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Abstract

Let A = k[y] be the polynomial ring in one single variable y over a field k. We
discuss the number of squares needed to represent sums of squares of linear forms with
coefficients in the ring A. We use quaternions to obtain bounds when the Pythagoras
number of A is ≤ 4. This provides bounds for the Pythagoras number of algebraic
curves and algebroid surfaces over k.

1 Introduction

Let A be a commutative ring with 1. Following [ChDLR], we denote by gA(n) the smallest
number (≤ ∞) of squares needed to represent any sum of squares of n-ary linear forms
over A (that is, linear forms in A[z1, . . . .zn], for n variables z1, . . . , zn). Of course, this
is a variation of the Pythagoras number p(B) of a ring B, which is the smallest number
(≤ ∞) needed to represent any sum of squares of B. In fact, the invariant gA can be used
to bound the Pythagoras number of rings B that are finite modules over A. This goes
back to Pfister who in the late ’60s noted the following:

Remark 1.1 If B ⊃ A is a finite A-module of rank n, then p(B) ≤ gA(n).

Proof. Let z1, . . . , zn ∈ B generate B over A. Then a sum of squares b ∈ B can be
written as

b =
p∑

i=1

(ai1z1 + · · ·+ ainzn)2.

Then we look at the zi’s as variables, and at the expression above as a sum of squares of
linear forms, so that for g = gA(n) we have:

p∑
i=1

(ai1z1 + · · ·+ ainzn)2 =
g∑

j=1

(bj1z1 + · · ·+ bjnzn)2.

Finally, we look again at the zj ’s as the generators, and we have expressed b as a sum of
g squares in B. �

Of course, this remark is useful as soon as we can say something about gA. This is the
case if A is a field, as was immediately noticed by Pfister as follows:
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Remark 1.2 Let A = k be any field. Then gA(n) ≤ p(A) · n (Pfister bound).

Proof. Let z1, . . . , zn be variables, and consider a sum of squares of linear forms

Q =
p∑

i=1

(ai1z1 + · · ·+ ainzn)2.

By diagonalization over k, we get n linear forms

xj = bj1z1 + · · ·+ bjnzn,

and n coefficients cj ∈ k such that

Q =
n∑

j=1

cjx
2
j .

But Q is obviously positive semidefinite in all orderings of k, hence the cj ’s must be ≥ 0
in all orderings of k. Thus the cj ’s are sums of squares in k, say of p ≤ p(A) squares:

cj = c2
j1 + · · ·+ c2

jp.

In the end, we get

Q =
n∑

j=1

(
(cj1xj)2 + · · ·+ (cjpxj)2

)
,

and Q is a sum of p ·n squares of linear forms, as wanted. �

This result can be used to deduce ([Rz]):

Remark 1.3 Let k be any field, and A = k[[x]] the ring of formal power series in one
single variable x. Then the Pfister bound holds for A.

Proof. There are some special cases. First, if k has characteristic 2, then p(A[z1, . . . , zn]) =
1, by the identity s2 + t2 = (s + t)2. Second, if 2 is a unit, but k is not real, then
p(A[z1, . . . , zn]) ≤ p(k) + 1, as follows from the identity t =

(
t+1
2

)2 −
(

t−1
2

)2. Thus, we
suppose k is formally real.

Let Q be a sum of squares of linear forms in the variables z1, . . . , zn, with coefficients
in the ring A = k[[x]]. By the previous Remark 1.2 for the field k((x)), we get

Q =
g∑

i=1

(ai1z1 + · · ·+ ainzn)2,

with g ≤ p(k((x))) · n ≤ p(A) · n. The problem is that the coefficients aij are in k((x)),
and we want them in A = k[[x]]. But there is some power xs such that

xsQ =
g∑

i=1

(bi1z1 + · · ·+ binzn)2,
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with bij ∈ k[[x]]. Substituting x = 0 we get

0 =
g∑

i=1

(bi1(0)z1 + · · ·+ bin(0)zn)2.

As k is formally real, we deduce bij(0) = 0 for all i, j, that is, x divides all coefficients bij .
Clearly by repeating this we get rid of the denominator xs, and express Q as a sum of g
squares of linear forms with coefficients in A = k[[x]]. �

It is interesting to describe the B’s to which Remark 1.1 applies. For A = k, the typical
B is a finitely generated algebra of Krull dimension 0, or in other words, a 0-dimensional
algebraic set over k. For A = k[[x]], B is a complete local ring whose residue field is a
finite extension k, that is, an algebroid curve over k.

