maintained with N=50 are larger than the
actual d value, while ¢ is simultaneously underestimated. In all cases, using jointly the &
and d estimates obtained in the same analysis gives appropriate predictions for the

evolution of mean fitness (Figure 2).

The software also allows including additional factors, both in the linear and the
nonlinear models. However, the addition of factors with a strong association with g, as
maternal inbreeding or year of birth, often causes a slight overfitting, again due to the
approximate nature of the program. The overfitted model gives spurious significant
effects for such factors as well as some distortion in the estimates of b(g) and d (results
not shown) due to confounded effects. Therefore, results obtained by incorporating
additional factors should better be used when those factors are uncorrelated to g, so that

including them just reduces sampling error. Additional factors should also be tentatively
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included when there is external evidence that they have a highly relevant effect, so that
including them cause an important improvement of the fitting statistics. However, when
these additional factors are correlated to g, these results should be interpreted with caution

and those obtained including no additional factors should also be considered.

It is interesting to note that, using in Equation 12 the estimates of & and d obtained
by the software produces predictions that adequately fit the evolution of mean fitness
through generations in the simulated lines, both in the absence and in the presence of

purging (Figure 2).

Summarizing, we present a version of the IP model that analyzes individual fitness
data for pedigreed individuals and is able to detect purging and to estimate genetic
parameter that are useful to predict the joint consequences of inbreeding and purging.
However, it is necessary to explore the properties of this approach more extensively
through the analysis of simulated data with different rates of inbreeding and with different
distributions of the h and s values of deleterious mutations. Furthermore, it would be
useful to compare its performance with that of previous methods based on ancestral
inbreeding, and to characterize the possible biases of our method regarding the estimates
of d and 6 caused by the approximate nature of our IP model, as well as their predictive
implications. This exploration needs to analyze a wide range of simulated situations,
including different population sizes, generation numbers and distributions of the

deleterious effects, and will be addressed in a different paper.
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Abstract

The consequences of inbreeding on fitness are of main importance in evolutionary
and conservation biology, but can critically depend on genetic purging. However,
estimating purging has proven elusive. We assay the performance of the Inbreeding-
Purging (IP) model and of models based on ancestral inbreeding to detect and estimate
purging from fitness data in simulated pedigreed populations, and explore the reliability
of the predictions obtained using these estimates. First, we compare several estimation
methodologies and conclude that numerical non-linear regression is to be preferred to
linear regression of log-fitness data or to logistic regression for binary fitness data. Using
this numerical estimation method, we find that both the IP and Ballou’s ancestral
inbreeding models have similar power to detect purging from slow inbreeding data, but
Ballou’s model produces many false positives when based on few generations of quick
inbreeding, as it uses to happen for many endangered populations. Both models produce
reliable estimates of the rate of inbreeding depression from short-term data, while they
give biased estimates from data of long lasting inbreeding processes. However, IP
estimates have smaller standard errors. Under the IP model, data from long lasting
inbreeding processes gives downwardly biased estimates for both the rate of inbreeding
depression and the purging parameter, but these biases cancel each other so that the joint
estimates produce quite reliable predictions for the evolution of mean fitness. Thus, using
the estimates obtained into the corresponding model, we find that Ballou’s model
produces quite erratic predictions, while IP predictions are accurate as far as the

population size is not too small.
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Introduction

Inbreeding depression is a major threat to the survival of small endangered
populations. It is mainly due to the increase in the frequency of homozygous genotypes
for recessive deleterious alleles, which leads to fitness decay and can boost the risk of
extinction (Lande 1994, Hedrick & Kalinowski 2000, O’Grady et al. 2006, Charlesworth
& Willis 2009). However, under inbreeding, selection can be more efficient, as
deleterious recessives that normally escape selection can be purged when exposed in
homozygosis, resulting in a reduction of fitness depression and, potentially, in some

fitness recovery (Garcia-Dorado 2012, Garcia-Dorado 2015).

While important inbreeding depression has been often demonstrated (Crnokrak &
Roff 1999, O’Grady et al. 2006), there is less evidence on the effect of genetic purging,
and many studies have failed to detect it, both in wild or captive populations, or it’s
magnitude has been found to be small (Ballou 1997, Bryant et al. 1999, Boakes et al.
2007, Kennedy et al. 2014). Nonetheless, failure to detect purging does not mean purging
is irrelevant in actual populations, as it may pass undetected in many situations (Hedrick
& Garcia-Dorado2016, Lopez-Cortegano et al. 2016). Developing methods and tools to
detect and evaluate purging is of critical importance in conservation, as it may help to

improve management policies.

The first models aimed to detect purging on fitness from pedigree data used an
ancestral inbreeding coefficient (F,) in the purging term (Ballou 1997, Boakes et al.
2006). This coefficient, first described by Ballou (1997), represents the average
proportion of an individual’s genome that has been in homozygosis by descent at least
once in one ancestor. Its interest in purging analysis is that recessive deleterious alleles

can be purged in inbred ancestors, so that individuals with higher F, are expected to carry
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fewer such alleles than those with the same level of inbreeding and lower FE, values, and

should therefore have higher fitness.

More recently, an Inbreeding-Purging (IP) model has been developed that produces
good predictions for the joint consequences of inbreeding and purging. This model
predicts the evolution of mean fitness under inbreeding as a function of the “purged
inbreeding coefficient” (g), which represents Wright’s inbreeding coefficient adjusted for
the reduction in frequency of the deleterious alleles ascribed to purging, so that it can be
used to predict the increase in homozygosis for these alleles. This purged inbreeding
coefficient g can be predicted using a purging coefficient (d) that represents the
enhancement of selection under inbreeding (Garcia-Dorado 2012). The model was
derived under the assumption of a constant d value across loci, so that d represented the
recessive component of the deleterious effect. However, using extensive simulation it was
shown that, when d varies across loci, reliable predictions can also be obtained by using
an empirically defined effective purging coefficient. This IP model predicts the evolution
of mean fitness and of inbreeding load (B) in the population. Thus, using this model, the
effective purging coefficient has been estimated from the evolution of mean fitness in
experiments carried out with the fruit fly Drosophila melanogaster, the IP model giving
a much better explanation of such evolution than a model without purging (Bersabé &
Garcia-Dorado 2013, Lopez-Cortegano et al. 2016). Furthermore, equations have been
derived in order to apply the IP model to predict the fitness of pedigreed individuals and,
using this approach, a free software package PURGd has been developed that analyzes
such pedigreed data to estimate IP parameters, i.e., the rate of inbreeding depression &
(which represents the rate at which fitness would decline with increasing inbreeding in
the absence of purging) and the effective purging coefficient d (Garcia-Dorado 2012,

Garcia-Dorado et al. 2016).
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However, it should be pointed out that the IP model produces very good but not
exact predictions, particularly when d varies across loci so that predictions are based on
the empirical effective purging coefficient. This implies that maximizing the fit of IP
predictions to the available data can lead to some bias for the estimates of IP parameters
(6 and d). The reliability of the method depends on whether these estimates, despite their
possible bias, produce reasonable IP predictions for scenarios that are different from those

characterizing the data used in the estimation process.

Here, we first analyze fitness data of simulated pedigreed individuals undergoing
inbreeding and purging, in order to investigate how often the IP and F,-based approaches
allow detecting purging and the extension to which the estimates of the model’s parameter
depend upon the rate of increase of inbreeding (here determined by the population size
N) and the length of the inbreeding period (t) characterizing the data. Then, we explore
how reliable are both IP and F,-based predictions for (N, t) scenarios different from those

used to estimate the model’s parameters.

Material and Methods

THE SIMULATED POPULATIONS

Simulations were performed under a mutation-selection-drift (MSD) scenario,
where a population of size N = 103 is simulated over 10* generations to obtain a base
population that can be assumed to be at the MSD balance. Mutations occur at a rate A per
genome and generation, and have selection coefficient s and degree of dominance h, so
that fitness is reduced by h-s and s when the mutant allele is in heterozygosis and

homozygosis, respectively. Fitness is multiplicative across loci. Details on the program
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are described in Bersabé et al. 2016.

Two main cases are considered that roughly account for the larger inbreeding load
detected in the wild, compared to that of captive populations (Ralls et al. 1988, O’Grady
et al. 2006, Hedrick and Garcia-Dorado 2016). In both cases, a variable selection
coefficient is sampled from a gamma distribution with shape parameter « = 371 and rate
parameter B = a./ E(S) , where E(S) stands for the expected s value. Then a variable degree
of dominance is sampled from a uniform distribution ranging between 0 and e~7>, as in
Pérez-Figueroa et al. 2009. In both cases, s values larger than 1 were assigned s = 1. For
the CAPTIVE case, both the mutation rate and the average selection coefficient are lower
than in the WILD case, giving a larger average degree of dominance (E(h)). These

mutational parameters are summarized in Table 1.

E(s) E(h) A
CAPTIVE 0.1 0.337 0.1
WILD 0.2 0.283 0.2

Table 1: Genetic parameters used in simulations corresponding to the two different
cases studied: CAPTIVE and WILD. These parameters include the expected (E) values of
the selection coefficient (s, gamma distributed with shape parameter 1/3) and of the degree of

dominance (h. uniformly distributed between 0 and e, and the mutation rate (A).

For each case considered, 10 base populations were simulated. Lines of reduced
size N=10, N=25 and N=50 were generated from the corresponding base populations at
the MSD equilibrium (250, 100 and 50 replicates, respectively, the 10 base population
contributing equal numbers of replicates for each size). All lines were simulated during

2N generations following the same protocol as for the base populations (i.e., under

mutation, selection and drift), and pedigrees and individual fitness were recorded.

112



ESTIMATION OF INBREEDING DEPRESSION AND PURGING

IP Model: This model predicts fitness as a function of a purged inbreeding coefficient g
that is defined as Wright’ F inbreeding coefficient corrected for the reduction in frequency
of deleterious alleles expected from purging. This g coefficient is computed as a function
of a purging coefficient d (Garcia-Dorado 2012). For a model with constant effects across
loci, d=s(1/2-h). For models where deleterious effects vary across loci, an effective
purging coefficient, here referred to just as purging coefficient d for simplicity, is defined
empirically as that producing the best predictions when used into the IP equations. The
model can predict either the average fitness expected at generation t (W;) or the expected
fitness for individual i with pedigree records (Wi). Garcia-Dorado et al. (2016) give
general equations to compute gi in pedigrees with overlapping generations. In the case of

individual fitness,

W, =W, -e %9 (1)

where 6 is the rate of inbreeding depression, gi is the purged inbreeding coefficient

calculated using d, and Wy is the expected fitness in the non-inbred population.

Note that, if natural selection is relaxed during the inbreeding period, g can be
replaced with F and 6 equals the inbreeding load B in the base population, computed as
the sum over loci of 2s(1/2-h)pq, as defined by Morton et al. (1956), where p and q are
the frequency of the wild and deleterious alleles, respectively. Thus, the inbreeding load
B can be interpreted as the rate of inbreeding depression expected in the absence of

selection.

However, in the presence of natural selection, purging is taken into account by using
g instead of F. Furthermore, under slow inbreeding, non-purging selection should be
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taken into account by using the Full Model approach (FM) in Garcia-Dorado (2012). This
approach considers that, in any population, non-purging selection can continuously cancel
the inbreeding depression ascribed to the inbreeding load expected at the Mutation-
Selection-Drift (MSD) balance. Thus, after a reduction in size, while the population
transits to the new MSD balance with equilibrium inbreeding load B*, standard selection
cancels the inbreeding depression ascribed to B*. Therefore, to account for the
consequences of mutation and non-purging selection during the transition from the
original MSD balance in the base population (with inbreeding load B) to the new MSD
balance for the population size of the lines (with inbreeding load B*), we use the FM rate
of inbreeding depression drm= B — B*. Thus, if the size of the lines equates that of the
base population, then B = B*, and the Full Model predicts no inbreeding depression (drm
=0), as expected. For small lines, B* can be neglected and we can use 6 = B, as usually
assumed. We will compute the inbreeding loads (B or B*) expected at the MSD balance
by averaging predictions obtained from Equations 10 and 13 in Garcia-Dorado 2007 over
10 s,h values sampled from the corresponding joint distribution, where s values larger

than 1 where assigned s=1 as in the simulation process.

For each pedigree generated, we estimated the purging coefficient d and the
inbreeding depression rate § using the PURGd software package (Garcia-Dorado et al.

2016). These estimates were obtained running the two methods available in PURGd.

First, we used the linear regression method for log-fitness (LR), which uses log-

fitness data to fit the logarithmic transformation of Equation 1:

In(Wi)=a+bug,

where a = E[In(Wo)] (E stands for expected value). It should be noted that the slope b of

individual log-fitness on g is larger than the rate of inbreeding depression for the expected
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fitness (). For effects constant across loci and known d, an estimate of & can be computed

from b as

§=2db/In(1-2d), )

(Garcia-Dorado et al., 2016). In practice, since d varies across loci, we inferred &

using our estimates d of the effective purging coefficient in Equation 2.

Second, we used the numerical non-linear regression method (NNLR) with
untransformed fitness data to fit predictions from Equation 1 by numerically searching
for estimates that minimize the residual sums of squares (RSS). To check for the quality
of the numerical algorithm, we estimated the genetic parameters for each pedigree as the
result of a single run (x1) and as the average results of five (x5) and ten (x10) independent

runs.

The expected value in the non-inbred population (E(Wo) or E[In(Wo)], depending
on the estimation method) was obtained in a previous step as the mean fitness of non-
inbred individuals with non-inbred ancestors (F = F, = 0), as explained in Garcia-

Dorado et al. 2016).

For each replicate, the statistical significance of the NNLR estimate for d was tested
against the null hypothesis d=0 using bootstrap as follows. The squared residual error was
computed for each individual i as ei?= [Wi — E(Wi)]?, where W; is the fitness of individual
i and E(W;) is its expected value computed using the IP approach. Two ei? values were
obtained. One predicting E(Wi) by using in Equation 1 the estimates of 6 and d obtained
from the same replicate (ei%s). The other one (&%), using into Equation 1 d=0 and the
corresponding NNLR estimate of 6 (obtained in the same replicate by assuming d=0 as a
known parameter). Then, we computed the variable Di = ei% - ei%s, with mean MD, that
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measures how much the prediction of fitness for individual i improves by including
purging. Then, in order to infer the distribution of D; under the null hypothesis we define
Yi = Di-MD, with mean 0, and we obtained 10* bootstrap samples for Yi of the same size
as the replicate. For each replicate, we decide that the estimate of purging (d > 0)
significantly improves the fitting to the data compared to a non-purging null hypothesis
(i.e., compared to d =0) when the mean for Y was larger than MD in at most 5% if the

bootstrap samples. This bootstrap method has been incorporated to PURGd.

Ancestral Inbreeding models: Ballou (1997) defined the ancestral inbreeding
coefficient (Fa) as the fraction of an individual’s genome that has been in homozygosis
by descent in at least one ancestor, calculated in terms of the inbreeding coefficient (F)
and the ancestral inbreeding coefficient of the individual’s parents (sire S, and dame D)

as

1
Fo=J{Faw) + [1 = Fa)  Fioy + Fas) +[1 = Fa(s)] - Fis)} €)
Thus, Fa is connected with the purging opportunities in the ancestors of an
individual. Ballou proposed a linear model to fit the joint effect of inbreeding and purging

on individual fitness, given by

Wi =Wy -br F+ bera F. Fa,
where bp is the partial regression coefficient that gives the decline of fitness with
increasing inbreeding (F) for any constant value of the product F-Fa and, according to
Ballou, it represents the rate of inbreeding depression, while the coefficient brra measures
the increase of fitness in inbred individuals due to reduced inbreeding depression, caused

by purging in their ancestors.

Since we use a multiplicative fitness model, we write Ballou’s model as
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W; = W, - e bFF@*PrraFayFaw (4)
Two additional linear models have been proposed by Boakes and Wang (2005) to
analyze purging using ancestral inbreeding. The first of these two models (BW) considers
that the effect of purging on fitness does not depend on the level of inbreeding but just on

previous purging opportunities. For multiplicative fitness, this model is written as

Wi — WO . e_bF'F(i)+bFaFa(i) , (5)
where the coefficient of the purging term by is the average rate of increase of

individual fitness due to the opportunities of purging in the ancestors.

Finally, Boakes and Wang also proposed a mixed “Ballou-Boakes & and Wang”
model (here B-BW) (2005) where the purging term is the sum of those in Ballou and BW

models, giving

W; = W, - e PFF@+PraFa@ tPrraF iy Faw, (6)

Both Ballou and Boakes and Wang tested their models fitting dichotomical (0, 1)
fitness data, and used logistic regression in their analysis. However, in order to compare
ancestral inbreeding and IP approaches under similarly optimum conditions, we simulate
and analyze fitness data as a continuous variable defined in the interval (0, 1). When
linearizing Fa-based models by taking logarithms, 6 cannot be inferred from the br
estimate obtained by fitting Equation 2, as Fa -based approaches do not give an estimate
for d. Therefore, we use the NNLR method to directly fit the predictions of the above
exponential equations to untransformed fitness data. We have also analyzed dichotomical
fitness data using Ballou’s model both with the NNLR and the Logistic methods (see

Supplementary Material).

