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The electronic structure of a quasicrystalline approximant sample is analyzed by means of a combined study
of different experimental transport curves within a phenomenological approach. The main features of the
obtained spectral conductivity are discussed and compared to those corresponding to icosahedral quasicrystals.
Such a comparison provides interesting clues about the role of quasiperiodic order and of local atomic arrange-
ments in the origin of unusual behaviors in the electrical conductivity and thermopower observed in complex
metallic alloys.

DOI: 10.1103/PhysRevB.72.174208 PACS number�s�: 61.44.Br, 71.20.�b, 72.15.�v, 72.15.Jf

I. INTRODUCTION

Following the discovery of thermodynamically stable
quasicrystalline alloys of high structural quality,1 a lot of
detailed experimental studies have confirmed the existence
of quite unusual transport properties in quasicrystals
�QCs�.2–4 In this way, it has been progressively realized that
the temperature dependence of electrical conductivity, Hall
and Seebeck coefficients, and thermal conductivity, resemble
a more semiconductorlike than metallic character.5–7

By the light of these experimental results the fundamental
question arises concerning whether these transport anomalies
should be mainly attributed �or not� to the characteristic qua-
siperiodic order of QCs structure. In this regard, experimen-
tal evidence showing that the structural evolution from the
amorphous to the quasicrystalline state is accompanied by a
parallel evolution of the electronic transport anomalies8

clearly indicates the importance of short-range effects on the
emergence of some transport anomalies. In fact, broadly
speaking one should expect that the nature of the chemical
bonding determining the local atomic arrangements would
play a significant role in most physical properties of these
materials.9–11 Accordingly, crystalline approximants �ACs�,
which exhibit a local atomic environment very similar to
their related QC alloys, appear as natural candidates to in-
vestigate the relative importance of short-range versus long-
range order effects on the transport properties.

On the basis of detailed ab initio band structure calcula-
tions Landauro and Solbrig proposed a spectral conductivity
model ��E� satisfactorily describing the transport properties
of both QCs and ACs in a wide temperature range.12–14 Mak-
ing use of this electronic structure model a phenomenologi-
cal approach relating several topological features �such as
maxima, minima, or sign reversals� in the transport coeffi-
cients temperature dependence to certain features in the elec-
tronic structure of the samples was subsequently
introduced.15–19 In so doing, analytical expressions describ-
ing the main topological features of the electrical conductiv-
ity, ��T�, and thermoelectric power, S�T�, curves were de-

rived in terms of a set of phenomenological coefficients, � j,
and compared to the experimental curves reported for a num-
ber of quasicrystalline samples.17–19

In this work we shall extend the applicability of our phe-
nomenological approach in order to extract useful informa-
tion about the electronic structure of ACs. As a suitable
sample we consider the Al82.6−xMn17.4Six�x=9� alpha
phase,20 which is a well-documented representative of the
1/1-cubic approximants class. This AC exhibits a sign rever-
sal in the thermoelectric power with increasing
temperature,20 �a feature which cannot be accounted for in
terms of the usually employed Mott formula�, in close anal-
ogy with the behavior observed in some high quality QCs.
The main goal of this work is to gain some insight into the
physical effects intrinsically related to local order effects as
compared to those related to the characteristic quasiperiodic
order of QCs. To this end, we first determine the phenom-
enological coefficients values from a combined fitting analy-
sis of different experimental transport curves. Then we de-
rive the AC’s spectral conductivity function and compare it
with that corresponding to previously studied QCs. From this
comparison interesting clues about the role of fine spectral
features related to the local atomic arrangement are obtained.

The paper is organized as follows. In Sec. II we describe
the experimental procedure. In Sec. III, we present the ob-
tained transport curves and analyze them in terms of the
analytical expressions previously derived within the context
of our phenomenological approach. Section IV is devoted to
a discussion of the physical implications of the obtained phe-
nomenological coefficients values. In Sec. V we explicitly
derive the electronic structure model parameters and discuss
the reliability of the obtained ��E� function on the basis of
specific heat measurements. Finally, in Sec. VI we summa-
rize the main conclusions of this work.