After these basic remarks, the first new result appears in [ChDLR]:

Proposition 1.4 Let A = R[y] be the polynomial ring in one single variable y over a real
closed field R. Then gA(n) ≤ 2n.

Since in this case p(A) = 2, this is the Pfister bound gA(n) ≤ p(A) · n. The authors
prove this by diagonalization, which over the ground ring R[y] is far more involved than
over a field. They stress how their proof needs the field R to be real closed. However, they
conjecture that the same bound should hold for A = k[y] under the mere assumption that
p(A) = 2 (such a k is called hereditarily Pythagorean, see [Be]), More generally, they ask
whether the finiteness of p(A) implies that of gA(n), what can be more precisely stated as
follows:

Is it true that p(A) ≤ p implies gA(n) ≤ p n for A = k[y], where k is a field?

This reformulation of the Pfister bound has some advantages. In fact, it is known from
some results on the τ -invariant ([Sch]), that if p(k[y]) ≤ p = 2s, then p(k((x))[y]) ≤ p.
Hence, if we have the Pfister bound for such a p, then we have it for A = k((x))[y], then
for A = k[[x]][y] (clearing the denominator x as in 1.1), and finally for A = k[[x, y]] (by
a suitable use of M. Artin’s Approximation, see [Fe]). The most interesting rings here
are the one we started with, A = k[y], and the latter, A = k[[x, y]]. For these two, the
typical B’s in 1.1 are algebraic curves over k, and algebroid surfaces over k. We have so
increased in one the dimension of the cases covered before. Of course, one cannot expect
much more, as it is know that under quite mild assumptions, p(B) = ∞ if dimension is 3
or bigger ([FRS1]).

After this formulation of the problem, we know only of the progress in [Fe], which
includes the Pfister bound for A = k[y], where k = R({x}). This field is indeed hereditarily
pythagorean, and in fact, most close to being real closed. The method is again a kind of
diagonalization over A. The paper [Fe] deals with convergent power series over the reals
because it is focused on the Pythagoras numbers of real analytic surface germs, rather
than on algebroid surfaces over an arbitrary real closed field R. It would be possible to
review the proofs there and extend them to k = R((x)).
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The purpose of this note is to explore further the diagonalization technique, and prove
the Pfister bound for p ≤ 4, namely:

Theorem Let A = k[y] be the polynomial ring in one single variable y over a field k, and
suppose that p(A) ≤ 2 (resp. 4). Then gA(n) ≤ 2n (resp. 4n).

As in [Fe], our main source of inspiration is [Dj], and quaternions play a central part in
the game. One then thinks of octonions to reach the bound 8n when p(A) ≤ 8, but there
non-associativity stands in the way. Thus, to drop any assumption on p(A) a different
view must be taken. In fact, turning back to the ideas in [CLR], we have obtained in
[FRS2] the following bound:

gA(n) ≤ 2n τ(k),

where τ(k) is the τ -invariant mentioned earlier. Let us only say here that the Theorem
above corresponds to the case τ(k) = 1 (resp. 2).

The paper is organized as follows. In Section 2, we review some standard facts on
quaternions and semidefinite matrices, mainly to fix notations. In Section 3 we state the
diagonalization result, which is the core of the matter, and deduce from it the theorem
above for p = 4; we also explain how it follows for p = 2, which is in fact easier. Section
4 contains the first half of the diagonalization theorem, namely the part that runs over
the ring k[y] until quaternions enter the scene. The proof of diagonalization is completed
in Sections 5 and 6. It consists of an algorithm to make dominant certain matrices of
quaternions.

The authors thank Prof. M. Coste for some useful discussions that lead to a more
elegant formulation of the dominance algorithm.

