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The behavior of any physical system is governed by its underlying dynamical equations. Much of

physics is concerned with discovering these dynamical equations and understanding their consequences.

In this Letter, we show that, remarkably, identifying the underlying dynamical equation from any amount

of experimental data, however precise, is a provably computationally hard problem (it is NP hard), both

for classical and quantum mechanical systems. As a by-product of this work, we give complexity-theoretic

answers to both the quantum and classical embedding problems, two long-standing open problems in

mathematics (the classical problem, in particular, dating back over 70 years).
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A large part of physics is concerned with identifying the
dynamical equations of physical systems and understand-
ing their consequences. But how do we deduce the dynami-
cal equations from experimental observations? Whether
deducing the laws of celestial mechanics from observa-
tions of the planets, determining economic laws from
observing monetary parameters, or deducing quantum me-
chanical equations from observations of atoms, this task is
clearly a fundamental part of physics and, indeed, science
in general. The task of identifying dynamical equations
from experimental data also turns out to be closely related,
in both the classical and quantum mechanical cases, to
long-standing open problems in mathematics (in the clas-
sical case, dating back to 1937 [1]).

In this Letter, we give complexity-theoretic solutions to
both these open problems. And these results lead to a
surprising conclusion: Regardless of how much informa-
tion one obtains through measuring a system, extracting
the underlying dynamical equations from those measure-
ment data is, in general, an intractable problem. More
precisely, it is NP hard. This means that any computation-
ally efficient method of determining which dynamical
equations are consistent with a set of measurement data
would solve the (in)famous P versus NP problem [2], by
implying that P ¼ NP. Thus, if P � NP, as is widely
believed, there cannot exist an efficient method of deduc-
ing dynamical equations from any amount of experimental
data. We also prove the other direction: By reducing to an
NP-complete problem we show that, if P ¼ NP, then there
does exist an efficient algorithm for extracting dynamical
equations from experimental data. Thus, the question of
whether there exists an efficient method for determining
dynamical equations from measurement data is equivalent
to the P versus NP question.

Note that we are not restricting ourselves here to funda-
mental theories, where other theoretical considerations

may impose simplifications on the desired form of the
equations. We are also considering effective dynamical
equations, as encountered in the majority of experiments,
where the full range of possible dynamical equations can,
in principle, be observed.
In the classical setting, the problem of extracting dy-

namical models from experimental data has spawned an
entire field known as system identification [3], which forms
part of control engineering—after all, the precise knowl-
edge of the dissipation is crucial for actually understanding
what control steps to apply. In the quantum case, interest in
understanding quantum dynamics, especially externally
induced noise and decoherence, has been spurred on by
efforts to develop quantum information processing tech-
nology [4,5]. Indeed, the primary goal of many experi-
ments is precisely to characterize and understand the
dynamics of a specific quantum system [6–10]. This is
precisely the task that we show to be computationally
intractable in general (assuming P � NP), both in quantum
mechanics and in classical physics.

FIG. 1 (color online). In an experiment, we can gather snap-
shots of the state of a physical system at various points in time.
To understand the physics behind the system’s behavior, we must
reconstruct the underlying dynamical equations from the snap-
shots.
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Results.—Let us make the task more concrete. We will
throughout consider open system dynamics, which takes
external influences and noise into account. Recall that in
classical mechanics, the most general state of a system is
described by a probability distribution p over its state
space, which for simplicity we will take to be finite dimen-
sional. Its evolution is then described by a master equation,
whose form is determined by the system’s Liouvillian,
corresponding to a matrix L, as _p ¼ Lp. The Liouvillian
expresses interactions, conservation laws, external noise,
etc.; in short, it describes the underlying physics. In order
for the probabilities to remain positive and sum to one, the
elements Li;j must obey two simple conditions [11]:

(i) Li�j � 0 and (ii)
P

iLi;j ¼ 0.

