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Abstract

We consider a robust version of the classical Wald test statistics for testing simple and composite null

hypotheses for general parametric models. These test statistics are based on the minimum density power

divergence estimators instead of the maximum likelihood estimators. An extensive study of their robustness

properties is given though the influence functions as well as the chi-square inflation factors. It is theoretically

established that the level and power of these robust tests are stable against outliers, whereas the classical

Wald test breaks down. Some numerical examples confirm the validity of the theoretical results.
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1 Introduction

Testing statistical hypothesis is an important area within the class of statistical inference procedures. Most

widely used and popular classical tests are based on the likelihood ratio, score and Wald test statistics. Although

they enjoy several optimum asymptotic properties, they are highly non-robust in case of model misspecification

and presence of outlying observations. It is well-known that a small deviation from the underlying assumptions

on the model can have drastic effect on the performance of these classical tests. So, the practical importance of

a robust test procedure is beyond doubt; and it is helpful for solving several real life problems containing some

outliers in the observed sample.

The purpose in robust testing of hypothesis is two-fold. A good robust test should exhibit stability under

small, arbitrary departures from the null hypothesis (robustness of validity), and should have good power under

small, arbitrary departures from specified alternatives (robustness of efficiency). However, these robustness

aspects of a test are not widely explored as compared to the robustness of the estimators. Hample’s influence

∗This paper was supported by Ministerio de Economı́a y Competitividad of Spain, Grant MTM-2012-33740.
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function (Hampel, 1974) gives an important measure of robustness to investigate the local stability along with

the global reliability of an estimator. Ronchetti (1979, 1982a,b) and Rousseeuw and Ronchetti (1979, 1981)

have extended the concept of an influence function in testing a null hypothesis about a scalar parameter (see

Hampel et al., 1986, Chapter 3). Besides considering the influence function of the test statistic, they have also

proposed to study the behavior of the level and power of the test as functions of an additional observation at

any point x – it reflects the influence of the additional infinitesimal contamination on the level and power of

the test. An essential result of this approach is the approximation of the asymptotic level and power under

a contaminated distribution in a neighborhood of the null hypothesis. A very nice review about the influence

function in the study of robustness of a test statistic is given in Markatou and Ronchetti (1997). The idea

of influence function analysis has been studied extensively in different tests by Cantoni and Ronchetti (2001),

Ronchetti and Trojani (2001), Wang and Qu (2007) and Van Aelst and Willems (2011) Recently, Toma and

Leoni-Aubin (2010), Toma and Broniatowski (2011), Ghosh et al. (2015) derived some important results for the

tests based on the divergence measures.

In this paper we explore the theoretical robustness properties for a class of Wald-type tests recently proposed

by Basu et al. (2015). The family of tests is based on the minimum density power divergence estimators

(MDPDE); and it has been developed for testing both simple and composite null hypotheses. Basu et al. (2015)

have empirically demonstrated that the Wald-type test exhibits strong robustness properties, but relevant

theoretical results supporting the empirical findings are not derived. Here, we will fill that gap by developing

some theoretical results on robustness for the general Wald-type tests based on the influence function analysis.

In comparison with the paper by Heritier and Ronchetti (1994), where robustness of some Wald-type tests with

M-estimators are studied, our paper covers more general composite hypothesis testing, since it is not restricted

only on linear transformations. Moreover, other than level and power influence functions we have also studied

the chi-square inflation factor which measures an overall departure of the test statistic from the null distribution

due to contamination.

The rest of the paper is organized as follows. In Section 2 we have presented some notations and results

from Basu et al. (2015) which are necessary to develop further theoretical results for this paper. Section 3

presents the influence functions of the Wald-type test statistics. The power and level influence functions for

testing simple and composite null hypotheses are derived in Section 4. The chi-square inflation factors for

Wald-type test statistics are calculated in Section 5. In Section 6 we have presented some examples to justify

the theoretical results developed in this paper. A discussion on choosing the tuning parameter for the density

power divergence measure is given in Section 7, and finally, some concluding remarks are provided in Section 8.

2 Preliminaries

Let G denote the set of all distributions having densities with respect to a dominating measure (generally the

Lebesgue measure or the counting measure). Given any two densities g and f in G, the density power divergence
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with a nonnegative tuning parameter β, is defined as

dβ(g, f) =


∫ {

f1+β(x)−
(

1 + 1
β

)
fβ(x)g(x) + 1

β g
1+β(x)

}
dx, for β > 0,∫

g(x) log
(
g(x)
f(x)

)
dx, for β = 0.

(1)

The divergence corresponding to β = 0 may be derived from the general case by taking the continuous limit as

β → 0, and in this case d0(g, f) turns out to be the Kullback-Leibler divergence. Details about the inference

based on divergence measures can be found in Basu et al. (2011) and Pardo (2006).

We consider a parametric model of densities {fθ : θ ∈ Θ ⊂ Rp}, and we are interested in the estimation

of θ. Let G represent the distribution function corresponding to the density g that generates the data. The

minimum density power divergence functional at G, denoted by T β(G), is defined as

dβ(g, fT β(G)) = min
θ∈Θ

dβ(g, fθ). (2)

Therefore the MDPDE of θ is given by

θ̂β = T β(Gn), (3)

where Gn is the empirical distribution function associated with a random sample X1, . . . ,Xn from the popu-

lation with density g (having distribution function G). As the last term of equation (1) does not depend on θ,

θ̂β is given by

θ̂β = arg min
θ∈Θ

{∫
f1+β
θ (x)dx−

(
1 +

1

β

)
1

n

n∑
i=1

fβθ (Xi)

}
, (4)

if β > 0 and

θ̂β = arg min
θ∈Θ

{
− 1

n

n∑
i=1

log fθ(Xi)

}
, (5)

when β = 0. Notice that θ̂β for β = 0 coincides with the maximum likelihood estimator (MLE). In Basu et al.

(1998), it was established that the MDPDE is an M-estimator.

The functional T β(G) is Fisher consistent; it takes the value θ0, the true value of the parameter, when the

true density is a member of the model, i.e. g = fθ0
. Let us assume g = fθ0

, and define the quantities

Jβ (θ) =

∫
uθ(x)uTθ (x)f1+β

θ (x)dx, Kβ (θ) =

∫
uθ(x)uTθ (x)f1+2β

θ (x)dx− ξβ (θ) ξTβ (θ) , (6)

where

ξβ (θ) =

∫
uθ(x)f1+β

θ (x)dx and uθ(x) =
∂

∂θ
log fθ(x).