2 Quaternions and semidefinite matrices

Let k be any field, and A = k[y] the ring of polynomials in one single variable y with
coefficients in k. We will consider quaternions over k, which are defined using three
imaginary units u1, u2, u3, that multiply as follows

• u2
i = −1,

• u1u2 = u3, u2u3 = u1, u3u1 = u2, and

• uiuj = −ujui for i < j

Then, a quaternion is an element a = (a0, a1, a2, a3) ∈ k4, which is costumarily denoted
a = a0 + a1u1 + a2u2 + a3u3. These quaternions form a k-algebra K with product defined
through the rules (•) above. This K is a skew field. The fact that K is not commutative is
the source of many technical complications, but often we can use that at least the elements
a ∈ k commute with any other quaternion. Quaternions have a so-called conjugation:

a = a0 + a1u1 + a2u2 + a3u3 7→ a = a0 − a1u1 − a2u2 − a3u3.
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Clearly, k is the fixed part of this involution. One checks straighforwardly the two main
properties

(i) ab = ba, and

(ii) aa = aa = a2
0 + a2

1 + a2
2 + a2

3.

This is the well-known connection with sums of squares, which provides the classical
formula for the product of two sums of four squares:

(a2
0 + a2

1 + a2
2 + a2

3)(b
2
0 + b2

1 + b2
2 + b2

3)

= (aa)(bb) = b(aa)b = (ba)(ab) = cc

= c2
0 + c2

1 + c2
2 + c2

3,

where c = ab (note how we have used associativity, and that aa ∈ k conmutes with any
other quaternion).

We now consider the ring of polynomials K[y]. Note here that the definition of a
polynomial ring over a non-commutative ring assumes that the variable y commutes with
every coefficient. This makes substitutions a delicate matter, but we will not need to
discuss that here. Clearly, K[y] is also the ring of quaternions over k[y], consequently, we
also call quaternions the elements of K[y]. Any element a(y) ∈ K[y] can be written as

a(y) = a0(y) + a1(y)u1 + a2(y)u2 + a3(y)u3, ai(y) ∈ k[y].

Thus we have the degree
deg(a(y)) = max

i
deg(ai(y)),

and this notion behaves as usual for sums and products. Furthermore, in our situation,
we can use Euclidean division to divide component-wise every polynomial quaternion in
K[y] by a polynomial in k[y].

In the sequel we will use matrices with entries in K[y]. We will call them q-matrices,
and reserve the term matrices for those with entries in k[y]. Diagonal q-matrices are
denoted by 〈a1, . . . , an〉; in particular I = 〈1, . . . , 1〉. Since K[y] is not commutative,
operations with q-matrices, although defined as usual, must be computed with some care.
In particular, there is no handy notion of determinant of a q-matrix, and we will avoid its
use altogether. We say that a q-matrix α is regular if there is some other α′ such that

αα′ = 〈a1, . . . , an〉, 0 6= ai ∈ K[y] for all i.

If that is the case, multiplying on the right by the diagonal q-matrix

〈. . . , ai

∏
j 6=i

ajaj , . . .〉

we obtain
αα′′ = cI, where c = aa ∈ k[y], a =

∏
i

ai.
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It is so clear that a regular q-matrix simplifies by multiplication on the right. The matrix
α is invertible if there is another q-matrix α′ such that

αα′ = I.

It can be shown that then also α′α = I, but we will not need this.

Of great importance for us is the transpose conjugate α∗ of a q-matrix α: if α = (αij),
then α∗ = (αji). An straightforward computation shows that (αβ)∗ = β∗α∗. Then we say
that α is hermitean if α = α∗. Note that this in particular implies that αii ∈ k[y] for all
i. For matrices with entries in k[y], hermitean means just symmetric.

Now let α be a hermitean q-matrix of order n. For every column a = (ai) ∈ K[y]n, the
product a∗αa is in K[y], and:

a∗αa = (a∗αa)∗ = a∗α∗a = a∗αa,

hence a∗αa ∈ k[y]. We will say that α is positive semidefinite (psd or ≥ 0 in short) when
a∗αa ≥ 0 in (every ordering of) the field k(y), for every a ∈ K[y]n.

For matrices with entries in k[y] this can be defined without resource to quaternions.
The reason is that writting a ∈ K[y]n as

a = a0 + a1u1 + a2u2 + a3u3, ai ∈ k[y],

we obtain (after some computation):

a∗αa = a∗0αa0 + a∗1αa1 + a∗2αa2 + a∗3αa3,

hence a∗αa ≥ 0 for all a ∈ K[y]n if and only if it holds for all ai ∈ k[y].

We conclude this review on q-matrices with the two properties that will be needed
later:

Lemma 2.1 (1) Let α, β and γ be q-matrices such that α = γ∗βγ is psd. If γ is regular,
then β is psd.