II. EXPERIMENTAL PROCEDURE

Mother ingots of Al73.6Mn17.4Si9 were prepared by the
induction-melting method under a pressurized Ar atmo-
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sphere. Some of the mother ingots were melted again and
rapidly quenched on a copper wheel of 200 mm in diameter
rotating at 3000 rpm. Quenched ribbons and the bulk ingots
were annealed at 700 C° for 24 h. X-ray diffraction �XRD�
peaks of the annealed samples were successfully identified as
those corresponding to the 1/1-cubic approximant, with no
secondary phases.20

Electrical conductivity ��T� was measured in a tempera-
ture interval ranging from 2 to 300 K with the Physical
Properties Measurement System, Quantum Design Inc. �QD-
PPMS�, Seebeck Coefficient Measurement System of MMR
Technologies Inc. �MMR-SCMS�, and the thermal-transport
option �TTO� of the QD-PPMS were employed for the ther-
moelectric power measurements within the temperature
ranges of 90�T�400 K and 10�T�300 K, respectively.
The ribbon samples were used for the measurements of ��T�
and S�T� with the MMR-SCMS, and the bulk samples for the
measurements of S�T� with the QD-PPMS-TTO.

Al82.6−xMn17.4Six�x=7,8 ,10,11,12� 1/1-cubic approxi-
mants without any precipitation of secondary phases were
also prepared to measure the Si concentration dependence of
the electronic specific heat coefficient.20 Low temperature
specific heat measurement was performed using the relax-
ation method with the MLHC9H of Oxford Instruments in
the temperature range from 0.5 to 10 K under a magnetic
field up to 9 T. The magnetic field weakened the unfavorable
effects of the Schottky-type anomaly from magnetic impuri-
ties as it was reported for the AlReSi cubic approximants.21

In Fig. 1 we show the temperature dependence of the
electrical conductivity for the Al73.6Mn17.4Si9 cubic approxi-
mant. The curve exhibits a typical metallic behavior up to
�100 K, where the conductivity attains a minimum and then
progressively increases as the temperature is further in-
creased. The ��T� curves of several QCs also exhibit a
similar behavior in the low temperature regime. Thus,
i-AlPdMn samples show a conductivity minimum located at
about 40–60 K.22 A less pronounced minimum is reached at
lower temperatures �10–20 K� in the case of some
i-AlCuFe samples.6,23,24

In Fig. 2 we show the temperature dependence of the
thermoelectric power for the same approximant phase. The
thermopower shows a remarkable nonlinear behavior, exhib-
iting a broad minimum at about T1=160 K, and changes its
sign twice at about T0=50 K and 260 K, respectively. This
anomalous behavior resembles that observed for several
icosahedral QCs belonging to the i-AlCu�Fe,Ru� family.24–29

III. ANALYSIS OF THE TRANSPORT CURVES

In the temperature interval ranging from about 20–300 K
approximately,30 the electrical conductivity and thermopower
curves can be well approximated by the expressions16–18

��T� = �0�1 + �2bT2 + �4b2T4 + �g1�4 − g2�3�b3T6� , �1�

and

S�T� = − 2�e�L0T

�1 + �3bT2 + �q0

4
g2�4 − g3�3�b2T4

1 + �2bT2 + �4b2T4 + �g1�4 − g2�3�b3T6 ,

�2�

respectively, where �0 is the residual electrical conductivity,
L0=�2kB

2 /3e2=2.44�10−8V2 K−2 is the Lorenz number, and
b�e2L0. The set of parameters gi and � j can be explicitly
expressed in terms of the electronic model parameters16 �see
the Appendix� and can be regarded as phenomenological co-
efficients containing detailed information about the elec-
tronic structure of the sample. Some phenomenological co-
efficients can also be related to the topology of the spectral
conductivity function ��E� by means of the following
expressions:17

�d ln ��E�
dE

�
EF

= 2�1, �3�

and

FIG. 1. Electrical conductivity as a function of temperature for
the Al73.6Mn17.4Si9 cubic approximant �open circles�. The solid line
corresponds to the best fit curve ��T�=�0�1+BT2+CT4+DT6�
with �0=312.6±0.2 �� cm�−1, B= �−3.50±0.08��10−6 K−2, C
= �1.91±0.02��10−10 K−4, D= �−1.07±0.02��10−15 K−6, with a
correlation coefficient r=0.9824.