A bootstrap contrast analogous to that performed in the NNLR IP analysis was used
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in each replicate to test the significance of purging in Ballou’s analysis. Thus, squared
residuals (ei?= [Wi— E(Wi)]?) were obtained computing E(W;) using into Equation 4 the
estimates of br and brra obtained in the replicate (ei%), or using brra=0 and the
corresponding estimate of b (ei%). Then bootstrap was performed for the mean of the
variable Di = e - e, as in the IP model. Significant purging was detected in the
replicates with brra > 0 where at most 5% of the bootstrap samples had mean values larger

than the mean of D; = ei% - ei% obtained in the replicate.

Non-Linear Regression coefficients for Fa-based models, as well as bootstrap
errors, were computed using an update of PURGd. As in the case of the IP model, the
intercept was obtained in a previous step as the mean fitness for non-inbred individuals

with non-inbred ancestors (F = F, = 0).

ANALYSIS OF THE PREDICTIVE VALUE OF THE
ESTIMATES

In order to evaluate the predictive value of the parameters estimated in the previous
section, we use estimates obtained from different numbers of generations (t) in lines of
different size (N), to predict the evolution of average fitness in lines maintained with
different population sizes (crossed predictions). We check how these predictions fit the
corresponding simulated data by graphically comparing the observed and predicted

evolution of mean fitness.

In the case of the IP model, predictions of the expected fitness at generation t (W)
are computed using the equation for the evolution of mean fitness, obtained by replacing
Wi and gi in Equation 1 with their expected values at generation t (Wi and gi). For this

purpose, g: is computed as a function of N using the expression provided in Garcia-
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Dorado (2012) and, when using LR estimates, & is inferred using the estimates of b and d
into Equation 2. A neutral prediction is also obtained by replacing g: with the standard
inbreeding coefficient (F(t)) into Equation 1 and using the inbreeding load computed in

the simulated population (6 = Bsim).

In the case of models based on ancestral inbreeding, predictions for mean fitness
are obtained replacing F; and Fa in Equations 4-6 with their expected value through
generations, F(y) and Faw. Below we derive an expression for the expected evolution of
ancestral inbreeding through generations in a panmictic populations maintained with

effective size N.

From equation 3, since the expected Fa values (or F values) are the same for sires
as for dams, the average ancestral inbreeding at generation t can be computed by iterating

the expression

Faw) = Faqt-1y +[1 = Fae-1)] - Fie=1y »

t
which, noting that F;, = 1 — (1 — %) and rearranging, gives

Fay=1-(1- %)H 1= Faeen) @)
In addition, an expression giving the expected ancestral inbreeding after t
generations can be derived. For simplicity, we define x, = 1 — F, y and k = (1 — %),
so that Equation 7 can be written as x, = x,_, - k*~1. Therefore, since xo=1, the expected

value of x:can be computed as

; t-1
Xt = Xo Hlt;& ki = kzizo t = g tEn2

and, replacing xtand k into this expression and rearranging, we obtain

1
1 \5t=1)

Fay=1—(1-— (8)
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Results

IP ESTIMATES OF THE RATE OF INBREEDING DEPRESSION AND
THE PURGING COEFFICIENT

The inbreeding loads in the simulated base populations (Bsim) were close to the
corresponding expectations (B) (Tables 2 and 3). For N=10, we obtain rm =~ B, as usually
assumed. However, 6rm declines when larger sizes are considered and, in agreement with
this prediction, the estimates of 6 in Tables 2 and 3 also show a reduction for larger lines.
In general, the estimates of 6 are close to their expected values (3rm) When based in N/2
generations, standard errors being smaller for NNLR than for LR estimates, but

estimates based in longer periods become downwardly biased.

Both the LR and the NNLR methods produce large estimates of d indicating substantial
purging (Tables 2 and 3 for the CAPTIVE and WILD cases, respectively). There is a
trend for a reduction of d when estimated from longer inbreeding periods, which is

associated to a parallel reduction in the estimate of 3. As expected, the estimates
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CAPTIVE B Bsim SFMm dLR SNNLR dLRr dNNLR - d(em)
t=N/2 0.5388 0.5667 0.2563 0.2572 0. 2856
+0.0282 +00185 00145 +00136 +0.0144

N=10 t=N 0.6266 0.5828 0.5540 0.5090 0.5511 0.2629 0.2568 0.2860
+0.0144 +0.0234  +0.0166  +0.0127 +0.0121 +0.0119

t=2N 0.4941 0.4955 0.2226 0.1981 0.2492
+0.0209 +0.0149 +0.0107 +0.0099 +0.0103

t=N/2 0.4311 0.5152 0.3132 0.3065 0.3018
+0.0315 +0.0205 +0.0199 £0.0193  £0.0212

N=25 t=N 0.6266 0.5828 0.5006 0.4332 0.4784 0.2753 0.2553 0. 2956
+0.0144 +0.0290 +0.0212 +0.0171  +0.0172 +0.0173

t=2N 0.4155 0.4046 0.2048 0.1902 0. 2551
+0.0274 +0.0187 +0.0174 +0.0167  +0.0168

t=N/2 0.4048 0.5004 0.3296 0.2915 0.2781
+0.0302 +0.0266 +0.0245 +0.0247  +£0.0281

N=50 t=N 06266 0.5828 04448 04261 04352 02339  0.2018  0.2371
+0.0144 +0.0280 +0.0234 +0.0234 +0.0216 +0.0221

t=2N 0.3972 0.3745 0.1495 0.1499  0.1958
+0.0271 0.0195 +0.0190 0.0199 +0.0201

Table 2. Estimates of rates of inbreeding depression and purging coefficients in the CAPTIVE case from lines of different sizes (N) and different
numbers of generations (t). Estimates are averaged over replicates, and are given with their empirical standard errors. This table gives the expected (B)
and observed (Bsiv) inbreeding load in the base population, and the Full-Model rate of inbreeding depression expected in the lines (drm) together with
the corresponding PURGd estimates obtained from the LR or NNLR methods (5.r and dnnir). It also gives the corresponding estimates of the purging

coefficient (dir and dnncr). A NNLR estimate of d is also obtained by forcing PURGA to use 8gm as the known rate of inbreeding depression (d(3¢ m )).



WILD B Bsim 3V dLR 3NNLR - dLR dNNLR (e )
t=N/2 1.8004 2.2899 0.2976 0.3233 0.3476
+0.0461 +£00541  +00145 +00131 +0.0130

N=10 t=N 2.5511 2.5370 2.2846 1.6368 2.1213 0.3130 0.3099  0.3650

+0.0460 +0.0653 +0.0464 +0.0112 +0.0099  £0.0092

t=2N 1.6547 1.8043 0.2459 0.2196 0.3015
+0.0600 +0.0392 +0.0092 +0.0076  +0.0082

t=N/2 1.3330 2.0721 0.3932 0.4108 0.4239

+0.0916 +0.0574 +0.0146 +0.0111  £0.0110

N=25 t=N 2.5511 2.5370 2.0926 1.4348 1.8381 0.3409 0.3191 0.3867
+ 0.0460 +0.0812 +0.0519 +0.0129 +0.0122  +0.0102

t=2N 1.4333 1.4282 0.2513 0.2050 0.3221
+0.0752 +0.0461 +0.0140 +0.0116  £0.0113

t=N/2 1.1489 1.8686 0.4022 0.3954 0.4036
+0.0830 +0.0626 +0.0165 +0.0159  £0.0152

N=50 t=N 2.5511 2.5370 1.8861 1.2683 1.6301 0.3283 0.3116 0.3675
+0.0460 +0.0797  £0.0527  £0.0200 +£0.0179  +0.0158

t=2N 1.2512 1.4010 0.2684 0.2539  0.3389
+ 0.0863 +0.0632 +0.0215 +0.0218  +0.0177

Table 3. Estimates of rates of inbreeding depression and purging coefficients in the WILD case from lines of different sizes (N) and different numbers
of generations (t), Estimates are averaged over replicates, and are given with their empirical standard errors .This table gives the expected (B) and
observed (Bsiv) inbreeding load in the base population, and the Full-Model rate of inbreeding depression expected in the lines (rm) together with the
corresponding PURGd estimates obtained from the LR or NNLR methods (8.r and dnnir). It also gives the corresponding estimates of the purging

coefficient (dir and duner). A NNLR estimate of d is also obtained by forcing PURGA to use drm as the known rate of inbreeding depression (d(6r m ))



of this purging parameter are always larger in the WILD case than in the CAPTIVE one.
In the NNLR method, estimates are very similar regardless of the number of runs
averaged (results not shown). Thus, no more than one run should be needed to estimate
purging parameters, though this may change if additional factors were included (i.e.
environmental factors) adding dimensions and complexity to the model. The estimates

presented here were obtained from just one run.

In addition we have also estimated the purging coefficient by forcing PURGd to
use orm as the known rate of inbreeding depression (also shown in Tables 2 and 3). These
estimates are only obtained using the NNLR method, as the expected value of the
coefficient b for individual log-fitness on g is larger than 6rm. It is interesting that these
NNLR estimates of d obtained from lines of different sizes or from different numbers of
generations are more consistent than when both d and & are jointly estimated from the
data, and are more similar to those obtained by jointly estimating d and & using data from
t=N/2 generations. This suggests that bias due to overfitting can be reduced if an unbiased

estimate of & can be obtained independently.

ESTIMATES OF THE COEFFICIENTS IN ANCESTRAL
INBREEDING MODELS

Tables 4 and 5 show the estimates of non-linear regression coefficients for Fa-based
models, obtained using the NNLR method. In both Ballou’s and B-BW models, -br
estimated from short term data for different population sizes (N) gives reasonable

estimates of the expected rate of inbreeding depression (6rm), although standard errors
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CAPTIVE Ballou BW B-BW
br brr, br br, br brr, br,
t=N/2 -0.5529 0.1529 -0.5396 0.0410 -0.5556 0.0562 0.0325
+0.0217 +0.0842 +0.0185 +0.0119 +0.0219 +0.1167 +0.0159
N=10 t=N -0.5687 0.2888+ -0.5151 0.0777 -0.5847 0.2114 0.0381
+0.0202 0.0279 +0.0157 +0.0074 +0.0198 +0.0327 +0.0082
t=2N -0.6247 0.4040 -0.3536 0.0565 -0.6163 0.3921 0.0010
+0.0214 +0.0222 +0.0113 +0.0064 +0.0212 +0.0250 +0.0073
t=N/2 -0.5757 0.4655 -0.5000 0.0517 -0.5774 0.2832 0.0212
+0.0246 +0.0398 +0.0173 +0.0072 +0.0238 +0.0500 +0.0097
N=25 t=N -0.6006 0.4139 -0.3982 0.0601 -0.6232 0.3678 0.0237
+0.0282 +0.0261 +0.0138 + 0.0055 +0.0268 +0.0319 +0.0075
t=2N -0.6885 0.5644 -0.1393 0.0000 -0.6248 0.5319 -0.0160
+0.0411 +0.0397 +0.0112 +0.0059 +0.0324 +0.0356 +0.0076
t=N/2 -0.5506 0.3265 -0.4965 0.0504 -0.6096 0.2434 0.0319
+0.0361 +0.0434 +0.0206 + 0.0057 +0.0392 +0.0569 +0.0080
N=50 t=N -0.6534 0.5009 -0.2430 0.0212 -0.7498 0.5476 0.0167
+0.0458 +0.0440 +0.0149 +0.0052 +0.0563 +0.0575 +0.0061
t=2N -0.7228 0.6377 -0.0575 -0.0176 -0.6363 0.5961 -0.0222
+0.0515 +0.0523 +0.0105 +0.0054 +0.0608 +0.0595 +0.0077

Table 4: Non-linear regression coefficients estimated in the CAPTIVE case for Ballou’s model (B), BW model and B-BW model using the
NNLR method in pedigrees of different populations sizes (N=10, N=25 and N=50) and numbers of generations (t = N/2,t = Nandt =

2N). Estimates are averaged over replicates, and are given with their empirical standard errors.



WILD Ballou BW B-BW

br brr, be br, br brr, br,
t=N/2 -2.4140 2.0244 -2.2974 0.3210 -2.4481 1.3741 0.1763
+ 0.0657 +0.2515 +0.0581 +0.0438 +0.0678 +0.2922 +0.0531
N=10 t=N -2.2623 1.4595 -2.0940 0.4605 -2.4021 0.9985 0.2456
+ 0.0554 + 0.0658 +0.0468 +0.0222 +0.0579 +0.0936 +0.0297
t=2N -2.5070 1.9002 -1.2819 0.3079 -2.5667 1.8801 0.0465
+0.0663 +0.0648 +0.0301 +0.0154 +0.0637 +0.0702 +0.0232
t=N/2 -2.2362 1.7462 -2.0815 0.3174 -2.3632 1.0976 0.1932
+ 0.0660 +0.0914 + 0.0542 +0.0150 +0.0701 +0.1221 +0.0217
N=25 t=N -2.2581 1.7819 -1.4159 0.2771 -2.6589 1.7863 0.1499
+0.0731 +0.0732 +0.0336 +0.0124 +0.0781 +0.0782 +0.0165
t=2N -2.5705 2.2831 -0.3195 -0.0195 -2.4440 2.2108 -0.0330
+0.0806 +0.0799 +0.0193 +0.0099 +0.0931 +0.0930 +0.0147
t=N/2 -2.1444 1.6447 -1.9312 0.2697 -2.5151 1.1384 0.1994
+0.0805 +0.0899 +0.0525 +0.0133 +0.0929 +0.1004 +0.0184
N=50 t=N -2.4045 2.1059 -0.6156 0.0709 -2.6501 2.1502 0.0678
+ 0.0966 +0.0941 +0.0271 +0.0102 +0.1028 +0.1070 +0.0149
t=2N -2.6496 2.4997 -0.0908 -0.0448 -2.4896 2.4214 -0.0421
+0.1065 +0.1066 +0.0144 +0.0089 +0.1217 +0.1323 +0.0128

Table 5: Non-linear regression coefficients estimated in the WILD case for Ballou’s model (B), BW model and B-BW model using the NNLR method in
pedigrees of different populations sizes (N=10, N=25 and N=50) and numbers of generations (t = N/2, t = N and t = 2N). Estimates are averaged

over replicates, and are given with their empirical standard errors.



are larger than in the IP model. These estimates tend to increase when based in more

generations of inbreeding, leading to values well above 6rm in the WILD case.

The estimates of the coefficients for terms including Fa usually take positive values

indicating purging, but vary depending on N and t in an unpredictable way, particularly

for BW and B-BW models where br, takes even negative values in some cases.
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Figure 1: Evolution of mean fitness in simulated lines (red) and the corresponding predictions

obtained using Fa-based models. Predictions are computed for two different cases,
CAPTIVE and WILD, and three different population sizes (10, 25 and 50) over 2N

generations using the coefficients estimated from the same lines and number of

generations. Three models based on ancestral inbreeding are used: Ballou’s (green), BW

(yellow) and B-BW model (black dotted), as well as a prediction without selection (grey).
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Figure 1 illustrates how different Fa -based models fit the data for lines of different
sizes, by showing the observed evolution of fitness during 2N generations together with
the corresponding predictions computed using coefficients estimated from the same data.
BW model fits the data poorly, showing a systematic overestimation of fitness during the
first N generations and an increasing underestimation later, while Ballou’s model fitting
is remarkably good. B-BW model does not improve fitting over Ballou’s one, which is
not surprising as by, estimates are usually small. Therefore, hereafter we will use

Ballou’s model to evaluate the predictive value of Fa-based methods.

THE EFFICIENCY OF IP AND BALLOU’S MODELS TO DETECT PURGING

Table 6 gives the percent of replicates were a model including purging fitted the
data significantly better than a non-purging model, both for the IP or Ballou approaches.
Results are from bootstrap contrasts on NNLR estimates, as this estimation method gives
lower standard errors than LR analysis and produces estimates for the rate of inbreeding
depression (9). For both models, purging detection is more likely in larger lines and when
larger periods are available, as expected from more efficient purging and a larger sample
sizes. Detection is also more likely for the WILD than for the CAPTIVE case, as there

are more mutations with large d values.

