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DEGENERATIONS OF K3 SURFACES IN PROJECTIVE SPACE

FRANCISCO JAVIER GALLEGO AND B. P. PURNAPRAJNA

ABSTRACT. The purpose of this article is to study a certain kind of numerical
K3 surfaces, the so-called K3 carpets. These are double structures on rational
normal scrolls with trivial dualizing sheaf and irregularity 0. As is deduced
from our study, K3 carpets can be obtained as degenerations of smooth K3
surfaces. We also study the Hilbert scheme near the locus parametrizing K3
carpets, characterizing those K3 carpets whose corresponding Hilbert point
is smooth. Contrary to the case of canonical ribbons, not all K3 carpets are
smooth points of the Hilbert scheme.

INTRODUCTION

This article deals with the study of K3 carpets. D. Bayer and D. Eisenbud say
in [BE] that “a ribbon” (supported on P! inside P9~! and with arithmetic genus g)
“is the answer to the riddle: What is the limit of the canonical model of a smooth
curve as the curve degenerates to a hyperelliptic curve?” Analogously one would
say that a K3 carpet is the answer to the riddle: What is the limit of the embedded
model of a smooth polarized K3 surface as the polarized surface degenerates to a
hyperelliptic polarized surface? To justify this claim we devote much of this article.

K3 carpets possess some interesting features. On the one hand there are few of
them. In Section 1 we see that there is only one K3 carpet supported on a given
rational normal scroll (in the same way as a canonical ribbon is a double structure
on a rational normal curve, the reduced structure of a K3 carpet is a rational normal
scroll). Thus one can in some sense think of the set of all K3 carpets as something
discrete. On the other hand, some of them (the ones supported on “balanced”
scrolls) are still general, in the sense that they are smooth points of the Hilbert
scheme. Hence K3 carpets form a small class of very degenerate objects (they
are nowhere reduced, and are one step more degenerate than such reduced non-
normal K3 surfaces as the unions of two (distinct) rational normal scrolls) which
are nevertheless general.

Another interesting feature is that the hyperplane section of a K3 carpet is a
canonical ribbon. The study of canonical ribbons has been proposed by Bayer,
Eisenbud, Green and Schreyer, among others, as a means to solve the so-called
Green’s conjecture. Briefly, in its original form this conjecture relates the graded
Betti numbers of the minimal free resolution of a canonical curve to the Clifford
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index of the curve (the Clifford index of a smooth curve of genus g > 3 is defined
as the minimum, over all line bundles L on the curve such that h°(L) > 1 and
hi(L) > 1, of the quantity CliffL = degL — 2(h°(L) — 1). More loosely put, the
Clifford index tells us how special the most special line bundle which the curve
possesses is). More precisely, one expects that the canonical bundle will satisfy the
property N, but not the property N,y iff p is the Clifford index of the curve. Thus
Green’s conjecture generalizes classical results by Noether and Petri (cf. [ACGH];
for details on Green’s conjecture see [E]). Results by Eisenbud and Green [EG]
and Fong [F] yield that an affirmative answer to Green’s conjecture in the case
of canonical ribbons will imply Green’s conjecture for general curves. Since K3
carpets are arithmetically Cohen-Macaulay, the Betti numbers of the minimal free
resolution of a K3 carpet are the same as the Betti number of the hyperplane section,
a canonical ribbon. Progress toward the computation of the minimal resolution of
a K3 carpet has been made by Dave Bayer and David Eisenbud in [BE], where they
compute the graded Betti numbers of a nonminimal resolution of a K3 carpet.

Our work on K3 carpets focuses on answering two questions: are these objects
smoothable? and do they correspond to smooth points of the Hilbert scheme? The
first question is dealt with and answered affirmatively in Section 3. To prove this
result we use the idea, already introduced, that a (suitable) K3 carpet is morally
the “image” of the morphism associated to a hyperelliptic linear system. To show
this we use a characterization given in Section 2 which allows us to decide by
induction on the dimension (cutting with a hyperplane) whether a scheme is a
ribbon. We also use properties of hyperelliptic linear systems on K3 surfaces and of
the moduli of K3 surfaces. We would like to point out here one difference between
the case of canonical ribbons and the case of K3 carpets. While canonical ribbons
can be thought as “canonical models” of hyperelliptic curves, not all K3 carpets
are “models” of smooth hyperelliptic K3 surfaces. More precisely, rational normal
scrolls with a rational curve with low self-intersection cannot be realized as images
of morphisms associated to hyperelliptic linear systems, and hence the riddle posed
before does not make sense for them. However we are able to prove that K3 carpets
of this kind are smoothable by showing that they deform to more general ones.

In Section 4 we deal with the study of the Hilbert scheme near the locus of K3
carpets. Our main result is that K3 carpets supported on “balanced” scrolls are
smooth points of the Hilbert scheme. Here another departure from the case of
ribbons occurs. While both K3 carpets and canonical ribbons are smoothable (i.e,
both belong to the component parametrizing smooth varieties in their respective
Hilbert schemes), contrary to the case of canonical ribbons, not all K3 carpets
are smooth points of the Hilbert scheme (some of them even belong to several
components of the Hilbert scheme, as noted in Theorem 4.3).

1. K3 CARPETS

Conventions. Throughout this article we work over C. A rational normal scroll
or simply a scroll will always mean a smooth rational normal scroll of dimension
2. We will denote by F, the rational ruled surface whose minimal section has
self-intersection —n.

In this section we introduce our main objects of study, the K3 carpets, and some
properties of them which we will use later in the article. We start with a couple of
definitions:
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Definition 1.1 ([BE], §1). A double structure or a ribbon on a reduced connected
scheme D’ is a scheme D equipped with an isomorphism D’ — D,..g4, such that the
ideal sheaf Z of D’ in D satisfies Z2 = 0 and is a line bundle on D’.