Then, following Basu et al. (1998) and Basu et al. (2011) , it can be shown that

n1/2(θ̂β − θ0)
L−→

n→∞
N (0p,Σβ(θ0)), (7)

where

Σβ(θ0) = J−1
β (θ0)Kβ(θ0)J−1

β (θ0). (8)
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2.1 Wald-type Test Statistics for the Simple Null Hypothesis

In Basu et al. (2015) the family of Wald-type test statistics

W 0
n(θ̂β) = n(θ̂β − θ0)TΣ−1

β (θ0)(θ̂β − θ0) (9)

was considered for testing the simple null hypothesis

H0 : θ = θ0 against H1 : θ 6= θ0, (10)

where θ0 ∈ Θ ⊂ Rp. The asymptotic distribution of W 0
n(θ̂β), defined in (9), is a chi-square with p degrees of

freedom. In the particular case when β = 0, i.e., the MDPDE coincides with the MLE, the variance-covariance

matrix, (8), coincides with the inverse of the Fisher information matrix of the model and then we get the classical

Wald test statistic for testing (10). The power function βW 0
n

of the Wald-type test statistics at θ∗ ∈ Θ− {θ0},

is given by

βW 0
n

(θ∗) ∼= 1− Φ

( √
n

σW 0
n

(θ∗)

(
χ2
p,α

n
− ` (θ∗)

))
, (11)

where

`(θ∗) = (θ∗ − θ0)
T

Σ−1
β (θ0) (θ∗ − θ0) ,

σ2
W 0
n

(θ∗) = 4 (θ∗ − θ0)
T

Σ−1
β (θ∗) (θ∗ − θ0) .

Here α is the level of the test, χ2
p,α is the 100(1−α)-th percentile of a chi-square distribution with p degrees of

freedom and Φ(·) is the standard normal distribution function. It is clear that

lim
n→∞

βW 0
n
(θ∗) = 1,

for all α ∈ (0, 1) . Therefore the test is consistent in the sense of Fraser (1957).

In order to produce a nontrivial asymptotic power, we can consider contiguous alternative hypotheses.

Consider the contiguous alternative hypotheses described by

H1,n : θn = θ0 + n−1/2d, (12)

where d is a fixed vector in Rp such that θn ∈ Θ ⊂ Rp. It can be shown that the asymptotic distribution of

the Wald-type test statistic W 0
n(θ̂β) under the alternative H1,n is a non-central chi-square with p degrees of

freedom and non-centrality parameter

δ = dTΣβ(θ0)d. (13)

Based on this result, under (12) we have the following approximation to the power function

βW 0
n

(θn) = 1− Fχ2
p(δ)

(
χ2
p,α

)
, (14)

where Fχ2
p(δ) (·) is the distribution function of a non-central chi-square random variable with p degrees of freedom

and non-centrality parameter δ.
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2.2 Wald-type Test Statistics for the Composite Null Hypothesis

We shall now consider the problem of testing the composite null hypothesis given by

H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0, (15)

where Θ0 is a subset of the parameter space Θ ∈ Rp. The restricted parameter space Θ0 is often defined by a

set of r restrictions of the form

m(θ) = 0r, (16)

where m : Rp → Rr with r ≤ p (see Serfling, 1980). So Θ0 = {θ ∈ Θ : m(θ) = 0r}. Assume that the p × r

matrix

M(θ) =
∂mT (θ)

∂θ
(17)

exists and is continuous in all θ belonging to a neighbourhood of the true value of θ, θ0, and rank (M(θ0)) = r.

Basu et al. (2015) have considered the following family of Wald-type test statistics

Wn(θ̂β) = nmT (θ̂β)
(
MT (θ̂β)Σβ(θ̂β)M(θ̂β)

)−1

m(θ̂β), (18)

where the matrix Σβ(·) is defined in (8). The asymptotic distribution of the Wald-type test statistic Wn(θ̂β)

under the composite null hypothesis (15) is a chi-square with r degrees of freedom.

In the special case when β = 0, θ̂β coincides with the maximum likelihood estimator of θ, and Σβ(·)

becomes the inverse of the Fisher information matrix. Thus, the statistic in (18) reduces to the classical Wald

test statistic.

The power function βWn
(θ∗) of the Wald-type test statistic at θ∗ ∈ Θ−Θ0, is given by

βWn (θ∗) ∼= 1− Φ

( √
n

σWn (θ∗)

(
χ2
r,α

n
− `∗ (θ∗,θ∗)

))
, (19)

where

`∗(θ1,θ2) = nmT (θ1)
(
MT (θ2)Σβ(θ2)M(θ2)

)−1

m (θ1) ,

and

σ2
Wn

(θ∗) =
∂`∗(θ,θ∗)

∂θT

∣∣∣∣
θ=θ∗

Σβ(θ∗)
∂`∗(θ,θ∗)

∂θ

∣∣∣∣
θ=θ∗

. (20)

Basu et al. (2015) proposed an approximation of the power of Wn(θ̂β) at an alternative hypothesis close to

the null hypothesis. Let θn ∈ Θ − Θ0 be a given alternative, and let θ0 be the element in Θ0 closest to θn in

terms of the Euclidean distance. One possibility to introduce contiguous alternative hypotheses, in this context,

is to consider a fixed vector d ∈ Rp and permit θn to move towards θ0 as n increases through the relation H1,n

given in (12). A second approach is to relax the condition m (θ) = 0r that defines Θ0. Let δ ∈ Rr and consider

the following sequence of parameters {θn} moving towards θ0 according to the set up

H∗1,n : m (θn) = n−1/2δ. (21)

Note that a Taylor series expansion of m (θn) around θ0 yields

m (θn) = m (θ0) +MT (θ0) (θn − θ0) + o (‖θn − θ0‖) . (22)
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By substituting θn = θ0 + n−1/2d in (22) and taking into account that m(θ0) = 0r, we get

m (θn) = n−1/2MT (θ0)d+ o (‖θn − θ0‖) . (23)

So, the equivalence relationship between the hypotheses H1,n and H∗1,n is

δ = MT (θ0)d as n→∞. (24)

The asymptotic distribution of Wn(θ̂β) is given by

Wn(θ̂β)
L−→

n→∞
χ2
r

(
dTM(θ0)

(
MT (θ0)Σβ(θ0)M(θ0)

)−1

MT (θ0)d

)
(25)

under H1,n given in (12) and by

Wn(θ̂β)
L−→

n→∞
χ2
r

(
δT
(
MT (θ0)Σβ(θ0)M(θ0)

)−1

δ

)
(26)

under H∗1,n given in (21). These asymptotic distributions may be used to calculate the power functions of the

Wald-type test statistics under the contiguous alternatives.