FIG. 2. Thermoelectric power as a function of temperature
for Al73.6Mn17.4Si9 cubic approximant �open circles�. The solid
line corresponds to the best fit curve given by Eq. �6�
with a=0.29±0.05 �eV�−1, f = �6±2��10−5 K−2, and
g= �−1.1±0.3��10−9 K−4, with Pearson �2=0.562.
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�d2 ln ��E�
dE2 �

EF

= 2��2 − 2�1
2� , �4�

where EF is the Fermi level. Generally speaking the conduc-
tivity spectrum takes into account both the DOS structure,
N�E�, and the diffusivity of the electronic states, D�E�, ac-
cording to the Einstein’s relationship ��E�=e2N�E�D�E�.
Thus, from the knowledge of the phenomenological coeffi-
cients �1 and �2 we can obtain suitable information concern-
ing the slope and curvature of the DOS close to EF.

In order to determine the values of the different phenom-
enological coefficients we proceed as follows. In the first
place, we will fit the experimental ��T� curve shown in Fig.
1 to the trial function

��T� = �0�1 + BT2 + CT4 + DT6� , �5�

where, according to Eq. �1�, we have B��2b, C��4b2,
and D��g1�4−g2�3�b3. The fitting analysis results are
given in the caption of Fig. 1. From the reported values
we obtain �2=B /b=−144±3 �eV�−2 and �4=C /b2

= �3.21±0.03��105 �eV�−4, respectively. In order to obtain
the remaining phenomenological coefficients we will fit the
experimental S�T� curve to the trial function �expressed in
	V K−1�

S�T� = − 0.0488T
a + fT2 + gT4

1 + BT2 + CT4 + DT6 , �6�

where, according to Eq. �2�, we have a��1, f ��3b, g
��q0g2�4 /4−g3�3�b2, and we make explicit use of the fitting
parameters B, C, and D previously obtained from the study
of the electrical conductivity curve. In this way, the consis-
tency between the phenomenological coefficients values de-

rived from both transport curves is guaranteed. The fitting
analysis results are given in the caption of Fig. 2. From the
reported values we obtain a=�1=0.29±0.05 �eV�−1, and �3

= f /b= �2.5±0.8��103 �eV�−3. In Table I we summarize the
obtained values for the different phenomenological coeffi-
cients.

At this point, some words are in order regarding the pos-
sible contribution of phonon-drag effects on the ther-
mopower curve shown in Fig. 2. Broadly speaking, one ex-
pects the phonon-drag contribution to play a major role in
the intermediate temperature range, when a significant num-
ber of inelastic scattering events take place between phonons
and electrons. At low temperatures the number of phonons
able to efficiently interact is quite reduced and electrons are
mainly elastically scattered by impurities and/or lattice de-
fects. At high temperatures phonons are predominantly scat-
tered among themselves and any significant interaction be-
tween electrons and phonons has little effect in the electrical
transport properties. This physical scenario accounts well for
the S�T� peak occurring at less than 130 K in pure
elements.31 In the case of QCs, the absence of a well-defined
lower limit for momentum transfer via quasiumklapp pro-
cesses along with the complex structure of the Fermi surface
make it difficult to estimate the relative contribution of the
phonon-drag term in the overall thermopower.32,33 On the
basis of a detailed study on both the temperature and com-
position dependence of AlReSi ACs,34 we expect a small
phonon-drag contribution in the approximants case, where a
natural scale for efficient umklapp processes is given by the
reciprocal lattice. Accordingly, in the present work we do not
consider phonon-drag refinements in the thermopower curve
analysis.

IV. DISCUSSION

In Table II we compare the values of the phenomenologi-
cal coefficients listed in Table I with those derived in previ-
ous works for different QCs belonging to the AlCu�Fe,Ru�
and AlPdMn families.17,18 As we can see the values for �1
and �2 coefficients are about one order of magnitude smaller
for the approximant as compared to those corresponding to
icosahedral QCs; meanwhile, the coefficients �3 and �4 take
on comparable values for both the approximant and icosahe-
dral QCs. In addition, the approximant’s phenomenological
coefficients �2 and �4 change their sign as compared to those
obtained in the case of QCs.

TABLE I. Phenomenological coefficients values for the
Al73.6Mn17.4Si9 cubic approximant as derived from a combined
analysis of the experimental transport curves ��T� and S�T�.