Under both IP and Ballou’s models, the proportion of detected cases in the more
adverse situation (N=10, t=N/2, CAPTIVE) is smaller than 5%. This suggests that the test
is conservative. It also implies that, although both approach detect purging when
estimates are averaged over replicates in that adverse situation, they are not able to do so
when replicates are separately considered. In the more favorable cases, both IP and Ballou

models give substantial detection rates, usually somewhat larger for the former model.
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CAPTIVE 1P BALLOU WILD 1P BALLOU

N=10 t=N/2 2.4 1.6 N=10 t=N/2 13.6 5.2
N=10 t=N 3.6 4.4 N=10 t=N 31.2 24.8
N=10 t=2N 28.8 19.6 N=10 t=2N 81.6 74
N=25 t=N/2 14 8 N=25 t=N/2 52 36
N=25 t=N 49 29 N=25 t=N 95 90
N=25 t=2N 68 65 N=25 t=2N 97 99
N=50 t=N/2 36 26 N=50 t=N/2 94 94
N=50 t=N 74 58 N=50 t=N 100 100
N=50 t=2N 80 74 N=50 t=2N 96 100

Table 6: Purging detection. Percent of replicates were a model including purging fitted the data
significantly better than a non-purging model. Results are for NNLR analysis under the IP or
Ballou approaches, both for CAPTIVE and WILD mutational models (bootstrap contrasts
with a=0.05).

THE RELIABILITY OF PREDICTIONS OBTAINED USING
ESTIMATES IN IP AND BALLOU’S MODELS

We evaluate the reliability of IP predictions for the evolution of fitness for each set
of lines (N=10, 25 or 50) during 2N generations using 6 and d NNLR estimated from lines
maintained with different sizes during different numbers of generations. Figure 2 gives
these IP predictions, both for the CAPTIVE and WILD cases, together with the prediction
obtained assuming no selection and using the inbreeding load of the base population (6 =

Bsiv), and with the observed evolution of mean fitness.

IP predictions remain quite accurate up to the first N generations. Although they
tend to overestimate fitness in the long term, this bias is usually small, with the exception

of N=10 lines in the WILD case. In general, there is a slight trend for long-term fitness
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being better predicted using (8, d) estimates from long term data. Furthermore, predictions
computed using (3, d) estimates obtained from small lines, where purging tends to be

overwhelmed by genetic drift, tend to underrate fitness.
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Figure 2: Observed fitness for the CAPTIVE (up) and WILD (down) cases, and the
corresponding prediction obtained using NNLR estimates in IP model. In each panel,
observed and predicted values over t=2N generations correspond to the population size
indicated in the column (N=10, N=25 and N=50), and different predictions are plotted
using estimates obtained from different data sets, denoted by different colors and
strokes as shown in the lateral panel. Neutral predictions, computed assuming no selection

and using the inbreeding load observed in the simulated base population (Bsim) are also shown.

In any case, despite the variability observed between (8, d) estimates obtained from

different data sets (Tables 2 and 3), IP predictions remain quite accurate and fit the data
129



much better than a model assuming no selection, as reductions in the estimate of &
obtained from longer periods are compensated by reductions in the corresponding

estimate of d.

Similar results obtained using LR estimates are given in the Supplementary
Material (Figure S1), showing that NNLR estimates give slightly better fitness predictions
than LR ones. Taking into account this result, as well as the smaller standard errors of
NNLR IP estimates compared to LR ones, and the fact that the LR analysis of Fa-based
models do not give an estimate for 6, only NNLR results will be used to compare IP and

Fa based models.

Figure 3 shows a similar evaluation of the reliability of Ballou’s predictions
computed using NNLR estimates of the coefficients obtained from different data sets
(Tables 4 and 5). As expected, the best fitting is obtained when mean fitness is observed
in the same data set where the coefficients used to obtain predictions had been estimated.
Fitting also improves when estimates are based in longer inbreeding periods. Predictions
are generally reliable during the first few generations, where purging is irrelevant.
However, they become unreliable later on. Predictions that used parameters estimated in
smaller lines underestimate long-term fitness, while those obtained from larger lines tend

to overestimate medium-term fitness but can still underestimate fitness later on.
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Figure 3: Observed fitness for the CAPTIVE (up) and WILD (down) cases, and the
corresponding prediction obtained using NNLR estimates in Ballou's model. In each panel,
observed and predicted values over t=2N generations correspond to the population size
indicated in the column (N=10, N=25 and N=50), and different predictions are plotted
using estimates obtained from different data sets, denoted by different colors and
strokes as shown in the lateral panel. Neutral predictions, computed assuming no selection

and using the inbreeding load observed in the simulated base population (Bsim) are also shown.

Thus, Ballou’s predictions are highly dependent on the conditions used to estimate
the coefficients of the model, fitness predictions at generation t=2N being very erratic.
The same analysis was performed for the BW model, giving even less reliable predictions

(data not shown).

Comparison of figures 2 and 3 show that IP predictions are more accurate than those
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of Ballou’s Fa -based model, the IP model being able to reasonably predict the evolution

of fitness using parameters estimated under different conditions.

Discussion

We have analyzed the performance of the Inbreeding-Purging model (IP) and of
models based on ancestral inbreeding (Fa) to detect, measure and predict purging using
simulated fitness data of pedigreed individuals. Simulated populations were maintained
with size N=1000 until they reached the MSD balance and then replicated lines were
drawn and maintained at smaller size (N=10, 25 or 50) during 2N generations. The IP
model is based on the expected effect of selection against the recessive component of
deleterious effects (d) exposed in homozygotes due to inbreeding, while the Fa approach
Is based on the statistical fitting of models including inbreeding (F) and ancestral

inbreeding (Fa) terms.

THE ESTIMATION METHODS

Since we assume that fitness is multiplicative across loci, both IP and Fa models
produce exponential predictive equations for fitness. In order to estimate the parameters
of the models we have used PURGd software (Garcia-Dorado et al. 2016), which offers
two alternative methods. The first one uses linear regression (LR) to fit the linear model
obtained by log-transforming the exponential predictive equations. The second one
consists on numerically fitting the non-linear exponential equations to untransformed
fitness data. This numerical non-linear regression method (NNLR) has the advantage of
handling zero values, so that it can analyze binary (0, 1) fitness data. Furthermore, it has
the advantage of producing estimates of the rate of inbreeding depression (J) that can be

directly used to predict the evolution of average fitness, while the LR produces estimates

132



of the slope of log individual fitness on inbreeding (b) that are expected to be larger than

d.

The IP approach gives an opportunity to infer 6 from LR estimates by adjusting b
using the estimate of d, so we have used this IP approach to compare the LR and NNLR
methods. We have found that both methods produce good estimates for & when based on
data from the early phase of the inbreeding process (t=N/2), but estimates obtained using
NNLR have smaller standard errors (Tables 2 and 3). Obtaining & estimates from LR
analysis by separately adjusting b in each replicate, instead of adjusting average b with
the average d estimate, would produce additional downwards bias and larger standard
errors. Furthermore, NNLR estimates produce more accurate predictions for the evolution

of mean fitness than LR ones (Figures 2 and S1).

Previous investigations of Fa models for individual fitness handled binary (0, 1)
data that were analyzed using logistic regression (Ballou 1997, Boakes et al. 2007,
Ceballos and Alvarez 2013, Kennedy et al. 2014). In the Supplementary Material we
report an analysis of binary fitness data using Ballou’s model, illustrating that, as
expected, the coefficient br in the logistic model does not estimate the rate of inbreeding
depression but gives values much larger than d. Furthermore, NNLR estimates give
slightly better predictions for mean fitness than logistic ones (Figure S2). The analysis
also illustrates that binary fitness data leads to less accurate estimates and predictions than
the underlying continuous fitness variable, as they imply an important random error in
the observation of fitness. Using NNLR to fit the genetic exponential model to
untransformed fitness data has the advantage of avoiding the arbitrary (0, 1) codification
of fitness that has in occasions been used to allow logistic analysis and that can imply

important loss of information.
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Therefore, we encourage the use of the NNLR method and, hereafter, we discuss
the properties of both IP and Fa models using NNLR estimates obtained from

untransformed fitness data.

THE MUTATIONAL MODELS

We have analyzed fitness under two mutational models intended to explore the
consequences of purging against the inbreeding load expressed in wild or captive
populations. The rational for these mutational models is that, according to available
estimates, the inbreeding load in the wild seems to be up to four times larger than in
captive populations. Thus, we used a mutational model producing a small inbreeding load
at the MSD balance (CAPTIVE case) and another one producing larger inbreeding load
(WILD case). The inbreeding loads computed in the simulated base populations (Bsiwm,
Tables 2 and 3) were close to the corresponding expectations (B), and were smaller than
the average values reported in the literature (on the average B=~6 and B=1.5, respectively),
particularly in the WILD case (Ralls et al. 1988, O’Grady et al. 2006, Yun & Agrawal
2014, Hedrick and Garcia-Dorado 2016). It should be noted, however, that our base
populations have an effective population size (N=1000) that is relatively small for many
wild unthreatened population, and that the mutational parameters of our WILD case
predict B=6 for N=10% In any case, our purpose is not to obtain realistic predictions of
the inbreeding load in the wild, but to evaluate the properties of purging models under
different plausible distributions of the deleterious effects. Our estimates of the purging
coefficient d in the CAPTIVE case are larger than those estimated in non-competitive
conditions for Drosophila (Bersabé and Garcia-Dorado 2013), but the estimate obtained
in our WILD case is similar to that obtained in competitive conditions (Lopez-Cortegano

et al. 2016). In any case, our CAPTIVE and WILD cases parallel the non-competitive and
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competitive conditions of those experiment as, both in our two mutational models and in
the two Drosophila experiments, the WILD case gives larger inbreeding load but also
larger purging coefficient so that, under slow inbreeding, long term inbreeding depression

is small in both instances.

PERFORMANCE OF IP AND Fa MODELS

The inbreeding load in the base population (B) represents the rate of inbreeding
depression that would be expected in the absence of selection and it also represents the
rate of inbreeding depression with increasing g in the IP model (8 = B), as this model
accounts for purging selection but does not account for non-purging selection. However,
in relatively large lines, non-purging selection prevents the expression of a fraction of B.
This fraction equates the inbreeding load expected at the MSD balance for the new
reduced population size N. Thus, according to the Full Model (FM), that accounts for
non-purging selection, the expected value for 6 in Equation 1 is dem = B — B*, where B*
is the inbreeding load at the MSD balance corresponding to the size of the lines (Garcia-
Dorado, 2012). Thus, if the size N of the lines was close to the size of the base population,
drm and, therefore, the FM prediction of fitness depression, would approach zero, as it
should be expected. For the smaller lines (N=10), we expect 6rm = B, as usually assumed.
However, 6rm declines when larger lines are considered, due to their larger B*. In
agreement with these predictions, the IP estimates of 6 obtained using early data from
small lines produce good estimates of drm under both estimation methods (5.r and
ONNLR), i.€., 0 is close to SFM using up to t=N generations in the CAPTIVE case or t=N/2
in the WILD case; Tables 2 and 3). Nevertheless, these estimates show some reduction

when larger lines are considered
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However, the estimates of & become downwardly biased when based on longer
periods, which is associated to a reduction of the estimates of d. The reason is that, for t
= 2N, most purging has already occurred during a large proportion of the period
considered, and the model overfits long-term data by giving low & and d estimates. More
stable estimates of d can be obtained by introducing into the model the expected rate of
inbreeding depression (drm) as a known value for -b, as this reduces overfitting (in fact,
using the inbreeding load Bsim observed in the base population instead of drm makes little
difference; results not shown). In practice, drm iS unknown, but overfitting could be
reduced by using an estimate of 6 obtained by analyzing early generations in a previous

step (about t=N/2).

Despite the overfitting described above, each IP joint estimate of & and d produces
good predictions for the evolution of mean fitness over the whole range of line sizes,
with the exception of the smallest ones (N=10) for the WILD case where IP predictions
overrate fitness unless (6, d) were also estimated from the same data (N=10 lines).
Furthermore, (8, d) estimates obtained from N=10 lines slightly underrate medium term
fitness in larger lines. The reason is that, in the WILD case, there are more mutations
with effects small enough to escape selection under important drift. It has been found
that drift roughly overwhelms purging for Nd < 1 (Garcia-Dorado 2012), so that
mutations with d < 0.1 will hardly be purged in the N = 10 lines, and this mutation class
contributes twice the inbreeding load in the WILD case than in the CAPTIVE one (0.36
vs. 0.18). However, even in this N=10 case, IP predictions are much more accurate than

those computed ignoring purging.

However, IP predictions do not account for the fitness decline caused by the

continuous accumulation of newly arisen mutations, which explains why IP predictions
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tend to overestimate long-term fitness. This bias, although can be corrected in theoretical
situations (see Full Model approach in Garcia-Dorado 2012), is unknown in standard
practice. In our data, this mutational fitness decline is usually small for the periods
considered, again with the exception of the WILD case for N=10 lines. However, it
should be noted that this decline from new deleterious mutation continuously
accumulates in the long term, so that it can be dramatic for periods longer than considered
here. This result warns that, as well as inbreeding load seem to be larger in wild than in
captive populations, mutational decline in the wild could also be more threatening than
inferred from Mutation Accumulation experiments under laboratory non-competitive
conditions (Garcia-Dorado et al. 1999, Avila & Garcia-Dorado 2002, Garcia-Dorado
2003, Caballero et al. 2002, Halligan and Keightley 2009). However, excluding cases
where drift becomes relevant to the evolution of fitness in the period analyzed, our IP

estimates are reliable for predictive purposes (Figure 2).

In addition to the IP model, we used three different models estimating the dependence
of individual fitness on F and Fa, where this latter parameter (the ancestral inbreeding)
is used as an indirect measure of the purging opportunities in the individual’s ancestors.
According to Ballou (1997), when Fa is included into the model, the regression
coefficient of fitness on F (br) represents the rate of inbreeding depression 8. This can be
illustrated by considering the particular case Fa=0, where by estimates the rate of
inbreeding depression for fitness in non-purged individuals. In agreement with this
interpretation, br gives reasonable NNLR estimates of 6rpm When based on short-term
data, where F, is small. The meaning of br is less clear for Fa > 0 since, as shown in the
IP approach, the dependence of fitness on F among purged individuals depends on how

fast inbreeding has been produced and, therefore, it also depends on Fa. This explains
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why br becomes a poor estimator of drm When based on longer periods, showing

important bias of different sign depending on the model used.

In Ballou’s model, purging is measured by the coefficient (brra) Of the interaction
factor (F- Fa). Thus, this model considers that the role of purging is reducing inbreeding
depression and, therefore, only affects inbred individuals. Thus, brra measures the rate
of reduction of inbreeding depression with increasing Fa. Due to this interaction term, a
common feature of this model and the IP one is that the effect of purging increases as
inbreeding accumulates, so that both models predict an initial fitness decline that is latter

reversed to some extent, in agreement with the pattern observed in simulated lines.

On the contrary, in the BW model purging is measured by the coefficient bra, which
represents the rate of increase in fitness with Fa averaged over all F values, and does not
account for the reversal of initial depression. However, this BW model accounts for the
increase of fitness in outbred individuals that is expected as purging reduces the
expressed load (i.e., the non-inbreeding genetic load included in the A term of the
seminal Muller’s et al. model (1956)). Boakes and Wang (2005) found that this model
was more efficient detecting purging against mildly deleterious alleles, probably because
these mutations were assumed to occur at a larger mutational rate than more severely
deleterious ones, causing larger expressed load. Furthermore, they measured the
efficiency of the model as the ability to detect cases where purging had reduced the
overall load, including inbreeding and expressed genetic loads. However, here we
evaluate the ability of the model to detect the reduction in inbreeding depression, so that
Ballou’s model is more appropriate. Regarding the B-BW model, it did not outperform
Ballou’s nor B-BW models in Boakes & Wang study (2005), nor in the present analysis.

Therefore, in order to compare the performance of IP and Fa-based models to detect and
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predict the consequences of purging on inbreeding depression we concentrate in Ballou’s

Fa-based model.

The estimates for the interaction term in Ballou’s model (bgra) are very dependent on
both the size of the lines and the number of generations. Consequently, different pairs of
joint estimates (br, brra) produce different predictions for the evolution of fitness.
Although those predictions are always better than the ones computed ignoring selection,
their erratic behavior compromises the reliability of Ballou’s method for predictive
purposes. It is interesting to note that, as Fa approaches 1, (br-F + brra-F-Fa) approaches
(br + brra)-F. Thus, after the early fitness recovery ascribed to purging, this model
predicts a continuous rate of decline of fitness with increasing F. Since that late decline
is not expected as a general consequence of inbreeding and purging, this prediction can
be considered a flaw of the model. However, during some medium term period, it can
account for the fitness decline ascribed to the fraction of the inbreeding load caused by
deleterious alleles that are not being successfully purged (those with Nd < 1), or can
mimicry the decline from continuous fixation of new deleterious mutations. On the
overall, the erratic nature of Ballou’s model predictions, ascribed to the inconsistency of
the corresponding estimates, makes IP the model to be preferred in order to estimate

parameters and to predict the evolution of fitness under inbreeding.

