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Abstract

We consider a robust version of the classical Wald test statistics for testing simple and composite null
hypotheses for general parametric models. These test statistics are based on the minimum density power
divergence estimators instead of the maximum likelihood estimators. An extensive study of their robustness
properties is given though the influence functions as well as the chi-square inflation factors. It is theoretically
established that the level and power of these robust tests are stable against outliers, whereas the classical

Wald test breaks down. Some numerical examples confirm the validity of the theoretical results.
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1 Introduction

Testing statistical hypothesis is an important area within the class of statistical inference procedures. Most
widely used and popular classical tests are based on the likelihood ratio, score and Wald test statistics. Although
they enjoy several optimum asymptotic properties, they are highly non-robust in case of model misspecification
and presence of outlying observations. It is well-known that a small deviation from the underlying assumptions
on the model can have drastic effect on the performance of these classical tests. So, the practical importance of
a robust test procedure is beyond doubt; and it is helpful for solving several real life problems containing some
outliers in the observed sample.

The purpose in robust testing of hypothesis is two-fold. A good robust test should exhibit stability under
small, arbitrary departures from the null hypothesis (robustness of validity), and should have good power under
small, arbitrary departures from specified alternatives (robustness of efficiency). However, these robustness

aspects of a test are not widely explored as compared to the robustness of the estimators. Hample’s influence
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function (Hampel, 1974) gives an important measure of robustness to investigate the local stability along with
the global reliability of an estimator. Ronchetti (1979, 1982a,b) and Rousseeuw and Ronchetti (1979, 1981)
have extended the concept of an influence function in testing a null hypothesis about a scalar parameter (see
Hampel et al., 1986, Chapter 3). Besides considering the influence function of the test statistic, they have also
proposed to study the behavior of the level and power of the test as functions of an additional observation at
any point x — it reflects the influence of the additional infinitesimal contamination on the level and power of
the test. An essential result of this approach is the approximation of the asymptotic level and power under
a contaminated distribution in a neighborhood of the null hypothesis. A very nice review about the influence
function in the study of robustness of a test statistic is given in Markatou and Ronchetti (1997). The idea
of influence function analysis has been studied extensively in different tests by Cantoni and Ronchetti (2001),
Ronchetti and Trojani (2001), Wang and Qu (2007) and Van Aelst and Willems (2011) Recently, Toma and
Leoni-Aubin (2010), Toma and Broniatowski (2011), Ghosh et al. (2015) derived some important results for the
tests based on the divergence measures.

In this paper we explore the theoretical robustness properties for a class of Wald-type tests recently proposed
by Basu et al. (2015). The family of tests is based on the minimum density power divergence estimators
(MDPDE); and it has been developed for testing both simple and composite null hypotheses. Basu et al. (2015)
have empirically demonstrated that the Wald-type test exhibits strong robustness properties, but relevant
theoretical results supporting the empirical findings are not derived. Here, we will fill that gap by developing
some theoretical results on robustness for the general Wald-type tests based on the influence function analysis.
In comparison with the paper by Heritier and Ronchetti (1994), where robustness of some Wald-type tests with
M-estimators are studied, our paper covers more general composite hypothesis testing, since it is not restricted
only on linear transformations. Moreover, other than level and power influence functions we have also studied
the chi-square inflation factor which measures an overall departure of the test statistic from the null distribution
due to contamination.

The rest of the paper is organized as follows. In Section 2 we have presented some notations and results
from Basu et al. (2015) which are necessary to develop further theoretical results for this paper. Section 3
presents the influence functions of the Wald-type test statistics. The power and level influence functions for
testing simple and composite null hypotheses are derived in Section 4. The chi-square inflation factors for
Wald-type test statistics are calculated in Section 5. In Section 6 we have presented some examples to justify
the theoretical results developed in this paper. A discussion on choosing the tuning parameter for the density

power divergence measure is given in Section 7, and finally, some concluding remarks are provided in Section 8.

2 Preliminaries

Let G denote the set of all distributions having densities with respect to a dominating measure (generally the

Lebesgue measure or the counting measure). Given any two densities g and f in G, the density power divergence



with a nonnegative tuning parameter (3, is defined as

Ik {f1+'8(w) - (1 + %) fP(x)g(x) + %glﬂa(w)} dz, for >0,
ds(g. f) = (1)

J g(x)log (%) dzx, for 8 =0.
The divergence corresponding to 5 = 0 may be derived from the general case by taking the continuous limit as
B — 0, and in this case dy(g, f) turns out to be the Kullback-Leibler divergence. Details about the inference

based on divergence measures can be found in Basu et al. (2011) and Pardo (2006).

We consider a parametric model of densities {fg : @ € © C RP}, and we are interested in the estimation
of 8. Let G represent the distribution function corresponding to the density g that generates the data. The

minimum density power divergence functional at G, denoted by T's(G), is defined as

ds(9, fra() = minds(g, fo). (2)

Therefore the MDPDE of 0 is given by
0 =T5(Gn), (3)
where G, is the empirical distribution function associated with a random sample X1, ..., X, from the popu-

lation with density ¢ (having distribution function G). As the last term of equation (1) does not depend on 6,
55 is given by

i=1
if >0 and
55 —argrgréirel{—izlogfe(xi)}7 (5)
i=1

when § = 0. Notice that 55 for 8 = 0 coincides with the maximum likelihood estimator (MLE). In Basu et al.
(1998), it was established that the MDPDE is an M-estimator.
The functional T'3(G) is Fisher consistent; it takes the value 6g, the true value of the parameter, when the

true density is a member of the model, i.e. g = fg,. Let us assume g = fg,, and define the quantities

75(0) = [uo@yuf (@) sy (@)de, K;(6) = [uolwyud(@)fy P ()de~ &5 0)€F 6).  (0)
where
£(0) = [uo(@)f3*(@)de and wo() = 15 log fole).

Then, following Basu et al. (1998) and Basu et al. (2011) , it can be shown that

n'/%(@5 —60) = N(0,,%5(6,)), (7)
where
35(00) = J 5" (80)K 5(60)J 5" (60). (8)



2.1 Wald-type Test Statistics for the Simple Null Hypothesis
In Basu et al. (2015) the family of Wald-type test statistics
W2 (85) = (85 — 00)"2;5(80)(5 — 6o) (9)
was considered for testing the simple null hypothesis
Hy : 0 =60 against H; : 0 # 6, (10)

where 6y € © C RP. The asymptotic distribution of W (55), defined in (9), is a chi-square with p degrees of
freedom. In the particular case when 5 = 0, i.e., the MDPDE coincides with the MLE, the variance-covariance
matrix, (8), coincides with the inverse of the Fisher information matrix of the model and then we get the classical

Wald test statistic for testing (10). The power function Byo of the Wald-type test statistics at 8* € © — {0},

2
Bwo (07) =1 - ((TW‘/Z) (XZ’"‘ - 6(0*)>) ; (11)

is given by

where
0(6%) = (8" — 8,)" =5 (o) (8" — 80),
oty (07) = 4(0" — 00)" =5(67) (0" — 0).

Here « is the level of the test, Xfm is the 100(1 — «)-th percentile of a chi-square distribution with p degrees of

freedom and ®(-) is the standard normal distribution function. It is clear that

lim ﬁwg(o*) = 1,

n— oo

for all o € (0,1). Therefore the test is consistent in the sense of Fraser (1957).
In order to produce a nontrivial asymptotic power, we can consider contiguous alternative hypotheses.

Consider the contiguous alternative hypotheses described by
Hyp - 0, =0+ n_1/2d7 (12)

where d is a fixed vector in RP such that 6,, € © C RP. It can be shown that the asymptotic distribution of
the Wald-type test statistic W2 (55) under the alternative H; , is a non-central chi-square with p degrees of
freedom and non-centrality parameter

§=d"25(00)d. (13)
Based on this result, under (12) we have the following approximation to the power function
Bwe (0,) =1 Fa) (Xpa) » (14)

where FX% (5) (+) is the distribution function of a non-central chi-square random variable with p degrees of freedom

and non-centrality parameter d.



2.2 Wald-type Test Statistics for the Composite Null Hypothesis

We shall now consider the problem of testing the composite null hypothesis given by
Hy:0 €0 against Hi : (7] ¢ Og, (15)

where O is a subset of the parameter space © € RP. The restricted parameter space Qg is often defined by a
set of r restrictions of the form

m(9) = 0,, (16)

where m : R? — R” with » < p (see Serfling, 1980). So ©yp = {6 € © : m(0) = 0,.}. Assume that the p x r
matrix
~ om™(0)

M(6) = 0= (17)

exists and is continuous in all 8 belonging to a neighbourhood of the true value of 6, 8, and rank (M (6y)) = 7.
Basu et al. (2015) have considered the following family of Wald-type test statistics

o~ o~ o~

Wa@5) = nm” (85) (M 05)85(05)M (85))  m(@s). (18)

where the matrix 34(+) is defined in (8). The asymptotic distribution of the Wald-type test statistic Wn@,)
under the composite null hypothesis (15) is a chi-square with r degrees of freedom.