Phenomenological coefficients

�0=312.6±0.2 �� cm�−1

�1= +0.29±0.05 �eV�−1

�2=−144±3 �eV�−2

�3= �+2.5±0.8��103 �eV�−3

�4= �+3.21±0.03��105 �eV�−4

TABLE II. Comparison among the phenomenological coefficients values of the Al73.6Mn17.4Si9 cubic
approximant and several icosahedral QCs. The data listed for the i-AlCu�Fe,Ru� QCs are mean values from
three different samples �cf. Refs. 17 and 18�.

Sample �1 �eV�−1 �2�103 �eV�−2 �3�103 �eV�−3 �4�105 �eV�−4

Al73.6Mn17.4Si9 +0.3 −0.14 +2.5 +3.2

i-Al64.5Cu20Ru15Si0.5 +1.5 — −1.5 —

i-AlCuFe +5.6 +0.8 −1.7 −2.9

i-AlCuRu +5.2 +1.5 −4.6 −6

i-Al70Pd20Mn10 — +1.2 — +5
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According to the Eq. �1�, a negative �2 value implies a
negative temperature coefficient for the electrical conductiv-
ity at low temperatures, as it is observed in the experimental
curve shown in Fig. 1. On the other hand, plugging the �1
and �2 values listed in Table I into Eq. �4� we obtain
��d2 ln ��E�	 / �dE2��E=	=−288±6 �eV�−2, indicating a nega-
tive curvature of the spectral conductivity function at the
Fermi level. Making use of the Einstein’s relation into Eqs.
�3� and �4� we obtain

N��EF� = N�EF�
2�1 −
D��EF�
D�EF� � , �7�

N��EF� = 2N�EF�
�2 −
1

2

D��EF�
D�EF�

−
N��EF�D��EF�
N�EF�D�EF� � , �8�

where the prime stands for the energy derivative. As a first
approximation we will assume that the diffusivity term is
energy independent.35 In that case, the slope and curvature of
the DOS at the Fermi level can be determined from the
knowledge of N�EF� and the values of the phenomenological
coefficients �1 and �2 through the expressions

�1 =
N��EF�
2N�EF�

, �2 =
N��EF�
2N�EF�

. �9�

The DOS value at the Fermi level has been determined
from low temperature specific heat measurements to be
N�EF�=0.17 states �eV�−1 /atom for the Al73.6Mn17.4Si9 cubic
approximant.36 By plugging this value into Eq. �9�, making
use of the data listed in Table I, we obtain N��EF�
=0.1±0.02 states �eV�−2 /atom, and N��EF�=−49±1 states
�eV�−3 /atom. The value of the ratio �N��EF�� /N�EF�
=290±20 �eV�−2 is 25% smaller than that reported for
i-AlPdMn QCs �N��EF� /N�EF�=384 �eV�−2	 on the basis of
NMR measurements.37,38 Furthermore, the negative sign of
the DOS second derivative indicates a local negative curva-
ture, corresponding to a peak, rather than a dip, at the Fermi
level position.

V. DERIVATION OF THE ELECTRONIC STRUCTURE
MODEL PARAMETERS

To further substantiate this important result we will ana-
lyze the electronic structure of the approximant in more de-
tail on the basis of the Landauro-Solbrig spectral conductiv-
ity model,12–14

��E� =
B̄

�
� 
1

�E − �1�2 + 
1
2 + �


2

�E − �2�2 + 
2
2
−1

. �10�

This model satisfactorily describes the electronic structure of
both QCs and AC close to the Fermi level in terms of a wide
Lorentzian peak �related to the Hume-Rothery mechanism�
plus a narrow Lorentzian peak �related to hybridization ef-
fects�. This model includes six parameters, determining the
Lorentzian’s heights and widths, 1 / ��
i�, their positions
with respect to the Fermi level, �i, and their relative weight

in the overall structure, �. The parameter B̄ is a scale factor

measured in �� cm eV�−1 units. In the original approach
these electronic model paramenters were firstly extracted by
fitting Eq. �10� to the conductivity curve numerically ob-
tained from ab initio calculations for approximants, and sub-
sequently refined by comparing with experimental curves of
suitable icosahedral phases.12–14,39