3 Influence functions of the Wald-type test statistics

The influence function was introduced by Hampel (1974) and it plays a crucial role for important applications in

robustness analysis. Huber (1981) interpreted the influence function as the limiting influence of an infinitesimal

observation on the value of an estimator or a statistic that characterizes a distribution in a large sample. If

the influence function is bounded, the corresponding estimator or the statistic is said to have infinitesimal

robustness. Therefore, the influence function particularly can be used to quantify infinitesimal robustness of an

estimator or a statistic by measuring the approximate impact on an additional observation to the underlying

data. More simply, the influence function IF (x,T β , Fθ0) is the first derivative of an estimator or statistic

viewed as a functional T β and it describes the normalized influence on the estimate or statistic of an infinitesimal

observation x.

In this Section we study the influence function of the Wald-type test statistics defined in (9) and (18). In

Basu et al. (1998) it was established that the influence function of the density power divergence functional is

IF (x,T β , Fθ0
) = lim

ε→0

T β (Fε)− T β (Fθ0
)

ε
= J−1

β (θ0)
(
uθ (x) fβθ0

(x)− ξ (θ0)
)
, (27)

where Fε = (1 − ε)Fθ0
+ ε∆x is the ε-contaminated distribution of Fθ0

with respect to ∆x, the point mass

distribution at x. If we assume that Jβ(θ0) and ξ (θ0) are finite, the influence function is a bounded function of

x whenever uθ (x) fβθ0
(x) is bounded. This is true, for example in the normal location-scale problem for β > 0,

unlike other density based minimum divergence procedures such as those based on the Hellinger distance. In

the case of the normal model with known variance σ2 and unknown mean θ0, we have

IF (x,T β , Fθ0) =
x− θ0

σβ+2(
√

2π)β
exp

{
−1

2

(
x− θ0

σ

)2

β

}
.
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For any β > 0, the above mentioned influence function is bounded, but for β = 0 it is not bounded.

Let us consider the test statistic W 0
n(θ̂β) for testing the simple null hypothesis given in (10). The functional

associated with the test statistic W 0
n(θ̂β), evaluated at G, is given by (ignoring the multiplier n)

W 0
β (G) = (T β(G)− θ0)TΣ−1

β (θ0)(T β(G)− θ0). (28)

Let Gε = (1− ε)G+ ε∆x be the ε-contaminated distribution of G with respect to the point mass distribution

∆x at x. The influence function of W 0
β (·) is defined as

IF(x,W 0
β , G) =

∂W 0
β (Gε)

∂ε

∣∣∣∣∣
ε=0

,

where
∂W 0

β (Gε)

∂ε

∣∣∣∣∣
ε=0

= 2(T β(G)− θ0)TΣ−1
β (θ0)IF(x,T β , G).

Under the simple null hypothesis given in (10), G = Fθ0 and T β(G) = θ0. So IF(x,W 0
β , Fθ0) = 0, which

shows that the influence function analysis based on the first derivative of W 0
β (Gε) is not adequate to quantify

the robustness of these estimators. This influence function is bounded in x for all β ≥ 0, but it does not imply

that the test is necessarily robust since we know the non-robust nature of the usual MLE based Wald-test at

β = 0. So other type of analysis should be applied.

The functional associated with the test statistic Wn(θ̂β), given in (18), evaluated at G, is given by (ignoring

the multiplier n)

Wβ(G) = mT (T β(G))
(
MT (T β(G))Σβ(T β(G))M(T β(G))

)−1

m(T β(G)). (29)

The influence function of Wβ(·) is defined as

IF(x,Wβ , G) =
∂Wβ(Gε)

∂ε

∣∣∣∣
ε=0

,

where

∂Wβ(Gε)

∂ε

∣∣∣∣
ε=0

= 2mT (T β(G))
(
MT (T β(G))Σβ(T β(G))M(T β(G))

)−1

MT (T β(G))IF(x,T β , G).

Let θ0 ∈ Θ0 be the true value of the parameter under the composite hypothesis given in (15). So G = Fθ0
and

m(T β(G)) = 0r, and finally it turns out that IF(x,Wβ , G) = 0, which indicates that the derivation of second

order influence function is necessary.

The following theorem present the second order influence function for the Wald-type test statistics W 0
n(θ̂β)

and Wn(θ̂β).

Theorem 1 The second order influence functions of the Wald-type test statistics W 0
n(θ̂β), given in (9), and

Wn(θ̂β), given in (18), are respectively

IF2(x,W 0
β , Fθ0

) = 2
(
uθ (x) fβθ0

(x)− ξ (θ0)
)T
J−1
β (θ0)Σ−1

β (θ0)J−1
β (θ0)

(
uθ (x) fβθ0

(x)− ξ (θ0)
)
, (30)

IF2(x,Wβ , Fθ0
) = 2

(
uθ (x) fβθ0

(x)− ξ (θ0)
)T
J−1
β (θ0)M(θ0)Σ∗−1

β (θ0)MT (θ0)J−1
β (θ0)

(
uθ (x) fβθ0

(x)− ξ (θ0)
)
,

(31)
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where

Σ∗β(θ0) = MT (θ0)Σβ(θ0)M(θ0). (32)

Proof. See Appendix A.2.

It is interesting to note that in most of the cases Kβ(θ0), as defined in (6), is a full rank matrix and so

IF2(x,W 0
β , Fθ0) = 2

(
uθ (x) fβθ0

(x)− ξ (θ0)
)T
K−1
β (θ0)

(
uθ (x) fβθ0

(x)− ξ (θ0)
)
. (33)

The above theorem yields the possibility of studying the robustness of the Wald-type tests through its non-zero

(in general) second order influence functions.

In particular, for the simple hypothesis testing, the second order influence function of the corresponding

Wald-type test turns out to be bounded in x for most parametric models if β > 0; it becomes unbounded

at β = 0 hence, this test is expected to be robust for most common parametric models whenever β > 0, but

non-robust at β = 0 (the ordinary Wald-type test). In case of composite hypothesis also, the second order

influence functions of the general Wald-type tests with β > 0 are bounded in the contamination point x in most

parametric models implying their robustness. Some illustrative examples are provided later in Section 6.