In the quantum setting, the density matrix � plays the
analogous role to that of the classical probability distribu-
tion, but the quantum master equations are still determined
by a Liouvillian:

_� ¼ Lð�Þ: (1)

In his seminal 1976 paper [12], Lindblad established the
general form that any quantum Liouvillian must take if it is
to generate a completely positive trace-preserving evolu-
tion (so that density matrices always evolve into density
matrices, directly analogous to probabilities remaining
positive and normalized in the classical case):

L ð�Þ¼ i½�;H�þX
�;�

G�;�

�
F��F

y
��

1

2
fFy

�F�;�gþ
�
: (2)

Here, H is the Hamiltonian of the system, G is a positive
semidefinite matrix and, along with the matrices F�, de-
scribes decoherence processes. (½:; :� and f:; :gþ denote,
respectively, the commutator and anticommutator.) These
master equations of the Lindblad form have become the
mainstay of the dynamical theory of open quantum sys-
tems, and are crucial to the description of quantum me-
chanics experiments [13]. In principle, the Liouvillian
could itself be time dependent, describing a system whose
underlying physics is changing over time. Here, we restrict
our attention to the problem of finding a time-independent
Liouvillian, as this is a good assumption for experiments in
which external parameters are held constant. The more
general time-dependent problem is expected to be harder
still.

What is the best possible data that an experimentalist can
conceivably gather about an evolving system? At least in
principle, they can repeatedly prepare the system in any
chosen initial state, allow it to evolve for some period of
time, and then perform any measurement. In fact, for a
careful choice of initial states and measurements, it is
possible in this way to reconstruct a complete ‘‘snapshot’’
of the dynamics at any particular time (Fig. 1). In the
quantum setting, this technique is known as quantum pro-
cess tomography [5]. Quantum process tomography is now
routinely carried out in many different physical systems,

from NMR [6,7] to trapped ions [8], and from photons [9]
to solid-state devices [10].
A tomographic snapshot tells us everything there is to

know about the evolution at the time t when the snapshot
was taken. Each snapshot is a dynamical map Et, which
describes how the initial state, p0 or �0, is transformed into
pðtÞ ¼ Etðp0Þ or �ðtÞ ¼ Etð�0Þ. Anymeasurement at time t
can be viewed as an imperfect version of process tomog-
raphy, giving partial information about the snapshot, and
the outcome of any measurement of the system at time t
can be predicted once Et is known. Thus, the most com-
plete data that can be gathered about a system’s dynamics
consists of a set of snapshots taken at a sequence of differ-
ent points in time.
Let us concentrate first on the quantum case. Quantum

dynamical maps Et are described mathematically by com-
pletely positive, trace-preserving (CPT) maps [5] (also
known as quantum channels). The problem of deducing
the dynamical equations from measurement data is then
one of finding a Lindblad master equation (1) that accounts
for the CPT snapshots Et. This is essentially the converse
problem to that considered by Lindblad [12,14]. Given its
relevance, it is not surprising that numerous heuristic nu-
merical techniques have been applied to tackle this prob-
lem [7,15]. But unfortunately these give no guarantee as to
whether a correct answer has been found. Our results show
that the failure of these heuristic techniques is an inevitable
consequence of the inherent intractability of the problem.
Before tackling the problem of finding dynamical equa-

tions, let us start by considering an apparently much sim-
pler question: Given a single snapshot E, does there even
exist a Liouvillian L that could have generated it? Not
every CPT map E can be generated by a Lindblad master
equation [16,17], so the question of the existence of such a
Liouvillian [Eq. (2)] is a well-posed problem. A dynamical
map that is generated by a Lindblad form Liouvillian is
said to be Markovian, so this problem is sometimes re-
ferred to as the Markovianity problem. Non-Markovian
snapshots [18] can arise if the environment carries a mem-
ory of the past, so that the system’s evolution cannot be
described by Eq. (1) in the first place, as that assumes the
system is sufficiently isolated from its environment for its
dynamics to be described independently.
It is important to note that, for the results to apply to real

experimental data, we must take into account the fact that a
snapshot can only ever be measured up to some experi-
mental error. We should therefore be satisfied if we can
answer the question for some approximation E0 to the
measured snapshot E, as long as the approximation is
accurate up to the experimental error. Mathematically,
this is known as a weak membership formulation of the
problem.
To address the Markovianity problem, we will require

some basic concepts from complexity theory. Recall that P
is the class of computational problems that can be solved