In our phenomenological approach, we will make use of
experimental input from the very begining as provided by the
set of phenomenological coefficients listed in Table I. From
their knowledge we can derive the corresponding electronic
model parameters following the algebraic procedure de-
scribed in the Appendix. In this way, we obtain the electronic
model parameters listed in Table III. Making use of the data
listed in Table III, in Fig. 3 we compare the spectral conduc-
tivity functions corresponding to the Al73.6Mn17.4Si9 cubic
approximant considered in this work and the AlCuFe QC
studied in Ref. 19. By inspecting this figure we see that the
spectral conductivity of QC is both deeper and broader than
that corresponding to the approximant phase, thus indicating
a less effective Hume-Rothery mechanism for the AC. On
the other hand, the presence of a well-defined spectral feature
at about −0.03 eV may be indicative of hybridization effects
likely related to bond formation in the approximant sample.
Accordingly, our results support the view that short-range

TABLE III. Electronic model parameters for the Al73.6Mn17.4Si9
cubic approximant as derived from the knowledge of the phenom-
enological coefficients listed in Table I �left column�. For the sake
of comparison we list the model parameters for the Al63Cu25Fe12

QC sample studied in Ref. 19 �right column�.

Al73.6Mn17.4Si9 Al63Cu25Fe12

�=0.21 �=1.07


1= +0.065 eV 
1= +0.587 eV


2= +0.022 eV 
2= +0.055 eV

�1= +0.023 eV �1=−0.005 eV

�2=−0.029 eV �2=−0.016 eV

FIG. 3. Spectral conductivity function derived from the elec-
tronic model parameters listed in Table III for the Al73.6Mn17.4Si9
cubic approximant �solid line� and an Al63Cu25Fe12 icosahedral QC
�dashed line�.
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chemical effects are playing a significant role in the stabili-
zation of approximant phases.40 Quite remarkably, the spec-
tral conductivity function exhibits a reverse sign curvature at
the Fermi level, as expected from the previous discussion
about the physical meaning of the �2 phenomenological co-
efficient sign, hence providing compelling evidence about
the pinning of the Fermi level close to a fine structure in the
DOS.

This interesting result can be experimentally checked by
considering the DOS values at the Fermi level for a series of
Al82.6−xMn17.4Six 1/1-cubic approximants. In fact, in Ref. 34
the N�E� of Al82.4−xRe17.6Six�7
x
12� 1/1-cubic approxi-
mants was systematically deduced from electronic specific
heat measurements, obtaining a fairly good agreement with
the N�E� calculated by the linear muffin-tin orbital atomic-
sphere approximation �LMTO-ASA� method with the well-
refined structure parameters determined by the synchrotron
Reitveld analysis. Furthermore, the measured thermoelectric
power curves were properly accounted for in terms of this
N�E�, hence providing additional support onto the reliability
of the obtained DOS. In the light of these results, we con-
cluded that substitution of Si atoms for Al atoms in amounts
smaller than 5 at. % should not cause a large variation in the
sample’s electronic structure but a small increase in the elec-
tron concentration. A completely analogous result is ex-
pected for the Al82.4−xMn17.6Six�7
x
12� 1/1-cubic ap-
proximants considered in the present work, which can be
obtained from the AlReSi approximant by simply replacing
Re atoms with Mn ones �both located in the same column of
the periodic table�.

Accordingly, in Fig. 4, we plot the DOS values at the
Fermi level as derived from the measured electronic specific
heat coefficients listed in Table IV. Energies were calculated
using the area of the trapezoid in the N�E� curve and the
electron concentration was determined from the sample com-
position. The solid line has been obtained by properly scaling
the previously derived spectral conductivity function ��E�
according to the expression

N�E� =
N�EF�
��0�

	��E� , �11�

where N�EF�=0.17 state/eV atom is the measured DOS
value for the 9% Si sample, ��0�=318.4 �� cm� is the elec-
trical conductivity measured for this sample at T=5 K, and
	=10 is a factor accounting for the charge carrier mobility.
As we can see, most experimental points fit well to the res-
caled electronic model curve when it is properly shifted in
energies. Therefore, we can confidently conclude that at the
Fermi level it is pinned near a DOS narrow peak rather than
a dip in the considered sample. A similar pseudogap structure
close to the Fermi level was reported by Zijlstra and Bose,
where a shift in the Fermi level with increasing Si concen-
tration in a nearly rigid pesudogap is also observable.41 Un-
fortunately, the energy accuracy of the band structure calcu-
lations �50–100 meV� does not allow for a direct,
quantitative comparison with our present results.