In the special case when 8 = 0, 55 coincides with the maximum likelihood estimator of 0, and Xg(-)
becomes the inverse of the Fisher information matrix. Thus, the statistic in (18) reduces to the classical Wald
test statistic.

The power function By, (0*) of the Wald-type test statistic at 8* € © — Oy, is given by

B, (07) 21— (ﬁ <Xi e <0*,0*>>> , (19)

ow, (%)
where
-1
(81,05) = nmT (6,) (MT(ez)zﬂ((h)M(ag)) m(0,),
and
. 000,60 L. 00°(0,6")
2, 0= T2 m ) ST 20
T, 0= TG | B0 T (20)

Basu et al. (2015) proposed an approximation of the power of Wn(gg) at an alternative hypothesis close to
the null hypothesis. Let 8,, € © — ©( be a given alternative, and let 8y be the element in O closest to 8,, in
terms of the Euclidean distance. One possibility to introduce contiguous alternative hypotheses, in this context,
is to consider a fixed vector d € RP and permit 8,, to move towards €y as n increases through the relation H; ,
given in (12). A second approach is to relax the condition m (8) = 0, that defines ©g. Let € R" and consider

the following sequence of parameters {6,,} moving towards 6, according to the set up
H{, :m(0,)=n""?. (21)
Note that a Taylor series expansion of m (0,,) around 6 yields

m (0,) =m (0y) + M7 (6,) (08, —00) +0(]|6, —6])). (22)



By substituting 8,, = 8y +n~/2d in (22) and taking into account that m(6y) = 0,., we get
m(0,) =n"Y2M7T(00)d+0(]|0, — 6]]). (23)
So, the equivalence relationship between the hypotheses Hy ,, and HY,, is

0 =M"(80)d as n — cc. (24)

~

The asymptotic distribution of W,,(63) is given by

WaB2) 5 ¢ (d M(00) (M7 (00260 M(00) M (00)a) (25)

n—oo

under H ,, given in (12) and by

Wo(05) 5 2 <5T (MT(ao)zﬂ(00)1\4(90))71 5) (26)

n— oo

under Hy , given in (21). These asymptotic distributions may be used to calculate the power functions of the

Wald-type test statistics under the contiguous alternatives.

3 Influence functions of the Wald-type test statistics

The influence function was introduced by Hampel (1974) and it plays a crucial role for important applications in
robustness analysis. Huber (1981) interpreted the influence function as the limiting influence of an infinitesimal
observation on the value of an estimator or a statistic that characterizes a distribution in a large sample. If
the influence function is bounded, the corresponding estimator or the statistic is said to have infinitesimal
robustness. Therefore, the influence function particularly can be used to quantify infinitesimal robustness of an
estimator or a statistic by measuring the approximate impact on an additional observation to the underlying
data. More simply, the influence function ZF (x,Tg, Fp,) is the first derivative of an estimator or statistic
viewed as a functional T'g and it describes the normalized influence on the estimate or statistic of an infinitesimal
observation .

In this Section we study the influence function of the Wald-type test statistics defined in (9) and (18). In
Basu et al. (1998) it was established that the influence function of the density power divergence functional is

Ty (F:) —Tps(Fa,)
g

IF (2,Tj, Fo,) = lim = J5'(00) (o (@) f5,(@) — £ 00)) (27)

where F, = (1 — ¢)Fp, + €Ay is the e-contaminated distribution of Fp, with respect to A, the point mass
distribution at . If we assume that J3(0¢) and £ (6¢) are finite, the influence function is a bounded function of
x whenever ug () fgo (x) is bounded. This is true, for example in the normal location-scale problem for 8 > 0,
unlike other density based minimum divergence procedures such as those based on the Hellinger distance. In
the case of the normal model with known variance o2 and unknown mean 6, we have

;(;—90 1 LL’—@O 2
IF(m,T57F90):(Wexp{—2( . )ﬁ}




For any 8 > 0, the above mentioned influence function is bounded, but for 8 = 0 it is not bounded.
Let us consider the test statistic WS(@@) for testing the simple null hypothesis given in (10). The functional
associated with the test statistic W2 (55), evaluated at G, is given by (ignoring the multiplier n)

WE(G) = (T5(G) — 80)" 25" (80)(T5(G) — ). (28)

Let Ge = (1 — €)G + €A, be the e-contaminated distribution of G with respect to the point mass distribution
Ay at . The influence function of Wg() is defined as

OWI(G-
IF(z,W},G) = % ,
e=0
where o
IW5(Ge) _
| = 2ATH(G) ~00)" T (B0)IF (2, T, G).
e=0

Under the simple null hypothesis given in (10), G = Fp, and T'3(G) = 6y. So I}'(w,Wg,FgO) = 0, which
shows that the influence function analysis based on the first derivative of WB(GE) is not adequate to quantify
the robustness of these estimators. This influence function is bounded in z for all § > 0, but it does not imply
that the test is necessarily robust since we know the non-robust nature of the usual MLE based Wald-test at
B = 0. So other type of analysis should be applied.

The functional associated with the test statistic W, (/éﬂ), given in (18), evaluated at G, is given by (ignoring

the multiplier n)
Wa(Q) = m" (T5(G) (M (T5(G)S5(T5 (@) M(T5(G)))  m(Ts(G). (29)

The influence function of W(+) is defined as

I}—(.’I},Wﬁ,G) = aniiGs)

7

e=0

where

3W272Ge> - 2mT(T5(G)) (M (T5(G)) 25 (T (G)M(T5(G)))

1

M™(T3(G))IF(x, T, G).
Let 8y € Og be the true value of the parameter under the composite hypothesis given in (15). So G = Fy, and
m(T3(G)) = 0,, and finally it turns out that ZF (x, W3, G) = 0, which indicates that the derivation of second
order influence function is necessary.

The following theorem present the second order influence function for the Wald-type test statistics W2 (55)
and W,,(05).

Theorem 1 The second order influence functions of the Wald-type test statistics W}Q(@ﬁ), given in (9), and

Wn(gg), given in (18), are respectively

TFo(a, W3, Foy) =2 (uo () f5,(x) —€(00)) 75(00)5;" (8075 (00) (ue () f5 (x) —£(00)) (30)
TFo(w. Wy, Fo,) = 2 (u (@) £5, (@) ~ €(00)) 75" (00)M(680)25(00)M" (8075 (80) (uo () £5, () ~ € (00))
(31)



where

S5(60) = M7 (60)55(80) M (8,). (32)

Proof. See Appendix A.2. m

It is interesting to note that in most of the cases Kg(0y), as defined in (6), is a full rank matrix and so

TFo(@, WY, Fa,) =2 (ug (@) f5, () ~ €(00)) K;(00) (uo (@) f, () ~ £(80)) (33)

The above theorem yields the possibility of studying the robustness of the Wald-type tests through its non-zero
(in general) second order influence functions.

In particular, for the simple hypothesis testing, the second order influence function of the corresponding
Wald-type test turns out to be bounded in x for most parametric models if 8 > 0; it becomes unbounded
at f = 0 hence, this test is expected to be robust for most common parametric models whenever 8 > 0, but
non-robust at S = 0 (the ordinary Wald-type test). In case of composite hypothesis also, the second order
influence functions of the general Wald-type tests with 8 > 0 are bounded in the contamination point & in most

parametric models implying their robustness. Some illustrative examples are provided later in Section 6.

4 Level and Power Influence Functions

In this section, we investigate the local stability of the Wald-type test statistic by means of the influence
function when the simple null hypothesis is considered. For a finite sample size, in general, it is difficult to
calculate the level and power, and therefore, we shall use asymptotic approximations. At a fixed alternative
the power function of the Wald-type test statistic was given in equation (11). This power function tends to
one as n increases, so the test is consistent in the Fraser’s sense. Therefore, it is important to calculate power
functions at the contiguous alternatives as mentioned in (12). In this case the asymptotic power function can
be approximated using (14).

Now we shall consider the sequence of alternatives 8,, = 8y +n~'/2d as given in (12). When 6,, tends to 6g
the contamination proportion is also assumed to tend to zero at the same rate. Therefore, we shall define the

contaminated distributions for the power as
wae,m = (1 - ﬁ)FGn + %Amv (34)

where A, denotes the degenerate distribution function with all its mass concentrated at point x, and £/1/n is
the contamination proportion. Substituting d = 0, in equation (34) we get the contaminated distributions for

the level as
FTﬁs,a: = (1 - ﬁ)Feo + ﬁAm

Let us consider the following notations

owg(e,®) = lim Ppr_ (W0(05) > X2.), aw, (6,@) = lim Ppo_ . (Wa(85) > x2,)

T,Q
n—00 & n—00 ’



and

Buwo(On,e,2) = lim Prr_ (W2(05) > X2.,), Bw, (On,e,2) = lim Ppr_ (W, (05) > x2.,).

n— oo '€ n—o00 n,e,
Using these quantities, we will now define the level and power influence function for our proposed Wald-type

test statistics.

