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We consider a ladder model of DNA for describing carrier transport in a fully coherent regime through finite
segments. A single orbital is associated to each base, and both interstrand and intrastrand overlaps are consid-
ered within the nearest-neighbor approximation. Conduction through the sugar-phosphate backbone is ne-
glected. We study analytically and numerically the spatial extend of the corresponding states by means of the
Landauer and Lyapunov exponents. We conclude that intrinsic-DNA correlations, arising from the natural base
pairing, does not suffice to observe extended states, in contrast to previous claims.
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I. INTRODUCTION

According to standard theories of disordered systems,1 all
states in low-dimensional systems with uncorrelated disorder
are spatially localized. Therefore, in a pure quantum-
mechanical regime, disordered models of DNA might lead to
insulator behavior unless the localization length reaches
anomalously large values. To explain long range charge
transport found experimentally,2 several authors considered
spatial correlations of the nucleobasis along the DNA
molecule.3–8 Those models are based on the fact that random
sequences, having a power-law spectral density S�k��1/k�

with ��0, result in a phase of extended states at the band
center, provided � is larger than a critical value �c.

9–12 As a
consequence, long range charge transport might be feasible
even at very low temperature, provided the chemical poten-
tial lies within the band of extended states.

Recently, Caetano and Schulz claimed that intrinsic DNA
correlations, due to the base pairing �A-T and C-G� between
the two strands, lead to electron delocalization even if the
sequence of bases along one of the strands is uncorrelated.13

Furthermore, they pointed out that there is a localization-
delocalization transition �LDT� for certain parameters range.
If these results were correct, then transverse correlations
arising intrinsically in DNA could explain long range elec-
tronic transport. However, we have claimed that this is not
the case and all states remain localized, thus excluding a
LDT.14

In this paper we provide further analytical and numerical
support to our above mentioned claim, aiming to understand
the role of intrinsic DNA correlations in electronic transport.
To this end, we address signatures of the spatial extend of the
electronic states by means of the analysis of the Landauer
and Lyapunov coefficients, to be defined below. The outline
of the paper is as follows. In the next section, we introduce
the ladder model of DNA13 and diagnostic tools we use to
elucidate the spatial extend of electronic states in the static
lattice. In Sec. III we discuss the analytical calculation of the
Landauer exponent and show that this exponent never van-
ishes in the thermodynamics limit for any value of the sys-
tem parameters. From this result we conclude that extended
states never arise in the model. We then proceed to Sec. IV,
in which we numericaly calculate the Lyapunov exponent for

finite samples. We discuss in detail its dependence on the
model parameters, especially inter- and intrastrand hoppings.
We provide evidences that the localization length is only of
the order of very few turns of the double helix for realistic
values of the model parameters. Therefore, this shows that
intrinsic DNA correlations alone cannot explain long range
electronic transport found in long DNA molecules.2 Finally,
Sec. V concludes the paper.

II. MODEL AND DIAGNOSTIC TOOLS

Our analysis proceeds as follows. We consider a ladder
model of DNA in a fully coherent regime and assign a single
orbital to each base. Conduction through the sugar-phosphate
backbone is neglected hereafter. Both interstrand and intras-
trand overlaps are considered within the nearest-neighbor ap-
proximation. We assume that the hopping does not depend
on the base and therefore only two values are considered,
namely interstrand �t�� and intrastrand �t�� hoppings. Figure
1 shows a schematic view of a fragment of this ladder model.

Four different values of the energy sites ��A, �T, �C, and
�G� are randomly assigned in one of the strands, with the
same probability, while the sites of the second strand are set
to follow the DNA pairing �A-T and C-G�. Hereafter we will
restrict ourselves to the following values of the site energies,
taken from Ref. 5, �A=8.24 eV, �T=9.14 eV, �C=8.87 eV,

FIG. 1. Schematic view of a fragment of the ladder model for
DNA molecules, excluding the sugar-phosphate backbone. A single
orbital is associated to each base, with a corresponding energy �n, n
being A, T, C, or G.
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�G=7.75 eV. The same site energy values were taken in Ref.
13. As a consequence, only three parameters remain in the
model, namely t�, t�, and N, the number of base pairs. We
will show below that the spatial extend of the states strongly
depends on t� and t�, but never goes to infinity in the ther-
modynamics limit �N→��.