Definition 1.2. K3 carpet S is a double structure on a rational normal scroll S
(i.e., a double structure embedded in some P9, whose reduced structure is a rational
normal scroll in P9) such that its dualizing sheaf wg is trivial and h'(Og) = 0.

An important fact about K3 carpets (which will be certainly instrumental to
our proof of the main result of this article, namely, the smoothing of K3 carpets)
is stated in this:

Theorem 1.3. There is a unique K3 carpet (up to multiplication by scalar) on a
given rational normal scroll.

Before we prove Theorem 1.3 we need to state two lemmas which are variants of
results in [HV]. The lemmas identify the conormal bundle of the reduced structure
of the K3 carpet inside the carpet itself. From them it follows that the K3 double
structures on a scroll S in P9 correspond to the global sections of a twist of the
normal bundle of S. The proofs use the same ideas of [HV].

Lemma 1.4. Defining a double structure S on a smooth subvariety S of a smooth
variety Z is equivalent to giving a line subbundle L ofNS/Z. This line bundle L is

the normal bundle of S in S

Proof. Let L C Ng/z be a line bundle and Z = Zz(S) the ideal sheaf of S in Z.
Let w be the surjective homomorphism

w:T—T/T* =Ng;; — L

Let J = kerw. The ideal sheaf J defines a subscheme S in Z. From the exact
sequences

0—-J—Z—L"—0
and
0 - I/ — 0z/J — 0z/T — 0
[ | |
0o — L — Og - 0Os — 0

we see that the ideal sheaf defining S in S is the line bundle £*. Since (£*)? =
(Z/J)? = 0 by construction of 7, it follows that S is a ribbon.

Conversely, let S be a double structure embedded in Z, let S be its reduced
part, and let 7,7 be their respective ideal sheaves in Z. By the definition of ribbon
72 C J, so NS/Z = I/I2 surjects onto Z/J, which is the conormal bundle of S in

S, in particular, a line bundle. O

Lemma 1.5. Let S be a rational normal scroll and S a carpet whose reduced part
is S, and let L be the dual of the ideal sheaf defining S in S. Then S is a K3 carpet
if and only if L ~ wg*.

Proof. First assume £ ~ wg, so we have an exact sequence

(1.5.1) 0 —wsg— 05— 05 —0.
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From H*(Og) = H!(wg) = 0 it follows that H'(Og) = 0. If we apply to (1.5.1) the
functor Ea:t%;i (—,wpy) we get (see, for example, [H], p. 235)

0—ws —wsg— Og—0.
Since H'(wg) = 0, the map H%(wg) — H%(Og) is an epimorphism. Therefore
1 € H%(Og) can be lifted to H’(wg), and hence wg ~ Og = 0.

Now assume S is a K3 carpet. Apply the functor gxt%;i (—,wpy) to the exact
sequence

0—-72—-05—0s—0
to obtain
(1.5.2) 0—-ws —wsg =1 "Quws — 0.
If we tensor (1.5.2) with Og and use the fact that wg ~ Og, we get a surjection

Os 1" Qwg. Thus T* @ wg ~ Og and T ~ wg. O

(1.6) Lemmas 1.4 and 1.5 imply that in order to see how many K3 carpets are
supported in a particular rational normal scroll S, one has to compute how many
bundle inclusions there are from w¥ into Ng /P9, Or equivalently, how many nowhere
vanishing sections there are in HY(NVs/ps ®ws). Therefore Theorem 1.3 follows from
the following:

Proposition 1.7. Let S = S(a,b), a > b, be the rational normal scroll that corre-
sponds to the embedding of P(E) into PV by Op(g)(1), where £ = Op1(a)® Op1(b).
Let w be the canonical bundle of P(E). Then HO(Ng/pry @ w) = C(s), where s is a
nowhere vanishing section, and H'(Ng/py ® w) = H*(Ng/py @ w) = 0.
Proof. We use the exact sequence
(1.7.1) 0—>TS®W—>TPN|S®W—>N5/13N®W—>O
to compute . (NS/PN ® w), where 7 denotes the projection from S to Pl. To
compute 7, (7s @ w) we use the exact sequences
0—TgprQw—=TsQw — 1" Tp1 @w — 0

and
(1.7.2) 0— QS/Pl - TER® Op(g)(—l) — Op(g) — 0,
which is a relative version of the Euler sequence.

Let &' = £® Op1(—a) = Op1 ® Op1 (b —a). Then Ope (1) = O(Cq), where Cy
denotes the minimal section of 7 : § — P! . Therefore, by exact sequence (1.7.2)

we obtain
2

Qs/pr = \(O(=Co) ® O(=Co + (b— a)f)) = O(=2C; + (b — a)f).

