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Abstract. Let X be a separable Banach space which admits a sepa-
rating polynomial. Let f : X → R be bounded, Lipschitz, and C1 with
uniformly continuous derivative. Then for each ε > 0, there exists an
analytic function g : X → R with |g − f | < ε and ‖g′ − f ′‖ < ε.

1. Introduction

The problem of approximating a smooth function and its derivatives
by a function of higher order smoothness on a Banach space X has been
investigated by several authors, although the number of such results is lim-
ited. When X is finite dimensional excellent results are known, and in
fact Whitney in his classical paper [W] provides essentially a complete an-
swer by showing: for every Ck function f : Rn → Rm and every contin-
uous ε : Rn → (0,+∞) there exists a real analytic function g such that
‖Djg(x) − Djf(x)‖ ≤ ε(x) for all x ∈ Rn and j = 1, ..., k. This is the
so-called Ck fine approximation of f .

The first results for X infinite dimensional concern the smooth, non-
analytic case, and are due to Moulis [M]. She proves, in particular, a C1

fine approximation theorem; namely, that for X = c0 or lp with 1 < p <∞,
and Y an arbitrary Banach space, given a C1 map f : X → Y, and a
continuous function ε : X → (0,∞) , there exists a Ck smooth map g : X →
Y (where the optimal value of k ≥ 1 depends on the choice of X) such that
|g (x)− f (x)| < ε (x) and ‖g′ (x)− f ′ (x)‖ < ε (x) . This result was later
extended in [AFGJL] to the case where X has an unconditional basis and
admits a Lipschitz, Ck smooth bump function. Further work along this line
can be found in [HJ], where it is shown that for certain range spaces Y, one

2000 Mathematics Subject Classification. Primary 46B20.
Key words and phrases. analytic approximation, separable Banach space, separating

polynomial.
The second named author partly supported by NSERC (Canada).

1



2 D. AZAGRA, R. FRY, AND L. KEENER

can relax the conditions on X in [AFGJL] and, for example, take X to be
merely separable.

It is important to note that all the results mentioned above require, in
a very essential way, a theorem concerning the approximation of Lipschitz
functions f by more regular, Lipschitz functions g, where the Lipschitz con-
stant of g is fixedly proportional to the Lipschitz constant of f, regardless
of the precision in the approximation. In fact, all the methods to date on
Ck fine approximation rely on such results. In [M] and [AFGJL] this is
achieved by reducing the problem to the finite dimensional case using the
unconditional basis, but otherwise without this reduction traditional meth-
ods of smooth approximation, such as smooth partitions of unity, do not
work in addressing this problem. A new approach was found in [F1], and
further developed in [AFM], [F2], [AFK2], and [HJ]. The technique from
[F1] has been called the method of sup-partitions of unity in [HJ].

Concerning Ck fine approximation by analytic functions for X infinite
dimensional, nothing is known. In view of the remarks in the preceding
paragraph, it would appear that first one needs the ability to approximate
Lipschitz functions by Lipschitz, analytic functions with good control over
the Lipschitz constant. That is, one requires a kind of analytic sup-partition
of unity. Only very recently has this been possible with the work of [AFK1],
where it is proven that if X is separable and admits a separating polynomial,
then for every Lipschitz function f : X → R and ε > 0 there exists a
Lipschitz, analytic function g : X → R with |f − g| < ε and Lip(g) ≤
CLip(f) , where the constant C > 1 depends only on X (for a precursor to
this work see [FK]). Using this, we are able in this note to give the first
results on the C1 fine analytic approximation problem in infinite dimensions.
We remark that this work is new even for X a separable Hilbert space. We
establish,

Theorem 1. Let X be a separable Banach space which admits a sepa-
rating polynomial. Let f : X → R be bounded and Lipschitz, with uniformly
continuous derivative, and ε > 0. Then there exists an analytic function
g : X → R such that |f − g| < ε and ‖f ′ − g′‖ < ε.

Our notation is standard, with X denoting a Banach space, and an open ball
with centre x and radius r denoted Br(x). If {fj}j is a sequence of Lipschitz
functions defined on X, then we will at times say this family is equi-Lipschitz
if there is a common Lipschitz constant for all j. A homogeneous polynomial
of degree n is a map, P : X → R, of the form P (x) = A (x, x, ..., x) , where
A : Xn → R is n−multilinear and continuous. For n = 0 we take P to be
constant. A polynomial of degree n is a sum

∑n
i=0 Pi (x) , where i ≥ 1 the

Pi are i-homogeneous polynomials.

Let X be a Banach space, and G ⊂ X an open subset. A function f : G→ R
is called analytic if for every x ∈ G, there are a neighbourhood Nx, and
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homogeneous polynomials P x
n : X → R of degree n, such that

f (x+ h) =
∑
n≥0

P x
n (h) provided x+ h ∈ Nx.