(2) Let α be a regular psd q-matrix. Then αii 6= 0 for all i.

Proof. For (1), choose γ′ with γγ′ = c〈1, . . . , 1〉 with 0 6= c ∈ k[y] (this γ′ exists because
γ is regular). Then γ′∗αγ′ is psd (this is the converse of (1), which is immediate). But

γ′∗αγ′ = γ′∗γ∗βγγ′ = c2β,

and since 0 6= c ∈ k[y], it follows readily that β is also psd.

(2) Clearly, since α is regular, no row vanishes, so that αij 6= 0 for some j. If j = i we
are done. Otherwise, suppose αii = 0, and consider the q-matrix of order 2(

αii αij

αji αjj

)
=

(
0 c
c b

)
, where b ∈ k[y], c ∈ K[y].
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Since α is psd, this matrix is psd too, hence

0 ≤ (−b− 1
2 , c)

(
0 c
c b

) (
−b− 1

2
c

)
= −(b + 1

2)cc.

But b, cc ∈ k[y] are both ≥ 0, hence we can only conclude that 0 = c = αij . Contradiction.
�

3 The diagonalization theorem

Consider a field k with p(k[y]) ≤ 4. The Pfister bound for A = k[y] follows by diago-
nalization of psd matrices, but that diagonalization is performed over the quaternions.
Namely:

Theorem 3.1 Let α be a psd matrix (with entries in k[y]). Then there are a regular
q-matrix γ and polynomials a1, . . . , an ∈ k[y] such that

α = γ∗〈a1, . . . , an〉γ.

The proof of this will be developed in the next three sections. Here, we deduce from
it the announced Pfister bound:

Corollary 3.2 For A as above, we have gA(n) ≤ 4n.

Proof. Consider a sum of squares of quadratic forms

Q =
p∑

i=1

(ai1z1 + · · ·+ ainzn)2, aij ∈ A = k[y].

Writting the variables as a column z, we have Q = z∗αz, where α is a well defined psd
matrix. Then diagonalization gives

α = γ∗〈a1, . . . , an〉γ.

Since the diagonal matrix must be psd (Lemma 2.1(1)), each ai is ≥ 0 in (all orderings
of) k(y), hence a sum of four squares in k[y], so that

ai = bibi, for some quaternion bi ∈ K[y].

Thus:
〈a1, . . . , an〉 = β∗β, where β = 〈b1, . . . , bn〉,

and
α = γ∗β∗βγ = θ∗θ, where θ = βγ;
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finally, consider the four components of the entries θij ∈ K[y]:

θij = θ
(0)
ij + θ

(1)
ij u1 + θ

(2)
ij u2 + θ

(3)
ij u3.

Now we are ready for the key computation:

Q = z∗αz = z∗θ∗θz = (θz)∗(θz)

=
n∑

i=1

(θi1z1 + · · ·+ θinzn)(θi1z1 + · · ·+ θinzn)

=
n∑

i=1

3∑
`=0

(θ(`)
i1 z1 + · · ·+ θ

(`)
in zn)2.

This latter expression is a sum of 4n squares of linear forms, and we are done. �

Remarks 3.3 (1) The above Pfister bound corresponds to the case p(A) ≤ p = 4. For
p = 2 the argument is the same, only that simpler. Indeed, for p = 2 quaternions are not
needed: one works over the complexes C = k[u1], that is, both imaginary units u2 and u3

are forgotten. This has the advantage that C is commutative and the same computations
become much easier.

(2) Of course, the next question is whether the case p = 8 could be treated using
octonions. This will in particular include the field k = Q in our results. However,
octonions are much worse than quaternions concerning computations, because they are
not associative. We do not know how to overcome this difficulty.

4 Reduction of diagonalization to the invertible case

Here we develop the first part of the proof of diagonalization, which is a reduction to the
invertible case.

Let α be a psd matrix (with entries in k[y]).

Step I. Diagonalization over k[y].

Since k[y] is a principal ideal domain, we know ([Hu, VII.2]) that there exist two
invertible matrices u, v and a diagonal matrix

e = 〈e1, . . . , er, 0, . . . , 0〉,

such that e1|e2| . . . |er and α = uev. Clearly, we can choose all ei ∈ k[y] to be monic.

Then we write
α = γ∗eπγ, with γ∗ = u, π = vγ−1.