Finally, some words are in order regarding the range of
applicability of our model approach. Certainly, experimental
transport data for quasicrystalline samples have been ana-
lyzed by other authors in terms of alternative models, well
beyond the description given in terms of Eq. �10�.42 Remark-
ably, nice fittings have been obtained in the context of two-
band models by several groups.24,43,44 Among them, only the
model considered in Ref. 43 makes use of a smaller number
of fitting parameters as compared to Eqs. �1� and �2� �this
being a measure of a simpler description�. Unfortunately, the
values and signs of the resulting parameters are very difficult
to interpret physically.43 In other cases, the number of param-
eters is too large to perform suitable fitting, so that a number
of reasonable assumptions was to be made concerninig the
charge carriers density and relaxation time values.44 To the
best of our knowledge none of these models have been ap-
plied to study the transport properties of approximants to
date in order to determine the influence of long-range versus
short-range effects.

VI. CONCLUSIONS

In general, QCs and approximants are regarded as typical
Hume-Rothery electron compounds mainly stabilized by the
presence of a pseudogap at the Fermi level. Nonetheless, the
contribution of hybridization effects involving sp-d electrons

TABLE IV. Electronic specific heat 
 coefficients and related
DOS value at the Fermi level for a complete series of
Al82.6−xMn17.4Six 1/1-cubic approximants. The listed DOS values
include electron-phonon mass enhancement effects.

x 
 �mJ/mol K2� E �eV� N�E� �states/eV atom�

7 1.156 0 0.409

8 0.74 0.025 0.249

9 0.48 0.065 0.17

10 0.758 0.103 0.268

11 1.103 0.128 0.39

12 1.005 0.151 0.356

FIG. 4. Density of states derived from the measured electronic
specific heat 
 coefficients listed in Table IV for a complete series
of Al82.6−xMn17.4Six 1/1-cubic approximants �solid circles�. The
silicon content of each sample is indicated in atomic percent. The
solid line is the DOS curve derived from the spectral conductivity
function plotted in Fig. 3 properly rescaled �more details in the
main text�.
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should also play an important role, and even becomes the
relevant stabilization mechanism in some instances.45

Broadly speaking one can think of the Fermi surface-
Brillouin zone interaction mechanism giving rise to the
opening of the psudogap as mainly related to long-range or-
der effects; meanwhile, hybridization effects giving rise to
the possible formation of chemical bonds among certain at-
oms will be properly related to short-range effects. The re-
sults obtained in our phenomenological approach, based on a
realistic ��E� model, lend support to the pseudogap induced
phase stabilization, since a broad pseudogap has been found
in the approximant phase. As expected, this pseudogap is not
so deep as those observed in typical icosahedral phases.
However, the Fermi level is located at a local peak of the
DOS rather than at the minimum of the pseudogap, as occurs
in most QCs. This facts suggest that the absence of a long-
range quasiperiodic order in the AC precludes the Fermi
surface-Brillouin zone mechanism of being so effective as it
is in QCs. On the other hand, the characteristic temperature
dependence observed in the thermopower curve is related to
the presence of some fine spectral features in the ��E� curve
which may be related to narrow features in the DOS. In
particular, the presence of a narrow dip in the pseudogap,
close to the Fermi level, has been found in the approximant
phase. The possible existence of such features has been re-
cently reported in some QCs by a number of high resolution,
low temperature scanning tunneling studies.46,47 In this
sense, the possible presence of such features in approximant
samples as well would be quite appealing.
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APPENDIX

The phenomenological coefficients � j can be expressed in
terms of the electronic model parameters as16

�1 � −

1�1�2

4 + �
2�2�1
4

��1
4�2

4 , �A1�

�2 � 4�1
2 +


1�2
6��1

2 − 4�1
2� + �
2�1

6��2
2 − 4�2

2�
��1

6�2
6 , �A2�

�3 �
42

5

�
1
2�

�3�1
4�2

4 ����2
2 − �1

2� − 2�m1	 , �A3�

�4 �
21

5

�
1
2

�4�1
6�2

6 �4�2��1
2�2

2�
1 + �
2� − �4�m1 − ���2
2 − �1

2��2	 ,

�A4�

where

� = 
1�1
−2 + �
2�2

−2, �A5�

�i
2=
i

2+�i
2, ���1�1

−2−�2�2
−2, and m1=
1�2+��1
2.

