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Alberto Fernandez 

Abstract 

Background: Attention-Deficit Hyperactivity Disorder  (ADHD) is defined  as the most 

common neurobehavioral  disorder of childhood but  an objective diagnostic test is not 

available yet up to date. Neuropsychological, neuroimaging and neuropsychological 

research offer ample evidence of brain and behavioral  dysfunctions in ADHD but these 

findings have not been useful as a diagnostic test.   

Method: Whole-head magnetoencephalographic recordings were obtained from 14 

diagnosed ADHD patients and 14 healthy children  during resting conditions. Lempel-

Ziv complexity (LZC) values were obtained for each channel and child, and averaged in 

5 sensor groups: anterior, central,  left lateral, right lateral, and posterior.   

Results: LZC scores were significantly higher in controls, with the maximum value in  

anterior region. Combining “age” and “anterior” complexity values allowed the correct 

classification of ADHDs and controls with  a 93% sensitivity  and  79% specificity.  

Controls showed an age-related monotonic increase of LZC scores in all sensor groups,  

while ADHDs exhibited  a non-significant tendency towards decreased LZC scores. The 

age-related divergence resulted in a 100% specificity in children older than 9 years. 

Conclusion: Results support the role of a frontal hypoactivity in the diagnosis of 

ADHD.  Moreover, the age-related divergence of complexity scores between ADHDs 

and controls might reflect distinctive developmental  trajectories. This interpretation of 

our results  is in agreement with recent investigations reporting a delay of cortical 

maturation in the prefrontal cortex.. 
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INTRODUCTION 

Attention-Deficit Hyperactivity Disorder (ADHD) is the most common neurobehavioral  

disorder of childhood (1).  Diagnostic guidelines identify the core symptoms of ADHD 

as “inattentiveness, impulsivity and hyperactivity”.  These guidelines also acknowledge 

that there is no objective test or marker for ADHD and therefore diagnosis relies 

entirely on clinical criteria. While neuropsychological (2), neuroimaging (3) and 

neurophysiological (4) research offer ample evidence of brain and behavioral 

dysfunctions in ADHD, these findings have not been useful as a diagnostic test.  

Bush et al (5) reviewed functional neuroimaging studies of ADHD, ranging from PET, 

SPECT, fMRI to EEG. These authors found a consistent pattern of frontal dysfunction 

affecting closely-related areas, such as dorsolateral prefrontal cortex, anterior cingulate, 

ventrolateral prefrontal cortex, parietal cortex, striatal and cerebellar regions. Similarly  

to Bush et al,  Willis and Weiler (6)  focused on structural MRI and EEG studies of 

ADHD, concluding that  frontal and caudate-nuclei volume reductions are the most 

frequently detected abnormalities. Earlier quantitative EEG (qEEG) studies revealed 

consistent group differences between control and ADHD children, including increased 

frontal theta activity, increased posterior delta, and decreased alpha and beta activity (6). 

More recent qEEG research, such as Monastra et al’s study (7) used a classification 

model based on theta/beta power ratios and reported discrimination of ADHD from 

controls with 86% sensitivity and 98% specificity.  

Whereas other neuroimaging techniques, such as PET and SPECT, measure the brain 

activity in terms of vascular and metabolic changes, the EEG and 

magnetoencephalography (MEG) acquire the brain activity directly (8). This is due to 

the fact that both EEG and MEG record the electromagnetic oscillations produced by 
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 the neurons. Moreover, MEG is a complementary signal to EEG and represents an 

entirely non-invasive procedure for brain analysis in children. MEG has been scarcely 

utilized in ADHD investigation (9-12) and, as far as we know, the diagnostic utility of 

this technique has never been tested in ADHD. It is important to notice that there are 

some major differences between EEG and MEG. First of all, MEG offers a better spatial 

resolution than EEG. Furthermore, MEG is sensitive to a broader frequencies spectrum 

compared to EEG as skull acts as a low-pass filter for electric, but not for magnetic 

fields (13,14). 

Recently, non-linear analysis has been applied to MEG and EEG signals in an attempt 

to improve the traditional quantitative power-spectrum approach (15, 16). A branch of 

these non-linear estimates of brain activity is complexity analysis. Several complexity 

estimates have been applied to EEG and MEG: Correlation Dimension, First Lyapunov 

Component, Auto-mutual Information, Lempel-Ziv Complexity (LZC), etc. (17,18). 