The model considered by Caetano and Schulz,13 presented
above, assumes negligible effects from the backbone of
sugar phosphate. Previous works demonstrate that the back-
bone could strongly affect charge transport along the over-
lapping � orbitals of the basis. In this regard, Cuniberti et al.
observed that the backbone opens a semiconducting gap
in poly�G�-poly�C� DNA,15 that manifests itself through the
I-V characteristic.16 The lattice model including the back-
bone can be easily mapped onto a ladder model similar to
that presented above, with energy-dependent hoppings.17

Therefore, following Caetano and Schulz,13 for the sake of
simplicity we will not consider backbone effects hereafter.

Once the model has been established, we can write down
the equation for the amplitudes at different bases. Let us
denote these amplitudes as �n

���, where �=1,2 runs over the
two strands and n=1,2 , . . . ,N denotes the position of the
bases at each strand. According to the model introduced
above, the equations for the amplitudes are readily found to
be

E�n
�1� = �n

�1��n
�1� + t���n+1

�1� + �n−1
�1� � + t��n

�2�, �1a�

E�n
�2� = �n

�2��n
�2� + t���n+1

�2� + �n−1
�2� � + t��n

�1�. �1b�

Here �n
��� takes one of the four values of the site energies,

according to the constraints presented above.
The equation for the amplitudes can be cast in a compact

form by using 4	4 transfer matrices. To this end, let us
introduce the 4-vector

�n � ��n
�1�,�n

�2�,�n−1
�1� ,�n−1

�2� �t, �2a�

where the superscript t indicates the transpose. Defining the
following 2	2 matrix

M2
�n� � �

E − �n
�1�

t�

−
t�

t�

−
t�

t�

E − �n
�2�

t�

� , �2b�

we arrive at the transfer-matrix equation �n+1=Tn�n, with

Tn � �M2
�n� − I2

I2 O2
	 , �2c�

where I2 and O2 are the unity and null 2	2 matrices, re-
spectively. One can easily find out, that the 4	4 transfer
matrix Tn satisfies the condition Tn

†JTn=J with

J =�
0 0 − i 0

0 0 0 − i

i 0 0 0

0 i 0 0
� , �3�

which means that Tn belong to the SU�2,2� group. It is to be
noticed that only four transfer matrices appear in DNA due
to the intrinsic pairing �see Fig. 1�, and they will be denoted
as Tn,AT, Tn,TA, Tn,CG, Tn,GC for the sake of clarity.

The electronic properties can be described by the full
transfer matrix MN=
n=NTn,ij and the Lyapunov exponents,

Ly, the eigenvalues of the limiting matrix
limN→� ln �MNMN

† �1/2N, provide information about the lo-
calization length of the states, assuming exponential
localization.18 Here i , j� �A,T,G,C� and length is measured
in units of the base separation along a single strand �3.1 nm�.
Due to the self-averaging property they can be calculated by
taking the product of random transfer matrices over a long
system. Similarly, in the Landauer exponent 
La�N�
=ln
��
n=N

1 Tn,ij � ��1/N �hereafter 
¯� denotes ensemble aver-
ages� is twice the largest Lyapunov exponent near the critical
region in one-dimensional systems19,20 and can be calculated
analytically following the technique developed in Refs.
21–23. In quasi-one-dimensional chains, as in the ladder sys-
tem under consideration, both exponents again exhibit the
same critical behavior �the critical indices are the same�, but
their ratio can be different from 2.

III. LANDAUER EXPONENT

In Refs. 21–23 it was shown that the Landauer resistance
and the corresponding exponent can be calculated exactly. To
this end, the direct product MN � MN

† of the fundamental
representations of transfer matrices of the SU�1,1� group is
reduced to the adjoint one. We apply this technique here for
the group SU�2,2�. In order to calculate this direct product
exactly, we use the known representation of the permutation
operator via generators ����=1, . . . ,15� of the sl�4� algebra
as P= �1/4��I � I+�� � ���. Thus the matrix elements satisfy


�1

�2
�1

�2 =
1

4
�
�1

�2
�1

�2 + �����1

�2�����1

�2� , �4�

where we assume summation in the repeated indices �.
Among generators �� there is one, which coincides with the
metric J defined in �3�. We denote the corresponding index �
as J, namely �J=J.