Also, we know that w = O(—2Cy + (b — a — 2)f) and that 7*7Tp:1 = O(2f). Hence
we obtain the sequence

0—0(-2f) > Ts Qw — O(—=2Cy+ (b—a)f) — 0.
We apply 7, and get
0— Op1(—2) = m(Ts Qw) — 1 (O(—2Co + (b—a)f) =0
— R'7,0(-2f) =0 = R'1,(Ts @ w) — R'7m,(O(=2Cy + (b —a)f) — 0.
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Therefore 7, (7g ® w) = Op1(—2) and
R'7.(Ts ®w) = R'7,.(O(=2Co + (b—a) f) = (1.0)* = Op1

by relative Serre duality.
To compute 7, (7p~ |s@w) we push forward the presentation of Tpn|s ®w, which
comes from the Euler sequence

0= O(=2Co + (b= a=2)f) = (O(~Co + (b = 2)) " = Tpn|s @ w — 0,

and we obtain

0 — m(=2Co + (b—a = 2)f) = m[(O(=Co + (b—2) /) *N* ] =0

— T (Tpn|s @ w) — R (—2Co + (b —a — 2)f)
— R [(O(=Co + (b—2)f))2N+2] = 0.
Thus Rlm.(Tpn|s ® w) =0 and

7 (Tox|s ©w) = Rim(~2C0 + (b— a — 2)f) = (1. 0(2f))" = Ops (~2),

by relative Serre duality. Applying 7. to (1.7.1), we get
0 — Op1(—2) — Op1(—2) = m.(Ng/py ®w) — Op1 — 0.

Hence
(173) W*(Ns/PN ®w) = Opl,
(1.7.4) R'm.(Ns/pyv @ w) = 0.

This means that there exists a nonzero global section s of Ng /PN @w. This section
cannot vanish identically at any fiber of . But the fibers of 7 are projective
lines, and hence, by (1.7.3), the restriction of Ng/p~y ® w to a fiber is isomorphic
to Op1 @ F for some vector bundle F without global sections. This implies that
the restriction of s to each fiber is nowhere vanishing. This proves the statement
about HY(Ng/py ® w). The statement about H' and H? follows from (1.7.3) and
(1.7.4). O

2. A CHARACTERIZATION FOR RIBBONS

The next theorem gives a way to decide whether a scheme is a ribbon by using
induction on the dimension.

Theorem 2.1. Let D be an scheme such that D,.q is equidimensional. D is a
ribbon iff for every closed point p € Dyeq there exists hy, € Op p such that Op ,/(hy)
is the structure sheaf of a ribbon of dimension dimD — 1, whose reduced structure
i8 OD,cap/ (Mp)-

In order to prove the theorem we will need the following:

Remark 2.1.1. Let M be a module over a ring A. Let a € A be a non-zero-divisor
for M. Then Torl(M, A/(a)) = 0. For example, in the situation of Theorem 2.1,
h, is non-zero-divisor for Op,,, and Tor'(Op,.,,Op ,/(h,)) = 0.

(2.2) Proof of Theorem 2.1. The “only if” part is trivial. For the “if” part let 7
be the ideal sheaf of D,.4 in D. We have to show that 7 /12 is a locally free sheaf
over Op,_, and that Z2? = 0.

Step 1 (Z/T? is locally free).

red
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Let us fix a closed point p € D,¢q. The ideal (Z, + hp)/(hp) = Jp is the ideal
of the reduced part of a ribbon, so J,/ Jg = Jp is a free module generated by one
element. By Remark 2.1.1, 7, = Z,®Op ,/(hy), and hence Z,, /2@ Op, ., p/ (hp) =
7,/T2 ® Op p/(hy) = Jp/ T is a free cyclic module. Thus, by Nakayama, Z, /T is
also a cyclic module over Op, _, ,, generated by an element not vanishing at p. This
is true for any closed point p € D,.q, i.e., the rank of Z/Z? is 1 for any closed point
p € Dyeq. Hence Z/Z? is locally free over Op, .

Step 2 (I* =0).

Fix again p € Dycq. We claim that Z2 ® Op ,/(hy) = 0. Indeed, as we remark
in Step 1, (Z, + hyp)/(hp) = Jp is the ideal of the reduced part of a ribbon in its
structure sheaf, so J2 = 0 and hence Z2 C (hy). This implies that Op ,/Z} ®
Op,p/(hp) = Opp/(hy), so tensoring

0— Iz — Opp— ODm/Iz —0
by Op,, we get
0 — Tor'(Op p/Z;, Op p/(hp)) = Ly ® Op p/(hyp)
— Opp/(hp) = Opp/(hy) — 0.

In order to prove our claim, it suffices to prove that Tor'(Op ,/Z2, Op ,/(hy)) = 0.
If we tensor

0— IP/Z;S - OD,p/Zz — Op,ap — 0
by Op,p/(hp), we obtain
Tor' (Ip/lﬁ, OD,p/(hp)) - Torl(OD)p/Iz, OD,p/(hp))
- TOI‘I (ODred’ ODJ?/(hP))'

By Step 1, we know that Z,/I2 = Op,,p, so again by Remark 2.1.1, both
Tor'(Op,.,» Op p/(hp)) and Tor'(Z,/I2, Op ,,/(hp)) vanish. Thus Z2@0p ./ (hy) =
0, and by Nakayama’s lemma, 7> = 0. O

3. SMOOTHINGS OF K3 CARPETS

The purpose of this section is to prove the existence of smoothings of K3 carpets.
By a smoothing of a K3 carpet we mean a flat family over a smooth curve with
smooth generic fiber and with a special closed fiber isomorphic to the K3 carpet. We
prove the result in two steps. Using the fact that rational normal scrolls Fy, ..., Fy
admit a generically 2 : 1 map from a hyperelliptic K3 surface, we construct, in a
rather explicit way, smoothings of K3 carpets supported on Fpy, ..., Fy. Then, in
Theorem 3.6 we will see that the remaining K3 carpets lie in the closure of the
locus parametrizing K3 carpets supported on Fy,..., Fy. In order to prove these
results we will need some auxiliary lemmas.

In this section, a smooth curve will mean either an algebraic smooth curve or
the analytic disc A.