Further information on polynomials may be found, for example, in [SS].
For a Banach space X, we define its (Taylor) complexification X̃ =

X
⊕
iX with norm

‖x+ iy‖ eX = sup
0≤θ≤2π

‖cos θ x− sin θ y‖X = sup
T∈X∗,‖T‖≤1

√
T (x)2 + T (y)2.

If L : E → F is a continuous linear mapping between two real Banach spaces
then there is a unique continuous linear extension L̃ : Ẽ → F̃ of L (defined
by L̃(x + iy) = L(x) + iL(y)) such that ‖L̃‖ = ‖L‖. For a continuous
k-homogeneous polynomial P : E → R there is also a unique continuous
k-homogeneous polynomial P̃ : Ẽ → C such that P̃ = P on E ⊂ Ẽ (but
the norm of P is not generally preserved: one has that ‖P̃‖ ≤ 2k−1‖P‖).
It follows that if q (x) is a continuous polynomial on X, there is a unique
continuous polynomial q̃ (z) = q̃ (x+ iy) on X̃ where for y = 0 we have
q̃ = q. For more information on complexifications (and polynomials) we
recommend [MST]. In the sequel, all extensions of functions from X to X̃,
as well as subsets of X̃, will be embellished with a tilde.

2. Main Results

To prove Theorem 1, we start with a lemma which is a variation of [AFK1,
Lemma 3], where here we have made three changes: added part (4′) ; in-
cluded constants Mn for the estimate in (5) ; and relaxed the condition that
r ≥ 1 to r > 0. To obtain (4′) , we replace the function bn in the proof of
[AFK1, Lemma 3] with a C1 version; the change in (5) is easily handled;
and requiring merely r > 0 means that certain constants will depend on r,
but as we shall apply the lemma with r fixed throughout, this causes no
problem.

First we need some definitions and notation. If X posseses an nth order
separating polynomial, then it admits a 2n-homogeneous polynomial q such
that

(2.1) ‖x‖2n ≤ q (x) ≤ A ‖x‖2n ,

for some A > 1 (see e.g., [AFK1]). In [AFK1, Lemma 2] it is proved that
the function Q (x) = (q (x) + 1)1/2n − 1 satisfies:

(1) Q is (real) analytic on X,
(2) Q is Lipschitz on X, where we can take Lip(Q) > 1,
(3) inf {Q (x) : ‖x‖ ≥ 1} > 0 = Q (0) ,
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(4) Q (x) < 4ρ ⇒ ‖x‖ < 8ρ when ρ ≥ 1; otherwise Q (x) < 4ρ ⇒

‖x‖ < δ (ρ) ≡
(
(1 + 4ρ)2n − 1

)1/2n
, this latter implication simply

using (2.1) and the definition of Q.
(5) there exists δ > 0 such that Q extends to a Lipschitz, holomorphic

map Q̃ on the uniform strip X ⊂Wδ ⊂ X̃ given by,

Wδ =
{
x+ z : x ∈ X, z ∈ X̃, ‖z‖ eX < δ

}
.

We use the notion of a Q-body, which for ρ > 0 is defined by

DQ (x, ρ) = {y ∈ X : Q (y − x) < ρ} .
Let ‖·‖c0

be an equivalent analytic norm on c0, with ‖x‖∞ ≤ ‖x‖c0
≤

A1 ‖x‖∞ for all x ∈ c0, and some A1 > 1 (see e.g., [FPWZ], and also
[AFK1], [FK] where it is referred to as the Preiss norm).

For the remainder of the proof, we fix a dense sequence {xn}∞n=1 in X.

Lemma 1. Let Ṽ = Wδ be an open strip around X in X̃ in which the
function Q̃ given above is defined. Given ε ∈ (0, 1), r > 0, and a covering
{DQ(xn, r)}∞n=1 of X, there exists a sequence of holomorphic functions ϕ̃n =
ϕ̃n,r,ε : Ṽ → C, whose restrictions to X we denote by ϕn = ϕn,r,ε, with the
following properties:

1: The collection {ϕn,r,ε : X → [0, 2] |n ∈ N} is equi-Lipschitz on X,
with Lipschitz constant of the form Lϕ = L1Lip(Q)/r > 1 (where
L1 ≥ 1 is independent of ε and n),

2: 0 ≤ ϕn,r,ε(x) ≤ 1 + ε for all x ∈ X.
3: For each x ∈ X there exists m = mx,r ∈ N (independent of ε) with
ϕm,r,ε(x) > 1/2.

4: 0 ≤ ϕn,r,ε(x) ≤ ε for all x ∈ X \DQ(xn, 5r).
4′:

∥∥ϕ′n,r,ε(x)
∥∥ ≤ ε for all x ∈ X \DQ(xn, 5r).