Multiplying �4� by Tj and Tj
† from the left- and right-hand

sides, respectively, one can express the direct product of Tj
and Tj

† via their adjoint representation

�Tj���
� �Tj

+��
�� =

1

4
�J��

��J���
�� +

1

4
���J���

��� j
���J����

�. �5�

Here the adjoint representation �n of Tn is defined by

�n
�� =

1

4
Tr�Tn��Tn

+��� , �6�

being a 15	15 matrix that depends on the parameters of the
model at site n of both chains.
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To calculate analytically the Landauer exponent, we apply
this decomposition to the products of fundamental represen-
tations, Tn’s in MN, and after averaging obtain


MNMN
† � =

1

4
J � J +

1

4
���J� � �J����


j=1

N


� j�	��

. �7�

It is then straightforward to get the average over four
equivalent substitutions of the base pairs in the random chain


���� =
1

4
��AT

�� + �TA
�� + �CG

�� + �GC
�� � . �8�

The Landauer exponents are the nonnegative eigenvalues of
1
2 log
��. The condition of the existence of an extended state
is equivalent to det�
��− I�=0, and it is a matter of simple
algebra to prove that this condition is never met.

Therefore, we come to the conclusion that the system
studied by Caetano and Schulz13 cannot support truly ex-
tended states. Consequently, a LDT is not to be observed
since all states are spatially localized.

IV. LYAPUNOV EXPONENT

It can be argued that, although the localization length is
always finite, as we have demonstrated above, it could be
larger than typical sizes used in transport experiments, as
those carried out by Porath et al.2 To quantitatively deter-
mine the spatial extend of the electronic states, we have nu-
merically calculated the Lyapunov exponents for different
values of the hoppings t� and t�.

Figure 2 shows the Landauer and Lyapunov exponents for
N=4000, when t�=0.5 eV and t� =1.0 eV. These values of
the interstrand and intrastrand hoppings are larger than those
usually considered in the literature,17,24 but they were used
by Caetano and Schulz13 to provide support to their claim
about the extended nature of the states. From Fig. 2 it be-
comes clear that neither the largest Lyapunov exponents nor
the Landauer one vanish over the whole energy spectrum.
Most important, its minimum value is size independent
within the numerical accuracy, suggesting the occurrence of

truly localized states. Notice that the minimum value of these
exponents is always much larger than the inverse of the num-
ber of base pairs �1/N=0.0025�, indicating that DNA pairing
can hardly explain long range charge transport at low tem-
perature. From the inverse of the minimum value of the sec-
ond Lyapunov coefficient we can estimate that the localiza-
tion length is of the order of 80 base pairs �i.e., roughly eight
turns of the double helix�, therefore being smaller than typi-
cal sizes used in experiments.2

To elucidate the effects of the base pairing on the local-
ization length, we have also considered the artificial case of
ladder models without pairing. In that case, both strands are
completely random, allowing for a larger number of possible
pairs �e.g., AC or AA�. Therefore, the system becomes much
more disordered and one could naively expect a dramatic
decrease of the localization length, as compared to the sys-
tem with base pairing. Figure 3 indicates that this is not the
case. The inverse of the second Lyapunov exponent remains
almost unchanged over a large region of the energy spec-
trum, except close to the two resonances at about 6.4 eV and
10.6 eV. At resonances the localization length is reduced by
a factor 2.5 at most when the pairing constraint is relaxed. In
any event, resonances still appear so they cannot be associ-
ated to base pairing.

We claimed that the spatial extend of states strongly de-
pends on the hopping parameters,14 and those considered in

FIG. 2. 2 /3 of Landauer exponent 
La �solid line� and the larg-
est Lyapunov exponent 
Ly �white circles�, as a function of energy,
for t�=0.5 eV and t� =1.0 eV. The second, smaller Lyapunov expo-
nent �grey circles� is also shown.