Remark 3.1. Let X be a flat family over a smooth curve T. If ¢ : X — Z is a
morphism over T', then the image ) of ¢ is flat over T.
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Proof. Let m be the morphism from ) to T. By assumption m,¢.Ox is flat over
Or, and therefore 7,0y — 7.¢.Ox is a subsheaf of a torsion free sheaf on T, so
it is itself torsion free and hence flat. O

Lemma 3.2. Let X be a flat family of irreducible varieties over a smooth curve T .
Let ¢ be a relatively globally generated, invertible sheaf on X. Let ¢ be the morphism
from X to P%. induced by its relative complete linear series and let Y be the image
of X by ¢. Assume that ¢ is an embedding outside the central fiber, and a finite
morphism of degree 2 when restricted to the central fiber. Let H be an hyperplane
inP™. Then (YN (H xT))y =N (H x{t}) and YN (H xT) is flat over T.

Proof. The pullback of H x T is a Cartier divisor on X whose zero locus defines a
flat family of divisors A”. Indeed, the only thing to be checked (cf. [H], I11.9.8.5)
is whether the pullback of H x T is defined by a non-zero-divisor at Oy, p, for all
t € T and for all p € &};. This is obvious, since &} is reduced and irreducible, and
H does not contain ¢;(Xy).

Now, the image of X’ by ¢ is a flat family by the previous observation. Hence, if
we see that ¢(X') = YN (H xT'), we are done. We have to prove that the morphism
OynaxT) — ¢0,Ox, obtained by tensoring Oy — ¢.Ox by Opn/Z(H x T), is
injective. Consider the exact sequence

O—>(9yﬂ>(b*(9x—>.7:—>0.

The rank of ¢.Ox is 1 outside ¢(Xp) and 2 at ¢(Xp). The injection o of Oy
into ¢.Oy is given by a nowhere vanishing global section of ¢,Ox; hence « is an
injection at each fiber. From all this, it follows that F is supported at ) and
has rank 1 at every closed point y € ¢(Xp) (i.e., it is a line bundle on ¢(Xp)).
By hypothesis ¢(Xp) is an irreducible variety, so H is locally a nonzero divisor at
every point of ¢(Xp). Remark 2.2.1 implies that Tor!(F,Opy /Z(H x T)) = 0, so
Oynxt) — ¢0,Ox is injective as required.

The fact that (YN (H x T)); = Vs N (H x {t}) is obvious. |

We recover as a corollary of Theorem 2.1 the following result of Fong:

Corollary 3.3 ([F], Theorem 1(i)). Let C be a flat family of smooth curves over
a smooth curve T such that its central fiber C is a hyperelliptic curve and its generic
fiber is a nonhyperelliptic curve. If D is the image in PQTg_2 of C by the relative
complete linear series of we,r, then the central fiber of D is a canonical ribbon,
supported in the image of C' by the complete linear system of we.

Proof. Note first that, by Remark 3.1, D is flat over T'. Let D be the central fiber
of D. We want to prove that D is a canonical ribbon (recall that D is not the image
of the central fiber of C). The degree of D is 2g — 2 and its arithmetic genus is g.
The reduced part of D, D,..4, is a rational normal curve, namely, the image of C.
By Theorem 2.1, in order to see that D is a ribbon we need to check that at every
point p of D,..q, we can choose a hyperplane H,, passing through p such that H,ND
is isomorphic to (g — 1) copies of Spec(C(e)). To see this, choose Hj, through p
intersecting Dy.q at g — 1 distinct points. Lemma 3.2 tells that H, N D is the flat
limit of a family of (29 — 2) points. H, N D must be non-reduced everywhere. If
not, a point of H, N D would be a smooth point of D, and the degree of D would be
equal to the degree of D,..4, which is ¢ — 1. On the other hand, the degree of each
component of H, N D must be less than or equal to two; otherwise there would be
a reduced point in H, N D. O
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Proposition 3.4. Let (X,¢) be a flat family of polarized K3 surfaces of genus g
over the disc T', whose central fiber (Xo,(o) is a hyperelliptic polarized K3 surface.
Assume furthermore that (; is a very ample line bundle on Xy, for all t # 0. If
Y = ¢c(X) C P4, then the central fiber Yo is a K3 carpet.

Proof. First, we prove that ) is a carpet. By Theorem 2.1 we only have to see that
through every point p € (y)req there exists a hyperplane H,, such that Yy N H,
is a ribbon supported on (Vy)req N Hp. By Bertini’s theorem, we can choose a
(generic) hyperplane H,, that passes through p and whose intersection with (Yp)red
is a smooth curve. (Jo)reqa N Hp is a rational normal curve. By Remark 3.1 we
know that Y is flat over 7. By Lemma 3.2 we know that )y N H, is the limit
of a family of canonical curves in P9~!, namely, the image of a family of curves
whose central fiber is hyperelliptic (and whose general fiber is not), mapped by the
complete linear series of the relative dualizing sheaf. Corollary 3.3 tells us that
Yo N H, is actually a canonical ribbon supported on (Yo)req N Hp.

Second, we prove that the canonical sheaf of ) is trivial and that the irregularity
of Yy is 0. Since ) is the flat limit of a family of smooth K3 surfaces, X(Oy,) = 2
and therefore h?(Oy,) > 1. Thus, there exists a nonzero global section s of wy,.
We intend to show that s is nowhere vanishing. We have the exact sequence

red red

0 = Wyp)rea = Wy — L7 @W(yy),ey — 0

that comes from dualizing;:
0—-7— Oyo - O(yO)Ted — 0.