The methods analyzed here are often intended merely with the purpose of detecting
purging, with no immediate interest in prediction. The bootstrap contrasts performed to
detect purging at each replicate seem to be conservative for both IP and Fa models, and
still both models give high rates of purging detection when the size of the lines and the
number of generations analyzed are not too small. However, the rate of detection is

somewhat larger for IP than for Ballou’s analysis. This bootstrap test detects cases where
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a model including purging fits data significantly better than a model that predicts the
evolution of fitness expected under inbreeding in the absence of selection. However, it is
worthwhile to mention that the evolution of each individual replicate is to some extent
truly different than expected, due to genetic drift. The difference can be particularly
relevant when purging is week (d = 0) so that genetic drift may become the leading factor
governing gene frequencies. Thus, due to drift, some lines can show a true late fitness
recovery (no just a large estimate of mean fitness due to within line sampling error) that
can be to some extents confounded with a significant effect of purging. In theory, in order
to avoid confounding drift and genetic purging it is necessary to average estimates over

replicated experiments or to perform meta-analysis including many different estimates.

Our results encourage the use of the IP approach for detection purposes. However,
they show that the detection and measurement of purging is very demanding, even in
cases where important purging is expected. In the present study, purging can hardly be
detected in single pedigreed lines of effective size N=10 recorded for five inbreeding
generations, despite high rates of initial inbreeding load and intense purging.
Furthermore, the detection rates reported here should not be interpreted as a guide for
experimental design with actual data, where detection will depend on the accuracy of the
fitness measures, as well as on other concurrent environmental processes. Thus, purging
detection is expected to be much more difficult in practice than for these simulation data.
These reasons, together with other methodological issues (Garcia-Dorado 2015, Lopez-
Cortegano et al. 2016), explains why purging detection has been experimentally elusive,
particularly in the wild where replicates are not available (Hedrick & Garcia-Dorado
2016). In practice, sampling error in the evaluation of fitness is usually large and genetic
drift for fitness is usually small unless population size is very small. Therefore, lack of

power is usually a more relevant concern than confounding the consequences of genetic
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drift with those of genetic purging in the analysis of actual fitness data. Hopefully,
pedigree reconstruction based on massive molecular markers applied to individuals
assayed for fitness traits, will allow to obtain large samples of data useful to detect and
measuring purging in the future (Fernandez & Toro 2006, Wang 2011, Jiménez-Mena et

al. 2016).

It should be noted that in the IP analysis reported here, the NNLR method searches
the d estimate only for positive d values (0 < d < 0.5). Therefore, if the true d value is
close to zero, some positive bias is expected for the d estimate. When investigating
purging in a particular population, including negative d values in the NNLR search is not
appropriated because g: need not to converge with increasing t for negative d values.
However, the positive bias expected from searching only positive d values should not be
a problem, as large bias is expected to be associated to estimates that are not significantly
larger than O in the bootstrap test. Therefore, here we have presented analysis where
NNLR searches only the range of d values that makes sense into the IP model (0 <d <
0.5). However, when analyzing a pool of replicates, it could be useful to run additional
analysis including negative d values in the search in order to check for possible bias in
the average of the d estimates. In the cases analyzed here, the results reported are very
similar to those obtained searching in the interval -0.5 < d < +0.5, except for some
underestimation of purging in the case N=10 t=N/2 data (see Supplementary Material).
However, the difference can be larger when purging is weaker. An alternative solution
to reduce bias in a meta-analyisis is to run NNLR searching only positive d values but
exclude d estimates that do not fit the data significantly better than d=0 in the bootstrap
analysis. The argument discussed above also applies to Ballou’s model regarding the
estimate of brra. Here we have explored an interval around brra =0 for continuity with

the original Ballou’s approach (-10 < brra < 10). Searching in the interval (0 < brra < 10)
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gives results quite similar to those reported here, but the estimate of brra was larger in
the smaller lines (see Supplementary Material), and can lead to important upwards bias

in the predictions of fitness (results not shown).

We have noted above that detecting purging may require using data from longer
periods of inbreeding, but that this can lead to downwardly biased IP estimates due to
overfitting of long-term fitness. Although the bias in joint (8, d) estimates compensate
each other so that they have minor consequences for predictive purposes, it can be
relevant when each parameter is considered separately and, in some cases, can induce
considerable underestimation of the inbreeding load in the base population. As suggested
above, in IP analysis of long-lasting inbreeding processes, it can be convenient to
estimate first the rate of inbreeding depression using short term data (t < N/2) and use
this estimate as a known parameter, in order to increase detection rate and reduce bias in
the estimate of purging when analysing full-term data. Alternatively, & could be
estimated as the rate of inbreeding depression using data from individuals with no
ancestral inbreeding (Fa=0). Furthermore, in some occasions, B could be estimated in the
base population from the fitness decline after a single generation of inbreeding. Then, IP
estimates of d can be obtained by analyzing full-term data using these estimates of 6 (or,
in the case of small lines, also using the estimate of B) as known parameters. In any case,
Figure 2 clearly illustrates that, even when (6, d) were jointly estimated from data
including long term fitness, the IP approach is a useful predictive model for the range of
population sizes and generations considered here and for both CAPTIVE and WILD

mutational cases.
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DISCUSION

ESTIMAS DE LOS PARAMETROS DE LA PURGA GENETICA

El presente trabajo aborda, a través de sus tres capitulos, diversos aspectos de la
purga genética utilizando el modelo IP (/nbreeding-Purging) (Garcia-Dorado 2012). Este
modelo ha demostrado proporcionar buenas predicciones de los efectos conjuntos de la
consanguinidad y la purga utilizando datos de simulacion. Sin embargo, su uso practico
requiere disponer de estimas del coeficiente de purga d, un parametro relacionado con la
magnitud del componente recesivo de los efectos deletéreos ( d=s(1/2 - k) ) o, al menos,
de cierto conocimiento de su magnitud esperada. Por este motivo, la estimacién de dicho

coeficiente juega un papel central en este trabajo.

Hasta la realizacion de esta tesis, la inica estima de d disponible correspondia a un
experimento con Drosophila melanogaster, que proporciond una primera validacién
empirica del modelo IP. Sin embargo, este experimento adolecia de algunas limitaciones
en lo que refiere a su uso practico, debido a que se habia obtenido en lineas mantenidas
en condiciones de competitividad minima y con censos efectivos pequefios (6 y 12), muy
inferiores a los de la mayoria de las poblaciones amenazadas. Esta estima de d podria
haber subestimado el coeficiente de purga de las poblaciones silvestres por dos razones.
En primer lugar, porque censos efectivos del orden de la decena no permitiran detectar
toda la purga atribuible a deletéreos con valores de d inferiores a 0.1, cuya evolucion
estard gobernada en gran medida por la deriva. En segundo lugar, porque existen

evidencias de que los efectos deletéreos causantes de la depresion consanguinea son en

149



promedio mayores cuando se expresan en las condiciones competitivas que caracterizan
a las poblaciones naturales que cuando se expresan en un medio benigno menos
competitivo (Yun & Agrawal 2014), como el que caracteriza la cria en cautividad o las

condiciones del experimento de laboratorio de Bersabé y Garcia-Dorado.

Por este motivo, el primer objetivo abordado en esta tesis es la obtencion de nuevas
estimas de d, también para la misma especie pero en lineas de censo mas elevado
mantenidas en condiciones de alta competitividad, de modo que pudiesen proporcionar
una mejor orientacion del valores de d esperable en poblaciones naturales que sufren una

reduccion rapida en su censo efectivo.

Asi pues, el primer capitulo presenta estimas de d obtenidas para dos medidas de
eficacia en dos poblaciones de laboratorio. En ambos experimentos las poblaciones se
mantenian desde su captura con censo elevado en condiciones muy competitivas. De estas
poblaciones se obtenian lineas de censo efectivo reducido (N=52 y N=43,
respectivamente) que se mantenian en las mismas condiciones de alta competitividad. Las
dos medidas de eficacias eran evaluaciones de la productividad de hijos adultos, y la
fundamental diferencia entre ambas es que una se obtenia en condiciones muy
competitivas y la otra en condiciones no competitivas. Aunque ambas poblaciones
corresponden a experimentos llevados a cabo en diferentes laboratorios (uno en la
Universidad de Vigo y otro ejecutado por mi en la Universidad Complutense de Madrid),
su disefio es basicamente andlogo. Los dos experimentos proporcionan resultados
coherentes, a pesar de que las estimas del experimento de Vigo se basan en la observacion
de la reduccion del lastre de consanguinidad, que tanto en el modelo IP como en el de
Morton y colaboradores equivale a la tasa de depresion consanguinea 6, mientras que en

el experimento de Madrid se basan en la reduccion de la eficacia media. A largo plazo, la
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caida de la eficacia en las lineas fue imperceptible en el experimento de Vigo y muy
pequeiia en el de Madrid, y en ambos casos muy inferior al esperado solo por depresion

consanguinea.

Por una parte, nuestros resultados indican que el lastre de consanguinidad en la
poblacion silvestre que dio origen al experimento de Madrid debi6 ser aproximadamente
B=6 para la eficacia medida en condiciones competitivas, el doble de la estima obtenida
cuando la eficacia se evaluaba en condiciones no competitivas. El lastre de
consanguinidad de la poblacion silvestre que origind el experimento de Vigo pudo ser
algo menor, lo cual no resulta extrafio pues las poblaciones de esta especie en el noroeste
peninsular son probablemente mas pequefias que las de la zona del Penedés dedicada al
cultivo de la vid. Asi pues, el valor de B para eficacia competitiva en la poblacion silvestre
del experimento de Madrid coincide con la estima media obtenida en el meta-analisis de
O’Grady (2006). De todas formas esta coincidencia no debe sobrevalorarse, pues es
sabido que existen grandes diferencias entre los valores de B de diferentes poblaciones
incluso dentro de un mismo grupo taxondomico, debido en gran medida a diferencias en
sus respectivas historias demograficas, habiéndose documentado incluso estimas de B >
12 en poblaciones de mamiferos (Jiménez et al 1994). De hecho, las estimas incluidas en
el meta-andlisis de O’Grady refieren a especies de mamiferos y aves, cuyos tamafos
poblacionales y estructuras demogréficas pueden ser bien distintos de los de un diptero.
En todo caso, cabe sefalar que las especies de aves estdn sobrerrepresentadas en dicho
meta-andlisis. Por tanto, dado que la dispersion (y, por tanto, el censo efectivo) es en
general mayor en las especies de aves que en las de mamiferos, el valor B=6 publicado
por O’Grady podria sobreestimar el lastre de consanguinidad medio de las poblaciones

de mamiferos y, tal vez, ser relativamente parecido al de dipteros.
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Por otra parte, las estimas del coeficiente de purga obtenidas en nuestros
experimentos son del orden de d=0.3 en lo que refiere al lastre total de consanguinidad, y
de d=0.2 en lo que refiere al atribuible a deletéreos no letales. Estas estimas eran muy
similares para ambas medidas de eficacia. Es decir, el coeficiente de purga depende
fundamentalmente de las condiciones de competitividad en que los deletéreos se exponen
a la purga durante el mantenimiento de la linea, mas que del grado de competitividad
durante la evaluacion de la eficacia. Este resultado sugiere que la mayoria de los alelos
que son deletéreos en condiciones no competitivas lo son también y con mayor efecto en
condiciones mas competitivas. Ello explica que, en nuestras condiciones de
mantenimiento con alta competitividad, el coeficiente de purga sea muy superior a la
estima de Bersabé y Garcia-Dorado (0.09 y 0.02 para el conjunto del lastre de

consanguinidad y para el de origen no letal, respectivamente).

Las elevadas estimas del coeficiente de purga obtenidas en nuestros experimentos
implican que la purga puede jugar un papel decisivo en la supervivencia de las
poblaciones naturales amenazadas, si bien las elevadas estimas del lastre de
consanguinidad también implican que la depresion consanguinea puede llegar a ser
importante en el corto plazo, antes de que se manifiesten los efectos de la purga. Por tanto,
el censo efectivo minimo requerido para la supervivencia de una poblacion dependera de
st el potencial reproductivo de la misma es suficiente para tolerar dicha depresion
transitoria (Garcia-Dorado 2015). Asi por ejemplo, utilizando las ecuaciones IP se obtiene
que una poblacion con B=6 y d=0.2 y con censo efectivo 50 experimentard una reduccion
de mas del 40% en su eficacia media esperada en menos de 20 generaciones, pero
recuperard después paulatinamente un valor proximo a la inicial. Por tanto, en estas
condiciones, gracias a la purga un censo efectivo de 50 puede permitir la supervivencia

de una poblacidn, pero solo si su potencial reproductivo inicial esta bien por encima de,
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digamos, cuatro hijos por pareja. En el mismo sentido, Caballero et al (2017), teniendo
en cuenta la accion de la purga, recomendaron un censo efectivo de 70 para evitar un
riesgo de extincion atribuible a la depresion a corto plazo en una poblacion simulada con
B = 6 bajo un modelo mutacional diferente, si bien N=50 podia ser suficiente si el
potencial reproductivo inicial correspondia a un méximo de 7 hijos por pareja. Aunque el
debate sobre el tamafio minimo de una poblacidn viable seguira activo, queda claro que

la purga juega un papel decisivo en su determinacion.

Evidentemente estas consideraciones basadas en nuestras estimas experimentales
son solo indicaciones preliminares. Para poder hacer recomendaciones ttiles, es necesario
obtener estimas conjuntas de B y de d en las poblaciones interés o, al menos, en
poblaciones de los mismos grupos taxondmicos. Por este motivo los siguientes capitulos
de esta tesis abordan el desarrollo y validacion de métodos de estima de los coeficientes
de purga aplicables a datos de poblaciones naturales o cautivas en que no es posible llevar
a cabo experimentos especificamente disefiados para este fin, pero en que se dispone de

medidas de eficacia o sus componentes para individuos con registros genealdgicos.

Asi pues, en el articulo que constituye el segundo capitulo de esta tesis se desarrolla
la metodologia necesaria para analizar este tipo de informacion. En primer lugar, se
obtienen ecuaciones genealogicas sencillas que permiten el calculo del coeficiente de
consanguinidad purgado (g) en funcion del coeficiente de parentesco purgado y que
guardan paralelismo con las ecuaciones clasicas que calculan la consanguinidad de
Wright en funcion de los coeficientes de parentesco de Malécot. A diferencia de las
ecuaciones genealdgicas para g publicadas previamente (Garcia-Dorado 2012), éstas son
aplicables a cualquier genealogia, incluyendo la posibilidad de solapamiento de

generaciones. En segundo lugar, se estudia el modo de analizar el modelo IP de prediccion
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de la eficacia teniendo en cuenta su naturaleza exponencial. Por una parte, se contempla
el método clasico basado en linealizar el modelo trabajando en escala logaritmica. Se
muestra que, en concordancia con los planteamientos de Morton y colaboradores, este
método es una buena aproximacion cuando los logaritmos se toman sobre la eficacia
media como ha venido siendo habitual. No obstante, se demuestra que la pendiente del
logaritmo de la eficacia individual sobre el coeficiente de consanguinidad es mayor, en
valor absoluto, que la correspondiente al logaritmo de la eficacia media, y se deduce el
correspondiente factor de correccion que permite obtener estimas insesgadas de la tasa de
depresion consanguinea (0) a partir de la pendiente del logaritmo de la eficacia individual
en la consanguinidad. Este resultado es de interés pues alerta contra el sesgo en que se
puede incurrir por interpretar dicha pendiente como una estima directa de o, y porque
permite analizar la fiabilidad de las estimas obtenidas en los analisis de nuestros datos
simulados. No obstante, cuando se usen datos reales solo se podran obtener
aproximaciones de ese factor de correccion cuya validez serd dificil de evaluar. Ademas,
la transformacion logaritmica impide el uso de la informacion contenida en los individuos
en que la eficacia observada es cero. Esta limitacion cobra una importancia decisiva en el
analisis de datos dicotémicos, como los datos (0, 1) que se general al evaluar la
supervivencia hasta un determinado estadio del ciclo bioldgico. El problema se ha
solventado habitualmente mediante regresion logistica atendiendo a consideraciones
estadisticas, pero este tipo de regresion ajusta un modelo que no coincide con el modelo
genético, de naturaleza exponencial. Por este motivo proponemos como método
alternativo ajustar directamente el modelo exponencial a los datos de eficacia por

procedimientos numéricos.