Parameters of EEG-MEG complexity usually estimate the predictability of brain 

oscillations and/or the number of independent oscillators underlying the observed 

signals (19,20). Among those, LZC is a model-independent estimator of system 

complexity adequately suited for the analysis of biomedical signals (21). LZC is related 

to the number of bits of the shortest computer program which can generate the analysed 

time series (21). This complexity metric, which is based on counting the number of 

distinct substrings and their recurrence rate along the analysed signal, assigns higher 

values to more complex data (21). Only two simple operations are needed to compute 

LZC: sequence comparison and number accumulation. This metric has been 

successfully employed to quantify the relationship between brain activity patterns and 

depth of anaesthesia (22), to analyse neural discharges (23), to evaluate epileptic seizure  
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EEG time series data (24) and to analyse spontaneous MEG data in a population of 

Alzheimer’s disease (AD) patients (25).  This latter study is a precedent of our current 

investigation since AD patients exhibited a significantly reduced pattern of LZC, 

supporting Goldberger’s theory of complexity loss in aging and disease (20). Moreover, 

recent studies have shown that LZC is related to the average information quantity in a 

signal  as well as signal characteristics like spectral bandwidth and harmonic variability 

(26). 

The main aim of this study was to further investigate the relationship between age, 

psychopathology, and MEG-derived complexity in a population of ADHDs and healthy 

controls. Based on the above-mentioned literature, we hypothesized there will be a 

pattern of reduced LZC values in ADHD, specially in anterior brain regions.  

METHODS AND MATERIALS   

SUBJECTS 

The clinical group comprised 14 male (mean age, 9.64 ± 1.04 years; range 8-12)  

children  with ADHD recruited from the community. Inclusion criteria included a full 

DSM-IV diagnosis of ADHD combined type with associated impairment in at least 2 

settings  and a Conners’ Parents Hyperactivity rating greater than 2 SD above age- and 

sex-specific means. The DSM-IV diagnosis of ADHD was based on the Parent 

Diagnostic Interview for Children and  adolescents. ADHD patients were totally drug-

naïve, they had never used any psychoactive drug or were receiving any psychoactive 

therapy. Exclusion criteria were a full-scale IQ of less than 80, evidence of medical or 

neurological disorders, or any other axis I psychiatric disorder requiring treatment with 

medication (see Table 1). Thus, any potential comorbidity was eliminated from the 

study. 
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A clinical psychologist (N.G.C.) administered the Wechsler Intelligence Scale for 

Children (Revised)  to  4 patients with ADHD and the WISC-IV to 10 patients. A total 

of 17 healthy children (mean age, 10.36 ± 1.48 years, range 8-13) matched for sex,  

handedness, and education  were recruited from the community as well. Screening 

included an initial telephone interview, which consisted in the administration of the 

Conner Parent Rating Scale (CPRS). Once this preliminary evaluation was performed,  

an individual assessment including physical and neurological examinations (including 

handedness), and clinical history was  obtained by a child and adolescent psychiatrist 

(M.N.).  Three potential controls were excluded due to positive family psychiatric 

history and possible psychiatric diagnosis based on clinical examination. This study was 

conducted at an outpatient Child and Adolescent Psychiatry Unit between January 2007 

and January 2008. The institutional review board approved this research protocol and 

written informed consent  and assent to participate in  the study were obtained from 

parents and children, respectively.   

####Insert Table 1 about here#### 

DATA COLLECTION 

MEGs were acquired with a 148-channel whole-head magnetometer (MAGNES 2500 

WH, 4D Neuroimaging, San Diego, CA) placed in a magnetically shielded room at 

“Centro de Magnetoencefalografía Dr. Pérez-Modrego” (Madrid, Spain). Subjects were 

in an awake but resting state with their eyes closed and under supervision during the 

recording. They were asked to avoid blinking and making movements. For each subject, 

five minutes of MEG signal were acquired at a sampling frequency of 678.17 Hz using 

a hardware band-pass filter of 0.1-200 Hz. Afterwards these recordings were down-

sampled by a factor of 4 (169.549 Hz). Artefact-free epochs of 20 seconds were selected  
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off-line. Finally, these epochs were filtered between 1.5 and 40 Hz and copied to a 

computer as ASCII files for further complexity analysis. 