Therefore H(wy,) =H*(Z* ® w(y),.,)- This implies that if s vanishes at every
closed point of (Yo)red, then s is the zero section. Thus, Z(s) ; (Vo)red- Assume
it is not empty and take p € Z(s). In the first part of the proof we showed that the
intersection D of the generic hyperplane Hj, through p with ) is a canonical ribbon
in H, = P971. This means that Op(1) = wp. From the adjunction formula we
obtain that wy,|p = Op. Hence s|p €H%(Op), and since s vanishes at p € D,.q,
s|p,., must be the zero section; but this contradicts the fact that Z(s) ; (Vo) red-
Therefore Z(s) = () and wy, ~ Oy,. Using X(Oy,) = 2, it follows that h'(Oy,) =
0. O

We will use Proposition 3.4 to prove our main
Theorem 3.5. Any K3 carpet can be smoothed.

Before we prove Theorem 3.5 we need to know the stratification of the locus of
K3 carpets:

Theorem 3.6. The scheme U parametrizing (smooth) rational normal scrolls em-
beds into the Hilbert scheme of numerical K3 surfaces of degree 2g — 2 in P9. The
image of U by this embedding parametrizes the K3 carpets in PY9. In particular, K3
carpets supported on S(a — 1,b+ 1) lie on the closure of the locus of the Hilbert
scheme parametrizing K3 carpets supported on S(a,b).

We use two propositions to prove Theorem 3.6. The first is a relative version of
Theorem 1.3:

Proposition 3.7. Let U be a smooth variety. If p : & — U is a flat_family of
rational normal scrolls inside PY{;, then there exists a unique family S over U,
whose fibers are K3 carpets and such that Speq = S.
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Proof. Let N be the normal bundle of S inside P{, and let w denote the relative
dualizing sheaf of S/U, which is in this case a line bundle. By Proposition 1.7,
p«(N ® w) is also a line bundle. We claim that N’ ® w ® p*(p«(N ® w))* has a
nowhere vanishing section s and that HO (N ® w ® p*(p«(N ® w))*) = s - H*(Op).
Indeed, by projection formula,

H'W @ w @ p*(p« (N @ w))*)
=H'(p. N @w @ p*(p«(N @ w))*) = H*(Ov),

and 1 € H°(Op) corresponds to a section s of HY (N ® w @ p*(p« (N ® w))*) which
does not vanish identically along any fiber of p. Since H°(Ng, /ps Qus,) = C-s' by
Proposition 1.5, where s’ is a nowhere vanishing section, it follows that s is nowhere
vanishing. In particular, any nowhere vanishing section of N' @ w ® p* (p.(N @ w))*
is a multiple of s by a global section of Of;. By Lemma 1.4, s defines a double
structure S on S, and by the previous observation any other nowhere vanishing
section of N ® w ® p*(p«(N ® w))* defines the same double structure. The ideal
sheaf of S in Oy is the line bundle w ® p* (p. (N ®w))*. Hence, since S is flat over U,
it follows that S is also flat over U. This implies that S is a family of K3 carpets.

Now we prove the uniqueness of S. Let &’ be a flat family over U whose fibers
S, are K3 carpets such that (S)rea = S, for all u € U. Using Theorem 2.1
inductively (we lift a regular sequence defining the point v in O, v to 0, g, where

x is any point in the inverse image of the morphism from &' to U), we conclude
that S’ is a double structure on S. This is equivalent to the data of a vector bundle
surjection N* — £ — 0, where £ is a line bundle. By flatness and because S’
is a family of K3 carpets, we obtain that L|s, = ws, for all w € U. Therefore
(L @ w*)|s, = Os, and p.(L ® w*) is a line bundle. Moreover, p*p.(L£ @ w*) —
L ® w* is a surjective morphism of line bundles, and hence an isomorphism. Thus
N@L=N®®w® pp.L ®w*). By hypothesis H (N ® L) contains a nowhere
vanishing section; hence p. (N ® £) = Op. By the projection formula it follows that
px(LRw*) = (pxN@w))* and N R L =N Qw ® p*(p«(N ® w))*. This implies
that S’ = S. O

(3.8) Recall that (smooth) rational normal scrolls are parametrized by a reduced,
open subscheme U of the Hilbert scheme (see, e.g., [A]). The subscheme U is
stratified as follows (see [A] or [Ha]): the scrolls of type S(a+1,b—1), less balanced,
lie on the closure of the locus parametrizing scrolls of type S(a,b), more balanced
(recall that a > b).

Proposition 3.9. Let S be a rational normal scroll in PN . The dimension of
HY(Ng/pn) is (N +1)? =7, and H (Ng/p~) and H*(Ng/p~) vanish.

Proof. The statement follows from the exact sequence presenting Ng /P, from the
Euler sequence on PV, and from the sequence relating the tangent bundle of S,
the relative tangent bundle of the fibration to P! and the pullback of the tangent
bundle to P!. O

(3.10) Proof of Theorem 3.6. The scheme U is smooth (by Proposition 3.9 and [S],
Corollaries 8.5 and 8.6; see also [A]). Thus, we can apply Proposition 3.7, and
by the universal property of the Hilbert scheme, we obtain a morphism ¢ from U
to the Hilbert scheme of numerical K3 surfaces. Let Z be the image of ¢. The
scheme Z parametrizes the K3 carpets inside the Hilbert scheme. To see that ¢



2486 F. J. GALLEGO AND B. P. PURNAPRAJNA

is an isomorphism onto Z it suffices, since both U and Z are varieties and we are
working over C, to show that there exists a morphism ¥ that is a set-theoretical
inverse of ¢. To construct ¥, consider the pull-back to Z of the universal family
on the Hilbert scheme. The fibers of this pull-back are K3 carpets. If we take
the reduced structure of the pullback, we end up with a family of rational normal
scrolls over Z. The universal property of the Hilbert scheme gives us the existence
of U.