4 Level and Power Influence Functions

In this section, we investigate the local stability of the Wald-type test statistic by means of the influence

function when the simple null hypothesis is considered. For a finite sample size, in general, it is difficult to

calculate the level and power, and therefore, we shall use asymptotic approximations. At a fixed alternative

the power function of the Wald-type test statistic was given in equation (11). This power function tends to

one as n increases, so the test is consistent in the Fraser’s sense. Therefore, it is important to calculate power

functions at the contiguous alternatives as mentioned in (12). In this case the asymptotic power function can

be approximated using (14).

Now we shall consider the sequence of alternatives θn = θ0 +n−1/2d as given in (12). When θn tends to θ0

the contamination proportion is also assumed to tend to zero at the same rate. Therefore, we shall define the

contaminated distributions for the power as

FPn,ε,x = (1− ε√
n

)Fθn + ε√
n

∆x, (34)

where ∆x denotes the degenerate distribution function with all its mass concentrated at point x, and ε/
√
n is

the contamination proportion. Substituting d = 0p in equation (34) we get the contaminated distributions for

the level as

FLn,ε,x = (1− ε√
n

)Fθ0
+ ε√

n
∆x.

Let us consider the following notations

αW 0
n
(ε,x) = lim

n→∞
PFLn,ε,x(W 0

n(θ̂β) > χ2
p,α), αWn(ε,x) = lim

n→∞
PFLn,ε,y,ε,x(Wn(θ̂β) > χ2

r,α)

8



and

βW 0
n
(θn, ε,x) = lim

n→∞
PFPn,ε,x(W 0

n(θ̂β) > χ2
p,α), βWn

(θn, ε,x) = lim
n→∞

PFPn,ε,x(Wn(θ̂β) > χ2
r,α).

Using these quantities, we will now define the level and power influence function for our proposed Wald-type

test statistics.

Definition 2 The level influence functions associated with the Wald-type test statistics for simple and composite

null hypotheses are defined as

LIF(x;W 0
β , Fθ0

) =
∂

∂ε
αW 0

n
(ε,x)

∣∣∣∣
ε=0

, LIF(x;Wβ , Fθ0
) =

∂

∂ε
αWn

(ε,x)

∣∣∣∣
ε=0

.

Similarly, we define the power influence functions as

PIF(x;W 0
β , Fθ0) =

∂

∂ε
βW 0

n
(θn, ε,x)

∣∣∣∣
ε=0

, PIF(x;Wβ , Fθ0) =
∂

∂ε
βWn(θn, ε,x)

∣∣∣∣
ε=0

.

The level and power influence functions indicate the limiting change in the asymptotic level and power of

the test respectively under the sequence of corresponding contaminated distributions with infinitesimal contam-

ination at the limit. In simple term, they indicate how the asymptotic level and power of the test change due to

the contamination in data generating distributions. Boundedness of these level and power influence functions

imply the stability of the level and power of the test respectively. For more details see Hampel et al. (1986,

Section 3.2c).

The above definitions of the level and power influence functions are completely general one and have no direct

relation with the influence function of the corresponding test statistics. However, in case of our Wald-type test

statistics, we have seen that the second order influence functions of the test statistics at the null hypothesis are

quadratic function of the influence function of the parameters estimators used in constructing the test. Further,

we will see below that the level and power influence functions are also linear function of the influence function of

the corresponding estimators. In that way, there is a indirect link of the level and power influence function with

the influence function of the test statistics (as derived in Section 3). In particular, for any given testing problem,

boundedness of one would imply the same for others provided these influence functions are not identically zero.

However, it is also important to study these level and power influence functions for all the testing problems to

examine the extent of robustness with respect to their level and power, which we cannot get only studying the

influence function of the test statistics alone.

4.1 Simple null hypothesis

In the rest of the paper, we will frequently use the standard assumptions of asymptotic inference as given by

Assumptions A, B, C and D of Lehmann (1983, page 429). We will refer to them as the Lehmann conditions.

Some of the proofs will also require the conditions D1–D5 of Basu et al. (2011, page 311) which we will refer to

as Basu et al. conditions. In order to avoid arresting the flow of the paper, these conditions have been presented

in the Appendix.
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Theorem 3 Assume that the Lehmann and Basu et al. conditions hold for the model. Let us consider the

contiguous alternatives in (12) against the simple null hypothesis, and the underlying contaminated model as

given in (34). Then we have the following:

1. The asymptotic distribution of the test statistics W 0
n(θ̂β) under FPn,ε,x is non-central chi-square with p

degrees of freedom and the non-centrality parameter

δ = d̃
T

ε,x,β(θ0)Σ−1
β (θ0)d̃ε,x,β(θ0),

where d̃ε,x,β(θ0) = d+ εIF(x,T β , Fθ0) and IF(x,T β , Fθ0) is given by (27).

2. The asymptotic power under contiguous alternative and contiguous contamination can be approximated as

βW 0
n
(θn, ε,x) ∼= 1− Fχ2

p(δ)(χ
2
p,α)

∼=
∞∑
v=0

Cv

(
d̃ε,x,β(θ0),Σ−1

β (θ0)
)
P
(
χ2
p+2v > χ2

p,α

)
, (35)

where

Cv (t,A) =

(
tTAt

)v
v!2v

e−
1
2 tTAt,

Fχ2
p(δ) is the distribution function of a χ2

p(δ) random variable having degrees of freedom p and non-centrality

parameter δ and χ2
q denotes a central chi-square random variable with q degrees of freedom.

Proof. See Appendix A.3.

Further, substituting d = 0p or ε = 0 in above theorem, we shall get several important cases; these are

presented in the following corollaries.

Corollary 4 Putting ε = 0 in the above theorem, we get the asymptotic power under the contiguous alternative

hypotheses (12) as

βW 0
n
(θn) = βW 0

n
(θn, 0,x) ∼=

∞∑
v=0

Cv

(
d,Σ−1

β (θ0)
)
P
(
χ2
p+2v > χ2

p,α

)
.

Notice that Corollary 4 is an alternative approximation for the result given in (14).