5: For each x ∈ X there exist δx,r > 0, ax,r > 0, and nx,r ∈ N (all
independent of ε) such that

|ϕ̃n,r,ε(x+ z)| < 1
Mnn!an

x,r

for n > nx,r, z ∈ X̃ with ‖z‖ eX < δx,r,

where Mn = e2C2κ (1 + ‖xn‖) , and the κ = κ (r) > 1 and C > 1
are constants that will be specified in the proof of Theorem 1.

6: For each x ∈ X, there exists δx,r > 0 (independent of ε) and
nx,ε,r ∈ N such that for ‖z‖ eX < δx,r and n > nx,ε,r we have
|ϕ̃n,r,ε(x+ z)| < ε.

7: For each x ∈ X, there exists δx,ε,r such that

|ϕ̃n,r,ε(x+ z)| ≤ 1 + 2ε for n ∈ N, and z ∈ X̃ with ‖z‖ eX ≤ δx,ε,r.
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Proof. We largely follow the proof of [AFK1, Lemma 3], with the few
noted changes. As the proof in [AFK1] is rather long and technical, we
here indicate only the key constructions, referring the reader to the above
cited paper for full details. Note that because r is fixed throughout, for
ease of notation, we shall often suppress dependences on r. Define subsets
A1,r = {y1 ∈ R : −1 ≤ y1 ≤ 4r}, and, for n ≥ 2,

An,r = {y = {yj}n
j=1 ∈ `n∞ : −1− r ≤ yn ≤ 4r, 2r ≤ yj

≤Mn,r + 2r for 1 ≤ j ≤ n− 1},

A′n,r = {y = {yj}n
j=1 ∈ `n∞ : −1 ≤ yn ≤ 3r, 3r ≤ yj

≤Mn,r + r for 1 ≤ j ≤ n− 1},

where Mn,r = sup {Q (x− xj) : x ∈ DQ(xn, 4r), 1 ≤ j ≤ n} .

Let µ ∈ C∞ (R, [0, 1 + ε]) be Lipschitz such that µ (t) = 0 iff t ≥ 1, and
µ (t) = 1 + ε iff t ≤ 1/2. Let bn ∈ C∞ (R, [0, 1]) be Lipschitz such that
bn (t) = 1 iff t /∈ (2r,Mn,r + 2r) , and bn (t) = 0 iff t ∈ [3r,Mn,r + r] .
Observe that we may choose the bn to have common Lipschitz constant,
dependent on r, but independent of n. Let b̂ ∈ C∞ (R, [0, 1]) be Lipschitz
such that b̂ (t) = 1 iff t /∈ (−1− r, 4r) , and b̂ (t) = 0 iff t ∈ [−1, 3r] . Now
define a Lipschitz, C∞ smooth map bn : c00 ⊂ c0 → [0, 1] by bn (y1, ..., yn) =

µ

(∥∥∥(bn (y1) , ..., bn (yn−1) , b̂ (yn)
)∥∥∥

c0

)
. Then support(bn) = An, and bn =

1+ε on A′n. Moreover, bn is Lipschitz with constant of the form L1/r, where
L1 ≥ 1 is independent of n.

Now one defines, on Rn, the map

hn (x) =
1
Tn

∫
Rn

bn(y)e−k
Pn

j=1 2−j(xj−yj)
2

dy,

Tn =
∫

Rn

e−k
Pn

j=1 2−jyj
2

dy.

Because bn = bn,ε has compact support, is bounded, Lipschitz, and C1, one
can choose k = kn,ε > 0 sufficiently large that

(2.2) |bn(x)− hn(x)| ≤ ε/2 for all x ∈ Rn,

and

(2.3) |b′n(x)− h′n(x)| ≤ ε/2 for all x ∈ Rn.

Next one defines (real) analytic maps ϕn : X → R by,

ϕn (x) = hn (Q (x− x1) , ..., Q (x− xn)) =
1
Tn

∫
Rn

bn (y) e−kn
Pn

j=1 2−j(Q(x−xj)−yj)
2

.



6 D. AZAGRA, R. FRY, AND L. KEENER

It is more or less standard to show that Lip(ϕn) ≤ L1
r Lip(Q) . We can

extend the maps ϕn,r,ε to complex valued maps defined on WQ (see above)
calling them ϕ̃n. Namely (where x ∈ X, z ∈ X̃),

ϕ̃n (x+ z) =
1
Tn

∫
Rn

bn (y) e−kn
Pn

j=1 2−j( eQ(x−xj+z)−yj)2

dy

Note that the ϕ̃n are well defined (as the bn have compact supports) and
are holomorphic where Q̃ is (namely on W̃δ).