Asi pues, la consecucion del segundo objetivo concluye con el desarrollo de una

herramienta informatica (PURGd) que ofrece dos métodos alternativos para analizar
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datos de eficacia de individuos con registros genealogicos utilizando el modelo IP, un
ajuste de regresion lineal sobre el logaritmo de la eficacia individual (método LR), y un
ajuste de regresion numérica no lineal (método NNLR). En el caso de datos simulados se
dispone de informacion para calcular el factor de correccidon que permite inferir  a partir
de la pendiente de regresion del logaritmo de la eficacia en el coeficiente de
consanguinidad estimado en el método LR, pero solo el método NNLR ofrece
directamente una estima de 8. No obstante, ambos métodos proporcionan estimas bastante
similares del coeficiente efectivo de purga. En ambos casos, la exploracion de datos
obtenidos mediante simulacion suponiendo efectos mutacionales constantes en
poblaciones mantenidas con dos censos diferentes fue suficiente para ilustrar la alta
calidad de los ajustes al modelo IP, y la pobreza de ajuste a un modelo sin purga como el

de Morton y colaboradores.

Sin embargo, el modelo IP, atin proporcionando predicciones muy aceptables, es en
esencia un modelo aproximado. Es decir, el verdadero valor esperado de la eficacia no es
exactamente el valor predicho por el modelo, aun cuando en la prediccion se utilicen los
verdaderos valores de d y 6. Por tanto, cualquier método que estime los parametros del
modelo (d y &) maximizando el ajuste del modelo a los datos puede producir cierto
sobreajuste acompafiado de cierto sesgo en las estimas. Este problema puede ser mas
importante en situaciones en que, como ocurre en la naturaleza, el efecto deletéreo de las
mutaciones y su grado de dominancia varie de mutacion a mutacion. En estos casos, no
existe una relacion analitica explicita entre el valor de d que proporciona predicciones
mejores y la distribucion del valor de d en los loci individuales. Asi pues, d se define
empiricamente como el valor que, al utilizarse en las ecuaciones IP, predice mejor la
evolucion de la eficacia. Utilizando esta definicion, el modelo IP proporciona un ajuste

muy razonable. Aun asi, el ajuste es algo peor que en un modelo de efectos constantes y,
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por tanto, el sobreajuste y los correspondientes sesgos pueden ser mayores.

Para valorar las consecuencias de los sobreajustes que acabamos de mencionar, el
ultimo capitulo de esta tesis, correspondiente a un manuscrito aun no publicado, utiliza
modelos de efectos mutacionales variables para explorar la validez del modelo IP como
método de deteccion y evaluacion de la purga, y valora la utilidad predictiva de las estimas
de 6 y de d obtenidas mediante el analisis IP de datos genealogicos. Ademas, para evaluar
la capacidad de deteccion de estos analisis, esta version de PURGA incorpora un método
bootstrap para contrastar la significacion de la purga en cada réplica simulada. Hemos
analizado resultados correspondientes a la eficacia de los individuos con registros
genealodgicos de poblaciones simuladas mantenidas con distintos censos efectivos (N=10,
N=25 y N=50) durante periodos de diferente duracion (=N/2, =N, =2N para cada N).
Ademas, todo el proceso se ha repetido utilizando dos juegos diferentes de parametros
mutacionales, analizdndose multiples réplicas en cada caso. En ambos modelos
mutacionales, el efecto en homocigosis de las nuevas mutaciones se obtenia de una
distribucion gamma con la misma forma, y con la misma relacion exponencial negativa
entre el valor esperado del grado de dominancia (/) y el efecto en homocigosis (s). Sin
embargo, en el caso denominado WILD, la tasa de mutacion deletérea y el efecto
deletéreo medio en homocigosis son el doble que el otro caso, denominado CAPTIVE.
Estos parametros mutacionales estan pensados para intentar dar cuenta de la accion de la
purga en condiciones silvestres y en cautividad, teniendo en cuenta que en las primeras
se observa una tasa de depresion consanguinea que en promedio podria ser la cuarta parte
que en las segundas (Frankham et al. 2014), debido a que en las poblaciones silvestres
segregan mas alelos deletéreos y a que su efecto es mayor en las condiciones naturales
que en las de cautividad. De hecho, utilizando el modelo mutacional WILD se espera un

lastre de consanguinidad B=6 en el equilibrio mutacion-seleccion-deriva para un censo
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efectivo 10%, similar a la media del meta-analisis de O’Grady y al valor inicial inferido
para eficacia competitiva en la poblacion silvestre de Drosophila que origind el
experimento de Madrid. No obstante, el lastre de esta poblacion después de un periodo
largo de mantenimiento en el laboratorio con censo efectivo del orden de 10° es B=2.9,
mas parecido al de nuestras poblaciones base simuladas en equilibrio mutacion-seleccion-
deriva para censo efectivo 10 (B=2.3). En el modelo CATIVE por su parte, el valor de B
de nuestras poblaciones base simuladas de censos N=10> era también del mismo orden
que la estima de B para productividad no competitiva de la poblacion grande del
experimento de Vigo al final de su mantenimiento en el laboratorio. En definitiva, los
modelos mutacionales utilizados para simular las poblaciones analizadas en el tercer
capitulo parecen apropiados para ilustrar las propiedades de los distintos métodos de

analisis de la purga.

En primer lugar, los resultados muestran que el mejor método de anélisis fue el
método numérico de regresion no lineal (NNLR) ya que, ademas de proporcionar estimas
directas del lastre de consanguinidad y permitir incorporar valores nulos de la eficacia,
produce estimas con errores tipicos menores que el método LR, y con las cuales se

obtienen predicciones ligeramente mas ajustadas a los observados que con el método LR.

Cuando se analizaron datos de las primeras N/2 generaciones, los promedios sobre
réplicas de las estimas de ¢ fueron muy similares a sus valores esperados y las estimas de
d fueron elevadas. Ademas, las predicciones IP calculadas usando ambas estimas
proporcionaban generalmente buenas predicciones de la evolucion de la media de las
lineas de los diferente tamafnos durante todo el periodo simular, es decir, en cada caso
hasta /=2N. Solo en el caso WILD y para lineas mantenidas con censo 10, donde la deriva

impide una purga eficiente sobre una buena parte de los alelos deletéreos, se obtiene una
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subestima de d que afecte de modo perceptible las predicciones de la evolucion de la
eficacia media de la lineas. Aun asi, el ajuste de todas las predicciones es siempre muy
bueno, exceptuando, de nuevo, las lineas con censo 10 del caso WILD en que la depresion
observada es mayor que las predicciones calculadas con estimas obtenidas en lineas de

censo mayor que 10.

Sin embargo, cuando se analizan méas de N/2 generaciones, se produce un
sobreajuste del modelo que induce subestimas en los dos pardmetros. La razon de este
sesgo probablemente sea la acumulacion progresiva, con las generaciones, de una cola de
valores de eficacias altas para individuos con consanguinidad elevada. De todas formas,
aunque tanto 6 como d resultan subestimadas, los dos sesgos se compensan de tal modo
que apenas afecta su poder predictivo. Asi pues, las estimas obtenidas del analisis de hasta
2N generaciones pueden considerarse fiables en el sentido de que cada pareja (9, d)
permite obtener buenas predicciones de la evolucion esperada de la eficacia para lineas
de diferentes tamafios durante diferentes periodos. No obstante, utilizando el valor teérico
de la tasa de depresion consanguinea (drm), comprobamos que, si se dispone de una
estima externa del lastre de consanguinidad, es posible estimar valores del coeficiente de
purga mucho mas estables, proximos a los estimados en el periodo inicial. Asi pues, para
que tanto el lastre inicial de consanguinidad (aproximadamente equivalente a d en lineas
de censo no muy elevado) como d se puedan considerar individualmente bien estimados,
es preferible analizar solo datos del periodo inicial (t=N/2). Alternativamente, para
obtener una buena estima de d, podemos introducir en el analisis una estima externa fiable
del lastre de consanguinidad (el valor tedrico en nuestro caso), o utilizar una estima de d
previamente obtenida analizando solo las primeras generaciones disponibles. En ambas
situaciones utilizando lineas de censo mayor que 10, obtenemos estimas de d cercanas a

0.3 en nuestras lineas simuladas bajo el modelo mutacional CAPTIVE, y estimas en torno
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a 0.4 en el caso WILD. Para interpretar estos valores, sirva como referencia que en un
modelo con 6>0 en que todas las mutaciones tengan los mismos efectos deletéreos y el
mismo grado de dominancia, =0 implicaria que se ha relajado la seleccion natural y por
tanto no hay purga y d = 0.5 corresponde a la situacion en que la seleccion no se ha
relajado y toda la depresion se debe a letales recesivos. Nuestras estimas indican por tanto
que la purga ha sido muy importante, en concordancia con la observacion de depresiones
consanguineas que, a largo plazo, son inapreciables o muy inferiores a las esperadas por

simple depresion consanguinea.

Dado que, como se ha discutido mds arriba, los lastres de consanguinidad de
nuestras poblaciones base CAPTIVE y WILD son del orden de las estimas obtenidas en
el capitulo 1 para eficacia no competitiva en una poblacion de laboratorio y para eficacia
competitiva en una poblacion silvestre, respectivamente, resulta interesante notar que las
estimas de d son también del mismo orden que las correspondientes estimadas obtenidas
en Drosophila, cuyos intervalos de confianza incluyen valores entre 0.28 y 0.5. Esta
observacion, si bien no garantiza que nuestros casos CAPTIVE y WILD permitan
modelizar fielmente la situacion de las poblaciones naturales, si que avala su adecuacion

para investigar las propiedades de los métodos de estima y prediccion.

Ademas de analizar la fiabilidad de las estimas de los parametros IP promediadas sobre
réplicas obtenidas mediante simulacion, resulta interesante considerar la capacidad del
método para detectar la purga ocurrida en las lineas consideradas individualmente, como
serd el caso habitual al tratar con poblaciones reales. Por una parte, observamos que en el
caso WILD hay muchas mas réplicas en que esta deteccion es significativa (o < 0.05) que
en el caso CAPTIVE, como cabria esperar debido al mayor numero de deletéreos

segregando, y al mayor valor medio de d. Ademas, ese porcentaje de deteccidon se
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incrementa con el tamafio poblacional, y especialmente con el nimero de generaciones
registrado, por una parte debido al incremento en la informacién disponible, y por otra a
la mayor eficiencia de la purga en poblaciones mas grandes y a la manifestacion retardada
de la sus efectos. De hecho, en el caso CAPTIVE este porcentaje de deteccion solo
superaba el 50% cuando N > 25 y t > 50, condicion que cumplen pocos conjuntos de datos
de poblaciones mantenidas en cautividad. Asi pues nuestros resultados sugieren que la
deteccion de la purga puede ser dificil en poblaciones de zooldgicos o en programas de
conservacion ex situ. Por el contrario, la deteccion siempre fue superior al 50% en las
lineas simuladas del caso WILD, salvo en las lineas de menor censo (N=10) evaluadas
durante solo 5 o 10 generaciones. No obstante, es posible que la deteccion en poblaciones
silvestres se vea entorpecida por la dificultad de evaluacion de la eficacia con precision y
por los numerosos factores no genéticos, incluyendo tendencias temporales de origen

ambiental, que la afectan.

Por otra parte, las circunstancias éptimas para la deteccion de la purga, que incluyen la
observacion de periodos prolongados de consanguinidad en poblaciones no demasiado
pequefias, no coinciden con las circunstancias que proporcionan estimas de d consistentes
con estimas insesgadas de & y que implican analizar solo datos del periodo inicial (t=N/2).
Una solucion para obtener una buena estima de d analizando un periodo lo bastante
prolongado para tener buenas oportunidades de deteccion, es introducir en el anélisis una
estima externa fiable del lastre de consanguinidad (el valor tedrico en nuestro caso). Sin
embargo es generalmente mas factible utilizar solo las primeras generaciones para estimar
0, y usar los datos de un periodo prolongado para detectar la purga y para obtener estimas

de d condicionadas a dicha estima de 9.
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EL MODELO IP FRENTE A MODELOS DE PURGA BASADOS EN
CONSANGUINIDAD ANCESTRAL

Seguidamente, hemos comparado la utilidad del modelo IP con la de los métodos
que venian utilizandose hasta ahora para detectar y evaluar la purga genética, basados en
modelos que utilizan como variables regresoras el coeficiente de consanguinidad (F) y el
coeficiente de consanguinidad ancestral (F,;). Para ello, se ha desarrollado una
actualizacion del software PURGd que incorpora la posibilidad de analizar varias
alternativas de este método. De este modo, hemos estimado en nuestras lineas simuladas
los parametros de modelos basados en este coeficiente, como son el del propio Ballou
(1997), pero también el modelo de Boakes y Wang (BW) (2005) y el modelo mixto
resultante de combinar ambos (B-BW). Dado que el modelo de Ballou era el tnico que
ajustaba bien a los datos, nos centramos en comparar la calidad de las estimas obtenidas
para los parametros del modelo IP y del modelo de Ballou. En este modelo de Ballou, F,
aparece en un término de interaccion con F, de modo que el coeficiente asociado a este
factor representa el efecto de la purga sobre la depresion de la eficacia en individuos
consanguineos con ancestros consanguineos. Nuestro objetivo era comprobar qué
estimas, al ser utilizadas en sus respectivos modelos (IP vs. Ballou), predecian mejor la
evolucion de la eficacia en lineas de distinto censo o durante periodos de diferente
duracion. Para facilitar este objetivo, desarrollamos una expresion sencilla que predice la
evolucion de la consanguinidad ancestral media de una poblacion panmictica de censo

efectivo constante.

El resultado principal es que las estimas de los pardmetros del modelo de Ballou
proporcionan malas predicciones de la evolucion de la eficacia, a menos que las

predicciones refieran a lineas del mismo censo y al mismo periodo que los datos utilizados
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para la estimacion. Esto se debe en parte a que el modelo tiene algunas propiedades que
no son coherentes con la teoria. Por ejemplo, dado que F, se aproxima a su asintota mucho
mas deprisa que F, en pocas generaciones la reduccion predicha de la eficacia dependera
solo de F. Ademas, en el modelo de Ballou, el coeficiente del término en F solo estima
el lastre de consanguinidad cuando F, es aproximadamente cero. Por tltimo, las tasas de
deteccion de purga en las lineas individuales también fueron un poco mas bajas en los
analisis que utilizan el modelo de Ballou que en los que utilizan el modelo IP. Para
completar el andlisis, también hemos comprobado que NNLR proporciona mejor ajuste a
los datos que el analisis logistico previamente utilizado para analizar datos dicotdmicos
con el modelo de Ballou. Asi pues, el modelo IP representa una alternativa mas sensible
para detectar y medir la purga, y mas adecuada para predecir la evolucion de la eficacia

que los modelos basados en consanguinidad ancestral.

En definitiva, los resultados de los experimentos realizados con Drosophila muestran
que la purga es eficiente incluso en poblaciones de solo unas pocas decenas de individuos
y contra los deletéreos responsables de practicamente todo el lastre de consanguinidad
inicial, incluyendo los deletéreos no severos (parcialmente) recesivos que pudieran
segregar en la poblacion base. Ademds nuestros andlisis de poblaciones simuladas
muestran que, en lineas con registros genealdgicos, se pueden obtener estimas de los
parametros del modelo IP con un buen valor predictivo. Debe notarse que las tasas de
deteccion de purga observadas son modestas en muchos de los casos, a pesar de que los
datos son Optimos y el efecto esperado de la purga es importante, lo cual pone de
manifiesto la dificultad de deteccion de la purga en poblaciones concretas en que no existe
replicacion. Aun asi, esta metodologia es prometedora en el campo de la conservacion,
pues los registros genealdgicos son habituales en los programas de cria en cautividad y

en muchas poblaciones naturales monitorizadas intensivamente debido a su estatus de
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amenaza, y afortunadamente es posible inferir o completar genealogias utilizando
informacion molecular (Fernandez & Toro 2006, Wang 2011, Jiménez-Mena et al 2016).
Asi pues, la purga debe ser tenida en cuenta en los programas de conservacion, y el
modelo IP proporciona una metodologia adecuada que permite analizar
satisfactoriamente datos de eficacia de individuos con genealogia conocida y proporciona

estimas de los parametros del modelo que tienen utilidad predictiva.
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CONCLUSIONES

- La magnitud de la tasa de depresion consanguinea para medidas de eficacia
en Drosophila melanogaster es mayor en ambientes mas competitivos que en
condiciones mas benignas, pero ello se acompaiia de un también mayor coeficiente
de purga. Ademas, cuando la purga actia en condiciones competitivas es capaz de purgar

los deletéreos responsables de la depresion consanguinea para eficacia no competitiva.