Definition 2 The level influence functions associated with the Wald-type test statistics for simple and composite

null hypotheses are defined as

CIF(@; W3, Fo,) = —owg(e, )

, LIF(x; W3, Fg,) = ——aw, (¢, )

e=0
Similarly, we define the power influence functions as

0

0
PI]:(X7 Wg?FQO) = &ng(0n7€,$)

, PIF(x;Wpg, Fo,) = aﬁwn(en,f,w)

e=0 e=0

The level and power influence functions indicate the limiting change in the asymptotic level and power of
the test respectively under the sequence of corresponding contaminated distributions with infinitesimal contam-
ination at the limit. In simple term, they indicate how the asymptotic level and power of the test change due to
the contamination in data generating distributions. Boundedness of these level and power influence functions
imply the stability of the level and power of the test respectively. For more details see Hampel et al. (1986,
Section 3.2c).

The above definitions of the level and power influence functions are completely general one and have no direct
relation with the influence function of the corresponding test statistics. However, in case of our Wald-type test
statistics, we have seen that the second order influence functions of the test statistics at the null hypothesis are
quadratic function of the influence function of the parameters estimators used in constructing the test. Further,
we will see below that the level and power influence functions are also linear function of the influence function of
the corresponding estimators. In that way, there is a indirect link of the level and power influence function with
the influence function of the test statistics (as derived in Section 3). In particular, for any given testing problem,
boundedness of one would imply the same for others provided these influence functions are not identically zero.
However, it is also important to study these level and power influence functions for all the testing problems to
examine the extent of robustness with respect to their level and power, which we cannot get only studying the

influence function of the test statistics alone.

4.1 Simple null hypothesis

In the rest of the paper, we will frequently use the standard assumptions of asymptotic inference as given by
Assumptions A, B, C and D of Lehmann (1983, page 429). We will refer to them as the Lehmann conditions.
Some of the proofs will also require the conditions D1-D5 of Basu et al. (2011, page 311) which we will refer to
as Basu et al. conditions. In order to avoid arresting the flow of the paper, these conditions have been presented

in the Appendix.



Theorem 3 Assume that the Lehmann and Basu et al. conditions hold for the model. Let us consider the
contiguous alternatives in (12) against the simple null hypothesis, and the underlying contaminated model as

given in (34). Then we have the following:

1. The asymptotic distribution of the test statistics W,?(ag) under Ff: is mon-central chi-square with p

e,

degrees of freedom and the non-centrality parameter
~T 1 ~
6= ds,w,ﬁ(eo)zﬁ (00)d5@7,3(00)’
where c~l€7m75(00) =d+cIF(x, T3, Fy,) and ZF (x,Tg, Fo,) is given by (27).
2. The asymptotic power under contiguous alternative and contiguous contamination can be approximated as
ng(en,& :I}) =21 - FX2(6)(X;2), )

= Z ( €,x, 00) EB (00)) P (Xfy—i—Qv > X;Q;,a) ) (35)

where )
(tTAt) o stT At

Co (8, A) =

Fx,%(é) 18 the distribution function of a X?,((S) random variable having degrees of freedom p and non-centrality

parameter § and x3 denotes a central chi-square random variable with q degrees of freedom.
Proof. See Appendiz A.3. m

Further, substituting d = 0, or ¢ = 0 in above theorem, we shall get several important cases; these are

presented in the following corollaries.

Corollary 4 Putting € = 0 in the above theorem, we get the asymptotic power under the contiguous alternative

hypotheses (12) as
By (0n) = Burg (0,0,2) = >° C (4,51 (60)) P (ia > Xoa) -
v=0

Notice that Corollary 4 is an alternative approximation for the result given in (14).

Corollary 5 Putting d = 0, in the above theorem, we get the asymptotic distribution of W,?(éﬁ) under the

probability distribution Fn cw S the non-central chi-square distribution with degrees of freedom p and non-

centrality parameter eLF (x;Ts, Fy,). Then, the corresponding asymptotic level is given by
Qo (67 w) = ﬁWO (007 €, w)
= Z (‘EI‘F T T[},Fgo) EB (00)) P (X;z27+2v > X‘zz;,a) .

In particular, as € — 0, 0, — 6y and the non-centrality parameter of the above asymptotic distribution tends
to zero. In this way we get the asymptotic distribution of the test statistics under null, the central chi-square

distribution with p degrees of freedom, which is the same as obtained independently by Basu et al. (2013).

10



This was the expected result according to the construction of the test statistic and its critical value. Next we

derive the power influence function of the Wald-type test statistic.

Theorem 6 Assume that the Lehmann and Basu et al. conditions hold for the model. Then, the power influence

function of the Wald-type test statistic under the simple null hypothesis is given by

PLF(2,W§, Fo,) = K; (d725"(80)d) d” =5 (80)IF (., Ts, Fo, ), (36)
where
X v—1
* — = s
Kp(s) =e 2 Z O (2v—s) P (X127+2v > x;a) .
v=0

Proof. See Appendix A.4. =

Clearly the above theorem shows that the power influence function is bounded whenever the influence
function of the MDPDE is bounded.

To calculate the level influence function, we can again start from the expression of ayyo (e,x) as given in
Corollary 5 and proceed as above. Alternatively, we may also substitute d = 0, in the expression of the power

influence function to get the level influence function as
LIF(z, W], Fg,) = 0.

Also, one can conclude that the derivative of ayo (e,x) of any order will be zero at ¢ = 0, implying that the
level influence function of any order will be zero. Thus, asymptotically, the level of the Wald-type test statistic

will be unaffected by a contiguous contamination.

4.2 Composite null Hypothesis

We shall now calculate the level and power influence functions of the Wald-type test statistic for the composite

null hypothesis. We have considered the same setting as mentioned in Section 4.

Theorem 7 Assume that the Lehmann and Basu et al. conditions hold for the model. Let us consider the
contiguous alternatives in (12) against the composite null hypothesis, and the underlying contaminated model

as given in (34). Then we have the following:

1. The asymptotic distribution of the test statistics Wn(ag) under Frfe’ is non-central chi-square with r

T
degrees of freedom and the non-centrality parameter

T

§=d. 5 5(00)M(00)X5 " (80) M (80)d- 2 5(80),

where $5(00) = M7*(00)35(80)M(6y), Es,m,ﬁ( 00) =d+eIF(x,Tp, Fp,) and ZF (x, T3, Fp,) is given
by (27).

2. The asymptotic power under contiguous alternative and contiguous contamination can be approximated as

BWS (0717 & :B) =1- FXE(‘;) (X%D‘)
oS

> Co (M7 (80)de ,5(80). 571 ) P (32120 > 1) (37)
v=0

1

11



where C, (t, A) is as defined in Theorem 8, F\2(s) is the distribution function of a x}(8) random variable
having degrees of freedom r and non-centrality parameter 6 and X3 denotes a central chi-square random

variable with q degrees of freedom.

Proof. See Appendix A.5. =

Putting € = 0 in the above theorem, we get the asymptotic power under the contiguous alternatives as
B, (0,) = B, (6,0, ) Zc (M7 (60)d, =57 (80)) P (32120 > X2 -

Notice that this result is an alternative approximation of the power function given in (19).
Putting d= 0, in the above theorem, we get the asymptotic level under the probability distribution FnL e
as
o0
aw, (€,@) = Bw, (B0,e,2) =Y C, (EMT(GO)I}"(:B,Tg, Fa,), 2;—1(00)) P (a0 > X20) -
v=0
In particular, taking e — 0 in the above expression, we get the asymptotic level of the test statistics as
Wi, (O, :13) =«
This was the expected result according to the construction of the test statistic and its critical value. Next we

derive the power influence function of the proposed test statistic.

Theorem 8 Assume that the Lehmann and Basu et al. conditions hold for the model. Then, the power influence

function of the proposed Wald-type test statistic under the composite null hypothesis is given by
PLF(w, W, Fo,) = K; (d” M (605 (60)M” (80)d) d” M(86) 55 (80) M (80)TF (w, T, Fo,),
where the constant K (s) is as defined in Theorem 8.

Proof. See Appendix A.6. m

It is clear from the above expression that the power influence function of the Wald-type test statistic under
the composite null hypothesis is also bounded whenever the influence function of the MDPDE is bounded.

To calculate the level influence function, we can start from the expression of aw, (¢, ) as above. From this

or alternatively, by simply substituting d = 0 in the expression of the power influence function, we obtain that

LI]:(wiﬁvFeo) = %

aw, (&, ). = 0.

Also, it is easy to see that the derivative of ayy, (¢, ) of any order will be zero at e = 0, implying that the level
influence function of any order will be zero. Thus, asymptotically, the level of the proposed test statistics will

be unaffected by a contiguous contamination.