To see (4) and (4′), note that if Q (x− xn) ≥ 5r, then there is a neighbour-
hood N of x for which y ∈ N implies that the point

x̂ = (Q (y − x1) , ..., Q (y − xn)) ∈ Rn\An,

implying bn (x̂) = 0 and b′n (x̂) = 0. Hence, by (2.2) and (2.3) , we have,
|ϕn (x)| < ε/2 and ‖ϕ′n (x)‖ < ε/2.

The remaining parts are handled as in [AFK1], noting that for (5) we choose
κn larger if need be to ensure the stated estimate involving the Mn. �

We return now to the proof of the theorem. Let ε > 0 be given and choose
ε′ satisfying

0 < ε′ < min{1
8
, 1/(132C0A

2
1L1Lip(Q)), 1/(10A1r)},

where L1 is as in part (1) of the preceding lemma, where is defined imme-
diately below, and where C0 is a constant, only depending on X, which will
be fixed later on (see page 9 below). Because f is bounded, we may suppose
that 1 ≤ f ≤ 2. As f ′ is uniformly continuous on X, we can find a fixed
ρ > 0 so that for all n, x ∈ Bρ (xn) implies ‖f ′ (xn)− f ′ (x)‖ < ε′. Now,
considering property (4) of Q, and noting that δ (r) → 0+ as r → 0+, we
can choose r ∈ (0, 1) (independent of n) so that DQ (xn, 5r) ⊂ Bρ (xn) for
all n. It will be convenient to write Dn ≡ DQ (xn, 5r) . This r shall be fixed
for the remainder of the proof.

Next let ν ∈ C∞ (R, [0, 1]) be Lipschitz such that ν (t) = 1 iff |t| ≤ 5r,
and ν (t) = 0 iff |t| ≥ 11

2 r. Put L = Lip(f). Fix a sequence of functions
{ϕn,r,ε1}

∞
n=1 with respect to the covering {DQ (xn, r)}∞n=1 of X as given by

Lemma 1, where r is fixed as above and the ε of the Lemma is chosen to be

ε1 := min
{
ε′r/3C0LLip (ν) , ε′r/25LLip (ν)

}
,

where
We write ϕn,r,ε1 as ϕn for ease of notation, and, as in Lemma 1 (1) , Lϕ =

Lip(ϕn) = L1Lip(Q) /r ≥ 1, which we recall is independent of n. Often we
will subsume dependence on ε1 as dependence on ε′ and L.

Put ∆ (t) =
(
(|t|+ 1)2n − 1

)1/2n
≥ 0. Now via convolution integrals be-

tween ν and Gaussian kernels, we can find Lipschitz, analytic functions ν,
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with Lip(ν) = Lip(ν) , and which C1-fine approximate ν in the following
sense,

|ν (t)− ν (t)| < ε′r/2LLϕ

1 + ∆ (t)
,

(2.4) ∣∣ν ′ (t)− ν ′ (t)
∣∣ < ε′r/2LLϕ

1 + ∆ (t)
.

Indeed, we can take ν to be of the form,

ν (t) =
1
a

∫
R
ν (s) e−κ(t−s)2ds,

a =
∫

R
e−κs2

ds,

where κ > 1 is chosen sufficiently large and is independent of t (although it
does depend on max {∆ (t) : t ∈ supp (ν)} < ∞). This is possible because
ν is C∞ with compact support, and the function t→ ε′/2L

1+∆(t) is strictly posi-

tive, continuous and decreases slowly enough with respect to e−κt2 (namely,
limt→∞∆(t)/eκt2 = 0). Moreover, since ν has compact support, ν has a
holomorphic extension,

ν̃ (z) =
1
a

∫
R
ν (s) e−κ(z−s)2ds,

to C. Next observe that for t, s ∈ R and z ∈ C with |z| ≤ η, we have,

Re (t+ z − s)2 = (t− s)2 + 2 (t− s) Re z + Re
(
z2
)

= (t− s+ Re z)2 − (Re z)2 + Re
(
z2
)

≥ (t− s+ Re z)2 − 2η2.
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Therefore when |z| < η we get,

|ν̃ (t+ z)| = 1
a

∣∣∣∣∫
R
ν (s) e−κ(t+z−s)2ds

∣∣∣∣
≤ 1
a

∫
R
e−κ Re(t+z−s)2ds

≤ 1
a

∫
R
e−κ(t−s+Re z)2−2η2

ds(2.5)

=
e2κη2

a

∫
R
e−κ(t+Re z−s)2ds

= e2κη2
,

where we have used a variable change to obtain the last line. Now define
Lipschitz, analytic functions νn : X → R by,

νn (x) = ν (Q (x− xn)) .