Notice that the matrices γ and π are invertible. This implies that β = eπ is psd. Further-
more, since α = α∗ we see that eπ = π∗e, so that

eiπij = πjiej .
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Similarly, if ππ′ = I, then

eπ′ = (π′∗π∗)eπ′ = π′∗(π∗e)π′ = π′∗(eπ)π′ = π′∗e(ππ′) = π′∗e,

so that:
eiπ

′
ij = π′jiej .

Next, splitting our matrices into boxes with ẽ = 〈e1, . . . , er〉, the equation eπ = π∗e
becomes: (

ẽ 0
0 0

) (
π̃ θ
ρ η

)
=

(
π̃∗ ρ∗

θ∗ η∗

) (
ẽ 0
0 0

)
which implies ẽ θ = 0, hence θ = 0. It follows that π̃ is invertible, and we have an equation

α = γ∗
(

ẽ π̃ 0
0 0

)
γ.

Consequently, it is enough to prove the diagonalization result for ẽ π̃. Thus, we can hence-
forth suppose r = n and α = eπ. �

Step II. All ei ∈ k[y] are sums of four squares.

Since p(k[y]) ≤ 4, by a classical theorem of Cassels ([Ca]), it is enough to show that all
ei’s are sums of squares in k(y), or equivalently, that they are positive in all orderings of
k(y). We argue by way of contradiction. Suppose e` < 0 in some ordering of k(y), and all
preceding ei are positive in all orderings of k(y). Then by the Artin-Lang Homomorphism
Theorem ([BCR, 4.1.2]), the polynomial e` ∈ k[y] has some negative specialization in a
real closure R of k, and since e` is monic, it certainly has also positive specializations.
Thus, e` has in R some root ξ of odd multiplicity µ`. We denote µi the multiplicity of ξ
as a root of ei (which maybe zero). Since for i ≤ j we have ei|ej , it is µi ≤ µj ; on the
other hand, since for i < ` the polynomial ei is positive in all orderings of k(y), µi must
be even, hence µi < µ`. We now consider the specialization π(ξ) of the matrix π, and look
for zero entries πij(ξ).

1. Case i = ` = j. Since eπ is psd, then P = e`π`` is positive in every ordering of k[y],
hence ξ must be a root of even multiplicity of P . But its multiplicity µ` in e` is odd,
hence π``(ξ) = 0.

2. Case i < ` ≤ j. As eiπij = πjiej and µi < µj , it must be πij(ξ) = 0.

3. Case i = ` < j. The matrix (
e`π`` e`π`j

ejπj` ejπjj

)
is psd, because so is eπ. Now, since k[y] is commutative, we can look at its deter-
minant, which must be ≥ 0 in all orderings of k(y). But ejπj` = π`je` and e`|ej , so
that

det
(

e`π`` e`π`j

ejπj` ejπjj

)
= det

(
e`π`` e`π`j

e`π`j ejπjj

)
= e2

`

(ej

e`
π``πjj − π2

`j

)
.
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Since e2
` > 0 in all orderings, we deduce that

∆ =
ej

e`
π``πjj − π2

`j ≥ 0

in all orderings. Thus all specializations of this element ∆ must be ≥ 0, hence

0 ≤ ∆(ξ) = −π`j(ξ)2

(we already know that π``(ξ) = 0). We conclude that π`j(ξ) = 0.

Consequently, with that many zero entries, the determinant of the matrix π(ξ) must be
zero. But π(ξ) is a specialization of the invertible matrix π, hence it must be invertible
too. This contradiction ends the proof. �

Step III. Factorization of e over the quaternions.

By the preceding step, we can write e1 = ε1ε1 for some ε1 ∈ K[y]. Now, as e1|e2, the
quotient f2 = e2/e1 ∈ k[y] is also a sum of four squares, so f2 = ϕ2ϕ2 with ϕ2 ∈ K[y].
Setting ε2 = ϕ2ε1 we get:

e2 = (e2/e2)e1 = ϕ2ϕ2ε1ε1 = ε1ϕ2ϕ2ε1 = ϕ2ε1ϕ2ε1 = ε2ε2.

Clearly, by repetition, we end up with{
ei = εiεi, εi|εi+1 in K[y], and
e = ε∗ε, where the q-matrix. ε = 〈ε1, . . . , εn〉 is regular.