- En poblaciones con registros genealogicos, las estimas empiricas conjuntas de
los parametros del modelo IP (la tasa de depresion o y el coeficiente de purga d)
poseen un elevado poder predictivo. Cuando se utiliza la regresion numérica no lineal
(NNLR) propuesta en este trabajo para analizar datos del periodo inicial de
consanguinidad, el ajuste a este modelo proporciona buenas estimas del lastre de
consanguinidad de la poblacion base y estimas estables de d. Las posibilidades de detectar
purga significativa se incrementan cuando se analizan datos correspondientes a periodos
prolongados de consanguinidad, pero las estimas correspondientes de & y d pueden
subestimar los verdaderos valores, si bien ambas subestimas se compensan de tal modo

que su uso en el modelo proporciona buenas predicciones de la evolucion de la eficacia.
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- El modelo IP (Garcia-Dorado 2012) ofrece un marco de trabajo adecuado
para predecir las principales consecuencias de la purga: la reduccion del lastre de
consanguinidad y la reduccion de la depresion consanguinea, tanto en situaciones
benignas como competitivas, en poblaciones panmicticas o genealogicas, y bajo

diferentes modelos mutacionales.

- La interaccion entre el coeficiente de consanguinidad y la consanguinidad
ancestral es un buen indicador de la existencia de purga pero un mal predictor de
sus consecuencias cuantitativas. El modelo de Ballou, cuando se analiza utilizando la
metodologia NNLR propuesta en este trabajo, presenta tasas de deteccion de la purga solo
ligeramente inferiores a las del modelo IP. No obstante, las estimas de los pardmetros del
modelo de Ballou tienen malas propiedades predictivas. De nuevo, la estima de la tasa de
depresion consanguinea solo es fiable cuando se obtiene del periodo inicial en que la

consanguinidad ancestral es reducida.
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THE MODEL

According to the Inbreeding-Purging (IP) model (Garcia-Dorado 2012), the mean
for fitness @ (or its component traits, here P or W, as described below) expected in a

population after t generations since its reduction in size is

Dt=®oexp[-ogt, (S1)

In this expression, dis the inbreeding depression rate expected in the absence of selection

that, according to classical theory, equals the inbreeding load in the base population, i.e.
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in the large population at the time when the size is reduced. (Table 1 in the main text gives
a glossary of the main terms and subscripts used in the manuscript.) Thus, @o represents
mean fitness at the base population or at a synchronous control non-inbred population.
Finally, gt is the purged inbreeding coefficient, which is an analogous to Wright’s
inbreeding coefficient Fi but is corrected for the reduction of the deleterious allele

frequencies expected from purging. It can be approximated as

gt~ { 1/(2Ne) + [1—1/(2Ne) ] 91 } (1 —2d Fra) (S2)

where Ne is the reduced effective population size, Ft = 1 — [1 — 1/(2N¢)]* and d is the
purging coefficient, which represents the recessive component of the deleterious effect.
In other words, it is the per-copy deleterious effect on relative fitness that is only
expressed in homozygosis but is concealed in the heterozygotes. Thus, if the disadvantage
of the homozygote is s and that of the heterozygote is hs, we get d = (s — 2hs)/2. For
example, for a completely recessive lethal allele d = 0.5, so that in the lethal homozygote,
the two copies account for the corresponding lethal effect (s = 1). For neutral and/or
additive alleles, d = 0, and gt reduces to F:. Although the purging coefficient d is defined
in the context of a single locus model, it has been shown that an approximated g,
computed using a single effective d value applying to the pool of deleterious alleles
responsible for inbreeding depression through the genome, gives good predictions for the
evolution of mean fitness (Garcia-Dorado 2012). Here we use d to denote the effective
purging coefficient that accounts for the realised joint consequences of inbreeding and
purging. However, improved accuracy can be obtained by taking separately into account
the purging upon the inbreeding load ascribed to lethal and non-lethal deleterious alleles

(oL and on, respectively), i. e.,

®t=® o eXP[—ANL gne — AL gu] (S3)
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where both the lethal and non-lethal purged inbreeding coefficients (gt and gnit,
respectively) are computed from Eq. S2 using the corresponding lethal and effective non-

lethal purging coefficients (i.e., replacing d in S2 with d. = 0.5 or with dn, respectively).

In parallel, the inbreeding load expected after t generations since population

shrinkage can be approximated as

0t=00t(1-Fy)/Fe, (S4)

which, in the absence of selection, reduces to & = ¢ (1 — Ft). Again, accuracy can be

gained by separately considering the evolution of non-lethal and lethal inbreeding loads:

Ot=[onLonett o] (A-Fy)/Fe, (S5)

Alternatively, predictions can be computed using the more comprehensive Full-
Model (FM) approach, which takes into account new mutation and standard non-purging
selections. As explained in the main text, it is convenient to use FM predictions to take
into account the consequences on & of the continuous mutational input of deleterious
alleles and the also continuous erosion of the inbreeding load by non-purging selection in
our large Vigo population (Garcia-Dorado, 2012). Under this FM approach, & can be

computed using the expression

Sta+ (-0 g (1-F)/Ft, (S6)

where 6* is the inbreeding load expected in the new Mutation-Selection-Drift (MSD)
balance for the new reduced population size Ne. Or, considering separately the lethal and

non-lethal inbreeding load, as
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Srra*+ (A-a*)gu(l-F)/Fe+ o™+ (o —on*) g (L -F) /Fe, (S7)

Thus, these predictions rely on estimates of ¢* that are usually not available.

ORIGIN AND MAINTENANCE OF POPULATIONS AND LINES

Vigo experiment

A laboratory population was founded from about 1000 females captured in a wine
cellar close to Vigo (Northwest Spain) in November 2006 (Avila et al. 2011), and
maintained at 25°C under continuous lighting in 7 cm & bottles filled with about 2 cm of
standard agar-yeast-sugar medium. Each generation (every two weeks), 30 bottles were
established, each containing about 50 males and 50 females sampled from two bottles

from the previous generation following a circular scheme.

At generation 86, 1000 males and 1000 females were sampled from the large
population to establish 20 lines, each maintained thereafter in a single bottle with exactly
50 male and 50 female parents during 42 generations synchronously to the large

population.

Madrid experiment

A population was founded from 276 females captured in Segura Viudas cellar in
2009 (Sant Sadurni d’Anoia, Penedé¢s, Spain), and maintained in the same conditions as
in Vigo experiment in 32 (5 cm &) bottles filled with about 2 cm of standard agar-yeast-
sugar medium, with 40 males and 40 females per bottle. At generation 83, 40 males and
40 females were sampled from each bottle of the large population to found a line. The
next generation, each line was split into two similar lines. Therefore, 64 lines were

founded, and each was thereafter maintained in the same way in a single bottle,

182



synchronously to the large population, by transferring 40 males and 40 females to a new

bottle during 40 generations.

FITNESS TRAITS ASSAYED

Non-competitive pupae productivity P

In both experiments, non-competitive pupae productivity (P) was measured for
single 4-days old females placed in individual vials after being mated for 4 days to single
males. It was assayed as the number of pupae produced in the vial 11 days after mating.
This trait includes egg to pupae viability and female fecundity fitness components,
assayed under relatively low density (one mating pair per vial) and in the absence of

competition regarding fecundity.

Competitive productivity W

Competitive productivity (W) was measured by reference to that of a curly (Cy/If)
strain (see Bersabé and Garcia-Dorado 2013 for details) that was maintained in the lab in
bottles, following a circular scheme similar to that used to maintain the large population.
Each competitive productivity value corresponds to a set of 20 mated females from a
population (line), competing with 20 mated curly females, all mixed in a single evaluation
bottle. In order to minimize environmental effects ascribed to differences in culture
density, as well as the corresponding maternal effects, tested females were obtained after
two generations of maintenance in single mating vials. The mating protocol to obtain the
20 females to be tested for each evaluation bottle depended on the purpose of the estimate,
as explained below. All the 32 bottles of the curly strain contributed similar numbers of
females to evaluation. Competitive productivity was estimated in the progeny of each

evaluation bottle as the ratio of the number of offspring contributed by the assayed
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population or line (wild progeny) to the number of offspring contributed by the marker
strain plus 1 (number of curly offspring + 1). The addition of 1 is intended to reduce the
estimation bias caused by random sampling when it induces too small numbers in the
denominator (Haldane, 1956). Bottles with no curly progeny were excluded. W includes
egg to adult viability and female fecundity fitness components, both assayed in crowded

competitive conditions.

ESTIMATES OF THE EFFECTIVE POPULATION SIZE OF THE
LINES FROM MICROSATELLITE DATA

In Vigo experiment, samples of 10, 10 and 50 males from each of the 20 lines were
taken at generations 5, 10 and 25, respectively, and characterized for 9 microsatellites:
AC002446, AC004641 (Harr and Schlétterer, 2000), Dm1639-TC (Bachtrog et al. 2000),
3L9222187ca, 3R1302339ga, 3R16177365¢t, 3R22473342gt, 3R24298455ca and
3R11178343ga (located at the right arm of chromosome 111 (Kauer & Schlétterer, 2004).

The protocol is described by Avila et al. (2011) and Vilas et al. (2015).

Accordingly, in Madrid experiment, 10 random males per line (from a random
sample of 24 lines out of the 64 available) were also chosen at generations 10 and 20 and

analyzed for the same microsatellites.

At each generation, Fst (6 from Weir and Cockerham 1984) and their bootstrap
intervals were estimated with the software FSTAT (Goudet 1995). Effective population

sizes for the lines were then inferred as Ne = (1/2)[1 — exp[In(1 — Fst) / t]] .
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EVALUATION OF THE OVERALL INBREEDING LOAD (s;) FOR
P IN THE LARGE POPULATION IN VIGO EXPERIMENT

The inbreeding load for non-competitive pupae productivity (P) was estimated in
the large population of this experiment at generations 22, 50, 103 and 111. In each of
these generations, a number of males and virgin females were sampled and mated at
random in single mating vials. The progeny of these vials was randomly mated (outbred
group) or full-sib mated (inbred group) during two or three generations. Non-competitive
pupae productivity was assayed under inbreeding (Pi) for females obtained after one
generation of full-sib mating, mated to their brothers (generations 22, 50 and 111), or
after two generations of full-sib mating, also mated to their brothers (generation 103).
Thus, in generations 22, 50 and 111, it was assayed from the number of pupae with
inbreeding coefficient 0.375 produced by females with inbreeding coefficient 0.25, while
in generation 103 it was assayed from the number of pupae with inbreeding coefficient
0.5 produced by females with inbreeding coefficient 0.375. In all cases, in order to
estimate o, productivity was considered to be equally controlled by the genotype of the
mother and the offspring. Therefore, the average of the inbreeding of the mother and the
offspring was used as the inbreeding coefficient F of the inbred group. In each evaluation,
productivity was synchronously assayed as the number of outbred pupae produced by
outbred females in the outbred group (Po). The number of outbred and inbred females
evaluated were, respectively: 79 outbred females and 97 inbred females in generation 22;
150 and 149 in generation 50; 44 and 47 in generation 103; and 227 and 251 in generation

111. In each case, the inbreeding load was estimated as ot = In(Po / P1) / F.
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EVALUATION OF THE OVERALL INBREEDING LOAD FOR P IN THE
LARGE POPULATION IN MADRID EXPERIMENT

In Madrid experiment, the inbreeding depression rate for P in the large laboratory
population was assayed at generation 112. Four males and four virgin females were
sampled from each bottle of the large population at that generation, and were randomly
mated in individual vials. Three male and three virgin females were obtained from the
progeny of each vial i. One male was mated to a virgin female from vial i + 1, to obtain a
set of random mating vials. In parallel, two males from each vial i were individually mated
to females born in the same vial, to produce two full-sib mating vials (iA and iB; inbred
set). The next generation, a male from each vial i from the random mating set was mated
to a virgin female from vial i + 2, while a male of each iA vial from the inbred set was
mated to a female from the iB vial. Thus, two sets of vials were produced; an outbred set,
and an inbred set where offspring of full-sib parents were mated to their double cousins.
Therefore, in the inbred set, both parents and offspring had inbreeding coefficient F =
0.25. Productivity was assayed from the number of pupae produced in these vials. A total
of 108 and 200 females were analyzed in the outbred and inbred assays, respectively to

estimate Po and P, . The inbreeding load was estimated as 6t = In(Po / P)) / F.

EVALUATION OF THE OVERALL INBREEDING LOAD FOR W IN THE
LARGE POPULATION IN VIGO EXPERIMENT

The inbreeding depression rate for W was estimated in the large population at
generation 83 (i.e., in the base population of the lines) using a design aimed to obtain an
estimate of ¢ ascribed to inbreeding in the mother, the offspring or both (dm, do O dmo,

respectively) as well as the pooled estimate () that we used for predictive purposes.
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About five males and five virgin females were randomly sampled from each of the
32 bottles from the large population and were randomly assigned to single mating vials.
From each vial, two male and two female offspring were sampled. One male was mated
to its sister, the other male was mated to a female from a different randomly sampled vial.
Therefore, we obtained a set of outbred single mating vials and another set of brother-
sister mating vials. For each set, we sampled 8 males and 8 virgin females from each vial.
When four-days old, four of these males were mated to four sisters in a single vial for
three days. Similarly, four males were mated to four females from a different randomly
sampled vial from the same set. Thus we had the following four sets of vials (with four

males and four females per vial):

-Outbred-outbred set (OO): mating between unrelated non-inbred individuals.

- Outbred-inbred set (Ol): mating between non-inbred full sibs.

- Inbred-outbred set (10): mating between unrelated individuals that were inbred,

as they were offspring of full sibs.

- Inbred-Inbred set (11): mating between full sibs that were inbred, as they were

themselves offspring of full sibs.

For each set, the four females of five vials were mixed in a bottle with 20 mated
females of the marker strain. After 14 days, the number of wild and Cy/If progeny was
recorded for each bottle. Therefore, competitive productivity was assayed in 25-26 bottles
for each OO, Ol, 10 and Il scheme, assaying a total of 520, 500, 520 and 520 wild females,
respectively. From this design, three different estimates can be obtained for the inbreeding

load as explained below.

187



The inbreeding depression rate ascribed to fitness components that are expressed in

the mother, including fecundity or maternal components of viability, was estimated as

dm = In(Wio / Woo) / 0.25 , (S8)

since in the 10 scheme competitive productivity was assayed from the relative number of

outbred offspring produced by mothers with inbreeding Fmn= 0.25.

Analogously, the inbreeding depression rate ascribed to fitness components that are
expressed in the offspring, including non-maternal viability components, was estimated

as

S0 = In(Wor / Woo) / 0.25 (S9)

since in the Ol scheme competitive productivity was assayed from the relative number of

offspring with inbreeding Fo = 0.25 produced by non-inbred mothers.

Thus, the total inbreeding depression rate expected when both mother and offspring
have similar inbreeding, as in our evaluations of non-competitive pupae productivity in

the lines, could be estimated as

Om+o= Om+ 0o , (S10)

In addition, the overall inbreeding depression rate for competitive productivity can be
estimated from the inbreeding depression observed when both the mother and the
offspring are inbred (i. e., using the set II). As in the estimate for non-competitive
productivity in Vigo experiment, we computed this estimate by assigning the average
inbreeding of mothers and offspring (i.e., [0.25 + 0.375] / 2 = 0.3125) to the average

competitive productivity of the Il set. This gives

omo = In(W)1 / Woo) /0.3125, (S11)
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The results obtained are summarized in Table S1. The two estimates dmo and dm+o Were
non significantly different from each other (p < 0.37). In order to combine all this
information, we estimated the overall inbreeding depression rate for competitive

productivity by averaging both estimates:

0= (5m0 + 5m+0) /2 ) (812)

5m 50 5m+0 5mo 5

1.772 | 1.735 |3.507 |2.261 |2.884

(0.870) | (0.854) | (1.220) | (0.671) | (0.696)

Table S1. Inbreeding depression rates estimated for W in the base population in Madrid

experiment (bootstrap errors are given in parenthesis).

ESTIMATION OF THE LETHAL INBREEDING LOAD

Chromosomes Il were sampled and tested for lethality using a classical design with
the Cy/If marker strain, in order to estimate the proportion of lethal chromosomes 11 (Qu).
The protocol can be found in Bersabé and Garcia-Dorado (2013). Since chromosome 11
is expected to account for 46% of the inbreeding load due to nuclear genes, excluding X
chromosome (see D. melanogaster Release 5 genome annotation), the overall inbreeding

load caused by lethal alleles was estimated as

ot =-In(1-Qu)/0.46, (S13)
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Vigo experiment

At generation 128, 549 chromosomes Il were sampled from the large population.

Synchronously, three randomly selected lines were assayed in a similar way (149, 169

and 166 chromosomes, respectively).

In addition, during this test we registered the ratio of the number of wild (+/+) to
Curly (Cy/+) offspring in the vials corresponding to non-lethal chromosomes, which
measures the mean fitness of non-lethal wild chromosomes 11 in homozygosis relative to

that of Cy/+ heterozygous individuals.

Madrid experiment

At generation 57 after the capture of the laboratory population, 447 chromosomes
I were sampled from the large population and tested for lethality using the same protocol
as in Vigo experiment. The lethal inbreeding load estimated at generation 57 was used as

a proxy for that of generation 83, i.e., those corresponding to the base population of the

lines (o).