LZC CALCULATION 

LZC is a nonparametric measure for finite sequences related to the number of distinct 

substrings and the rate of their occurrence along the sequence, with larger values 

corresponding to more complexity in the data (22). LZC analysis is based on a coarse-

graining of the measurements, so the MEG recording must be transformed into a finite 

symbol string. In this study, we used the simplest way: a binary sequence conversion 

(zeros and ones). By comparison with a threshold Td, the original data are converted 

into a 0-1 sequence. We used the median as the threshold Td due to its well-known 

robustness to outliers. The binary string obtained is scanned from left to right and a 

complexity counter c(n) is increased by one unit every time a new subsequence of 

consecutive characters is encountered in the scanning process. The complete 

computational algorithm of c(n) is described in Zhang et al (22). 

 In order to obtain a complexity measure which is independent of the sequence length n, 

c(n) should be normalized. In general, b(n)=n/log2(n) is the upper bound of c(n) for a 

binary sequence (21). Thus, c(n) can be normalized via b(n): C(n)=c(n)/b(n). The 

normalized LZC, C(n), reflects the arising rate of new patterns along with the sequence. 

 

DATA  REDUCTION AND ANALYSIS 

A LZC-normalized  score  was obtained for each channel and participant. Thus,  148 

LZC scores per subject were submitted to statistical analyses. Due to the relatively high  

number of dependent variables and the relatively reduced sample (14 + 14), a 

dimensionality problem might appear during data analysis. In order to prevent such 
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problem the initial 148 LZC scores were averaged into 5 regions: anterior, central left 

lateral, right lateral, and posterior, which are included as default sensor groups in the 

4D-Neuroimaging source analysis software (see Figure 1). This approach has been 

broadly used when MEG data analysis is based on  sensor-space and brain sources are 

not estimated (27-29).  

 

    ####Insert Figure 1 about here#### 

 

Repeated-measures ANOVA and linear regression models were applied to explore 

potential regional effects and to analyse the relationship between LZC scores and  age. 

A logistic regression model was applied in order to select those variables useful to 

correctly classify children into ADHD or Control groups. Our data come from an 

unmatched or separate sampling case-control study. The consequence of this fact is that 

inferences about the intercept parameter are not possible without knowledge of the 

sampling fractions 1τ  and 0τ , while the remaining parameters may be estimated using 

the methods developed for cohort data. We used, for the intercept parameter α , the 

estimator 






+=

0

1* ln τ
ταα

, being α  the intercept parameter  estimator from cohort 

model (30). 

RESULTS 

REGIONAL EFFECTS 

Means and standard deviations of LZC scores for ADHDs and Controls in the five 

regions are shown in Table 2. Controls means were greater than those of  ADHD 

subjects in all regions. Moreover, the anterior  LZC scores were higher in both groups  
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than the scores of the remaining  four regions as measured through a repeated-measures 

ANOVA with two factors:  Region (anterior, central, left lateral, right lateral, and 

posterior) and Group (ADHD versus Control). LZC scores were significantly modified 

by the main effects of Region (F4,104 = 33,31; p< 0.01), Group (F1,26 = 8.502; p< 0.01) 

and the interaction between both variables (F4,104 = 2.53; p< 0.05).  In order to identify 

Region x Group differences a post-hoc Bonferroni correction was applied. Post-hoc 

tests showed significant differences when anterior and central  regions were compared 

with left lateral, right lateral and posterior regions (all  p-values < 0.05).  These effects 

indicated higher anterior and central LZC values and were valid for both ADHD and 

Control groups.  In addition, anterior LZC scores were significantly higher than Central 

scores, but only within Control group (p=0.005).                                                      

 
####Insert Table 2 about here#### 

 
 
AGE EFFECTS 
 
Figure 2 displays scatter diagrams and regression lines representing the differential 

correlation among LZC scores and age.  For ages greater or equal than 9 years, anterior 

scores were higher for Controls than for ADHDs, and this difference increased as a 

function of age (see Figure 2 top). Analogous results were obtained for the remaining 

regions (Figure 2).  A positive slope-coefficient indicates that LZC scores increase with  

age in Control group (where all coefficients were significantly different from zero).  On 

the other hand, for ADHD subjects all p-values were not significantly different from 

zero, but the slope coefficients were negative  (except  left lateral, though  its value was  
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near zero 0.0001) indicating an opposite tendency to controls (see Table 3). Since these 

results suggested that age exerts a significant influence on LZC scores  we included this 

variable in each logistic regression model.  