The observation about the stratification of the locus of K3 carpets follows from
(3.8). |

(3.11) Proof of Theorem 3.5. First consider the K3 carpets whose reduced structure
is a rational normal scroll F' (embedded in PY as a variety of minimal degree) of
type Fy, ..., Fy. The scroll F' can be realized as the image of the morphism induced
by the hyperelliptic linear series of a polarized hyperelliptic K3 surface (X, L). We
give here a sketch of the construction of (X, L); for more details, see [D] or [R].
Take a curve C in | — 2K | with at worst certain mild singularities. Then the
desingularization X of the double cover of F' ramified along C'is a K3 surface. The
line bundle L is the pullback of Op(1). Let E be the elliptic pencil obtained as
pullback of the ruling of F. In this situation the Picard lattice of (X, L) contains
a sublattice generated by L and by E with intersection matrix

20—2 2
2 0/

Using the fact that the space of periods is a fine moduli space for polarized, marked
K3 surfaces (see [SP]), one can find a family (X, () of polarized K3 surfaces over
the analytic disc T, whose central fiber (Xp, (o) is isomorphic to (X, L) and such
that (; is very ample if ¢ # 0. This is achieved by taking a path in the period space
in this way: the central point corresponds to a period containing F, and the other
points correspond to periods containing neither E nor any class with nonpositive
intersection with L. Let Y be ¢¢(X) C P%. Proposition 3.4 tells us that there
exists a K3 carpet structure on F' that can be smooth, namely, }y. This proves
the theorem in this case, since we know by Theorem 1.3 that there is a unique K3
carpet structure on any given rational normal scroll.

We have just proven that K3 carpets on rational normal scrolls of type Fy, ..., Fy
lie on the closure of at least one component parametrizing smooth K3 surfaces in
the Hilbert scheme. By Theorem 3.6, the remaining K3 carpets also lie in the
closure of that (those) component(s). O

4. THE HILBERT SCHEME NEAR THE POINTS OF A K3 CARPET

In this section we study the geometry of the Hilbert scheme of numerical K3
surfaces (i.e., regular subschemes of projective space with trivial dualizing sheaf)
at the locus parametrizing K3 carpets. We start by settling the question of whether
the Hilbert points of the K3 carpets are smooth.

Theorem 4.1. Let S be a K3 carpet supported on S = S(a,b), where a > b and
g =a+b. The Hilbert point of S is nonsingular iff 0 <a —b < 2.

Proof. We have proved in Theorem 3.5 that K3 carpets are smoothable. Since the
dimension of a component parametrizing smooth K3 surfaces is dim PGL(g)+19 =
(g + 1) + 18, a K3 carpet represents a smooth point of the Hilbert scheme iff
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hO(NS/Pg) = (g +1)? + 18. To compute the cohomology of N3 ps We tensor the
sequence

0—ws—05—0s—0
by Ng/Pg. Since S is locally a complete intersection, the sheaf Ng/Pg is a vector
bundle and we obtain
(4.1.1) 0 — Ng/ps ®ws = Ng/ps = Ngps ® Os — 0.
Thus, we have
(4.1.2) XNz /ps) = XN /ps @ ws) + XNz /ps ® Os).

Let Zs (respectively Zg) be the ideal of S (respectively S) in P9. Since Ig/Ig is a
bundle, taking its dual and restricting it to S commute. Hence,

Ng/Pg ® O0g = Homg(IS/Ig, 03) ® Og

= Homs(Ig/Zg; ® Og,05) = Homg(Z5/Z5Ts,Os).
Therefore Ng/Pg ® Og sits in the sequence
(4.1.3) 0 — Homs(Z5/I2,Og) — 5ps ®0s > Q—0.
From the sequence
(4.1.4) 0—Zg/T% — Is/I% — Is/Tg— 0
we see at once that Q is a line bundle. We claim that Q = w§2. From (4.1.3) it
follows that Q = /\g_Q(NS/Pg ® 0g) @ N2 Z5/Z% . Dualizing sequence (4.1.4)
and taking the wedge, we obtain that

g—3 g—2

/\ T5/T5 = w5 ® /\ N§po =wg” @ 0s(—g - 1) .
Using adjunction and the fact that S is a K3 carpet, it follows that N 2N, §/pa =

Og(g + 1), and therefore /\g_Q(Ng/Pg ® Og) = Og(g + 1), so the claim is clear.
Therefore we obtain the following exact sequences:

(4.1.5) 0 — Homs(Zg/Z§,0s) — Ngps ® Os — wg” — 0,
(4.1.6) OHHomS(IS/Ig,Os)®ws—>N§/Pg Ruwg — wg — 0,
and from (4.1.4) we obtain

(4.1.7) 0 — wg — Ng/ps — Homs(Zg/Z§,0s) — 0,

(4.1.8) 0— Os — Ng/ps ® ws — Homs(Zg/Zs, Os) ® ws — 0.