LETHAL COMPONENTS OF THE INBREEDING LOADS FOR P
AND W

The lethal component of the inbreeding load for competitive productivity (W), which
includes the expression of lethality across the whole life cycle (not just egg to pupae

viability), is the overall lethal inbreeding load estimated using Eqg. S13.

However, since only 75.6% of all recessive alleles that are lethal for egg to adult viability,
affect egg to pupae viability (Deék et al. 1997; Perrimon et al. 1989; Ripoll, 1977; Shearn

et al. 1971; Torok et al. 1993), the lethal component for the inbreeding depression load
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of P was estimated as

ot =-0.756 In(1 — Qn) / 0.46 , (S14)

EVALUATION OF THE DECLINE FOR THE MEAN OF NON-
COMPETITIVE PUPAE PRODUCTIVITY (P) IN VIGO LINES

This trait was assayed 25 generations after Vigo lines were founded. Fifteen single
pairs were sampled per bottle, both from the large population and from the lines. Pairs
from the same population or line were randomly mated for three generations, and non-
competitive pupae productivity was synchronously assayed at the second and third
generations (assays 1 and 2). For the lines, 256 outbred females and 261 inbred females
were evaluated in assay 1, and 239 and 230, respectively, in assay 2. For the large
population the corresponding numbers were 264 and 274 in assay 1 and 227 and 251 in

assay 2.

EVALUATION OF THE DECLINE FOR THE MEAN OF NON-
COMPETITIVE PUPAE PRODUCTIVITY (P) IN MADRID LINES

At generation 30 for the lines and, synchronously, at generation 113 for the large
population, mean productivity was assayed from the progeny of individuals sampled from
the base population and lines, and randomly mated in single mating vials. In both cases,
individual matings were done as described for the outbred OO set mentioned above. On
the average, 3.5 productivity measures were obtained per bottle for a total of 159 females

analyzed for the large population, and 171 females for the lines.
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EVALUATION OF THE DECLINE FOR THE MEAN OF
COMPETITIVE PRODUCTIVITY (W) IN MADRID LINES

This trait was assayed in each of the 64 lines at generations 10, 20, 30 and 40. In
each case, it was synchronously assayed at the large population. The design was similar
to that of the outbred set (OO) used for the estimate of 6. Arrangements were made to
obtain an evaluation bottle per maintenance bottle. The total numbers of wild females
evaluated at generations 10, 20, 30 and 40 were 560, 700, 680 and 640 for the large
population, and 1000, 1200, 1180 and 1220 for the lines, respectively. At each of these
four assays, the mean for competitive productivity W is given as the ratio of the average

of the lines to the synchronous estimate of the average of its large population.

INFERENCE OF THE INBREEDING PURGING COEFFICIENT

In Vigo experiment, owas estimated for P at different times in the large population,
but average P in the lines was assayed only once. The opposite was done in Madrid
experiment for W. Thus, the inference of the purging coefficient (d ) for P was obtained
from the evolution of the inbreeding load in the large Vigo population, whereas that for

W was obtained from the evolution of the average in Madrid lines.

Inference of d for P from the evolution of ¢ in the large Vigo population

We used Inbreeding-Purging predictions (Eq. S4) to obtain the values of the initial
inbreeding load () and of the overall purging coefficient (d) that better fit the observed
evolution of the inbreeding load according to a Least Square (LS) criterion. Estimates
producing the least square deviations from observed to predicted values were numerically
searched over a grid for §and d (0 < d < 0.5) with steps 0.02 and 0.01, respectively. No

local minima were detected.
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The procedure was repeated by accounting separately for lethal and non-lethal
depression (Eq. S5), in order to obtain estimates of the non-lethal effective purging

coefficient dy.. In both instances, the LS estimate of J was 1.85.

We also computed approximate LS estimates of d and dn. using the Full-Model
(FM) approximations (Egs. S6 and S7). For this purpose, we extrapolated &* from a
laboratory population at the MSD balance maintained with a roughly similar protocol
(Amador et al. 2010), where homozygosis for lethal and non-lethal chromosomes Il
produced a viability decline equal to 0.112 and 0.090, respectively. Using expressions
analogous to our Eq. S13 (where Qy is replaced with viability decline in homozygosis),
these figures allowed us to obtain estimates for the non-lethal and lethal components of
the inbreeding load at the MSD balance (on* = 0.15 and a.* = 0.18), which give 6* =
0.33. In order to avoid biases in the estimate of the initial inbreeding load associated to
the extrapolation of o * and a*, we used the initial inbreeding load obtained from the
above IP estimates. These FM estimates, and the corresponding predictions, must be

taken as rough approximations.

FM predictions (Eq. S6) were also used to infer the lethal component of the
inbreeding load for trait P in the large Vigo population at generation 86, which estimates
the corresponding lethal inbreeding load in the base population of Vigo lines. This was
obtained using the inbreeding load corresponding to lethal alleles into Eq. S6 (i.e.,
assuming 6=0.9 and 6* = 0.15), where g: for lethal alleles is computed assuming d = 0.5.
Results are reported in Table 4 of the main text. The same procedure was used to predict
the lethal inbreeding load at generation 128, which gives & 128 = 0.28, a value quite close

to the corresponding estimate obtained from lethal analysis (0.316).
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Inference of d for W from the evolution of the trait’s mean in Madrid

lines

A Least Square estimate (LS) was obtained for the overall inbreeding purging
coefficient d by fitting the mean relative W observed in the four evaluations at generations
10, 20, 30 and 40 to the corresponding IP predictions (Eq. S1), where, for relative
competitive productivity, Wo equals 1. The LS estimate was numerically searched, as in
the previous case. Similarly, a LS estimate was obtained for the non-lethal inbreeding
purging coefficient dn. by fitting observed values of relative W to predictions separately

accounting for purging against lethal and non-lethal inbreeding load (Eg. S3).

APPROXIMATE STATISTICAL TESTS AND CONFIDENCE
INTERVALS

Means were compared using t or z tests.

To obtain an approximate idea on the precision and significance of our estimates of
the purging coefficients, we considered the asymptotic 2 distribution of the likelihood

ratio statistic (Casella and Berger, 2002), in order to derive a statistic
F =[SSE(@) - SSE(]/[SSE(8)/ (n-1)], (15)

where n is the sample size, SSE(8) is the sum of square deviations from observed values
(either & or W; ) to the corresponding predictions computed using the true value of
parameter @ (which stands for d or dni), and SSE( 8) is the sum of square deviations
between the observed values and the predictions computed using the maximum likelihood
estimate of the parameter 8. Assuming normality for these residual errors, LS estimates

are also maximum likelihood estimates, and this statistic has Snedecor F1, n-1 distribution.
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F is computed over a range of hypothetical & values, in order to look for the interval
where p-values were large enough that 4 could be considered non significantly different

from 6.
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APENDICE SEGUNDO

PURGd 1.1.0 User’s Guide

1. PURGd 1.1.0

PURGd is a software developed to detect purging and to estimate inbreeding-purging (IP)
genetic parameters in pedigreed populations. The models and methods used in this

software are described in Garcia-Dorado et al. 2016 [5].

The main objective of this program is to estimate the effective purging coefficient (de ,
hereafter d for simplicity) described by Garcia-Dorado [4], which is an overall genomic
measure of the component of the deleterious effects that is only expressed in homozygosis
and is therefore responsible for purging under inbreeding. Furthermore, the program also
estimates regression coefficients on the purged inbreeding coefficient (g) and on
additional regressors, such as environmental factors or maternal inbreeding. This software
also includes options to purging parameters for purging models based on ancestral

inbreeding, developed by as Ballou [1] and by Boakes & Wang [2].
Two alternative approaches are implemented:

Linear regression method (LR): A range of d values is numerically searched for a Least
Square (LS) estimate. In this process, for each d value considered, a linear regression

model is fitted for log-transformed fitness. When using this method, the regression
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coefficient (b1) on purged inbreeding coefficient (g) overestimates the inbreeding load

[5]. This approach cannot use data with fitness < 0.

Numerical non-linear regression method (NNLR): The non-linear model for
untransformed fitness is numerically explored searching for the joint numerical LS
estimates of d and of the non-linear regression coefficients. In this method, under the IP
model, the regression coefficient (b1) on purged inbreeding coefficient (g) estimates the

inbreeding load [5].

PURGd also calculates inbreeding coefficients the standard Wright’s inbreeding
coefficient F, Ballou’s ancestral inbreeding coefficient Fa [1] and Garcia-Dorado’s
purged inbreeding coefficient g [4], as well as the effect of other genetic and

environmental factors of interest introduced in the model.

2. PROGRAM FOLDERS

This software is distributed in a package that includes several folders:

PURGH LICEMNSE it User's quide. pdf

bin: executable binaries and setting files.
db: databases, and output files with inbreeding-related coefficients.
input: pedigree files and setfiles.

output: output files with estimated parameters.
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Moreover, it contains this user’s guide in pdf format, and a copy of the License of the

software PURGA as a text file.

3. INSTALLATION

The present software has been written in C++ language, using geany 1.29, and it has been
compiled with GNU g++ 6.3.1 under a GNU/Linux (Arch Linux) environment with

kernel version 4.9.8-1-ARCH. It is also compiled under Windows 10.
PURGd is a command line software, and it should be used from the terminal.

GNU/Linux: An executable binary file (PURGd) of the program can be found in the bin

folder. No installation is needed.

Windows: An executable binary file (PURGd.exe) for Windows can also be found in the

bin folder. No installation is needed.

4. INPUT FILES

All input files must be located in the input folder. This program works with two kinds of
input files: single pedigree files and setfiles including a set of pedigrees to be analyzed.

All input files must be in comma-separated values (.csv) format.

4.1. Pedigree files

Files containing pedigree information must have at least four columns, with the following
precise order: individual identity (ID), mother ID, father ID and fitness, as in the examples
provided. Fitness values must be numeric, but IDs may be numeric or entered as strings

of characters (excluding comma).
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Individuals must be ordered in the file, from older to younger. Missing values for fitness
or for additional factors must be coded as unknown (NA). In the columns B and C, parents
of founder individuals or of individuals from the non-inbred base population can be

named using the same ID, like O for instance (Table 4.1).

Additional columns can be added containing additional causal factors to be fitted in the

model.

{ A ! C
1D,Dam,Sire,Longevity,YOB |53 D Dam Sire Longevity = YOB
1,0,0,1942, 273 > B 0 0 1942 273
2,0,0,2106,273 : 0 0 2106 273
3,0,0,2781,273 : B 0 0 2781 273
4,2,1,2051,275 5 ) 1 2051 275
5,3,1,2593,275 5 I 3 1 2593 275
6,0,0,2399,273 o 6 0 0 2399 273
1,2,1,4717,276 : I 2 1 4717 276
8,2,1,757,276 o 8 y) 1 757 276
9,3,1,919,276 ™ o 3 1 919 276
10,4,1,2655,277 o A 1 2655 277
11,4,1,2,277 o 11 4 1 2 277
12,5,1,51&,2?? -
13°5°1'222 277 i: IV 5 1 518 277
1.:1,:,1 "I'”-'ll:i 277 14 13 5 ]. 422 2?7

Table 4.1: In the example above, a pedigree file is shown using a text editor, with no blanks, and
comma (,) separated values (left); It is also shown how it can be visualized using a spreadsheet

program such as LibreOffice Calc or Excel (right).

4.2. Setfiles

A setfile contains a list of names of pedigree files to be analyzed. They are used to run
automatically several pedigree files under the same running conditions (see examples

below).
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In this setfiles, a header in the first row must contain the key word "setfile". The

successive rows will contain a list of pedigree file names (without .csv extension).

Ancient.csv

et

setfile

setfile i -

Qilin 2 Qilin

Phoenix B Phoenix
Cirith_Ungol_Spider A Cirith_Ungol Spider

Mirkwood_Spider
Thessaly_Centaur

on

Mirkwood Spider
Thessaly Centaur

1

Kraken Kraken
Nepal_Migoti MNepal Migoi
Unicorn] ‘M Unicomn

Table 4.2: Setfile (type 1) example: a series of pedigree files Qilin.csv, Phoenix.csv, ... together

using the same running parameters, visualized using a text editor (left) or a spreadsheet program
(right).

5. START USING PURGd

PURGd is a command terminal program. It can be run in GNU/Linux and Windows
command prompts such as bash or cmd.exe, respectively. A guide and examples to run

PURGd from Windows is provided in Box 1.

PURGd uses the following syntax:

./PURGd -- method [ --option ] datafile

where italics indicate the following arguments to be typed by the user:

- method refers to the LR (==Ir) or NNLR (=—-nnlr) methods implemented. An
additional method (--d value) lets to calculate g along with other inbreeding
coefficients (see section 6) for a given d value.

- datafile is the name of the input file or the setfile, preceded by its absolute or
relative path.

- options need not be specified. Then PURGd assumes IP as the default purging
model. Ancestral inbreeding models can be used instead specifying the
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corresponding model as an option: Ballou (--ffa), Boakes & Wang (--fa) or

Ballou and Boakes & Wang (--faffa) model.
For example,

./PURGd --d 0.27 .. /input/Ancestral.csv

runs PURGd assuming d=0.27 for the data in the file Ancestral.csv, located in the input

folder, in order to calculate g for all the individuals.

Alternatively, entering

./PURGd --help

will print a short manual to use it in the terminal.

The appearance and procedure, as well as the output files, are the same in both instances.

An example of use is shown below:

./PURGd --nnlr -- ffa .. /input/Ancestral.csv

In this example, PURGd uses the NNLR method (--nnlr) assuming Ballou’s model (--ffa)
on the setfile Ancestral.csv, located in PURGd input folder (note that PURGd is called

from the bin folder).

After entering all arguments and options, the software will print a short summary in the
terminal as it runs. It also will indicate when the software stops running. Output files and

databases will be saved in the output and/or the db folder (section 6).
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BOX 1. Using PURGd with Windows
- Download and unfold PURGd in any folder.

- Save your data file, with the correct format, into the input folder. Let’s assume the name of your

data file is groundhog.csv

- Click on the Start Menu, then click on the Run option, type cmd.exe and click OK. That will

open a console window where you will type lines of commands.

-To run PURGd you need to move to the bin folder that contains the program using the cd (change
directory) command. To do this, open the Windows File Explorer, go to the folder where you
extracted PURGd. Click on the PURGd icon in the bin folder with the right button and then click
in “properties” and copy the location full path. Then go to the console, type cd and paste the path.

For example

cd C:\Users\Mary\PURGd_1.1.0\bin

and press intro. Now the commands you write in the console work in the bin directory

- Then you can run PURGd from the console. For example, to analyse the data in your

groundhog.csv file using the IP model and the NNLR method, you would type
J/PURGd --nnlr ../input/ groundhog.csv
where “ ../input/” calls the data from the input directory.

If for example you want to use Ballou’s model instead of the IP one you will need to set that

option, typing
/PURGd --nnlr--ffa ../input/ groundhog.csv

These analyses use the program settings in the setting.txt file, as explained below.
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5.1. Program settings

The bin folder contains a settings.txt text file where the program setting parameters are
saved. The program needs it to be read in each run, so be sure it is not cleared or modified

in a wrong format.

This file can be modified with a text editor, and allows to define some options that may

make the program slower or change its behaviour, but that can perform tasks of interest:

Wi=w

BG=n

MATERNAL=0
USE_ADDITIONAL_FACTORS=0
ADDITIONAL_FACTORS=
NAME_OF_ADDITIOMNAL_FACTORS=
SCALE=1

STAT=A

ACCURACY=0.01

MAX_BG=10

RANGE_FACTORS=0 10
SAVE_DATABASES=1

RUN_STEPWISE=0

WO=: Allows to a introduce a numeric value for the expected fitness for non-inbred

individuals, or to calculate it as the average fitness of non-inbred individuals with non-
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inbred ancestors (w) (when using the LR method, you should enter a value for the average
of In(w0) or the program wilj compute this average using In(w) for all non-inbred

individuals with non-onbred ancestors).

BG=: Allows to introduce a numeric value for the regression coefficient on g (or on F in

ancestral inbreeding models), or to estimate it as a parameter (n).

MATERNAL=: Introduce a factor for maternal effects (1) or not (0) by adding the value
of g (or F in ancestral inbreeding models) in the mother of each individual as a new

regressor variable.

USE_ADDITIONAL_FACTORS=: Introduce other additional factors (1) or not (0).

ADDITIONAL_FACTORS=: If used, enter here the column number of additional factors

to be used, separated by space.

NAME_OF ADDITIONAL_FACTORS=: If used, enter here the name of the additional

factors, separated by space.

* Note: Results obtained by including maternal effects or additional factors associated
with g (as year of birth) should be interpreted with caution, as these factors tend to
produce a slight overfitting of the model and can give estimates affected by confounded
effects.