####Insert Table 3 and Figure 2 about here#### 

 
LOGISTIC REGRESSION ANALYSES 
 
 
Prior to undertaking a variable selection process, two types of predictor variables were 

considered: “age”, which was included by default in all models (see above), and the 

LZC scores obtained for each region. The variable selection process began with an 

univariate analysis for each LZC variable. Following Hosmer & Lemeshow (31), we 

used a p-value of 0.25 for the likelihood ratio test (LRT) as a screening criterion to 

select candidate variables for every multivariate model. Three variables (p-anterior= 

0.002, p-central= 0.037, and p-posterior= 0.032) demonstrated a significant predictive 

power in the univariate analysis(p<0.05). In addition left lateral region matched  

Hosmer & Lemeshow’s screening criterion for candidate variables to the multivariate 

model (p-left=0.178; p<0.25). Among those, a multivariate stepwise procedure selected 

anterior region as the only final candidate (see Figure 3). The logistic model including 

age and anterior variables was called Model 1 (see coefficients in Table 4).  The model-

building process continued by ascertaining the correct scale in the logit for age and 

anterior variables. This analysis showed evidence of linearity in both cases. Finally we 

searched for an age ×  anterior interaction. The interaction (p= 0.015)  significantly  

improved Model 1. Based on these findings, a new model (Model 2) including age, 

anterior, and anterior x age variables was fitted (see Model 2 coefficients  in Table 4). 

The Nagelkerke R2 goodness-of-fit statistic for Model 2 was 0.645,  which means that  
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about 64% of the “variation” in the dependent variable (ADHD vs. Control) is 

explained by the logistic model. The area under the receiver operating curve (ROC) was 

0.898. Tables 5 and 6 show the percentages of correct classifications for Models 1 and 

2, respectively, when a 0.5 cutoff point is set.  Models 1 and 2 share the same specificity 

(78.6%), and the three incorrectly classified controls were identical in both cases. It is 

important to note that ages of incorrectly classified controls were not randomly 

distributed.  The three misclassified children were ranked at the lowest values  of 

controls  age distribution  (8 and 9 years). Model 1 sensitivity was 85.7%, while it was 

92.9% in Model 2.  Again, it is important to realize that the additional patient correctly 

classified by Model 2 was 8 years old, emphasizing  the critical importance of age for 

the performance of the logistic models. Overall, the discriminant capability of the 

models tested was more accurate for older children, as it was previously demonstrated 

by the linear regression analyses (see Table 2). This Age influence is well addressed by 

the 100% specificity of Model 2 for children older than 9 years (see scatter diagram of 

Anterior region in Figure 2).            

####Insert Tables 4, 5 and 6, and Figure 3 about here#### 

DISCUSSION 

The implications of our results are twofold. First, a combination of “Age” and 

“Anterior” LZC variables allowed for correct classification of children  with ADHD and 

controls with a high sensitivity (93%) and a relatively high specificity (78.6%).  Second, 

and more relevantly, the age-related evolution of complexity scores showed a totally 

divergent tendency in ADHD and control subjects. While controls showed a significant 

steady increase of LZC scores, so that maximum values were obtained at the age of 12 

years, ADHD subjects showed a non-significant tendency to decreased LZC scores as a  
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function of age. Such divergence was more pronounced in anterior brain regions and 

exerted a dramatic influence on the discriminant capability of the statistical model, since 

all controls older than 9 years are correctly classified, thus attaining a 100%  specificity. 

These results were obtained using an entirely non-invasive technique, suitable for 

children evaluation, and all patients and controls were able to undergo the MEG 

evaluation.  

Although it is impossible to ascertain with certainty whether the percentage of magnetic 

activity measured in anterior sensors derived from frontal and prefrontal cortices,   due 

to the distinctive technical characteristics of MEG (for an entire review of this issue see 

(32)) it was possible  to assume that most of  the anterior sensors activity originated  on 

anterior brain regions. Keeping this limitation in mind our results support the evidence 

of frontal hypoactivation in drug-naïve ADHD subjects. Furthermore, including only 

drug-naïve ADHD subjects in our study adds extra value to our results since 

psychotropic medication might have biased the study ability to attribute group 

differences to the underlying psychopathology and not to its treatment (33).  