5 The Chi-Square Inflation Factor

Another important way of measuring the robustness of a test statistic is to look at its asymptotic distribution for

a general contaminated distribution, in contrast to its null distribution under the model. Unlike the contiguous
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contamination considered in the previous section, we shall now consider a fixed departure from the model
independent of the sample size. Under the set-up of the previous sections, let us assume that the data come
from a general contaminated distribution G having density g. The null hypothesis, mentioned in (10), can be

written as

Ho : Tg(G) = 00. (38)

The asymptotic distribution of MDPDE under the model is given in (7). We shall now derive the asymptotic
null distribution of the Wald-type test statistic under a general distribution G. Let us define

754(0) = [ uwol@)uf (@)1} @de + [ (To(e) - fus(a)uf @) (s@) - foe)) f§ @)z, (39
and
K0(0) = [ wole)uf (@13 @)alw)dz — & (0)6"" (6). (40)

where €5 ,(0) = [uo(x Yg(x)dx, and Te(x) = —a%ug(:c), the so called information matrix of the model.
Let 05,9 = Tg(Gn) be the MDPDE with tuning parameter §. Basu et al. (1998) and Basu et al. (2011)
established that

0205, — 00) = N(0p,%5,4(60)), (41)
where
,9(80) = T5.5(60)K 5,4(66)T 5, (60). (42)

In Section 2.1 we presented the asymptotic distribution of the Wald-type test statistic under the simple null
hypothesis when G = Fy,. Our next theorem will show the asymptotic null distribution of the Wald-type test

under the general set-up when the underlying density may or may not belong to the model.

Theorem 9 Let ag,g = T3(Gy) be the MDPDE with tuning parameter 3. Then under the null hypothesis (38),
the asymptotic distribution of the Wald-type test statistic is given by
P
~ ~ _ ~ L
Wg(eﬂg) =n(bp,y — GO)Tzﬁl(OO)(eﬁyg —69) n:)}o Z Ci,ﬁ,g(eo)zizv (43)
i=1
where {Z;}!_, are i.i.d.  standard normal random variables and {c; g 4(00)}_, the set of eigenvalues of

351(60)5,4(60).

Proof. The result follows from (41), using Corollary 2.2 of Dik and de Gunst (1985). m

The above theorem shows that the asymptotic distribution of the Wald-type test statistic, under null hy-
potheis with contamination, is a linear combination of independent x? random variables. On the other hand, if
the assumed model is correct, the asymptotic null distribution turns out to be X?,- In this context, by following

Satterthwaite (1946), our proposal consists of using ¢ 4(89)x2, with

Cp,g(00) = Z Cipg(60) = ftrace (25 (60)%5, 9(00)> (44)

to approximate Y -_, ¢; 3,4(60)Z2. This factor is called Chi-Square Inflation Factor (CSIF) and its value is

equal to unity if only if 35 4(0¢) = 33(0p). Since a value close to unity indicates strong robustness towards

13



the model assumption of the Wald-type test statistic, ¢z 4(6o) is useful as a measure of robustness. Ghosh et al.
(2015) used this approach to illustrate the stability of the tests based on the S-divergence when p = 1. When

p = 1 the CSIF becomes
Jg(@o) Kp,4(00)

(00 = 1000 = e 3,) 72, 00)

In this case, the asymptotic null distribution of the Wald-type test statistic is exactly (not approximately)
C,9(00)X3.-
We shall now illustrate the effect of outliers in CSIF. Let us consider the following fixed point contaminated

density
Jey () = =€) fo, () + Ay,

where € € (0,1) is the contamination proportion, and y is the outlying point. Let us denote ¢z 4(6o), in the
place of ¢g4(0¢) with ¢ = f.,. Note that, the rate of change in ¢g.,(0¢) with respect to ¢ at the origin
gives us the effect of infinitesimal contamination on the test statistic. Similar interpretation as the influence
function analysis may be drawn in this case; and the boundedness of the above mentioned quantity will indicate
robustness towards the assumed model. So % CB,e,y(00)|._, may be regarded as another robustness measure

in this context. Our next theorem gives the explicit form of this index.

Theorem 10 Assume that Kg(0o) is a full rank matric. If g = f. 4, then the infinitesimal change in the CSIF

of the Wald-type test statistic is given by

5 a0y = 2 (5ud, ()75 O0)un, ()~ 15, o) ~ [ 157" @70, (o)

1
- (25 + 1) - %I]—-Q(ya WﬂOaFBO)v (45)

where If2(~,Wg,F90) is (33) and
0, () = trace (To, () J5" (60) )

Proof. See Appendix A.7. =
For the normal location-scale problem, if 3 > 0, then % CB,e,y(00)|._, given in Theorem 10 is bounded,

implying the robustness of the Wald-type test statistic towards the assumption on the model.

Corollary 11 If g = f., and the parameter 0 is a scalar (p = 1), then the infinitesimal change of CSIF is

given by

o) (845,(W) — Loy () — [ Loy (@) 5, " @)dz
Jp(60)

1
(25 + 1) - §I~7:2(y7W87F90)7

where

(6500 — ua, (175,00
TF2 (Wi, Fig) = 25—

We shall now consider the Wald-type test statistic for the composite hypothesis and derive the infinitesimal
change in the CSIF. Let us define 3%(8) = M (6)S3(0) M (0) and X} (6) = M (6)S3,4(6)M (). Then the

following theorem is the analogous to Theorem 9 for the composite hypothesis.
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Theorem 12 Let 55,9 = Ts(Gy) be the MDPDE with tuning parameter 8. Then under the composite hypoth-
esis (38), the asymptotic distribution of the Wald-type test statistic is given by

~ ~ ~ ~ ~ -1 [ — .
Wi (05,9) = an(eﬁ,g) (MT(eﬁ,g)Eﬁ(eﬂyg)M(eﬁ,gD m(6s4) njgo Z Ci,ﬁ,g(eo)zizv
i=1

where {Z;}_, are i.i.d. standard normal random variables and {c} 4 ,(00)}i_, the set of eigenvalues of

i,0,9 %
5 1(00)25 4 (60).

Proof. The proof of this theorem directly follows from (41) using Corollary 2.2 of Dik and de Gunst (1985). m

Theorem 12 shows that the asymptotic null distribution of the Wald-type test statistic is a linear combination
of r independent variables with y7 densities. On the other hand, if the assumed model is correct, the asymptotic
null distribution turns out to be x2. So the Chi-Square Inflation Factor of the Wald-type test statistic for the
composite hypothesis is defined by

—x 1 - * 1 *— *
Gg(00) = D €l (B0) = trace (257(80)%5,4(60)) (46)
=1

The following theorem gives the expression for the infinitesimal change in the CSIF of the Wald-type test
statistic at the model. Let us denote é;;ﬁs)y(eo), in the place of é’fm(eo) with g = f. 4.

Theorem 13 Consider the composite null hypothesis Hy : m (Tg(G)) = 0. If g = f- 4, then the infinitesimal
change in the CSIF of the Wald-type test statistic at the model is given by

0 2

2 Chea(B0) o = (5“50(?!)26(90)]\/-’(00)2;l(go)Mg(eo)ng(oo)ueo(y)—fgo(y)T;O(y)— / foi ()75,

-
1

- (25 + 1) - %IFQ(vaﬁvFOUL

where TFo(-,Wg, Fg,) is (31) and

75, () = trace (To, (-)35(80) M (00)=5" (80) M (60)T 5 (85))

Proof. See Appendix A.8. =

6 Examples

For the location-scale parameters of a normal model it is easy to verify the robustness properties of the Wald-type
tests using the theoretical results derived in this paper. In this section we have presented two other examples,
and justified the stability of the levels and powers of the Wald-type tests in presence of outliers. On the other

hand, it is shown that the classical Wald tests break down as their power influence functions are unbounded.

6.1 Test for Exponentiality against Weibull Alternatives

Our first example considers an interesting problem from quality control and examine the performance of the

proposed MDPDE based Wald-type test for solving it. Suppose we have n independent sample observations
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X1,..., X, from a lifetime distribution having density f(z). We want to test the null hypothesis that the
underlying lifetime (random variable) follows an exponential distribution against the alternative of Weibull
distribution. In other words, we want to test the hypothesis

1 =
Hy: f(z) = fexp,o(z) = ;e_a, x>0,

against

RIE]

Hy: f(x) = fweib,o,0(T) = 0 (E)Ml e_(”)e, z > 0. (47)

g \O

Here 6 > 0 is the shape parameter of the lifetime distribution and o > 0 is the scale parameter. Further note
that without loss of generality, we can assume that the data are properly scaled so that we can take o = 1 (this
fact can also be tested first by applying the same Wald-type test; see Section 4.2 of Basu et al. (2015)). Then,
we consider the model F = {fp(z) = 9z0=le==" . 2> 0,0 > 0} so that we have n i.i.d. observations X;,..., X,

from this family and the null hypothesis (47) simplifies to
Hy:0=1 against H;:0#1. (48)

This problem is now exactly similar to the simple hypothesis testing problem considered in this paper. So we
can construct a robust Wald-type test using the MDPDE @3 of 0.
Note that the MDPDE 55 of #, in this particular example, is to be obtained by minimizing the objective

function

0° BY  (L+B8)8° O~ so-1) —px?

with respect to 8 > 0, where I'(-) represents the gamma function. As noted in Section 2, 55 is y/n-consistent and

asymptotically normal. A straightforward calculation shows that, under Hy : fy = 1, its asymptotic variance is

n2p

given by peal where
B

1
- 2
ng 1+5+(02,/3+ Ci5)s

with
Cass = [ (=) togta)" ==y

Thus, the MDPDE based Wald-type test statistics for testing the simple hypothesis (48) is given by
W@ = " (7, - 1),
28
which asymptotically follows a chi-square distribution with one degree of freedom. Further, at the contiguous
alternatives Hy p, : 0, =1 +n~1/2d, this test statistic has an asymptotic non-central chi-square distribution with
one degree of freedom and non-centrality parameter § = %. Note that, for any fixed level of significance, the
asymptotic power of the Wald-type test statistic under the contiguous alternative decreases as the non-centrality
parameter ¢ decreases and for any fixed d it happens as [ increases. Table 1 represents the asymptotic power
for different values of d and . It is clear from the table that there is no significant loss in contiguous power of

this test for smaller positive values of 3.
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Table 1: Asymptotic Power of the Wald-type test of (48) at 5% level of significance for different d and 3.