PRL 108, 120503 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

23 MARCH 2012

120503-2



efficiently on a classical computer. The class NP instead
only requires an efficient verification of solutions, and
contains problems that are believed to be impossible to
solve efficiently, such as the famous 3SAT problem, and
the traveling salesman problem. A problem is NP hard if
solving it efficiently would also lead to efficient solutions
to all other NP problems. A problem that is both NP hard
and is also itself in the class NP is said to be NP complete.
The 3SAT and traveling salesman problems are both ex-
amples of NP-complete problems, whereas the problem of
factoring large integers is an example of an NP problem
that is believed not to be NP hard [19].

Rather than considering 3SAT, it is more convenient
here to consider the equivalent 1-in-3SAT problem, into
which 3SAT can easily be transformed [19], and which is
therefore also NP complete. Wewill show that any instance
of the 1-in-3SAT problem can be efficiently transformed
into an instance of the Markovianity problem (see also
[20,21]), thus proving that the latter is at least as hard as
1-in-3SAT; any efficient procedure for determining
whether a snapshot has some underlying Liouvillian would
immediately imply an efficient procedure for solving 1-in-
3SAT. But 1-in-3SAT is NP complete, so this would im-
mediately give an efficient algorithm for solving any NP
problem, implying P ¼ NP. However, as discussed above,
the Markovianity problem is just a special case of the more
general—and more important—problem of extracting the
underlying dynamical equations from experimental data. If
P � NP, as is widely believed, then there cannot exist a
computationally efficient method of deducing dynamical
equations from any amount of experimental data.

We can go further than this. Through the relation to NP-
complete problems such as 1-in-3SAT, we can reduce the
Markovianity problem to the task of solving an NP-
complete problem. This gives the first rigorous, provably
correct algorithm for extracting the underlying dynamical
equations from a set of experimental data, albeit one that is
necessarily inefficient for systems with more than a
few degrees of freedom (otherwise we would have proven
P ¼ NP).

We have focused so far on the more complex case of
quantum systems, and one might perhaps expect that sys-
tems governed by classical physics would be easier to
analyze. However, essentially the same argument proves
that exactly the same results hold for classical systems, too.
(See also [20,21].)

The technical argument.—It is convenient to represent a
snapshot E of the dynamics of a quantum system (a CPT
map) by a matrix E,

Ei;j;k;l ¼ Tr½EðjiihjjÞjkihlj� (3)

(the row and column indices of E are the double indices i; j
and k; l, respectively). Looked at this way, each measure-
ment that is performed pins down the values of some of
these matrix elements [5]. A snapshot of a Markovian

evolution is then one with a Liouvillian L (represented
in the same way by a matrix L) such that E ¼ eL, and, for
all times t � 0, Et ¼ eLt are also valid quantum dynamical
(CPT) maps.
The Markovianity problem can be transformed into an

equivalent question about the Liouvillian. Inverting the
relationship E ¼ eL, we have L ¼ logE. There are, how-
ever, infinitely many possible branches of the logarithm,
since the phases of complex eigenvalues of E are only
defined modulo 2�i. The problem then becomes one of
determining whether any one of these is a valid Liouvillian
[i.e., in Lindblad form (2)]. This translates into the follow-
ing necessary and sufficient conditions on the matrix L
[17]. (i) L� is Hermitian, where � is defined by its action on
basis elements: ji; jihk; lj� ¼ ji; kihj; lj. (ii) L fulfils the

normalization h!jL ¼ 0, where j!i ¼ P
iji; ii=

ffiffiffi
d

p
is

maximally entangled. (iii) L satisfies the condition of
complete positivity (CCP), i.e., ð1�!ÞL�ð1�!Þ � 0,
! ¼ j!ih!j. All branches Lm of the logarithm can be
obtained by adding integer multiples of 2�i to the eigen-
values of the principle branch L0, so we can parametrize all
the possible branches by a set of integers mc:

Lm ¼ logE ¼ L0 þ
X
c

mcA
ðcÞ; (4)

AðcÞ ¼ 2�i½jlcihrcj � FðjlcihrcjÞ�; (5)

with jlci and hrcj the left and right eigenvectors of E. F is
the operation Fðji; jihk; ljÞ ¼ jj; iihl; kj�, where * denotes
the complex conjugate, and we have already restricted the
parametrization to logarithms that satisfy condition (i).
We will prove that this Liouvillian problem is NP hard,

by showing how to encode any instance of the NP-
complete 1-in-3SAT problem into it. Recall that the task
in 1-in-3SAT is to determine whether a given logical ex-
pression can be satisfied or not. The expression is made up
of ‘‘clauses,’’ all of which must be satisfied simultaneously.
Each clause involves three boolean variables (variables
with values ‘‘true’’ or ‘‘false’’), which can be represented
by integers mc ¼ 0; 1. In 1-in-3SAT, a clause is satisfied if
and only if exactly one of the variables appearing in the
clause is true (as opposed to 3SAT, in which at least one
must be true) and no boolean negation is necessary. Note
that, in terms of integer variables mc, a 1-in-3SAT clause
containing variables mi, mj, and mk can be expressed as

1 � mi þmj þmk � 1; (6a)

0 � mi;mj;mk � 1: (6b)

If the matrices appearing in conditions (i) to (iii) were
diagonal, condition (iii) would give us a concise way of
writing the coefficients and constants of a set of inequal-
ities such as Eq. (6) in the diagonal elements. However,
the problem we are facing here is significantly more
challenging: Diagonal matrices will never satisfy condi-

PRL 108, 120503 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

23 MARCH 2012

120503-3



tions (i) and (ii), and the matrices L0 and AðcÞ cannot be
chosen independently, since they are determined by the
eigenvectors and eigenvalues of a single matrix E.

These substantial obstacles can be overcome, however.
The key step in encoding the above boolean constraints in a
quantum Liouvillian is to restrict our attention to matrices

L0 and AðcÞ with the following special forms:

L0 ¼ 2�
X
i;j

Qi;jji; iihj; jj þ 2�
X
i�j

Pi;jji; jihi; jj; (7)

AðcÞ ¼ 2�
X
i�j

BðcÞ
i;j ji; iihj; jj; (8)

with coefficient matrices

Q ¼ X
r

vrv
T
r �

1 1

1 1

 !
� kþ �r �r

�r kþ �r

 !

þX
c

vcv
T
c � 1 �1

�1 1

 !
� k � 1

3

1
3 k

 !

þX
c0
vc0v

T
c0 �

1 �1

�1 1

 !
� k 0

0 k

 !
; (9)

BðcÞ ¼ vcv
T
c � 1 �1

�1 1

� �
� 0 1

�1 0

� �
: (10)

The sets of real vectors fvrg and fvc; vc0 g should each form
an orthogonal basis, and the parameters k, �r, and Pi;j are

also real. The advantage of this restriction is that the action
of the � operation on matrices of this form is somewhat
easier to analyze, as can readily be seen from its definition
[given in condition (i), above].

It is a simple matter to verify that the eigenvalues and

eigenvectors of L0 and BðcÞ do indeed parametrize the
logarithms of a matrix E, and that the Hermiticity and
normalization conditions, (i) and (ii), necessary for L to
be a valid quantum Liouvillian are indeed satisfied by the
forms given in Eqs. (7)–(10), as long as wTQ ¼ 0 and

diagðPÞ� is Hermitian [where for d-dimensional Q, w ¼
ð1; 1; . . . ; 1ÞT= ffiffiffi

d
p

, and diagðPÞ denotes the d2-dimensional
matrix with Pi;j down its main diagonal]. Furthermore, the

CCP condition (iii) reduces for this special form to the pair
of conditions:X

c

BðcÞ
i;j mc þQi;j � 0 i � j; (11a)

ð1� wwTÞðdiagQþ offdgPÞð1� wwTÞ � 0; (11b)

where M ¼ ðdiagQþ offdgPÞ denotes the d-dimensional
matrix with diagonal elementsMi;i ¼ Qi;i and off-diagonal

elements Mi�j ¼ Pi;j.