Using (4.1.8) and Proposition 1.7, it follows that H'(Homg(Z5/Z%, Os) @ wg) = 0.
From (4.1.7) and Proposition 3.9, and the fact that H*(w%) = 0, it follows that
H'(Homgs(Z5/Z%,Og)) vanishes. Therefore

W' (Ns/ps ® Os) = h®(Homs(Z5/5, Os)) + h'(w5?)
= h'(Ns/ps) — h%(w§) +h'(ws) +h°(wg?)
and
W (N pe @ ws) = h(Homs(Z5/T5, Os) @ ws) +h°(w)
= hO(NS/Pg ®ws) — 1 +howk) = h(w¥),
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by Proposition 1.7. By Proposition 3.7, HQ(NS/PH) = 0. From this and from
(4.1.7) it follows that H2(Homs(Z5/Z2,Os)) vanishes. Using that H?(wg?) and
H'(Homs(Z5/Z%,0s)) vanish, from (4.1.5) we obtain that Hl(Ng/Pg ® Og) =
H'(wg?) and that HQ(Ng/Pg ® Og) = 0. Analogously, from Proposition 1.7 and
sequence (4.1.8) it follows that H?(Homg(Zg/Z%, Os) ® wg) vanishes. Using that
H?(w}) and H'(Homs(Zg/Z%,Os) ® wg) vanish, from (4.1.6) we obtain that
H'(Ng/p, ® ws) = H'(w§) and that H*(Ng,p, ® ws) = 0. Therefore we can
rewrite (4.1.2) as

WO (N3 ) — B (N3 ) = DO o) + h0(w5?) — b (w52)
=h"(Ns/ps) + x(wz?).

In Proposition 3.9 we showed that the dimension of HY(Ns/ps) is (g +1)> — 7. By
Riemann-Roch one obtains that x(wg?) = ~25. Thus, h”(Ngp,) — h'(Nz/ps) =
(g+1)? + 18, and from this it follows that S represents a nonsingular point of the
Hilbert scheme iff h' (Vg p,) = 0. From sequence (4.1.1) we get

H'(Ng/p, ®ws) — H (Ngpy) = H' (Ng/p, @ O5) — 0;

hence the key point is to compute the dimension of H* (Ng/Pg ® Og) = HY(wg?)
and of H' (N3 p, ® ws) = H'(ws). Pushing down to P!, we obtain that

H'(w5) = H'(Opi(a — b+2) & Ops(2) & Opa (b— a + 2)

and that

H (w5?) = H (@D Opi (i(b — a) +4)).

i=—2

Therefore, if 0 < a — b < 2, both H!(w}) and H'(wg?) are zero. Hence H' (N3 /po)

vanishes and S corresponds to a nonsingular point of the Hilbert scheme. On the
other hand, if @ — b > 2, the group H'(wg?) does not vanish and neither does

As a consequence of Theorem 4.1 we know that K3 carpets on rational normal
scrolls of type Fy, F1, F> belong only to one component of the Hilbert scheme of
numerical K3 surfaces, and by Theorem 3.5 we know that the general point of that
component is a smooth K3 surface. By using the smoothing constructed in (3.11)
we are able to identify the component in question. The same construction allows
us to prove that a K3 carpet contained in P9, when g = 1 (4), and with reduced
part isomorphic to the ruled surface Fy, belongs to two components of the Hilbert
scheme. This fact provides a geometric explanation for the nonsmoothness of its
Hilbert point.

Theorem 4.2. The K3 carpets supported on rational normal scrolls of type Fy, Fy
(and therefore any K3 carpet) belong to the “prime” component of the Hilbert
scheme of numerical K3 surfaces.

Proof. Let X be a hyperelliptic K3 surface mapping generically 2 : 1 to Fy or Fj.
If X maps to Fy, the Picard group of X contains a sublattice generated by two
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elliptic pencils F; and Fs. This sublattice has intersection matrix

(> o)

If X maps to Fy, the Picard group of X contains a sublattice generated by an
elliptic pencil E and by a rational nodal curve R. This sublattice has intersection

matrix
0 2
2 =2/

It is easy to check that these sublattices are primitive and, in particular, that
L, = E; 4+ nEj is primitive for all n > 1 and that L, = R + nkE is primitive for
all n > 2 . The line bundles L,, are the hyperelliptic line bundles which give a
generically 2 : 1 map from X to a rational normal scroll of type Fy or Fy. Using
the same reasoning as in (3.11) we can construct a family (X, ) of polarized K3
surfaces whose central fiber is isomorphic to (X, L, ) and whose general fiber (X3, (;)
is a K3 surface such that Pic(X;) is generated by (;. Therefore we can construct
a smoothing of the K3 carpet supported on a rational normal scroll of type Fj or
Fy such that the Picard group of the general fiber is generated by the hyperplane
class. O

Theorem 4.3. Let g be greater than 9 and congruent to 1 modulo 4. Those K3
carpets inside P9 supported on a rational normal scroll S of type Fy belong to
two components of the Hilbert scheme. One of them is the “prime” component.
A general point of the other component corresponds to a smooth K3 surface with
Picard number one but with hyperplane class divisible by two.

Proof. The Picard group of a hyperelliptic K3 surface X mapping generically 2 : 1
to Fy has a sublattice generated by an elliptic pencil £ and by a rational nodal
curve R. This sublattice has intersection matrix

(%)

(see [D] for details). The hyperelliptic line bundles mapping X generically (2 : 1)
to a rational normal scroll of type Fy are the line bundles L,, = 2R 4+ nFE for all
n > 5. If n is even, the line bundle L,, is not primitive, but the double of other line
bundle. Therefore we can construct in that case a smoothing of S with the following
property: the general fiber has Picard number one but its hyperplane class does
not generate the Picard group, but it is divisible by two. Thus the general fiber
does not belong to the prime component. The hypothesis on g being congruent to
1 modulo 4 comes in at this point, because in that case n is even (n = 9—42'?’) (]

We will devote the rest of the section to describing the deformation of K3 carpets
to the union of two scrolls. Recall that the union of two rational normal scrolls of
dimension 2 along a (reduced, but maybe reducible) elliptic curve, anticanonical
with respect to both of them, has the numerical invariants of a K3 surface. Ciliberto,
Lopez and Miranda prove in [CLM] that those unions of scrolls having smooth
double locus (note that this condition forces the reducible K3 to be a union of two
copies of Fy, Fy or Fy) are smoothable. In fact, since any union of two rational
normal scrolls along a reduced anticanonical curve can be deformed to a union of
two scrolls with smooth double locus, it follows that any union of two scrolls along
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a reduced anticanonical elliptic curve is smoothable. Thus, which follows provides
another, more indirect, proof of the smoothing of K3 carpets.