Clearly νn has the holomorphic extension ν̃n (z) = ν̃
(
Q̃ (z − xn)

)
. It will

be convenient to put νn (x) = ν (Q (x− xn)) . Observe that, writing D̂n =
DQ (xn, 6r) ,

(2.6) |νn (x)| < ε′r/2LLϕ

1 + ∆ (Q (x− xn))
, for x /∈ D̂n,

and

(2.7)
∣∣νn (x)′

∣∣ < Lip (Q) ε′r/2LLϕ

1 + ∆ (Q (x− xn))
, for x /∈ D̂n.

Note that
ε′r/2LLϕ

1 + ∆ (Q (x− xn))
=

ε′r/2LLϕ

1 + q (x− xn)1/2n

(2.8)

≤ ε′r/2LLϕ

1 + ‖x− xn‖
.

Now we estimate |ν̃n (x+ z)| =
∣∣∣ν̃ (Q̃ (x− xn + z)

)∣∣∣ , for ‖z‖ eX < η. From
[AFK1, Lemma 2], we can write

Q̃ (x− xn + z) = Q (x− xn) + Zn,
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where Zn ∈ C with |Zn| ≤ C ‖z‖ eX , for some constant C > 1. Then from
the calculation (2.5) we get, for ‖z‖ eX < η,

|ν̃n (x+ z)| =
∣∣∣ν̃ (Q̃ (x− xn + z)

)∣∣∣
= |ν̃ (Q (x− xn) + Zn)|(2.9)

≤ e2C2κη2
.

It is also worthwhile to note that ν (t) < 1 + ε′ for all t.

Let Tn (x) = f ′ (xn) (x− xn)+f (xn) be the first order Taylor polynomial of
f at xn. Note that ‖T ′n (x)‖ = ‖f ′ (xn)‖ ≤ L. Observe that Tn−f is Lipschitz
on Bρ (xn) , with Lip(Tn − f) ≤

∥∥(Tn − f)′
∥∥ = ‖f ′ (xn)− f ′ (x)‖ ≤ ε′ on

Bρ (xn) . It follows that Tn − f is Lipschitz on Dn ⊂ Bρ (xn) with constant
not greater than ε′. Denote by Tn − f a bounded and Lipschitz extension
of (Tn − f) |Dn to all of X, having the same bound and Lipschitz constant.
For example, one can take, temporarily writing h = (Tn − f) |Dn ,(
Tn − f

)
(x) = max{−‖h‖∞,min{‖h‖∞, inf

y∈Dn

{h(y) + Lip(h)‖x− y‖} } }.

Write εn (x) =
(
Tn − f

)
(x) .We now apply [AFK1, Proposition 3] to εn (x) ,

along with the standard ‘scaling argument’ that appears at the very end of
the proof of [AFK1, Theorem 1], to obtain the following: there exists a
constant C0 > 1, depending only on X, a neighbourhood X ⊂ W̃ ⊂ X̃,

where W̃ = W̃ε′,r depends only on ε′ and r (the dependence on Lϕ written
as a dependence on r), and an analytic map δn : X → R such that

(1) |εn (x)− δn (x)| < ε′r/Lϕ for all x ∈ X,
(2) Lip(δn) ≤ C0 Lip(εn) ≤ C0ε

′,

(3) the map δn extends to a holomorphic map δ̃n on W̃ (where in
particular, W̃ is independent of n),

(4) |δ̃n(x+ iy)− δn(x)| ≤ M∆ for all x+ iy ∈ W̃ , where M∆ depends
on ε′ and is independent of n.

Now we define analytic functions on X by,

ψn (x) = (Tn (x) νn (x)− δn (x))ϕn (x) .

Observe that from property (3) of δn and Lemma 1, ψn extends to a holo-
morphic map ψ̃n (z) =

(
T̃n (z) ν̃n (z)− δ̃n (z)

)
ϕ̃n (z) , where

T̃n (z) = T̃n (x+ iy) = f̃ ′ (xn) (x+ iy − xn) + f (xn)
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(f̃ ′ (xn) being the canonical extension of f ′ (xn) to all of X̃), on a neigh-
bourhood X ⊂ W̃ ⊂ X̃, where W̃ is independent of n.

Let us define the function g : X → R by,

g (x) =
‖{ψn (x)}∞n=1‖c0

‖{ϕn (x)}∞n=1‖c0

We next show that g is analytic. Since the norm ‖ · ‖c0 is real analytic on
c0 \ {0}, it is sufficient to check that the mappings x 7→ {ϕn(x)}∞n=1 and
x 7→ {ψn(x)}∞n=1 are real analytic from X into c0 and do not take the value
0 ∈ c0. Using Lemma 1 it is easy to show that the function x 7→ {ϕn(x)}∞n=1

has such properties (see [AFK1, Lemma 4]).
As for the function x 7→ {ψn(x)}∞n=1, let us first show that it does not