B
0 001l 01 03 05 07 1

0.050 0.050 0.050 0.050 0.050 0.050 0.050
0.778 0.788 0.747 0.617 0.558 0.502 0.473
0.981 0.984 0.975 0.930 0.880 0.825 0.790
1.000 1.000 1.000 0.996 0.983 0.973 0.967
1.000 1.000 1.000 1.000 1.000 0.999 0.995
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Tt = W N O A

Next consider the robustness of the proposed Wald-type test as derived above. From the density of the

model, it is easy to see that the score function is given by
1 0
ug(x) = 2T (1 —a7")logx,
so that the influence function of the minimum DPD functional T under the null hypothesis (48) is given by
1 7ﬁib
If(x,TB,Fgu):n—(1+(1—x)logx)e .
B

Therefore, using the result derived in Section 3, the second order influence function of the Wald-type test
statistics W§ becomes

2
IFs(x, Wg,Fgo) = o (1+ (1 —x)logz)®e 207,

Note that its first order influence function is always zero at the simple null. Figure la presents the second order
influence function for several 5. The boundedness of this second order influence function is quite clear from the
figure implying the robustness of the proposed Wald-type test. However, the influence function of the classical
Wald test at 8 = 0 is unbounded implying its non-robustness.

Finally, let us examine the level and power stability of the proposed Wald-type test. Following the results
derived in Section 4, the level influence function of any order will be zero at the null implying the robustness of
its asymptotic level. Further, the power influence function of the Wald-type test at the contiguous alternatives
0, is given by

"PI}'(x,Wg,Fgo) ~ Ky (d%g) dng (141 —z)logz)e P*,
M2 ) M2p
where K;(s) is as defined in Theorem 8. Figure 1b shows the power influence function for some particular 3.

Once again, the power robustness of the proposed test for 8 > 0 is clearly visible from the figure.
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Figure 1: Influence functions of MDPDE based Wald-type test of (48) for different values of 8 (solid line: 8 = 0,
dotted line: 3 = 0.3, dashed-dotted line: § = 0.5, dashed line: g = 1).

6.2 Test for Correlation in Bivariate Normal

Let us now consider another interesting hypothesis testing problem involving the correlation parameter of two
normal populations with unknown means and variances; this problem often arises in several real life applications
when we want to check for the association between any two sets of observation only assuming the normality of
those two populations. Consider the observations X; = (X;1, X;2)7, i = 1,...,n, from the bivariate normal

model {N(u,X)} where p = (u1, pu2)? € R? and

2
o pO102
1
Y=

2
pPO102 g5

belongs to the set of 2 x 2 positive definite matrices. Thus, our parameter of interest is @ = (u1, 2, 01,02, p)T

with the parameter space © = R? x RT x RT x [~1,1]. We want to test for the composite hypothesis
Hy:p=0 against H;:p=#0, (49)

with values of u1, po, 01 and oo being unspecified. In terms of notations of Section 2, we have r = 1 restrictions
with m(0) = p so that M (0) is a 5 x 1 matrix with the last entry 1 and rest 0 and the null parameter space
is ©g = R? x RT x RT x {0}. We shall now develop the Wald-type test statistic for this composite hypothesis
along with its properties.

Using the form of the bivariate normal density, we can see that the MDPDE 55 = (1,8, 2.5, 01,8, 02,8, P8)

of @ with 8 > 0 is the minimizer of

1 1 1+7 Z _TX:.0)
j— e p s
(2m)fotos (1= p2)P2 \VI+E  nf
with respect to 8, where Y (z,0) = (x — )" ! (x — 0). Take any 0y = (1110, 2.0, 1.0, 72.0,0)7 € Op. Then
the asymptotic variance of the MDPDE 55 under 6 = 6 is given by 33(0y) = ng(BO)Kg(OO)ng(HO). A
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straightforward but lengthy calculation shows that

Cs

eETa e 0 0 0 0
0 ﬁ 0 0 0
Ts00)=| 0 N i
0 O ks e
0 0 0 0 T
and
(H;ﬁ 0 0 0 0
0 (Hgijg/%; 0 0 0
K5(00) = 0 0 5??1355/)3%@ 01031(6125222)5/ 2 0
0 0 a1 af?ff 225 )5/2 gﬁf; 23%//32 0
0 0 0 0 G
where Cg = (27)Po;Poy P and O} = 4Cap — C3. Hence,
¢t 0 0 0 0
0 %03 0 0 0
Z5(60) = | 0 0 ¢Pkbo? (PKioion 0O
0 0 Cg/zmgalag g‘;/%}gog 0
0 0 0 0 ¢’
with 2 4 2 2 2
(g =1+ 1 f 55 /ié = —(B (1—'_—5?32;2— 2) and /{% = /321(—1&-,_3;6;2)

Interestingly, note that whenever the null hypothesis p = 0 is true the MDPDE of 1, po and p are asymptotically
independent of each other and also of the MDPDE of o; and os.
Now the robust Wald-type test statistic (18) for testing the null hypothesis (49) is given by

Wi (95) = n22- (50)

which asymptotically follows a chi-square distribution with one degree of freedom under the null hypothesis.
Note that, at 8 = 0, pg coincides with the maximum likelihood estimator of p and hence the proposed test
W, coincides with the classical Wald test for the present problem. Further, under the contiguous alternatives
H, @ pn = n~1/2d, the asymptotic distribution of W, (55) is a non-central chi-square distribution with one

degree of freedom and non-centrality parameter Cgs/ 242,

Note that, for any fixed level of significance, the
asymptotic power of the Wald-type test under the contiguous alternative hypotheses decreases as the non-
centrality parameter decreases and for any fixed d it happens as 8 increases. However, as we can see from Table
2, the loss in contiguous power of the Wald-type test is not very significant for smaller positive values of S.

Now let us examine the robustness of this Wald-type test based on the results derived in the present paper.
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Table 2: Asymptotic Power of the MDPDE based Wald-type test of (49) 5% level of significance for different &
and 5.

B
0 001 01 03 05 07 1

0.050 0.050 0.050 0.050 0.050 0.050 0.050
0.516 0.516 0.508 0.463 0.408 0.354 0.287
0.851 0.851 0.844 0.800 0.735 0.662 0.553
0.979 0.979 0.977 0.962 0.932 0.887 0.797
0.999 0.999 0.999 0.997 0.991 0.978 0.937
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T = W N O

Note that the influence function of the minimum DPD functional T'g here under the null 8 = 6, is given by

(1+ B)3 (21 — ) 0
(1+ B)3/2(m2 — p2) , (( e )2) 0
_ 52, ((@46%)(@1—p1)? _ B(zz—pz)® - (R B(148)?
I.F(w7T37F90) - (1'("'1ﬂ+)ﬂ2) 1 (( ) - ) — 2) e 1 2 - g1
oy o3 (14+52)
(1?6);/;)02 ((2+62)(zzw2)2 _ B@i—p)® 2) ﬁ((Hﬁ@f o5
1+ o2 o? 1+
3/2 (z1—p1)(x2—p2)
(14 )%/ # 0

Using the result derived in Section 3, the first order influence function of the Wald-type test statistic W is zero
at the null and its second order influence function at the null is given by

2(1 4 28)°/2
(1+ B)*0io3

Clearly, this influence function is unbounded at 5 = 0, but whenever 5 > 0 it is bounded implying the robustness

(301—51)2 + (12—142)2)

713 5
I-FQ(:E? Wﬁa Feg) = (1’1 — /11)2(502 — IL,LQ)QQ ( o1 93

of the corresponding test statistics. Figure 2 shows the plot of this influence function for some particular 3. It
is clear from the figures that the extend of the influence function over the contamination point = (1, )7

decreases as 3 increases. this fact can also bee seen by looking at the gross-error sensitivity of the test statistics

given by
n 5/2 _ .
o 72¢<%(+12‘f5)) eVB, if B> 0,
S I8 =0

Clearly vj decreases as (3 increases implying that the extent of robustness of the MDPDE based Wald-type test
statistics increases.