Corollary 5 Putting d = 0p in the above theorem, we get the asymptotic distribution of W 0
n(θ̂β) under the

probability distribution FLn,ε,x as the non-central chi-square distribution with degrees of freedom p and non-

centrality parameter εIF(x;Tβ , Fθ0
).Then, the corresponding asymptotic level is given by

αW 0
n
(ε,x) = βW 0

n
(θ0, ε,x)

∼=
∞∑
v=0

Cv

(
εIF(x;Tβ , Fθ0

),Σ−1
β (θ0)

)
P
(
χ2
p+2v > χ2

p,α

)
.

In particular, as ε → 0, θ∗n → θ0 and the non-centrality parameter of the above asymptotic distribution tends

to zero. In this way we get the asymptotic distribution of the test statistics under null, the central chi-square

distribution with p degrees of freedom, which is the same as obtained independently by Basu et al. (2013).
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This was the expected result according to the construction of the test statistic and its critical value. Next we

derive the power influence function of the Wald-type test statistic.

Theorem 6 Assume that the Lehmann and Basu et al. conditions hold for the model. Then, the power influence

function of the Wald-type test statistic under the simple null hypothesis is given by

PIF(x,W 0
β , Fθ0

) ∼= K∗p

(
dTΣ−1

β (θ0)d
)
dTΣ−1

β (θ0)IF(x,T β , Fθ0
), (36)

where

K∗p (s) = e−
s
2

∞∑
v=0

sv−1

v!2v
(2v − s)P

(
χ2
p+2v > χ2

p,α

)
.

Proof. See Appendix A.4.

Clearly the above theorem shows that the power influence function is bounded whenever the influence

function of the MDPDE is bounded.

To calculate the level influence function, we can again start from the expression of αW 0
n
(ε,x) as given in

Corollary 5 and proceed as above. Alternatively, we may also substitute d = 0p in the expression of the power

influence function to get the level influence function as

LIF(x,W 0
β , Fθ0

) = 0.

Also, one can conclude that the derivative of αW 0
n
(ε,x) of any order will be zero at ε = 0, implying that the

level influence function of any order will be zero. Thus, asymptotically, the level of the Wald-type test statistic

will be unaffected by a contiguous contamination.

4.2 Composite null Hypothesis

We shall now calculate the level and power influence functions of the Wald-type test statistic for the composite

null hypothesis. We have considered the same setting as mentioned in Section 4.

Theorem 7 Assume that the Lehmann and Basu et al. conditions hold for the model. Let us consider the

contiguous alternatives in (12) against the composite null hypothesis, and the underlying contaminated model

as given in (34). Then we have the following:

1. The asymptotic distribution of the test statistics Wn(θ̂β) under FPn,ε,x is non-central chi-square with r

degrees of freedom and the non-centrality parameter

δ = d̃
T

ε,x,β(θ0)M(θ0)Σ∗−1
β (θ0)MT (θ0)d̃ε,x,β(θ0),

where Σ∗β(θ0) = MT (θ0)Σβ(θ0)M(θ0), d̃ε,x,β( θ0) = d + εIF(x,T β , Fθ0
) and IF(x,T β , Fθ0

) is given

by (27).

2. The asymptotic power under contiguous alternative and contiguous contamination can be approximated as

βW 0
n
(θn, ε,x) ∼= 1− Fχ2

r(δ)(χ
2
r,α)

∼=
∞∑
v=0

Cv

(
MT (θ0)d̃ε,x,β(θ0),Σ∗−1

β

)
P
(
χ2
r+2v > χ2

r,α

)
, (37)
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where Cv (t,A) is as defined in Theorem 8, Fχ2
r(δ) is the distribution function of a χ2

r(δ) random variable

having degrees of freedom r and non-centrality parameter δ and χ2
q denotes a central chi-square random

variable with q degrees of freedom.

Proof. See Appendix A.5.

Putting ε = 0 in the above theorem, we get the asymptotic power under the contiguous alternatives as

βWn
(θn) = βWn

(θn, 0,x) ∼=
∞∑
v=0

Cv

(
MT (θ0)d,Σ∗−1

β (θ0)
)
P
(
χ2
r+2v > χ2

r,α

)
.

Notice that this result is an alternative approximation of the power function given in (19).

Putting d= 0p in the above theorem, we get the asymptotic level under the probability distribution FLn,ε,x

as

αWn
(ε,x) = βWn

(θ0, ε,x) ∼=
∞∑
v=0

Cv

(
εMT (θ0)IF(x, Tβ , Fθ0

),Σ∗−1
β (θ0)

)
P
(
χ2
r+2v > χ2

r,α

)
.

In particular, taking ε → 0 in the above expression, we get the asymptotic level of the test statistics as

αWn(0,x) = α.

This was the expected result according to the construction of the test statistic and its critical value. Next we

derive the power influence function of the proposed test statistic.

Theorem 8 Assume that the Lehmann and Basu et al. conditions hold for the model. Then, the power influence

function of the proposed Wald-type test statistic under the composite null hypothesis is given by

PIF(x,Wβ , Fθ0
) ∼= K∗r

(
dTM(θ0)Σ∗−1

β (θ0)MT (θ0)d
)
dTM(θ0)Σ∗−1

β (θ0)MT (θ0)IF(x,T β , Fθ0),

where the constant K∗r (s) is as defined in Theorem 8.

Proof. See Appendix A.6.

It is clear from the above expression that the power influence function of the Wald-type test statistic under

the composite null hypothesis is also bounded whenever the influence function of the MDPDE is bounded.

To calculate the level influence function, we can start from the expression of αWn
(ε,x) as above. From this

or alternatively, by simply substituting d = 0 in the expression of the power influence function, we obtain that

LIF(x,Wβ , Fθ0
) =

∂

∂ε
αWn

(ε,x)|ε=0 = 0.

Also, it is easy to see that the derivative of αWn(ε,x) of any order will be zero at ε = 0, implying that the level

influence function of any order will be zero. Thus, asymptotically, the level of the proposed test statistics will

be unaffected by a contiguous contamination.