take the value 0. In fact we show that for each x ∈ X there exists an n
so that the number (Tn (x) νn (x)− δn (x))ϕn (x) is bounded above 1/4. In-
deed, for each x ∈ X, there is a minimal n = nx with x ∈ DQ (xnx , 3r) , and
via the proof of [AFK1, Lemma 3 (3)], for such nx we have ϕnx (x) ≥
1/2. Note also that DQ (xnx , 3r) ⊂ DQ (xnx , 5r) = Dnx , and εnx (x) =
Tnx (x) − f (x) on Dnx . So, from this and property (1) of δn, we have
|Tnx (x) νnx (x)− f (x)− δnx (x)| = |εnx (x)− δnx (x)| ≤ ε′. Now to replace
νnx with νnx , we observe by (2.4) and (2.8) ,

|Tn (x) νn (x)− Tn (x) νn (x)| = |Tn (x)| |νn (x)− νn (x)|

≤ (L ‖x− xn‖+ |f (xn)|) ε′r/2LLϕ

1 + ‖x− xn‖
(2.10)

≤ (L ‖x− xn‖+ 2)
ε′r/2LLϕ

1 + ‖x− xn‖

≤ ε′r/2Lϕ + ε′r/LLϕ

≤ 3ε′r/Lϕ ≤ 3ε′.

Therefore, these estimates give, |Tnx (x) νnx (x)− f (x)− δnx (x)| ≤ 4ε′, and
because f ≥ 1, we have our desired bound

|Tnx (x) νnx (x)− δnx (x)|ϕnx (x) ≥ |Tnx (x) νnx (x)− δnx (x)| (1/2)

≥
(
f (x)− 4ε′

)
(1/2) > 1/4.
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We remark that it follows from this that for any x,
(2.11)
‖{ψn (x)}n‖c0

≥ ‖{ψn (x)}n‖∞ = ‖{(Tn (x)− δn (x))ϕn (x)}n‖∞ ≥ 1/4.

Next, to show that the function x 7→ {ψn(x)}∞n=1 is real analytic from X
into c0, we shall require that for each x, there exists nx and δx ∈ (0, 1) so
that for n ≥ nx and ‖z‖ eX < δx, we have

(2.12)

∣∣∣T̃n (x+ z) ν̃n (x+ z)− δ̃n (x+ z)
∣∣∣

Mn
≤Mx,

where Mx depends on x, but is independent of n.

Recalling that T̃n (w) = f̃ ′ (xn) (x− xn + w) + f (xn) , and using (2.9) and
property (1) and (4) of δn, where we may suppose that x + z ∈ W̃ when
‖z‖ eX < δx < 1, we obtain,∣∣∣T̃n (x+ z) ν̃n (x+ z)− δ̃n (x+ z)

∣∣∣
≤
∣∣∣T̃n (x+ z)

∣∣∣ |ν̃n (x+ z)|+
∣∣∣δ̃n (x+ z)− δn (x)

∣∣∣+ δn (x)

≤
∣∣∣f̃ ′ (xn) (x− xn + z) + f (xn)

∣∣∣ e2C2κδ2
x +M∆ + ε′

<
(
L
(
‖x− xn‖+ ‖z‖ eX

)
+ |f (xn)|

)
e2C2κδ2

x + 2M∆

< (L (‖x− xn‖+ 1) + 2) e2C2κ + 2M∆

≤ (3L (‖x− xn‖+ 1)) e2C2κ + 2M∆

Now recalling that Mn = e2C2κ (1 + ‖xn‖) , we see that

3L (‖x− xn‖+ 1) e2C2κ

Mn

≤ 3L (‖x‖+ ‖xn‖+ 1)
1 + ‖xn‖

≤ 3L (1 + ‖x‖) .

Putting Mx = 2M∆ + 3L (1 + ‖x‖) , we have established (2.12) .
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Now, to show the analyticity of {ψn (x)}∞n=1, we first note that property (5)
of Lemma 1 together with (2.12) yield

|ψ̃n(x+ z)| = |T̃n(x+ z)ν̃n(x+ z)− δ̃n(x+ z)| |ϕ̃n(x+ z)| ≤ Mx

n!an
x,r

whenever n ≥ nx and ‖z‖ eX < δx.
Because the numerical series

∑∞
n=1Mx/n!an

x,r is convergent, we then
have that the series of functions

∑∞
n=1 |ψ̃n (x+ z) | is uniformly convergent

on the ball B eX(0, δx), which clearly implies that the series

∞∑
n=1

ψ̃n(z)en = {ψ̃n(z)}∞n=1

is uniformly convergent for z ∈ B eX(x, δx). Then it is clear that {ψ̃n(z)}∞n=1,
being a series of holomorphic mappings which converges uniformly on the
ball B eX(x, δx), is a holomorphic mapping on this ball. Since x ∈ X is
arbitrary, this shows that x 7→ {ψn(x)}∞n=1 is real analytic.