Next, we shall consider the level and power stability of the present test. As shown in Section 4.2, the
level influence function of any order will be zero at the null hypothesis. Hence the level of the Wald-type test,
constructed using asymptotic distribution, will be robust under infinitesimal contamination. On the other hand,
if we consider the contamination proportion and the difference of alternatives p,, from null converges to zero at
the same rate of n=/2 (p,, = n~'/2d), the power influence function of this test is given by

(1L+8)*/2¢;, "

0102

x]— 2 Ty — 2
(151)+(252)>

-2
PI.F(:B, Wﬁ, .Fgo)]:{ik (4[;5/2d> (:L’l — ,ul)($2 — IuQ)e 2 ( 71 72 ,
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Figure 2: Influence function of Wald-type test statistics for testing of (49) at the null for different values of 38

(Here we have taken g1 = ps =0 and 01 = 02 = 1).
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where K (s) is as defined in 3.

Again, it is clear that the above power influence function of the MDPDE based test statistic is bounded for
all 8 > 0 and unbounded at 8 = 0 (see Figure 3). This justifies the power robustness of the proposed MDPDE
based Wald-types tests with 5 > 0 over the usual Wald test at g = 0.
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Figure 3: Power influence function of Wald-type test of (48) at 5% level of significance and d = 3 for different

values of .

6.3 Test for the General Linear Hypothesis in Fixed-design Linear Regression

Models

The robust minimum DPD estimators under the fixed-design Linear Regression Models are considered in Ghosh
and Basu (2013), who have also derived their asymptotic and robustness properties in great detail (also see

Ghosh and Basu (2015a)). Indeed, Ghosh and Basu (2013) considered a general class of models based on the
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non-homogeneous data and developed the theory of the MDPDE under that general set-up; the linear regression
with pre-fixed (given) covariates comes as a special case of the general set-up. Under the same general set-up
of independent but non-homogeneous data, Ghosh and Basu (2015b) have developed the divergence based tests
of different kind of statistical hypothesis and discussed their properties and application in the fixed-design
linear regression model. A nice study about robust M-type testing procedures for linear models can be seen in
Markatou et al. (1991). Here, we briefly mention the corresponding Wald type test for only the class of general
linear hypothesis and discuss their influence robustness following the theory developed in this paper.

Suppose we are given a fixed n X p design matrix, where the i-th value of the p covariates are denoted as

x; = (Ti1,...,25p)7 for i =1,...,n. Consider the fixed-design linear regression model
yi=xi0+e, i=1,...,n, (51)
where the error ¢;’s are assumed to be i.i.d. normal with mean zero and variance o? and ¥ = (V1,...,9,)T

denote the vector of regression coefficients. Then, for each i, y; ~ N (z! 9, 0?) which are clearly independent
but not identically distributed.

Following Ghosh and Basu (2013), we can derive the /n-consistent MDPDE 55 = (5;, 8[23)T of the pa-
rameters 6 = (19T, 02)T with tuning parameter 3, which are asymptotically independent normally distributed
under conditions (R1)—(R2) of Ghosh and Basu (2013). In particular, if 99 and o3 are the true values of the

parameters then we have

T~y \1/2(3  _ £ 3/2 2
VIXTX) 2B~ 90) =5 N, (0,63%08), (52)
~2 9y L 5/2 1 4
\/ﬁ(aﬁ ag) = (0,4% K50g), (53)
where (3 and /{é are as defined Section 6.2 and X = [z; ®2 -+ x,]T.

Now, let us consider the class of general linear hypothesis on 19 with unspecified o as given by
Hy:L™9 =1y against H;:L"9 #l, (54)

where the p X r matrix L is known with rank (< p) and [y is a known r-vector. Due to full row rank of
the matrix L, there exists a true parameter value 9, satisfying the null hypothesis LT 9y = lg. In particular,
this general class of linear hypothesis consider the popular problem of testing the significance of the model
Hy : 9 = Y¥¢ where 7 = p, lo = 9¢ (usually a zero vector) and L = I, the identity matrix of order p. Also the
test of significance of any one regression component Hy : ¥; = ¥Jy; belongs to the class of hypothesis (54) with
r =1, lo = Yo; and L is p-vector of zeros except the j-th component which is 1.

In the notation of Section 2.2, here we have m” (8) = m” (9,0?) = L™ — lp and M (8) = M (9,0?) =

LT o,

T
ol o

. Hence, the Wald-type test for this general linear hypothesis in (54) is given by

n
<3/2A2

(795 —10)" (L7(XTX)7'L) " (K7D~ lo). (55)
B 9B

W, (95,53) =
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which asymptotically follows x?2 distribution under the null hypothesis. Also, under the contiguous alternative

*
Hln

in (21), given by LT® = 1y + n~1/28, the asymptotic distribution of the test statistics Wn(aﬂ,ﬁg) is

non-central chi-square with the non-centrality parameter wg defined as
-1
ws = (o528 (LT(XTX)7'L) o

Now, let us derive the influence functions of the above Wald-type test statistics. However, as noted in
Ghosh and Basu (2013, 2015b), in this case of non-homogeneous observations, the corresponding statistical
functional and the influence functions will depend on the sample size through the given values of covariates
x;’s. In particular, we need to assume that the true distributions of each y; are (possibly) different, say H;
(i = 1,...,n), depending on the given values of z;. Then, the statistical functional corresponding to the

Wald-type test (55) is given by

1
LT(XTX)—lL)
Tg(Hy,..., Hy)

W (Hy,..., Hy) = C5 (LTTZ(Hl,...,Hn) —l0>T ( (LTTg(Hl,...,Hn) —l0>,

where TZ and T are the statistical functionals corresponding to the MDPDESs 1A95 and Eg, as defined in Ghosh
and Basu (2013). Since there are n many different distributions, we can assume the contamination in any one of
these distributions or in all the distributions. Corresponding influence functions of the MDPDEs are derived in
Ghosh and Basu (2013). Using them and following the arguments used to proof Theorem 1, we get the influence
functions of the proposed Wald type test. In particular, at the null hypothesis, the first order influence function
is zero for any kind of contamination and the second order influence function at the null is given by
B(t;—=l99)?
TFa(t; Wp, Fo,) = 2(1 + B)°C; P05 2 (ti — aT90) T Daie %, 8g=(95,02)7,
if the contamination is only in i-th direction at the point ¢;, and

n _ Bti—=l90)?
TFy(tr, ... tn; W, Fa,) = 2(1+ 8)°¢; %05 3 (t; — a7 90) 2! Daje a
=1

if there is contamination in all the directions at the points t;’s. Here
-1
D=(X"X)"'L (LT(XTX)‘1L> LY (xTx)".

Next we consider the level and power influence functions of the proposed Wald-type test. As in Section
4.2, it follows that the level influence function is always zero implying the level robustness of the proposal. For
power influence function, we again consider the alternatives H;, : L9 = lg +n~'/2§ and proceed as in Section
4.2 to obtain the PIF for different types of contamination. In particular, for contamination only in the i-th

direction at the point ¢; we get

K* 1 3/2 _ﬁ(ti—m?l"o)Z
PLF(ts;; Wg, Fo,) = T(wi?ﬂSz t 2 [6TDP331'] (t — ] Vo)e SO
g 90

where

Dp = (LT(XTX)‘lLYl LY (XTx)"!
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Similarly, if the contamination is assumed to be in all the directions at the points ;s (i = 1,...,n), the

corresponding power influence function is given by

K* 1 3/2 n _ Bti—=] 99)?
PLF(t1, ... ta; Wp, Fa,) = = (“23,52 . 5D, dowilti—afdo)e 70
8 90 i=1

Clearly, the power influence function is bounded for all 5 > 0 implying robustness and unbounded at 8 = 0

implying the non-robust nature of the classical Wald test.

Remark 14 For the testing of significance of regression model (Hy : ¥ = 0,) we have r = p, Iy = 0, and
L = I,,, the identity matriz of order p. In this case the Wald-Type test statistic (55) simplifies to

n T

;o
=725 Vs (X X)Vs,
505

Wn(’ﬂﬂv 8[23) =

which is asymptotically X]QJ under the null hypothesis. Under the contiguous alternatives HY, , its asymptotic
distribution becomes the non-central chi-square with p degrees of freedom and non-centrality parameter wg =
ng/zao_Q(ST(XTX)(S. Noting that the asymptotic distribution under the contiguous alternatives depends on
the tuning parameter 5 only through the quantity zetag and examining its form, one can easily check that the
asymptotic contiguous power of the proposed Wald-type tests decreases only slightly with increasing values of 8
so that the power loss under pure data is not significant at small positive values of (.

On the other hand, under contamination we gain high robustness with these positive values of . For
illustrations, we have presented (Figure /) the form of the second order influence function of the tests and the
power influence function for various values of 5 under contamination in one direction (say i-th). In this special

case, they have the simplified form (with 99 = 0,)

2
Bt

TF (15 Ws, Fo,) = 201+ 8)°¢; 072 [l (XTX) '] i2e” 1,

and ) .
K* 1 3/2 _ Bt7
PLF(t;; W, Fo,) = T(“ﬂszﬂ ) (67| tie 5.