SCALE-=": Indicates if fitness data are untransformed (1) or logarithmic (2).

STAT=: Indicates the statistic parameter to be used for the Golden Section Search
algorithm implemented in the LR method: the adjusted coefficient of determination aR2

([6]), (R), or the corrected Akaike Information Criterion (A).(AlCc) [3].

ACCURACY=: It defines an accuracy value for the search of LS estimate of the purging

coefficient and other factors. By default, 0.01 is settled.
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MAX_ BG= : Defines a maximum value for the search for the BG term in the NNLR

method (the minimum value is always assumed to be zero).

RANGE_FACTORS=: Defines the minimum and maximum values to search the effects

of each factor in the NNLR method, separated by spaces.
SAVE_DATABASES=: Save databases (1), as described in the output section, or not.

* Note: only data on analyzed individuals are saved, excluding those with unknown
fitness or, in the LR method, those with invalid fitness in logarithmic scale (e.g. fitness
0).

RUN_STEPWISE=: With additional factors, it uses a backward stepwise method to look

for the best model in the LR method (1), or not (0).

A description of these setting parameters also appear in the header of the settings.txt file.

6. OUTPUT FILES

A short summary will be displayed on the screen when the program has finished. More

complete results will be saved automatically in the output and db folders.

The purging coefficient that best fit the data
- According t Cc : d=0.128312

The purging coefficient that
- According to AICc

Output files have csv format. If opened with a spreadsheet, they can easily be converted
for a friendly view (for example, with Excel in Windows select the first column in the
file, go to DATA, and choose “text in columns* - “delimited* - “comma*). There are three

kinds of output files.
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* Note: Output files will take their name from input files, and new analysis with the same

input files will overwrite previous output files.

6.1. Output files for d and regression coefficients estimates

Analysis performed using the LR or NNLR method will always save a file with the
extension _d_coefficients.csv in the output folder. Two output sets are shown in these
files, one for the pertinent analysis performed to estimate d, the other one for an analogous
analysis conditional to d = 0 and, therefore, assuming no purging. Comparing these two

analyses shows how far fitting improves by considering purging.
The output consists of the following columns:
- Pedigree file: indicates the name of a pedigree file.
- d coefficient: the estimated (or assumed) effective purging coefficient.

- p-value (F): the p-value for the Snedecor F test for the significance of the linear

regression model being fitted (only for LR).

- aR2: the adjusted coefficient of determination for the linear regression model

fitted (only for LR).

- AICc: the corrected Akaike’s Information Criterion, assuming normality for

residual errors.
- RSS: the residual sum of squares.

- p-value (bootstrap): the p-value for the bootstrap analysis to contrast whether d
= 0. Its value only appears in the row for purging analysis (not in the line for

analysis assuming d = 0).
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- In(W0) or WO: the initial non-inbred mean for log-fitness or for untransformed

fitness.

- b[factor]: the regression coefficient for each factot (i.e., each regressor) included

in the analysis (including the purged inbreeding coefficient term g).

- SD[parameter]: standard deviation for parameters estimated (in the numerical

case this is only computed for (W 0)

- p-value (t): the p-value obtained from a t test for the significance of each

regression coefficient in the linear regression model.

When using setfiles, the output files save the outputs of several pedigree files.

} C G
iWlPedigree file Analysis d coefficient |RSS AlCc p-value (bootstrap) WO SDIW0)  big)
“BMirkwood Spider  Inbreeding-purging medel (0.0021 0.580193 | -1016230.5087 0.810258 0.0632063-0.3526
B No purging medel 010.580044 | -103857 0.81025810.0632063/-0.340051
“WCirith_Ungol_Spider Inbreeding-purging model 0.11 1.37672 |-49.7773 0.5273 0.846213 0.0275694/-0.75
5 Mo purging model 011.37663 -51999 0.8462130.0275694 -0.74

Table 6.1.1:Output file for d estimation under the NNLR method using a setfile.

For single pedigree files, if stepwise analysis is activated, results for every possible

combination of factors will be saved in the output file.

6.2. Databases

If specified in the program settings (section 5.1), databases are saved in the db folder with

_data.csv extension, for both LR and NNLR estimation methods.

A separate database is saved for each pedigree file analyzed. It includes several columns

(individuals excluded from analysis won’t appear in this output file):

- Identity: The identity of the individual.
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- Fitness: As it is used by the analysis, so scale may be changed.

- F: Standard inbreeding coefficient

- g(d): Purged inbreeding coefficient computed using the estimate obtained for d.
- Fa: Ancestral inbreeding coefficient.

Additionally, if maternal and other additional factors are included in the model,
successive columns will contain their coefficients (only for factors in the best model when

stepwise regression is activated):

- gdam(d): Maternal purged inbreeding coefficient computed using the estimate

obtained for d.

- Effects of additional factors in the input.

6.3. Output files with inbreeding coefficients computed using d values

specified by the user

This output file is generated when calculating g for specified values of d (-d argument in

PURGd). An output file with _g(d).csv extension is saved in the db folder.

This output file contains inbreeding coefficient values for every individual in the

pedigree, and a fixed number of columns:

- ID: The identity of the individual.
- F: Inbreeding coefficient.
- g(d): Purged inbreeding coefficient, for the d value specified by the user.

- Fa: Ancestral inbreeding coefficient.
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/. PERFORMANCE

PURGd is an efficient software that runs quickly, and requires low RAM memory usage,
so it can be run in a desktop computer or a laptop. Details on the test on performance are

shown below.

We measured the actual CPU execution time as the sum of the user and system time,
which means that we do not show results for execution time in real (clock) time, as it can
be affected by other processes, including input / output (like entering options in the
keyboard). CPU time could be defined as the time used within the process. We also
measure memory usage through the maximum resident set size (RSS) memory consumed,
which is the portion of main memory (RAM) occupied by the process. These values were
calculated for simulated pedigrees with different number of individuals per generation (N
) and different depth (t, in generations) using the linear regression and the numerical non-

linear regression methods available in PURGd.

CPU time increases linearly with the product N - t, that is, with the total number of
individuals in the input pedigree file (Figure 7) at a rate that is much higher for the
numerical method (~ 0,0117 seconds / individual) than for the regression method
(~0,0006 seconds /individual), though both methods are in practice very fast: a big
pedigree file of about 5000 individuals can be analyzed in a few seconds using the linear

regression method, and in a few minutes using the numerical non-linear regression one.
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num

CPU time

50 —o o—@ — -
Nt

Figure 7: CPU time (in seconds) increase with the number of individuals in the pedigree (N t).
The CPU time of the numerical non-linear regression method (num, in red) increases with N t

more steeply than that of the linear regression method (reg, in blue).

The maximum RSS used by the bigger pedigree file (N t = 5000) were 18.38MB and
36.01MB for the linear regression and numerical non-linear regression methods,
respectively. So it can be concluded that no RAM problems are expected for real pedigree
files. Additionally, no memory leak has been detected for this software, so running

continuously pedigree files using setfiles will not require any additional memory.

8. ABOUT

Current version of PURGd is 1.1.0 (15/03/2017), compiled with GNU g++ 6.3.1. This

Software was developed by:

- Eugenio Lopez-Cortegano
- Jinliang Wang

- Aurora Garcia-Dorado
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PURGd is a free software oriented to research, non-commercial use, and it is distributed
under the terms described in the PURGd License.txt file. If you use PURGd in your

research, cite:

e Garcia-Dorado, A., Wang, J. and Lopez-Cortegano, E. (2016) Predictive model
and software for inbreeding-purging analysis of pedigreed populations. G3:

Genes, Genomes, Genetics 6 (11): 3593-3601.

Users are encouraged to request additional features on the software and to report bugs. In

that case, please contact Eugenio Lépez-Cortegano ( e.lopez@ucm.es ).

This work was funded by grant CGL2015-53274-P and by an FPI research fellowship

(BES-2012-055006) from MINECO (Spanish Government).
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THE RELIABILITY OF IP PREDICTIONS OBTAINED USING LR
ESTIMATES

10 25 50

1.00-

0.75-

2
0.50- 3
=
m
Parameters estimated from
025 | N=10 t=N/2
N=10 t=N
N=10 t=2N
= N=25 t=N/2
0.00- = N=25t=N
— N=25 t=2N
1.00 + N=50 t=N/2
= N=50t=N
— N=50 t=2N
0.75- Neutral prediction

Vet - == Observed fitness

0.50-

amm

0.25-

o0 0 5 10 15 200 10 2'0t30 40 500 25 50 75 100
Figure S1: Observed fitness for the CAPTIVE (up) and WILD (down) cases, and the
corresponding prediction obtained using LR estimates in the IP model (& obtained using
Equation 2). In each panel, observed and predicted values over t=2N generations
correspond to the population size indicated in the column (N=10, N=25 and N=50), and
different predictions are plotted using estimates obtained from different data sets,
denoted by different colors and strokes as shown in the lateral panel. Neutral predictions,
computed assuming no selection and using the inbreeding load observed in the simulated base

population (Bsim) are also shown.
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THE LOGISTIC MODEL

In previous studies of purging estimation, fitness is often evaluated as a categorical
binary trait, so inbreeding depression and genetic purging are analyzed using

logistic (alias logit) regression.

In order to compare the performance of the NNLR method and the logit approach
to analyze binary data, we run the cases described in the main text transforming
fitness into binary values. This is achieved by assigning fitness 1 to each individual
i with a probability equal to W; , and fitness 0 otherwise. Logit regression through

the origin is performed by using logit(W,) as known intercept in the model.

When using estimates of logit regression coefficient, fitness is predicted as:

1
_(bl'Xl,i+"'+bk'Xk,i) '

Wi_

1+e

where b represents the logit regression coefficients (note that the intercept is
excluded, as we force regression through the origin), and X stands for each

independent variable or factor in the model (F and F -Fa).

Figure S2 shows predictions using Ballou’s model based on original fitness data
evaluated as a continuous trait (NNLR method) or as a binary variable using both
the NNLR and the logit method. Both exponential predictions based on NNLR
estimates (one obtained from binary data and the other from original fitness data)
are very similar to each other, but logit predictions fit the data worse. Of course,
NNLR coefficients estimated from binary data have much higher standard errors

(see Tables S1 and S2), as the transformation of original fitness to binary fitness

219



introduces important sampling error. Standard errors were also larger for logit than

for NNLR estimates.

N=10 N=25 N=50
1.00-
% VU R
0.75- TR —
g
0.50- 3
=
m
0.25-
= Continuous fitness (NNLR)
W 0.004 Binary data (NNLR)
* Binary data (logistic)
1.00- v N
Neutral prediction
— Observed fitness
= T—
e, -
—_——
=
-
o
0.25-
0.00-
0 5 10 15 20 0 10 20 3‘0 40 50 0 25 50 75 100

Figure S2: Predictions for fitness in the CAPTIVE and WILD cases computed with
Ballou’s method using the exponential and the logistic model. Logit Ballou’s predictions
(dotted lines) are computed using logit estimates computed from binary (0,1) fitness
observations (see text for explanation). NNLR predictions are computed using the
exponential Ballou’s model with NNLR estimates obtained from the same (0,1) fitness
data (dashed line). NNLR Ballou’s exponential predictions based on NNLR estimated
from the original continuous fitness values are also shown for comparison (solid line).
Both the estimates of coefficients used to obtain predictions and the observed mean fitness
correspond to population sizes (in columns) N=10, N=25 and N=50 during t=2N

generations.
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CAPTIVE

Continuous fitness (NNLR)

Binary data (NNLR)

Binary data (Logistic)

b(F) b(F - Fa) | b(F) b(F -Fa) | b(F) b(F - Fa)
N=10 | -0.6247 0.4040 -0.7454 0.5160 -2.2564 1.3300
+0.0214 +0.0222 | £0.0357 | +0.0359 | +0.1166 |+0.1206
N=25 | -0.6885 0.5644 -0.8792 0.7566 -2.5738 2.0162
+0.0411 +0.0397 | £0.0522 | +0.0526 | +0.1662 | +0.1648
N=50 | -0.7228 0.6377 -1.0169 0.9290 -2.9368 2.4956
+0.0515 +0.0523 | £0.0755 | +0.0744 | £0.2207 | +0.2240

Table S1: Regression coefficients estimated in the CAPTIVE case for Ballou’s model

using the NNLR and logistic methods with fitness as a continuous or binary trait in

pedigrees from different population sizes (N=10, N=25 and N=50) and t=2N generations.

Estimates are averaged over replicates, and are given with their empirical standard errors

WILD

Continuous fitness (NNLR)

Binary data (NNLR)

Binary data (Logistic)

b(F) b(F -Fa) | b(F) b(F -Fa) | b(F) b(F - Fa)
N=10 | -2.5070 1.9002 -2.6547 2.0480 -5.0640 3.6847
+0.0663 +0.0648 | £0.1005 | +0.1005 |+0.1314 | +0.1442
N=25 | -2.5705 2.2831 -2.7120 2.4259 -5.6883 4.9071
+0.0806 +0.0799 | +0.1188 | +0.1099 |+0.1753 | +0.1748
N=50 | -2.6496 2.4997 -2.5584 2.4071 -6.0579 5.6093
+0.1065 +0.1066 | +0.1558 | +0.1557 | +0.2762 | +0.2736

Table S2: Regression coefficients estimated in the WILD case for Ballou’s model using

the NNLR and logistic methods with fitness as a continuous or binary trait in pedigrees

from different population sizes (N=10, N=25 and N=50) and t=2N generations. Estimates

are averaged over replicates, and are given with their empirical standard errors.
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IP AND BALLOU ESTIMATES OBTAINED FOR
ALTERNATIVE NNLR SEARCH INTERVALS

CAPTIVE IP Ballou
5 d by brr,
t=N/2  0.5489 0.1353 -0.6359 0.6139
+0.0180 +0.0238 +0.0210 +0.0520
N=10  t=N 0.5285 0.2176 -0.6143 0.3649
+0.0169 +0.0163 +0.0185 +0.0217
t=2N 0.4868 0.1920 -0.6468 0.4274
+0.0103 +0.1624 +0.0199 +0.0194
t=N/2 0504 0.288 -0.5961 0.4083
+0.0204 +0.0230 +0.0240 +0.0334
N=25  t=N 0.4783 0.2516 -0.6115 0.4250
+0.0219 +0.0179 +0.0275 +0.0255
t=2N 0.4008 0.1874 -0.6813 0.5582
+0.0193 +0.0169 +0.0404 +0.0391
t=N/2  0.4893 0.2792 -0.5911 0.3787
+0.0266 +0.0263 +0.0378 +0.0412
N=50  t=N 0.4284 0.1974 -0.6599 0.5088
+0.0241 +0.0221 +0.0448 +0.0421
t=2N 0.3727 0.1474 -0.7322 0.6482
+0.0203 +0.0198 +0.0532 +0.0537

Table S3: Estimates obtained in the CAPTIVE case. In the IP method NNLR searched for
the d estimate in the interval -0.5 < d < +0.5. In Ballou’s method, NNLR searched for the
brra estimate in the interval O < brra < +10. Estimates are for different populations sizes
(N=10, N=25 and N=50) and numbers of generations (t = N/2,t = Nand t = 2N).

They are averaged over replicates, and are given with their empirical standard errors.
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WILD IP Ballou
6 d be bre,
t=N/2 2.2463 0.2340 -2.5570 2.8791
+0.0537 +0.0222 +0.0625 +0.1807
N=10 t=N 2.1076 0.3054 -2.2702 1.4859
+0.0465 +0.0104 +0.0539 +0.0817
t=2N 1.7903 0.2162 -2.5022 1.9015
+0.0391 +0.0075 +0.0653 +0.0629
t=N/2 2.0527 0.4076 -2.2320 1.7386
+0.0566 +0.0112 +0.0626 +0.0841
N=25 t=N 1.8372 0.3184 -2.2960 1.8257
+0.0512 +0.0120 +0.0708 +0.0694
t=2N 1.404 0.2031 -2.5520 2.2616
+0.0439 +0.0114 + 0.0800 +0.0793
t=N/2 1.8741 0.3935 -2.0973 1.6061
+0.0605 +0.0156 +0.0741 +0.0794
N=50 t=N 1.6393 0.3116 -2.3798 2.0946
+0.0529 +0.0174 +0.0836 +0.0818
t=2N 1.4089 0.2564 -2.6051 2.4546
+0.0607 +0.0215 +0.1202 +0.1219

Table S4: Estimates obtained in the WILD case. In the IP method NNLR searched for the

d estimate in the interval -0.5 < d < +0.5. In Ballou’s method, NNLR searched for the bgera

estimate in the interval 0 < bera < +10. Estimates are for different populations sizes (N=10,
N=25 and N=50) and numbers of generations (t = N/2,t = Nand t = 2N). They are

averaged over replicates, and are given with their empirical standard errors.
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