A similar conclusion was put forward by Loo and Barkley (34) in another EEG 

investigation of children with ADHD. These investigators claim that most of EEG 

differences between ADHD and control subjects can be described in terms of increased 

anterior and central theta activity; with a higher theta/beta ratio which is accepted as the 

most robust EEG finding. Increased frontal theta is interpreted as a sign of cortical 

hypoarousal in children and adolescents with ADHD and might represent a delayed 

process of cortical maturation. Classic qEEG studies have been enhanced by the 

application of innovative analysis techniques. Murias et al (35) evaluated the functional 

connectivity of the frontal cortex in controls and ADHD subjects using  EEG coherence.  
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Their results showed elevated coherence in the lower alpha band (8Hz) and reduced 

coherence in the upper alpha band. This finding is important to understand our own 

results as increased coherence or synchronization in certain frequency bands exert a 

clear influence on the estimates of EEG-MEG complexity. A key-point here is that the 

meaning of complexity estimates exceeds conventional frequency and power spectrum 

analyses.  According to Lutzenberger et al (36), complexity values obtained through 

Correlation Dimension in a system (i.e. the brain) made of multiple oscillators increase 

monotonically with the number of oscillators. In line with this idea, Aboy and 

coworkers (26) tried to uncover the  interpretation of LZC scores in the field of 

biomedical  signals. These researchers focused on how certain factors such as  

frequency content, noise,  number of harmonics, etc., affect LZC values. They 

concluded that LZC quantifies primarily the signal bandwidth and the bandwidth of the 

signal harmonics. Namely, LZC represent an estimate of the number of different 

frequency components that actually compose the brain signals. As a consequence highly 

coherent or synchronized signals over relatively long  periods of time  (i.e. epileptic 

seizures) yield  low complexity scores (24) and brain signals derived from patients who 

suffer from a disease that impairs the “normal” patterns of brain connectivity (i.e. 

Alzheimer’s disease) produce low  LZC scores as well  (25).  Furthermore, the 

complexity of brain activity measured using EEG-MEG signals has been considered 

intimately associated with the integrity of  brain connectivity (37). This interpretation is 

also well supported by our own data and studies of  EEG complexity during brain 

development (19,38,39). Such studies reveal that complexity increases monotonically 

from early childhood to adulthood in all regions (39). More importantly, the  evolution 

of EEG-MEG complexity seems to parallel white-matter  maturation (40,41).  
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Our findings suggest that the development of ADHD patients’ complexity diverges 

from that of healthy controls. Such divergence might imply an altered or delayed 

process of cortical maturation which specially affects anterior brain regions.  These 

findings are consistent with Rapoport et al (42) suggestion that childhood psychiatric 

disorders reflect abnormalities  of brain development. As these authors stated, the 

association between developmental anomalies and pediatric cognitive disorders is 

clearer when such disorders produce disturbances of the central nervous system, but 

remains controversial when brain disturbances are subtler. In fact,  Castellanos et al (43) 

reported parallel  developmental  trajectories for all brain structures, except caudate,  

when children and adolescents with ADHD  were compared to controls.  Considering 

this investigation and similar studies (44) it was thought that ADHD brain abnormalities 

are fixed rather than an ongoing (i.e. developmental) process. This point of view has 

been re-examined after the recent publication of Shaw et al’s (45) study on ADHD 

cortical maturation.  Shaw et al obtained MRI scans from ADHDs and controls in a 

combined longitudinal and cross-sectional study employing sophisticated methods of 

analysis to estimate trajectories of brain growth and cortical thickness.  ADHDs’ and 

controls’ patterns of brain development were similar specially in primary motor and 

sensory areas but had marked differences in timing. Shaw et al inferred that ADHD is 

characterized by a delay rather than by a deviance of cortical maturation which is more 

prominent in the prefrontal cortex, a cortical region involved  in a family of  cognitive 

functions that have all been implicated in the pathogenesis the disease.  