Now we move on to our final estimates; |g − f | and ‖g′ − f ′‖ . Fix x ∈ X,
and put N = Nx = {n : x ∈ Dn} . Now we have (using f ≥ 1 > 0), that

|g (x)− f (x)| =

∣∣∣∣∣‖{ψn (x)}∞n=1‖c0

‖{ϕn (x)}∞n=1‖c0

− f (x)

∣∣∣∣∣
=

∣∣∣∣∣‖{ψn (x)}∞n=1‖c0

‖{ϕn (x)}∞n=1‖c0

−
‖{f (x)ϕn (x)}∞n=1‖c0

‖{ϕn (x)}∞n=1‖c0

∣∣∣∣∣
=

1
‖{ϕn (x)}∞n=1‖c0

‖{(Tn (x) νn (x)− f (x)− δn(x))ϕn (x)}∞n=1‖c0

≤ 2 ‖{(Tn (x) νn (x)− f (x)− δn(x))ϕn (x)}∞n=1‖c0
,

the last line by Lemma 1 (3) . We proceed in cases.

Case 1: For n ∈ N , we have εn (x) = Tn (x) − f (x) = Tn (x) νn (x) −
f (x) , and so by property (1) of δn and Lemma 1 (7) , we obtain the estimate,
|Tn (x) νn (x)− f (x)− δn(x)|ϕn (x) ≤ (ε′r/Lϕ) 3. Then using (2.10) , we
have

(2.13) |Tn (x) νn (x)− f (x)− δn(x)|ϕn (x) ≤ 6rε′/Lϕ.

Case 2: For n /∈ N , recall ϕn (x) ≤ ε1 ≤ ε′r/25L.
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Now, for n such that x ∈ D̂n, we have Q (x− xn) < 6r, and so ‖x− xn‖ ≤

(q (x− xn))1/2n <
(
(6r + 1)2n − 1

)1/2n
< 7, as r < 1. Hence, for such n we

have,

(2.14)
|Tn (x) νn (x)| ≤ (L ‖x− xn‖+ |f (xn)|) νn (x) ≤ (7L+ 2)

(
1 + ε′

)
≤ 18L.

On the other hand, for n such that x /∈ D̂n, by (2.6) we obtain,

|Tn (x) νn (x)| ≤ (L ‖x− xn‖+ |f (xn)|) ε′r/2LLϕ

1 + ‖x− xn‖

≤ (L ‖x− xn‖+ 2)
ε′/2L

1 + ‖x− xn‖

≤ ε′/2 + ε′/L ≤ 2ε′.

In any event, for all n we have,

(2.15) |Tn (x) νn (x)| ≤ 18L.

Therefore, for n /∈ N , using again property (1) of δn, we have,

|Tn (x) νn (x)− f (x)− δn(x)|ϕn (x) ≤ (|Tn (x) νn (x)|+ |f (x)|+ δn(x))ϕn (x)

(2.16)

≤
(
18L+ 2 + 2ε′

) (
ε′r/25L

)
≤ ε′r.

It follows that, |g (x)− f (x)| ≤ 10A1ε
′r < ε.

We now establish some derivative estimates. Fix x and consider the expres-
sion

(Tn (x) νn (x))′ = T ′n (x) νn (x) + Tn (x) ν ′n (x) .
From an estimate analogous to (2.15) , using (2.4) and (2.7) , we have that for
all n, ‖Tn (x) ν ′n (x)‖ ≤ 9LLip(Q)Lip(ν) .Also, ‖T ′n (x) νn (x)‖ ≤ L (1 + ε′) ≤
2L. Hence,∥∥(Tn (x) νn (x))′

∥∥ ≤ 2L+ 9LLip (Q) Lip (ν) ≤ 11LLip (Q) Lip (ν) .

Using this, and property (2) of δn, we have,

(2.17)
Lip (Tnνn − f − δn) ≤ 11LLip (Q) Lip (ν)+L+C0ε

′ ≤ 13C0LLip (Q) Lip (ν) .

Next, for x ∈ Dn, νn (x) = 1, and again by property (2) of δn,
(2.18)
Lip ((Tnνn − f − δn) |Dn) = Lip ((Tn − f − δn) |Dn) ≤ ε′ + C0ε

′ ≤ 2C0ε
′.
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Next we compute, using (2.4) ,∥∥(Tn (x) (νn − νn))′
∥∥ =

∥∥T ′n (x)
∥∥ |νn (x)− νn (x)|+ |Tn (x)|

∥∥ν ′n (x)− ν ′n (x)
∥∥

≤ L
ε′r/2LLϕ

1 + ‖x− xn‖
+ (L ‖x− xn‖+ 2)

Lip (Q) ε′r/2LLϕ

1 + ‖x− xn‖

≤ ε′r/2 + Lip (Q) ε′r/2 + Lip (Q) ε′r/L

≤ 2Lip (Q) ε′.