In order to determine the electronic model parameters
from the knowledge of the phenomenological coefficients,
we introduce the following variables:

x � 
1/�1
2, y � 
2/�2

2, z � �1/�1
2, w � �2/�2

2,

�A6�

satisfying the relationships

�1
−2 = x2 + z2, �2

−2 = y2 + w2 �A7�

x/z = 
1/�1, y/w = 
2/�2 �A8�

so that the electronic model parameters can be expressed in
terms of the new variables as


1 =
x

x2 + z2 , �1 =
z

x2 + z2 , 
2 =
y

y2 + w2 , �2 =
w

y2 + w2 .

�A9�

From the study of the electrical conductivity curve we

previously obtained the relationship �=�B̄ /�0.16 The value

of the scale factor B̄ can be estimated from ab initio calcu-
lations and the residual conductivity can be determined from
a fitting analysis of the experimental ��T� curve. Making use

of the value B̄=106/580 �� cm eV�−1 �Ref. 48� and
�0=312.6 �� cm�−1 �cf. Table I� we get �=17.327 �eV�−1.
Thus, the value of � is a known input, which according to
Eqs. �A5� and �A6� can be expressed as

� = x + �y ⇒ � =
� − x

y
. �A10�

Making use of Eq. �A6� into Eq. �A1� we have

A = xz + �yw ⇒ w =
A − xz

� − x
, �A11�

where A�−�1�. Analogously, making use of Eq. �A6� into
Eq. �A2� we have

G = x3 + �y3 − 3�xz2 + �yw2� , �A12�

where G���2−4�1
2��. By properly combining Eqs.

�A10�–�A12� we obtain

y2 =
�G − x3��� − x� + 3xz�� − A� + 3A2

�� − x�2 , �A13�

where we have introduced the auxiliary variable

� � �z − A . �A14�
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Making use of Eq. �A6� into Eq. �A3�, taking into account
Eq. �A11�, we have

C = x����x2 − y2 + z2 − w2� − 2�z − w����z + w� − A�	 ,

�A15�

where C�5�3�3 /42. Making use of Eqs. �A11� and �A13�
we can rewrite Eq. �A15� in the form

C�� − x�2 = − x���� + x��2 + �� − x�F	 , �A16�

where F�3A2−���x2−G�.
Finally, making use of Eq. �A6� into Eq. �A4�, taking into

account Eq. �A15�, we have

D = 4C�� + A� + x
4�2�2x2�� − x�2 − 8C��� − x�2 + 4x2�4 − ��� + x��2 + �� − x�F	2

�� − x�3 , �A17�

where D�5�4�4 /21. By properly using Eq. �A16� and
grouping terms we can express Eq. �A17� as a biquadratic
polynomial in the variable �

��x��4 + ��x��2 + 
�x� = 0, �A18�

where

��x� � 15x2 + 6�x − 5�2, �A19a�

��x� � 2�� − x��2�2x2�� − x� + �5x − 3��F	 , �A19b�


�x� �
�� − x�2

x
��4AC − D��� − x� − xF2	 . �A19c�

The solution of Eq. �A18� can be expressed as

� = ±� Q

2�
, �A20�

where Q�−�±��, and ���2−4�
. By plugging Eq.
�A20� into Eq. �A16� after some algebra we get the following
algebraic equation in the variable x


x4R2 + 4�x2SR + 16�S2 = 0, �A21�

where we have introduced the auxiliary polynomials

P�x� � 2��� − x�F − ��� + x� ,

R�x� � P2 − 2��� + x�P + ��� + x�2,

S�x� � �2C2�� − x�4 + 
x2�� + x�P .

Equation �A21� can be numerically solved to obtain x.
The corresponding values are then substituted into Eq. �A20�
to obtain �, from which we derive z making use of Eq.
�A14�. From the knowledge of both x and z we derive the
values of y and w by means of Eqs. �A13� and �A11�, respec-
tively. Finally, we will make use of Eqs. �A9� and �A10� to
determine the original electronic model parameters.
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