FIG. 3. Inverse of the second Lyapunov coefficient for N
=4000, t�=0.5 eV, and t� =1.0 eV, when the base pairing is present
�solid line� and absent �dashed line�.

FIG. 4. Inverse of the second Lyapunov coefficient for N
=4000 and two sets of hopping parameters, indicated on the legend
box. Notice the scaling factor indicated on the lower curve.
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Ref. 13 seem to be larger as compared to those values widely
admitted in the literature.17,24 Higher hoppings lead to a less
effective disorder and higher localization lengths are to be
expected. We have calculated the inverse of the second
Lyapunov exponent for more realistic values of the hopping
parameter and checked that this claim is indeed correct �see
Fig. 4�. For instance, for t�=0.05 eV and t� =0.5 eV �see
Ref. 17� the localization length at the center of the band is
reduced by a factor 5 as compared to the case shown in Fig.
1, while an even larger decrease is noticed at resonances.
Therefore, we come to the conclusion that hopping is a more
important mechanism for delocalization than base pairing in
this ladder model.

In order to reach a quantitative picture of the influence of
the hopping parameters on the localization length, we have
obtained the minimum Lyapunov exponent for realistic val-
ues of the hopping parameters, namely for t� and t� less than
1.0 eV. Figure 5 shows the maximum localization length �in-
verse of the lowest Lyapunov coefficient for all energies� as
a function of the hopping parameters, t� and t�. We observe
that the maximum localization length is always much smaller
than the system size used in the simulations �N=4500�, al-
though its magnitude depends smoothly on the particular set
of hoppings t� and t�, as expected.

Finally, to provide further support to the claim that the
localization length remains finite for all values of the hop-
ping parameters, we undertake the study of the time dynam-
ics of electron wave packets. To this end, we solve the time-
dependent Schrödinger equation to compute the spread of an
initially localized wave packet. The procedure is rather stan-
dard and the details can be found in Ref. 25. In particular we
focused on the time-dependent participation number, defined
as

P�t� = ��
n.�

��n
����t��4	−1

with the initial condition �n
����t=0�= �1/�2�
n,N/2 and �

=1,2. The participation number P�t� is the length over which

the wave packet spreads at time t. In all numerical simula-
tions we find that P�t� saturates at a value Psat much smaller
than the system size, even for unrealistic and large hopping
parameters. Figure 6 shows the saturation value of the par-
ticipation number Psat, normalized to the number of sites 2N,
as a function of the hopping parameters. In all cases the
saturation value normalized to the system size is much
smaller than unity.

V. CONCLUSIONS

We considered a ladder model of DNA for describing
electronic transport in a fully quantum-mechanical regime.
In this model, a single orbital is assigned to each base, and
the sugar-phosphate channels are excluded. Therefore, it is
assumed that electronic conduction takes place through or-
bital overlap at the bases. The sequence of bases of one of
the strands is assumed to be totally random, while the se-
quence of the other strand results from the base pairing A-T
and C-G.

We demonstrated analytically and numerically that due to
the randomness of the sequence, the states are always local-
ized and a LDT cannot take place, contrary to what is
claimed in Ref. 13. In particular, we observed that base pair-
ing has negligible effects on the localization length except
close to two resonant energies, located at about 6.4 eV and
10.6 eV for t�=0.5 eV and t� =1.0 eV. At these particular
energies the localization length is smaller when the pairing
constraint is relaxed. Most important, even in the case of
base pairing, the largest localization length is much smaller
than typical sizes of samples used in various experiments.
Therefore, we come to the conclusion that base pairing alone
is unable to explain electronic transport at low temperature in
DNA.
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FIG. 5. �Color online� Maximum localization length for N
=4500 as a function of the hopping parameters, t� and t�. Notice
that the localization length is much smaller than the system size
even for high values of the hopping parameters.

FIG. 6. �Color online� Saturation value of the participation num-
ber Psat, normalized to the number of sites 2N, as a function of the
hopping parameters, t� and t�.
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