5 The Chi-Square Inflation Factor

Another important way of measuring the robustness of a test statistic is to look at its asymptotic distribution for

a general contaminated distribution, in contrast to its null distribution under the model. Unlike the contiguous

12



contamination considered in the previous section, we shall now consider a fixed departure from the model

independent of the sample size. Under the set-up of the previous sections, let us assume that the data come

from a general contaminated distribution G having density g. The null hypothesis, mentioned in (10), can be

written as

H0 : T β(G) = θ0. (38)

The asymptotic distribution of MDPDE under the model is given in (7). We shall now derive the asymptotic

null distribution of the Wald-type test statistic under a general distribution G. Let us define

Jβ,g(θ) =

∫
uθ(x)uTθ (x)f1+β

θ (x)dx+

∫ (
Iθ(x)− βuθ(x)uTθ (x)

)
(g(x)− fθ(x)) fβθ (x)dx, (39)

and

Kβ,g(θ) =

∫
uθ(x)uTθ (x)f2β

θ (x)g(x)dx− ξg(θ)ξgT (θ), (40)

where ξβ,g(θ) =
∫
uθ(x)fβθ (x)g(x)dx, and Iθ(x) = − ∂

∂θu
T
θ (x), the so called information matrix of the model.

Let θ̂β,g = T β(Gn) be the MDPDE with tuning parameter β. Basu et al. (1998) and Basu et al. (2011)

established that

n1/2(θ̂β,g − θ0)
L−→

n→∞
N (0p,Σβ,g(θ0)), (41)

where

Σβ,g(θ0) = J−1
β,g(θ0)Kβ,g(θ0)J−1

β,g(θ0). (42)

In Section 2.1 we presented the asymptotic distribution of the Wald-type test statistic under the simple null

hypothesis when G = Fθ0
. Our next theorem will show the asymptotic null distribution of the Wald-type test

under the general set-up when the underlying density may or may not belong to the model.

Theorem 9 Let θ̂β,g = T β(Gn) be the MDPDE with tuning parameter β. Then under the null hypothesis (38),

the asymptotic distribution of the Wald-type test statistic is given by

W 0
n(θ̂β,g) = n(θ̂β,g − θ0)TΣ−1

β (θ0)(θ̂β,g − θ0)
L−→

n→∞

p∑
i=1

ci,β,g(θ0)Z2
i , (43)

where {Zi}pi=1 are i.i.d. standard normal random variables and {ci,β,g(θ0)}pi=1 the set of eigenvalues of

Σ−1
β (θ0)Σβ,g(θ0).

Proof. The result follows from (41), using Corollary 2.2 of Dik and de Gunst (1985).

The above theorem shows that the asymptotic distribution of the Wald-type test statistic, under null hy-

potheis with contamination, is a linear combination of independent χ2
1 random variables. On the other hand, if

the assumed model is correct, the asymptotic null distribution turns out to be χ2
p. In this context, by following

Satterthwaite (1946), our proposal consists of using c̄β,g(θ0)χ2
p, with

c̄β,g(θ0) =
1

p

p∑
i=1

ci,β,g(θ0) =
1

p
trace

(
Σ−1
β (θ0)Σβ,g(θ0)

)
, (44)

to approximate
∑p
i=1 ci,β,g(θ0)Z2

i . This factor is called Chi-Square Inflation Factor (CSIF) and its value is

equal to unity if only if Σβ,g(θ0) = Σβ(θ0). Since a value close to unity indicates strong robustness towards
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the model assumption of the Wald-type test statistic, c̄β,g(θ0) is useful as a measure of robustness. Ghosh et al.

(2015) used this approach to illustrate the stability of the tests based on the S-divergence when p = 1. When

p = 1 the CSIF becomes

c̄β,g(θ0) = c1,β,g(θ0) =
J2
β(θ0)

Kβ(θ0)

Kβ,g(θ0)

J2
β,g(θ0)

.

In this case, the asymptotic null distribution of the Wald-type test statistic is exactly (not approximately)

c̄β,g(θ0)χ2
1.

We shall now illustrate the effect of outliers in CSIF. Let us consider the following fixed point contaminated

density

fε,y(·) = (1− ε)fθ0
(·) + ε∆y,

where ε ∈ (0, 1) is the contamination proportion, and y is the outlying point. Let us denote c̄β,ε,y(θ0), in the

place of c̄β,g(θ0) with g = fε,y. Note that, the rate of change in c̄β,ε,y(θ0) with respect to ε at the origin

gives us the effect of infinitesimal contamination on the test statistic. Similar interpretation as the influence

function analysis may be drawn in this case; and the boundedness of the above mentioned quantity will indicate

robustness towards the assumed model. So ∂
∂ε c̄β,ε,y(θ0)|ε=0 may be regarded as another robustness measure

in this context. Our next theorem gives the explicit form of this index.

Theorem 10 Assume that Kβ(θ0) is a full rank matrix. If g = fε,y, then the infinitesimal change in the CSIF

of the Wald-type test statistic is given by

∂

∂ε
c̄β,ε,y(θ0)|ε=0 =

2

p

(
βuTθ0

(y)J−1
β (θ0)uθ0(y)− fβθ0

(y)τθ0(y)−
∫
f1+β
θ0

(x)τθ0(x)dx

)
− (2β + 1)− 1

2p
IF2(y,W 0

β , Fθ0
), (45)

where IF2(·,W 0
β , Fθ0

) is (33) and

τθ0(·) = trace
(
Iθ0(·)J−1

β (θ0)
)
.

Proof. See Appendix A.7.

For the normal location-scale problem, if β > 0, then ∂
∂ε c̄β,ε,y(θ0)|ε=0 given in Theorem 10 is bounded,

implying the robustness of the Wald-type test statistic towards the assumption on the model.

Corollary 11 If g = fε,y and the parameter θ is a scalar (p = 1), then the infinitesimal change of CSIF is

given by

2
fβθ0(y)

(
βu2

θ0
(y)− Iθ0(y)

)
−
∫
Iθ0(x)f1+β

θ0
(x)dx

Jβ(θ0)
− (2β + 1)− 1

2
IF2(y,W 0

β , Fθ0),

where

IF2(·,W 0
β , Fθ0) = 2

(
ξβ(θ0)− uθ0(·)fβθ0(·)

)2

Kβ(θ0)
.