We now encode the coefficients of the 1-in-3SAT prob-
lem from Eq. (6) into the elements of vc. For each clause in
Eq. (6a), write a ‘‘1’’ in a new element of vi, vj, and vk,

and a ‘‘0’’ in the corresponding element of all other vc’s.

For each vc, write a 1 in a new element of the vector, and
write a 0 in the corresponding element of all the other vc’s
(these elements will be used to restrict each mc to the
values 0 or 1). Finally, extend the vectors so that they are
mutually orthogonal and have the same length, which can
always be done. One can now verify directly that, by
choosing appropriate vr, Eq. (6) is equivalent to the 1-in-
3SAT inequalities of Eq. (11b). Furthermore, conditions (i)
and (ii) are always satisfied. (See [20,21] for more detail.)
Thus, we have succeeded in encoding 1-in-3SAT into the
Liouvillian problem. As the latter is equivalent to the
Markovianity problem, this proves that the Markovianity
problem is itself NP-hard. This construction easily general-
izes to the original question of finding which dynamical
equations (if any) could have generated a given set of
snapshots [20,21]: Any method of finding dynamical equa-
tions consistent with the data would obviously also answer
the question of whether these exist, allowing us to solve all
NP problems.
Note that, on the positive side, by carrying out a brute-

force search for solutions of the corresponding satisfiabil-
ity problem [in the case considered above, this is 1-in-
3SAT, but more generally it is an integer semidefinite
constraint problem defined by conditions (i) to (iii), which
is obviously in NP], we immediately obtain an algorithm
for extracting dynamical equations from measurement data
that is guaranteed to give the correct answer. Although
such an algorithm will not work in practice even for
moderately complex systems, the NP hardness proves
that we cannot hope for an efficient algorithm (unless
P ¼ NP). And it can be applied to systems with few
degrees of freedom, making it immediately applicable at
least to many current quantum experiments.
What of the classical setting? The classical analogue of

the Markovianity problem is the so-called embedding
problem for stochastic matrices, originally posed in 1937
[1]. Despite considerable effort [22] the general problem
has, however, remained open until now [23]. Strictly
speaking, the quantum result does not directly imply any-
thing about the classical problem. Nevertheless, the argu-
ments we have given in the more complicated quantum
setting can straightforwardly be adapted to the classical
embedding problem [20,21], proving that this is NP hard,
too. (See [20,21] for details.)
Discussion.—On the one hand, this work leads to a

rigorous algorithm for extracting the underlying dynamical
equations from experimental data. For systems with few
effective degrees of freedom, as encountered, for example,
in all quantum tomography experiments to date [6–10], this
gives the first practical and provably correct algorithm for
this key task. For systems with many degrees of freedom,
the algorithm is necessarily inefficient, with a run time
that scales exponentially. But our complexity-theoretic
NP-hardness results show that we cannot hope for a
polynomial-time algorithm. Note also that the hardness
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cannot be attributed to allowing high-energy processes in
the dynamics (high branches of the logarithm), as the
reduction from the 1-in-3SAT problem only needs low-
energy dynamics (m is restricted to 0 or 1).

On the other hand, our results also prove that for general
systems, deducing the underlying dynamical equations
from experimental data is computationally intractable, un-
less one can show that P ¼ NP. This hardness result is true
whether the system is quantum or classical, and regardless
of how much experimental data we gather about the sys-
tem. These results also imply that various closely related
problems, such as finding the dynamical equation that best
approximates the data, or testing a dynamical model
against experimental data, are also intractable in general,
as any method of solving these problems could easily be
used to solve the original problem.

Experience would seem to suggest that, while general
classical and quantum dynamical equations may be impos-
sible to deduce from experimental data, the dynamics that
we actually encounter are typically much easier to analyze.
Our results pose the interesting question of why this should
be, and whether there is some general physical principle
that rules out intractable dynamics.
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