It follows from this and (2.18) that,

(2.19) Lip ((Tnνn − f − δn) |Dn) ≤ 2C0ε
′ + 2Lip (Q) ε′r ≤ 4C0Lip (Q) ε′.

Finally we turn to ‖g′ (x)− f ′ (x)‖ with the help of the above estimates.
Again fix x ∈ X, and we obtain,

∥∥g′ (x)− f ′ (x)
∥∥

=

(
‖{(Tn (x) νn (x)− f (x)− δn(x))ϕn (x)}∞n=1‖c0

‖{ϕn (x)}∞n=1‖c0

)′

=
1

‖{ϕn (x)}∞n=1‖
2
c0

×

(
‖{ϕn (x)}∞n=1‖c0

‖{(Tn (x) νn (x)− f (x)− δn(x))ϕn (x)}∞n=1‖
′
c0

−‖{ϕn (x)}∞n=1‖
′
c0
‖{(Tn (x) νn (x)− f (x)− δn(x))ϕn (x)}∞n=1‖c0

)
Let us first consider

((Tn (x) νn (x)− f (x)− δn(x))ϕn (x))′

= (Tn (x) νn (x)− f (x)− δn(x))′ ϕn (x) + (Tn (x) νn (x)− f (x)− δn(x))ϕ′n (x) .

For the first term, and n ∈ N , we have, using property (2) of Lemma 1 and
(2.19) ,
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∥∥(Tn (x) νn (x)− f (x)− δn(x))′ ϕn (x)
∥∥ ≤ ∥∥(Tn (x) νn (x)− f (x)− δn(x))′

∥∥ϕn (x)

≤ 4C0Lip (Q) ε′ (1 + ε1)

≤ 8C0Lip (Q) ε′.

For n /∈ N , using Lemma 1 (4′) and (2.17) , we obtain,

∥∥(Tn (x) νn (x)− f (x)− δn(x))′ ϕn (x)
∥∥ ≤ ∥∥(Tn (x) νn (x)− f (x)− δn(x))′

∥∥ϕn (x)

≤ 13C0LLip (Q) Lip (ν)
(
ε′/6C0LLip (ν)

)
≤ 3Lip (Q) ε′.

In any event,
∥∥(Tn (x) νn (x)− f (x)− δn(x))′ ϕn (x)

∥∥
c0
≤ 8C0A1Lip(Q) ε′.

Next we consider the second term, (Tn (x) νn (x)− f (x)− δn(x))ϕ′n (x) . For
n ∈ N , from the estimate giving (2.13) , we have,∥∥(Tn (x) νn (x)− f (x)− δn(x))ϕ′n (x)

∥∥ ≤ |Tn (x) νn (x)− f (x)− δn(x)|
∥∥ϕ′n (x)

∥∥
≤ 6ε′r/Lϕ (Lϕ) ≤ 6ε′.

For n /∈ N , just as in (2.16) we obtain,

∥∥(Tn (x) νn (x)− f (x)− δn(x))ϕ′n (x)
∥∥ ≤ |Tn (x) νn (x)− f (x)− δn(x)|

∥∥ϕ′n (x)
∥∥

≤ ε′.

Hence, altogether we see that,∥∥((Tn (x) νn (x)− f (x)− δn(x))ϕn (x))′
∥∥

c0
≤ 8C0A1Lip (Q) ε′ + 6A1ε

′

≤ 14C0A1Lip (Q) ε′.

Lastly, we examine ‖{ϕn (x)}∞n=1‖
′
c0
‖{(Tn (x) νn (x)− f (x)− δn(x))ϕn (x)}∞n=1‖c0

.

Recall our estimate of |f − g| found ‖{(Tn (x) νn (x)− f (x)− δn(x))ϕn (x)}∞n=1‖c0
≤

3A1ε
′r. Therefore we have,
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‖{ϕn (x)}∞n=1‖
′
c0
‖{(Tn (x) νn (x)− f (x)− δn(x))ϕn (x)}∞n=1‖c0

≤ A1Lϕ ‖{(Tn (x) νn (x)− f (x)− δn(x))ϕn (x)}∞n=1‖∞

≤ A1
L1Lip (Q)

r

(
5A1ε

′r
)

= 5A2
1L1Lip (Q) ε′

Finally, because ‖{ϕn (x)}∞n=1‖
2
c0
≥ ‖{ϕn (x)}∞n=1‖

2
∞ ≥ 1/4 as noted above,

putting all the above estimates together yields,∥∥g′ (x)− f ′ (x)
∥∥ ≤ (2A1) 14C0A1Lip (Q) ε′ + 5A2

1L1Lip (Q) ε′

1/4

≤
(
132C0A

2
1L1Lip (Q)

)
ε′ < ε. �
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