We shall now consider the Wald-type test statistic for the composite hypothesis and derive the infinitesimal

change in the CSIF. Let us define Σ∗β(θ) = MT (θ)Σβ(θ)M(θ) and Σ∗β,g(θ) = MT (θ)Σβ,g(θ)M(θ). Then the

following theorem is the analogous to Theorem 9 for the composite hypothesis.
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Theorem 12 Let θ̂β,g = T β(Gn) be the MDPDE with tuning parameter β. Then under the composite hypoth-

esis (38), the asymptotic distribution of the Wald-type test statistic is given by

Wn(θ̂β,g) = nmT (θ̂β,g)
(
MT (θ̂β,g)Σβ(θ̂β,g)M(θ̂β,g)

)−1

m(θ̂β,g)
L−→

n→∞

r∑
i=1

c∗i,β,g(θ0)Z2
i ,

where {Zi}ri=1 are i.i.d. standard normal random variables and {c∗i,β,g(θ0)}ri=1 the set of eigenvalues of

Σ∗−1
β (θ0)Σ∗β,g(θ0).

Proof. The proof of this theorem directly follows from (41) using Corollary 2.2 of Dik and de Gunst (1985).

Theorem 12 shows that the asymptotic null distribution of the Wald-type test statistic is a linear combination

of r independent variables with χ2
1 densities. On the other hand, if the assumed model is correct, the asymptotic

null distribution turns out to be χ2
r. So the Chi-Square Inflation Factor of the Wald-type test statistic for the

composite hypothesis is defined by

c̄∗β,g(θ0) =
1

r

r∑
i=1

c∗i,β,g(θ0) =
1

p
trace

(
Σ∗−1
β (θ0)Σ∗β,g(θ0)

)
. (46)

The following theorem gives the expression for the infinitesimal change in the CSIF of the Wald-type test

statistic at the model. Let us denote c̄∗β,ε,y(θ0), in the place of c̄∗β,g(θ0) with g = fε,y.

Theorem 13 Consider the composite null hypothesis H0 : m (T β(G)) = 0. If g = fε,y, then the infinitesimal

change in the CSIF of the Wald-type test statistic at the model is given by

∂

∂ε
c̄∗β,ε,y(θ0)

∣∣
ε=0

=
2

r

(
βuTθ0

(y)Σβ(θ0)M(θ0)Σ∗−1
β (θ0)MT

β (θ0)J−1
β (θ0)uθ0

(y)− fβθ0
(y)τ∗θ0

(y)−
∫
f1+β
θ0

(x)τ∗θ0
(x)dx

)
− (2β + 1)− 1

2r
IF2(y,Wβ , Fθ0

),

where IF2(·,Wβ , Fθ0
) is (31) and

τ∗θ0
(·) = trace

(
Iθ0(·)Σβ(θ0)M(θ0)Σ∗−1

β (θ0)MT
β (θ0)J−1

β (θ0)
)
.

Proof. See Appendix A.8.

6 Examples

For the location-scale parameters of a normal model it is easy to verify the robustness properties of the Wald-type

tests using the theoretical results derived in this paper. In this section we have presented two other examples,

and justified the stability of the levels and powers of the Wald-type tests in presence of outliers. On the other

hand, it is shown that the classical Wald tests break down as their power influence functions are unbounded.

6.1 Test for Exponentiality against Weibull Alternatives

Our first example considers an interesting problem from quality control and examine the performance of the

proposed MDPDE based Wald-type test for solving it. Suppose we have n independent sample observations
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X1, . . . , Xn from a lifetime distribution having density f(x). We want to test the null hypothesis that the

underlying lifetime (random variable) follows an exponential distribution against the alternative of Weibull

distribution. In other words, we want to test the hypothesis

H0 : f(x) = fExp,σ(x) =
1

σ
e−

x
σ , x > 0,

against

H1 : f(x) = fWeib,θ,σ(x) =
θ

σ

(x
σ

)θ−1

e−( xσ )
θ

, x > 0. (47)

Here θ > 0 is the shape parameter of the lifetime distribution and σ > 0 is the scale parameter. Further note

that without loss of generality, we can assume that the data are properly scaled so that we can take σ = 1 (this

fact can also be tested first by applying the same Wald-type test; see Section 4.2 of Basu et al. (2015)). Then,

we consider the model F = {fθ(x) = θxθ−1e−x
θ

: x > 0, θ > 0} so that we have n i.i.d. observations X1, . . . , Xn

from this family and the null hypothesis (47) simplifies to

H0 : θ = 1 against H1 : θ 6= 1. (48)

This problem is now exactly similar to the simple hypothesis testing problem considered in this paper. So we

can construct a robust Wald-type test using the MDPDE θ̂β of θ.

Note that the MDPDE θ̂β of θ, in this particular example, is to be obtained by minimizing the objective

function
θβ

(1 + β)1+β− βθ
Γ

(
1 + β − β

θ

)
− (1 + β)θβ

βn

n∑
i=1

X
β(θ−1)
i e−βX

θ
i ,

with respect to θ > 0, where Γ(·) represents the gamma function. As noted in Section 2, θ̂β is
√
n-consistent and

asymptotically normal. A straightforward calculation shows that, under H0 : θ0 = 1, its asymptotic variance is

given by
η2β

η2
β

, where

ηβ =
1

1 + β
+ (C2,β + 2C1,β) ,

with

Cα,β =

∫
((1− y) log(y))

α
e−(1+β)ydy.

Thus, the MDPDE based Wald-type test statistics for testing the simple hypothesis (48) is given by

W 0
n(θ̂β) =

nη2
β

η2β

(
θ̂β − 1

)2

,

which asymptotically follows a chi-square distribution with one degree of freedom. Further, at the contiguous

alternatives H1,n : θn = 1+n−1/2d, this test statistic has an asymptotic non-central chi-square distribution with

one degree of freedom and non-centrality parameter δ =
d2η2

β

η2β
. Note that, for any fixed level of significance, the

asymptotic power of the Wald-type test statistic under the contiguous alternative decreases as the non-centrality

parameter δ decreases and for any fixed d it happens as β increases. Table 1 represents the asymptotic power

for different values of d and β. It is clear from the table that there is no significant loss in contiguous power of

this test for smaller positive values of β.
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Table 1: Asymptotic Power of the Wald-type test of (48) at 5% level of significance for different d and β.

β

d 0 0.01 0.1 0.3 0.5 0.7 1

0 0.050 0.050 0.050 0.050 0.050 0.050 0.050

2 0.778 0.788 0.747 0.617 0.558 0.502 0.473

3 0.981 0.984 0.975 0.930 0.880 0.825 0.790

4 1.000 1.000 1.000 0.996 0.983 0.973 0.967

5 1.000 1.000 1.000 1.000 1.000 0.999 0.995

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Next consider the robustness of the proposed Wald-type test as derived above. From the density of the

model, it is easy to see that the score function is given by

uθ(x) =
1

θ
+ (1− xθ) log x,

so that the influence function of the minimum DPD functional Tβ under the null hypothesis (48) is given by

IF(x, Tβ , Fθ0) =
1

ηβ
(1 + (1− x) log x) e−βx.