�

Step IV. There is an invertible q-matrix σ such that eπ = ε∗σε.

As eπ = ε∗επ, we look for σ such that επ = σε. Now, we have the regular matrix

ε′ = 〈. . . , εj

∏
` 6=j

ε`ε`, . . .〉

such that
εε′ = cI, where c =

∏
i

ei.

Consequently we need that
επε′ = σεε′ = cσ.

(and note that ε′ simplifies in the first equality). Thus, we will conclude by showing that
c divides all entries of the q-matrix επε′ = (θij). We have:

θij = εiπijεj

∏
` 6=j

ε`ε` = εiπijεj

∏
` 6=j

e`,

hence we must check that ej |εiπijεj . We distinguish two cases:
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1. If j ≤ i, write εiπijεj = πijεiεj = πij(εi/εj)εjεj = πij(εi/εj)ej .

2. If j > i, write εiπijεj = εiπijεi(εj/εi) = εiεiπij(εj/εi) = eiπij(εj/εi) = ejπji(εj/εi)
(recall that eiπij = ejπji).

In both cases we get an element divisible by ej , as wanted.

It remains to see that σ is invertible, that is, to find σ′ such that σσ′ = I. But suppose
we find σ′ such that επ′ = σ′ε. Then

σσ′ε = σεπ′ = εππ′ = ε,

and simplifying ε we are done. Once this said, one finds σ′ alike σ. �

After Steps I-IV it suffices to prove:

Proposition 4.1 Let σ be an invertible psd q-matrix, then there exists an invertible q-
matrix λ such that λ∗σλ is diagonal.

Indeed, Step I reduces the problem to the product eπ ≥ 0, and Steps II-IV provide
a factorization eπ = ε∗σε, and σ ≥ 0 because ε is regular. Now if λ is invertible and
θ = λ∗σλ diagonal, we have λλ′ = I for a suitable λ′, and

eπ = ε∗λ′∗θλ′ε = γ∗θγ,

where γ = λ′ε is regular.

5 Dominant matrices

For the proof of Proposition 4.1, we will resource to a notion that guarantees in a very
strong sense that a q-matrix is diagonal:

Definition 5.1 We say that a q-matrix τ of order n is dominant if deg(τii) > deg(τij)
for all j 6= i, and deg(τ11) ≤ · · · ≤ deg(τnn).

Note that if τ is hermitean (or symmetric), it is enough to check deg(τii) > deg(τij)
for j > i.

The key fact is that a dominant invertible psd q-matrix τ is diagonal. Suppose first
deg(τ11) = 0. Then, by dominance, the other elements in the first row vanish, and since τ
is hermitean, also the others in the first column. Consequently, by induction, it is enough
to show that indeed deg(τ11) = 0. We argue by way of contradiction, assuming that all
entries in the diagonal have degree > 0. Since τ is invertible, there is τ ′ such that ττ ′ = I,
that is

n∑
`=1

τi`τ
′
`j = δij .
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For j = 1 we get

deg(τii) + deg(τ ′i1) ≤ max
` 6=i

{deg(τi`) + deg(τ ′`1)}

< max
` 6=i

{deg(τii) + deg(τ ′`1)} (dominance)

= deg(τii) + max
` 6=i

{deg(τ ′`1)}.

Hence,
deg(τ ′i1) < max

` 6=i
{deg(τ ′`1)}, for all i.

This is impossible.

We have thus shown that τ is diagonal. But even more, we have shown that τ has
constant coefficients! Anyway, Theorem 4.1 reduces to:

Proposition 5.2 Let σ be an invertible psd q-matrix, then there exists an invertible q-
matrix λ such that τ = λ∗σλ is dominant.

Indeed, such a dominant τ is invertible and psd as σ is.

6 Diagonalization by dominance

In this section we describe an algorithm to make dominant an invertible psd q-matrix σ,
as stated in Proposition 5.2. For this we will describe two operations of the allowed type
λ∗σλ.

(6.1) Permutation of columns and rows. We denote by I[i,j] the invertible matrix
obtained from the identity by interchanging the i-th and j-th columns, i < j. If α is any q-
matrix, then αI[i,j] is obtained from α in the same way: by interchanging the i-th and j-th
columns. We can also describe I∗[i,j] = I[i,j] as obtained from the identity by interchanging
the i-th and j-th rows, and then, for any q matrix β, the product I∗[i,j]β results from β
by interchanging the i-th and j-th rows. Putting all together, given a q-matrix σ, for the
product ν = I∗[i,j]σI[i,j] we have:{

ν`i = σ`i for ` < i, and
νii = σjj .