C@ 08

It is clear from the figure that the influence functions are bounded for all # > 0 and their maximum values

decreases as (3 increases implying the increasing robustness.
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(a) IF of the test statistics with =7 (X7 X) la; = 1 (b) PIF with 6Ta; =1 and 67 (XTX)§ =3

Figure 4: Influence functions of MDPDE based Wald-type test of (54) with o9 = 1 for different values of
(solid line: 8 =0, dotted line: § = 0.3, dashed-dotted line: 8 = 0.5, dashed line: 5 =1).

7 On the Choice of Tuning Parameter (3

After deriving several important properties of the Wald-type test, a natural question that arises from the
point of view of a practitioner is what value of the tuning parameter should be used for a particular dataset.
For the MDPDE the role of the tuning parameter 8 has been well studied in the literature, which indicates
that robustness increases with 3, but efficiency decreases at the same time. So ( is selected that gives a
trade-off between robustness and efficiency of the estimator. However, a small positive value of 3 is generally
recommended that provides enough robustness with a slight loss in efficiency (see Basu et al., 1998 and Basu
et al., 2011). Broniatowski et al. (2012) have reported that values of 5 € [0.1,0.25] are often reasonable choices.
We largely agree with this view, although tentative outliers and heavier contamination may require a larger
value of B in some cases. Apart from a fixed choice of the tuning parameter, one may dynamically select an
optimum value of 8 based on the real data. Hong and Kim (2001) and Warwick and Jones (2005) have provided
some data driven choices of § for the MDPDE. In case of hypothesis testing the optimality criteria are different
from the estimation case. Here the asymptotic power against the contiguous alternative may be regarded as a
measure of efficiency of the test, which decreases with 5. On the other hand, the robustness of the test against
contamination increases as ( increases. Therefore, our suggestion in this regard is to choose an optimum value
of B that gives a suitable trade-off between the asymptotic power against the contiguous alternative and a
robustness measure, see Ghosh and Basu (2015¢) for details. As the robustness of the Wald-type test statistic
depends primarily on the robustness of the estimators, another simple criterion to choose an optimum value of
[ is to focus on the same optimum value for the estimator.

To avoid selecting a unique and specific tuning parameter, one may construct a test combining a set of

Wald-type tests corresponding to different 3. Lavancier and Rochet (2014) have derived a general procedure to
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combine a set of estimators. This idea of constructing combined tests might be incorporated.

8 Concluding Remarks

Basu et al. (2015) have proposed the Wald-type test statistics based on the minimum density power divergence
estimators. They have observed strong robustness properties of the tests by using extensive simulation results.
In this paper we have given proper theoretical foundations behind the robustness properties of the Wald-type test
statistics. The influence function analysis is carried out to observe the effect of an infinitesimal contamination
on the test statistics. To justify the stability of the level and power under a contaminated distribution we have
studied the level and power influence functions. It is shown that the level influence function of a Wald-type test
statistic is zero, so the level of the test remains unchanged in infinitesimal contamination. For the contiguous
alternative the power influence function is bounded whenever the influence function of the MDPDE is bounded.
Other than location-scale parameters for the normal model we have shown some examples where the power
influence functions are bounded, and it gives the theoretical justification behind the stability of the power
function. On the other hand, the power influence functions of the classical Wald tests are unbounded, and as a
result they exhibit poor power in contaminated data. We have also proposed the chi-square inflation factor to
measure the robustness property with respect to the model assumption, and studied its infinitesimal change for
the Wald-type test statistics. On the whole, we hope that this research establishes that the tests proposed by

Basu et al. (2015) not only perform well in practise, but also have theoretically sound robustness credentials.

Acknowledgements: The authors would like to acknowledge the comments of the three referess, since they

helped improving the paper.
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A Appendix

There is some overlap between the Lehmann and Basu et al. conditions. In the following we present the

consolidated set of conditions which are the useful ones in our context.

A.1 Lehmann and Basu et al. conditions

(LB1) The model distributions Fg of X have common support, so that the set X = {x|fg(x) > 0} is independent
of 8. The true distribution H is also supported on X', on which the corresponding density h is greater

than zero.

(LB2) There is an open subset of w of the parameter space ©, containing the best fitting parameter 8 such that
for almost all & € X, and all 8 € w, the density fg(x) is three times differentiable with respect to 8 and

the third partial derivatives are continuous with respect to 6.

(LB3) The integrals ff;JrB (z)dx and ffg (z)h(z)dx can be differentiated three times with respect to €, and

the derivatives can be taken under the integral sign.
(LB4) The p x p matrix J (@), defined in (6), is positive definite.
(LB5) There exists a function Mz () such that [V Ve (z)| < M (x) for all @ € w, where Vy(x) = [ f;+6(y)dy—

(1 n %) f3(@) and Ey[M;(X)] = mp < oo for all j, k and [.

A.2 Proof of Theorem 1

The second order influence function of Wg() is given by

PWI(Ge)
Ifg(m,Wg,G):# ,
e=0
and
OW5(Ge) =2TF (2, T3, G)X5"(00)IF(x,T3,G
852 — s 4L B Jé; 0 T, 13, )

+2(T3(G) — 00)" 5" (80)IF2(w,T5,G).
As T'g(Fp,) = 6y, we obtain
IFa(x, Wy, Fo,) =2LF" (2, T, Fo,) 25" (00)IF (x,Tp, Fo,).
The second order influence function of (29) is given by

02 W (G-
I]fg(a:,Wg,G):7aig )|
e=0
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and

02 Ws(G.)
0e?

=25 (@ T3 O M(TH(G)) (M7(T5(C) B (T5 (@) M(T5(@)) M (T5(G)IF (&, T5.G)

1 M™(T5(Ge)IF(x, T, Gs)>

e=0

MT(Tg(G))I]:(:L', T,Bv G)

+mT(Ts(G)) m(Ts(G))

= 2T F (&, T, Q)M (T(C)) [ M (T5(G)) 25 (T(C)M(T(G))] M7 (T5(G)IF(2.T5,6)
= 2 (g () 15, () — €(00)) 75" (00)M(80) (M7 (80)25(00)M(8y))
x M (80)J5"(60) (ue (@) /5, () ~ € (60)) .
As Tg(Fy,) = 69, we obtain
IFs(2,Ws, Fo,) = 2IF (2, T, Fa,) M (6) (MT(HO)EB(eo)M(HO))_l

x M*(80)IF(x,Ts, Fa,).

A.3 Proof of Theorem 3

Let us denote the quadratic form of a symmetric matrix A,, as ga(z) = z7 Az. We shall frequently use the
following result that
ga(z +h) =qa(z) +2h" Az + qa(h), (56)

where z and h are two vectors in RP. Using 0 = Ts(FF. ) and equation (56), with z = 55—0; and

n,e,e

h =0; -0, we get
W2B5) = s (0,) 05 — 00) = 4516, (B — 0) + (6}, — 60))
- qnzgl(eo)(aﬁ —0%) +20(85 — 02)7551(85) (0%, — 6o) + Qs (00) (67 — 60),

ie.,
W (85) = W,(6}) + qnzgl(eo)(gﬁ —0;,) +2n(6s — OZ)TEEI(OO)(OZ —6o). (57)

Let us consider 8} as a function of e, = ¢//n, i.e. 8% = f(e,). A Taylor series expansion of f(g,) at e, =0

gives

> k
= O+ GIF (@.T5 Fo,) + > (5) TFe (@ To o).
Therefore, we get

Vn(0;, —0,) =eIF (x, T, Fo,) + 0p(1p),

V(0 — 8y —n~Y2d) = eIF (x, T3, Fo,) + 0,(1,),
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and thus
Vn(0;, — 0¢) = d+eZF (x,Tp, Fo,) + 0p(1p)
= &s,m,ﬁ(GO) + 0p(1p). (58)
So, in (57), both summands are given by
WO(0,) = d 2 5(60)55" (B0)d- 0 5(80) + 0y (1),
2785 — 0)7 55" (00)V(8), — 00) = 2110 — 0)7 55" (80) (dep(80) + 0y(1,) ) -
and hence according to the shape of (56), (57) is equal to

W2(85) = 510, (Vi85 = 0;) + e 5(60) ) +0,(1):

V(B —6;) = N(0,,55(60)), (59)
we get

WR(B5) — %2 (5).

n—oo
~T ~
with § =d_ , 4 (Bo)Egl(Ho)dE,mﬁ (8p). This proves the first part of the theorem.
Finally, the second part of the theorem follows from th infinite series expansion of the non-central distribution

function (and density) in terms of that of the central chi-square variables;

Bwo(On,e,@) = lim Pge YE(WS(@?) > Xp.o)

n—oo

1%

P(xz(0) > xpa) =1 Few) (Xpa)

ZC ( ea,8(600), 35 (90)) (Xpr20 > Xp.a) -

A.4 Proof of Theorem 6

Let us consider the expression of Syyo (0,,,¢,x) as obtained in Theorem 3. Note that, by definition