Theorem 4.4. The locus of K3 carpets lies on the closure of the locus parametriz-
ing unions of two scrolls. Both loci lie on the closure of the open subscheme
parametrizing smooth K8 surfaces in the prime component.

Proof. Let S be a rational normal scroll. Let C be a curve in the linear equivalence
class of the anticanonical divisor. The curve C' induces an embedding

0— Nsypy Rw — Ns,pg

and the image of the generator of H*(Ng ps ® w) in H®(Ng ps) corresponds to a
first order deformation of S in PY, keeping C' fixed. Since h'(Ngps ® w) = 0 by
Proposition 1.7, this first order deformation extends to a deformation of S over a
smooth affine curve U, keeping C' fixed. We will call this deformation &7, and by
an abuse of notation, we will denote its central fiber by S. Consider now another
deformation S, fixing C' (e.g., the trivial deformation S x U C P{;). The family
S1 U S is flat over U, and the general fiber is the union of two scrolls. We claim
that the central fiber is a K3 carpet. Note that S NSy = SU (C x T'). For any
point x € S we choose a hyperplane H; passing through x such that D := SN H
is a smooth rational normal curve and such that (H; x U) N (S; N S2) is induced
locally by a non-zero-divisor on Ogs,ns,. The scheme (S; U S2) N (Hy x U) is flat
and equal to (S1 N (Hy x U)) U (S2N (Hy x U)). Denote S; N (Hy x U) by S;. Now
S§NS,=DU((CnHy) xT), and through any point y € S N Hy, we choose a
hyperplane Hj such that DN Hy consists of distinet points and (He x U) N (S1NSS)
is induced by a non-zero-divisor of Os;ns;. Again, the family (S;USy) N (Hz x U)
is flat and equal to (S] N (Hz2 x U)) U (S N (Hy x U)). The general fiber of
(ST USH) N (Hy x U) consists of 2g — 2 distinct points, and the central fiber is
supported on g — 1 distinct points. Now the proof follows the same path as the
proof of Proposition 3.4. By the same degree considerations, the central fiber of
(S1USL)N(Hz x U) is a 0-dimensional ribbon. The central fiber of S] US) is also a
ribbon, by Theorem 2.1 and Lemma 3.2. In fact, it is a canonical ribbon, because
it is a nondegenerate ribbon of degree 2g — 2 in P97, Again by Theorem 2.1 and
Lemma 3.2, we obtain that the central fiber of S; U Ss is a carpet, and adjunction
implies that it is a K3 carpet. O

(4.5) An example of this degeneration can be constructed explicitly in the fol-
lowing way: let S be a rational normal scroll in P9, g > 4. Let Cy be the minimal
section of S. Fix a smooth section C’ not intersecting Cy. Let ¢ be the morphism
from Cy to C’ defined by the fibers of S. Fix three points ag, by, co in Cy and let
@d(ag) = ', Pp(by) = b and ¢(cy) = ¢’. Define ¢, : Cp — C’ as the morphism that
sends ag to a’, by to b’ and ¢g to x. Let (D,d) be a smooth projective curve and
f:(D,d) — (C',c") a covering of (C',¢"). Let ¥y be defined as follows:

\Iff: C()XD — C/,
(t,y) = ¢f(y)(t)'

The morphism W defines a family S¢ of rational normal scrolls, parametrized by
D. Each member of the family contains the reducible elliptic curve

C = CyUC" Uagd Ubyl,
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which is anticanonical in each scroll. Choosing f1, f2 : (D,d) — (C', <), f1 # fo,
we obtain §; = Sy, and S» = Sy, and a family S; U Sy as in the proof of 4.4. In
fact, all this construction takes place inside the join ¥ of Cy and C’. The variety
3 is a Fano threefold, i.e., some multiple of its anticanonical divisor Ky is ample
(this can be checked by looking at its desingularization).

When a — b < 2, the above construction fits into a more general one: consider a
smooth elliptic normal curve E in P9. Let 2 be its 2-secant variety. The variety
Q is a “fake” Calabi-Yau 3-fold: its dualizing sheaf is trivial and the intermediate
cohomology of its structure sheaf vanishes (see [GP] for details). On the other
hand its desingularization is a projective bundle over Sa(E); hence it has negative
Kodaira dimension. It is singular along E. A g on E defines a rational normal
scroll containing F as a member of the anticanonical class. If we consider two
families of gi’s specializing to a given one (the one defining the scroll on which our
K3 carpet is supported), we obtain again a family as in the proof of 4.5. To go
from this picture to the previous one, we just degenerate E' to C. The 3-fold 2
degenerates to a reducible variety, one of whose components is 3. Finally, we can
identify the degenerations of the gi’s as pencils having degree 1 on Cp and €’ and
degree 0 on aga’ and bob’. For example, in P*, the variety Q is a quintic 3-fold (in
this case, since (2 is a hypersurface, one can easily check that it is “Calabi-Yau” in
the above sense). The degeneration of ) consists of X, which is a quadric cone, and
three hyperplanes.

Observation 4.6. The K3 carpet supported on S is a member of | — Kx|. However
it is not possible to smooth it inside | — Kx|. In fact all members of | — wyx]| are
singular. This follows from the fact that HO(w3) = HO(wg,) ® HO(wg) (cf. [BE],
§8), which implies that an element of | — Kx| is singular along both Cy and C".
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