Findings presented in this work are limited by the small sample size, and further larger 

studies should be carried out to confirm the predictive diagnostic power of MEG-LZC 

scores in ADHD children. Additionally, the sensitivity of the model should be tested in  
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other subtypes of ADHD (predominantly inattentive or hyperactive/impulsive). In a 

subsequent step, the sensitivity and specificity of the model should be tested in  

neurobehavioral disorders which share some common features with ADHD 

(negativistic-oppositional disorder, for example). Notwithstanding, our results suggest 

that MEG methodology may have diagnostic utility as an objective, non-invasive 

diagnostic test in children with ADHD.    
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FOOTNOTES 

 
Table 1.  Age, education and IQ information of ADHD patients. Abbreviations, YOE:  

years of education; TIQ : total IQ; VIQ : verbal IQ; PIQ: performance IQ;  VC: verbal 

comprehension; PR: perceptual reasoning; WM : working memory; PS: processing 

speed. “*” symbols indicate patients evaluated using WISC-R, while “†” symbols 

indicate patients evaluated using WISC-IV.   

Table 2. Means and standard deviations of the five LZC variables in  ADHD and 

Control groups 

Table 3.  Slopes coefficients of  the five regions regression lines, their p-values and 

correlation coefficients (r). 

Table 4. Logistic Regression coefficients  for Model 1 and Model 2 (being ADHD the 

reference category) 

 Table 5. Classification Table for Model 1 with a cutoff of 0.5.  The off-diagonal entries 

of the table display the number of incorrectly classified patients.   

Table 6. Classification Table for Model 2 with a cutoff of 0.5.  The off-diagonal entries 

of the table display the number of incorrectly classified patients 

Figure 1.  Sensor-space  representation of the five regions submitted to statistical 

analyses.    

Figure 2.   Scatter diagrams and regressions lines of  LZC scores versus  age,  plotted 

for the 5 regions. Black crosses and  solid lines correspond to Control group, while open 

circles and  dotted-lines correspond to ADHDs.  “X” axis represents age values of 

patients and controls. Sample size, ADHD= 14, Controls = 14. 
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Figure 3. Average LZC values in ADHD patients and control subjects for all channels, 

from A1 to A148, displayed in a colour scale.  A significant reduction of anterior scores 

can be observed. Sample size, ADHD= 14, Controls = 14. 
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Table 1 

Patient Age YOE TIQ VIQ PIQ VC PR WM PS 
 1* 9 5 127 115 134     
2† 9 4 93   107 81 97 102 
3† 10 5 114   107 109 105 124 
4† 12 7 100   114 95 105 4 
5† 9 4 126   132 131 93 112 
6† 9 4 110   122 100 125 110 
 7* 9 4 132 135 125     
 8* 10 5 91 88 97     
9† 9 4 112   103 132 105 93 
10† 11 6 106   110 89 110 113 
11† 10 5 112   116 123 82 110 
12† 9 4 95   113 91 93 88 
  13* 8 4 107 97 115     
14† 11 6 109   114 114 102 97 
Mean 9,6 4,34 110       
 
 
 
 
Table 2 
 
 Anterior Central Left Lateral Right Lateral Posterior 
ADHD           Mean 
                          SD 

0.5898 
0,0308 

0.5752 
0,0354 

0.5396 
0,0249 

0.5511 
0,0208 

0.5095 
0,0839 

Control          Mean 
                          SD 

0.6257 
0,0249 

0.6049 
0,0246 

0.5604 
0,0285 

0.5670 
0,0295 

0.5650 
0,0277 

 
 
Table 3 
  
 Anterior Central Left Right Posterior 
ADHD -0.0081 

p=0.2594 
r=-03233 

-0.0074 
p=0.3728 
r=-0.2581 

 0.0001 
p=0.9781 
r=0.0080 

-0.0029 
p=0.5554 
r=-0.1725 

-0.0001 
p=9957 
r=-0.0015 

Control  0.0087 
p=0.042 
r=0.5272 

 0.0119 
p=0.0035 
r=0.7231 

 0.0141 
p=0.0022 
r=0.7431 

 0.0120 
p=0.0199 
r=0.6123 

 0.0100 
p=0.0444 
r=0.5437 
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Table 4 
 
  Model 1 Model 2 
Age -0.435 30.599 
Anterior - 47.338  418.363 
Age×Anterior  -51.180 
Intercept  32.991 -249.222 
 

 

Table 5 

Predicted Diagnosis 

Observed Diagnosis ADHD Control Percent Correct 

ADHD 12 2 85.7% 

Control 3 11 78.6% 

 

 

Table 6 

Predicted Diagnosis 

Observed Diagnosis ADHD Control Percent Correct 

ADHD 13 1 92.9% 

Control 3 11 78.6% 
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