0
PLF(x, W}, Fo,) = e ng(en,s,m)L:O

o0 a .
=3 o Co (e (80), 357(00))| P (ias > )
v=0

(0 . 5
%{Gt Cv <t,2ﬂ1(60)) ‘t_ao,m,g(eo)} {(98 5 m,ﬁ(eo)

where the last step follows from the chain rule. But Eo’m, 3(60) = d and routine differentiations yield

_0} P (X‘72)+2v > X;Z;,a) )

9 ~
&ds,w,ﬁ(%) =T1IF(z,Tg, Fe,),
and (T ) »
) tTAt)" r LT
— —tTAt) Ate— 2t At
5;Cv (8:A) = ~—oi— (20 ) Ate

Combining these and simplifying, we get the theorem.
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A.5 Proof of Theorem 7
Let us denote 87, = Ts(FL, ,). Using equation (56), with 2 = m(65) — m(8;) and h = m(83,), we get
Wal@5) =t 15, (VAm(82)) = a5, (Vi (m(83) ~ m(6)) +Vim (65,))
= 13, (VAmM(B5) ~m(0,))) + 20 (m(B5) ~m(0)) 25 @)m(0) + a5, (VAm(6}))
where 3%(09) = M " (00)25(00) M (0y)., i.e.,
WaBs) = Wa(03) + g5, (Vilm(@s) ~mi(83))) + 20 (m(@s) ~m(6;)) 57 (B0)m(0;).  (60)

Now, as in the proof of Theorem 3, we can show that

\/H(O:L - 00) =d + eIF (ZC,Tﬁ,FgU) + OP(]'P)

= de0.5(00) + 0 (1), (61)
Using a Taylor series expansion, we get
m(8;,) = m(6o) + M (89) (65, — 60) + 0 (||6;, — Bol|) - (62)
As m(60y) = 0,, from (61) it follows that
Vim(0) = M (00)de . 5(80) + 0p(1,).

Further, since (59) holds, a similar Taylor series expansion of (62) yields

Vi (m(8s) ~ m(6;)) 5 N(0,,35(60)) (63)
and
VS (8s) (m(Bs) — m(6;)) S5 N(0,,1,).
Thus, we get

U@, (VAMBs) —m(03))) 5 ¥2.

Also, from (61) we have

Hence

Wn(gﬁ) = Inxy1(00) ([’m(aﬁ) - m(OZ)} + \}EMT(GO)E‘S@,Q(GO)> +op(1).

As it holds (59), we get



~T ‘
the non-central chi-square distribution with degrees of freedom r and non-centrality parameter § = d_ ,, 5(60)M (00)2;_1 (6o
This proves the first part of the theorem.
Second part of the theorem follows from above using the infinite series expansion of the non-central distri-

bution function (and density) in terms of that of the central chi-square variables:

Bw, (On,e,x) = lim Ppr_ (W,(85) > x2,)

n—0o0

S P(Xis > Xoo) =1— Few(Xia)

= Z CU (MT(OO)EE,m,ﬁ(GO)a 22‘371(00)) P (X%-{—QU > X?Q",Ot) .
v=0

A.6 Proof of Theorem 8

The proof is similar to that of Theorem 6, considering the expression of Sw, (0,,¢, ) from Theorem 7. We

omit the detailed calculation for brevity.

A.7 Proof of Theorem 10

Let us denote Jp 4(0), Kp4(0), £§5,(0), Xp,4(0) as Jpy(0), Kpey(0), €5.,(0), g y(0) respectively,
when g = f; 4. The infinitesimal change in the CSIF at the model is given by

0

_ 1 _ 0
&cﬁ@y(e) = ];trace (251(0)85 25»671!(0)5:0) .

Now

0 0 —1 -1 —1 0 -1
%251579(9) = %Jﬁ,a,y(0)Kﬁ75»y(0)‘]ﬂ,e,y(9) + JB,S,y(e)%Kﬁﬁ’y(O)Jﬂ,s,y(e)

_ 0 .
+ Jﬁ,ls,y(e)Kﬂ@y(G)E‘Iﬁ,la,y(e)
7]

_ _ 0 _
= _Jﬁ,le,y(e)%Jﬁ,syy(e)zﬁ,syy(e) + Jﬁ,legy(e)&Kﬁﬁyy(a)']ﬁ,ls,y(e)

4 d T
(IO T2 0)) (64

where

S T5e0(0) = [ (To(a) ~ Bua(e)uf (@) (2, - fo(e) § (@)de

= 12 (y) (To(y) — Bus(y)ul () - / (To(x) — Buo(@)ul (x)) £ (x)dz
— 5T5(0) + 12 () (To(y) — Buo(y)ul (y)) - / To(x) [} (x)da, (65)

and

0 0 0
K0 = [ wo(@)uf @) (@) (A~ fol@) de ~ €5 O)85.4(6) ~ €50, (0)56E.,(6)

—wo)F )15 w) ~ [ ol (@)1 (@ €50 (0)5 €5 0) ~ (65.0(0)5 €5, 0))

(66)
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Since
55000 = [uo@)f5 (@) (By  fol@) de = ua() 1§(w) ~ [ wo(a) (g (@)da
= o (y)fs (y) — £4(0),
€5.(0)5€5.4(0) = [ uo@)f5 (@) (1= @) + ey) de (o (v) 15 (w) — €4(0))
= £5(0) (wo(w) () — €(6)) = €,(0)uf (1) 5 (v) — £:(0)€H(0),

0
SB,O,y(0>% €g,e,y(0)

e=0
we get from equation (66)

o KO = wo(w)u ()13 ()~ [ wo(a)uf (@)1 @)

0 T 0 T ’
— 5/870)'9(0)% £ﬁ757y(0)‘8=0 - <€B,O,y(0)a€ £ﬁ757'y(0)‘5=0>

= up(Y)ug () fa (y) — K5(0) — £5(0)ug (y) f5 (y) — ua(y)E5(0)f5 (u) + €5(0)E5(6)
=—K3(0) — £5(0)ug (y)f5 (y) — ue(y)E5 (0)f5 (y) +ue(y)ug (y) 5’ (y) + £5(0)E5 ()

= —K5(0) — (£(0) ~ o) 15 ) (5(0) ~wo(w) 1 w)) (67)
Using (65) and (67), we get
T3 0) T 50 4(0)25(0) = 5545(0) + 4, (1) 5 (0) (To(y) — Buo(y)uf (4)) 25(0)
= 750) [ Lo@) £y @)z (6), (68)
and
T30 5 Ken(O)]_y T3 (6) = ~5(00)

—751(0) (£5(0) ~ o) 5 W) (€5(0) ~ wow) 5 (w)) T5'(0).  (69)

respectively. Combining (64), (68), (69) we get

zglw)% 25e9(0)].—y = 2681, — J5(80)K ;' (60) (fﬁo (y) (To(y) — Buo(y)ug () + / Io(x) ;*’%w)dw) 25(0)

~5,(0) (féi, ) (Toly) — Pruo(w)uf ) + [ To(a) iy
W)/

(x) x d:c) J5(80)K 5" (60)
;) (£4(0) —ue

)
T
— I, ~ T5(80) K5 (60) (£5(0) — uo(y W15 w) I5'6),

and thus the theorem follows from

trace (251(0)56 25@,1}(0)8_0) =—(28+1)p — trace (( —ug(y ) ( —ug(y y))T K§1(9)>

susace  (15,0) (Totw) ~ oy / i) J5110))

TFs(y, WS, Fo,) = trace ((56«)) —uo) 5 w)) (€5(0) ~uow) /5 v)) K;(e)) :

and taking into account
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A.8 Proof of Theorem 13

From (64), (68), (69) we get

=5 (60) 55 e 00|y = ~51,

— 35 (80) M7 (80)T ;" (60) (fé*O(y) (To, () — Buo, (y)u, (v)) - / To, ()5, B<w>dw) Z5(80) M (60)
— M"(66)%5(6,) (féi (y) (To, () — Bus, (y)ug, (¥)) - / To, (@) o, 6<w>dw) T 5" (60)M(80)%;" (60)
1, - 22‘1(90)M;§(90)J§1(00) (56(00) — ug, (y)fgo(y)) (53(00) — ug, (y)fgo(y))T JEI(BO)M(BO)a

and thus the theorem follows from

trace (25 (00) - Zaca(O0)_y ) =~ (254 1)7

Oe
~ trace <(sg<eo> ~ o, ()15, ) (5(60) — o, () i, () ng(oo)M(eo)EEI(QO)MT(OO)J51(90)>
~ Strace ((fé’g () (Toy () — Bus, (W)l () — [ To, () ;jﬂw)dsc) 525(80) M (80) 25 (00) M, <eo>Jﬁ1<eo>)
and taking into account

IfZ(vaﬁaFﬂo)

_ trace ((eﬁwo) ~ o, (¥)/5,®)) (£5(60) — ua, (y)fﬁo(y))T J5! (GO)M(eo)EZI(OO)MT(OO)ng(QO)) .
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