We will denote ν = σ[i, j]. �

Next, we need some more notation:

Definition 6.2 A q-matrix σ of order n is called r-dominant if its initial minor (σij)i,j≤r

is dominant. For r = 1 this just means σ11 6= 0, and for r = n we recover dominance. If
r < n we consider the n-tuple

wr(σ) = (deg(σ11), . . . ,deg(σrr),∞, . . . ,∞),

12



and the integer
dr(σ) = max

i≤r
{deg(σi r+1)− deg(σii)}.

Using this we describe now a second operation

(6.3) Division procedure. Let σ be an r-dominant q-matrix of order n, with r < n and
d = dr(σ) ≥ 0. Then:

1. Define q1, . . . , qr ∈ K[y] by induction through Euclidean division:{
σ1 r+1 = σ11q1 + ρ1, deg(ρ1) < deg(σ11),
σi r+1 −

∑
j<i σijqj = σiiqi + ρi , deg(ρi) < deg(σii), for i > 1

2. Consider the invertible matrix λ which coincides with the identity except for the
entries

λi r+1 = −qi, 1 ≤ i ≤ r,

and multiply ν = λ∗σλ, to get{
νij = σij , for i, j ≤ r,

νi r+1 = σi r+1 −
∑

j≤r σijqj = ρi −
∑

i<j≤r σijqj , for i ≤ r

(in particular, νr r+1 = ρr). We claim that dr(ν) < d.

Indeed, firstly note that deg(q1) = deg(σ1r+1)− deg(σ11) ≤ d, and by induction:

deg(qi) ≤ max
j<i≤r

{deg(σi r+1),deg(σij) + deg(qj)} − deg(σii)

≤ max
j<i≤r

{deg(σi r+1)− deg(σii),deg(σij)− deg(σii) + deg(qj)}

≤ max{d, 0 + d} = d

(the zero comes from r-dominance). Next, we have

deg(νr r+1)− deg(νrr) = deg(ρr)− deg(σrr) < 0 ≤ d,

and by descending induction:

deg(νi r+1)− deg(νii) ≤ max
i<j≤r

{deg(ρi),deg(σij) + deg(qj)} − deg(σii)

≤ max
i<j≤r

{deg(ρi)− deg(σii),deg(σij)− deg(σii) + deg(qj)}

< max
i<j≤r

{0, 0 + deg(qj)} ≤ d

(the first zero comes from Euclidean division, the second from r-dominance).

Once the claim is proved, it is clear that by repetition we get a matrix ν such that{
νij = σij , for i, j ≤ r, and
deg(νi r+1) < deg(νii), for i ≤ r.
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We will denote ν = σ[r]. �

Once these two procedures are defined, we can describe the

(6.4) Algorithm for dominance. Let σ be an invertible psd q-matrix of order n. Then
σ11 6= 0 (Lemma 2.1(2)), hence σ is r-dominant for some maximum r ≥ 1. If r = n, then
τ = σ is dominant. Otherwise, consider ν = σ[r]. If deg(νr+1 r+1) ≥ deg(νrr), then ν
is s-dominant with s > r, and we set τ = ν. If deg(νr+1 r+1) < deg(νrr), let t be the
smallest index such that deg(νr+1 r+1) < deg(νtt), and set τ = ν[t, r + 1]. This q-matrix
is s-dominant with maximum s ≥ t (maybe s < r) and deg(τtt) < deg(νtt) = deg(σtt).

This will eventually produce a dominant q-matrix τ . Indeed, by construction

wr(σ) = (a1, . . . , ar,∞, . . . ,∞) > (b1, . . . , bs,∞, . . . ,∞) = ws(τ)

in the lexicographic ordering, because: either (i) the dominance order increases, and some
infinite entry becomes finite (case τ = ν), or (ii) the degree of some entry in the dominant
initial minor decreases (case τ = ν[t, r + 1]). Since the lexicographic ordering has no
infinite descending chains, the algorithm stops after finitely many repetitions.

Thus we have proved Proposition 5.2, hence Proposition 4.1, hence the diagonalization
theorem.
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