Therefore, using the result derived in Section 3, the second order influence function of the Wald-type test

statistics W 0
β becomes

IF2(x,W 0
β , Fθ0) =

2

η2β
(1 + (1− x) log x)

2
e−2βx.

Note that its first order influence function is always zero at the simple null. Figure 1a presents the second order

influence function for several β. The boundedness of this second order influence function is quite clear from the

figure implying the robustness of the proposed Wald-type test. However, the influence function of the classical

Wald test at β = 0 is unbounded implying its non-robustness.

Finally, let us examine the level and power stability of the proposed Wald-type test. Following the results

derived in Section 4, the level influence function of any order will be zero at the null implying the robustness of

its asymptotic level. Further, the power influence function of the Wald-type test at the contiguous alternatives

θn is given by

PIF(x,W 0
β , Fθ0) ∼= K∗1

(
d2η2

β

η2β

)
dηβ
η2β

(1 + (1− x) log x) e−βx,

where K∗p (s) is as defined in Theorem 8. Figure 1b shows the power influence function for some particular β.

Once again, the power robustness of the proposed test for β > 0 is clearly visible from the figure.
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(a) Influence function of the test statistics (b) Power Influence function

Figure 1: Influence functions of MDPDE based Wald-type test of (48) for different values of β (solid line: β = 0,

dotted line: β = 0.3, dashed-dotted line: β = 0.5, dashed line: β = 1).

6.2 Test for Correlation in Bivariate Normal

Let us now consider another interesting hypothesis testing problem involving the correlation parameter of two

normal populations with unknown means and variances; this problem often arises in several real life applications

when we want to check for the association between any two sets of observation only assuming the normality of

those two populations. Consider the observations Xi = (Xi1, Xi2)T , i = 1, . . . , n, from the bivariate normal

model {N (µ,Σ)} where µ = (µ1, µ2)T ∈ R2 and

Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


belongs to the set of 2× 2 positive definite matrices. Thus, our parameter of interest is θ = (µ1, µ2, σ1, σ2, ρ)T

with the parameter space Θ = R2 × R+ × R+ × [−1, 1]. We want to test for the composite hypothesis

H0 : ρ = 0 against H1 : ρ 6= 0, (49)

with values of µ1, µ2, σ1 and σ2 being unspecified. In terms of notations of Section 2, we have r = 1 restrictions

with m(θ) = ρ so that M(θ) is a 5 × 1 matrix with the last entry 1 and rest 0 and the null parameter space

is Θ0 = R2 × R+ × R+ × {0}. We shall now develop the Wald-type test statistic for this composite hypothesis

along with its properties.

Using the form of the bivariate normal density, we can see that the MDPDE θ̂β = (µ̂1,β , µ̂2,β , σ̂1,β , σ̂2,β , ρ̂β)T

of θ with β > 0 is the minimizer of

1

(2π)βσβ1 σ
β
2 (1− ρ2)β/2

(
1√

1 + β
− 1 + β

nβ

n∑
i=1

e−
Υ(Xi,θ)

2

)
,

with respect to θ, where Υ(x,θ) = (x − θ)TΣ−1(x − θ). Take any θ0 = (µ1,0, µ2,0, σ1,0, σ2,0, 0)T ∈ Θ0. Then

the asymptotic variance of the MDPDE θ̂β under θ = θ0 is given by Σβ(θ0) = J−1
β (θ0)Kβ(θ0)J−1

β (θ0). A
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straightforward but lengthy calculation shows that

Jβ(θ0) =



Cβ
(1+β)3/2σ2

1
0 0 0 0

0
Cβ

(1+β)3/2σ2
2

0 0 0

0 0
(2+β2)Cβ
σ2

1(1+β)5/2

β2Cβ
σ1σ2(1+β)5/2 0

0 0
β2Cβ

σ1σ2(1+β)5/2

(2+β2)Cβ
σ2

2(1+β)5/2 0

0 0 0 0
Cβ

(1+β)5/2


and

Kβ(θ0) =



C2β

(1+2β)3/2σ2
1

0 0 0 0

0
C2β

(1+2β)3/2σ2
2

0 0 0

0 0
(2+3β2)C2β

σ2
1(1+2β)5/2

3β2C2β

σ1σ2(1+2β)5/2 0

0 0
3β2C2β

σ1σ2(1+2β)5/2

(2+3β2)C2β

σ2
2(1+2β)5/2 0

0 0 0 0
C2β

(1+2β)5/2


where Cβ = (2π)−βσ−β1 σ−β2 and C∗β = 4C2β − C2

β . Hence,

Σβ(θ0) =



ζ
3/2
β σ2

1 0 0 0 0

0 ζ
3/2
β σ2

2 0 0 0

0 0 ζ
5/2
β κ1

βσ
2
1 ζ

5/2
β κ2

βσ1σ2 0

0 0 ζ
5/2
β κ2

βσ1σ2 ζ
5/2
β κ1

βσ
2
2 0

0 0 0 0 ζ
5/2
β


with

ζβ = 1 +
β2

1 + 2β
, κ1

β =
(β4 + 5β2 + 2)

(1 + β2)2
and κ2

β =
β2(1− β2)

(1 + β2)2
.

Interestingly, note that whenever the null hypothesis ρ = 0 is true the MDPDE of µ1, µ2 and ρ are asymptotically

independent of each other and also of the MDPDE of σ1 and σ2.

Now the robust Wald-type test statistic (18) for testing the null hypothesis (49) is given by

Wn(θ̂β) = n
ρ̂2
β

ζ
5/2
β

, (50)

which asymptotically follows a chi-square distribution with one degree of freedom under the null hypothesis.

Note that, at β = 0, ρ̂β coincides with the maximum likelihood estimator of ρ and hence the proposed test

Wn coincides with the classical Wald test for the present problem. Further, under the contiguous alternatives

H∗1,n : ρn = n−1/2d, the asymptotic distribution of Wn(θ̂β) is a non-central chi-square distribution with one

degree of freedom and non-centrality parameter ζ
−5/2
β d2. Note that, for any fixed level of significance, the

asymptotic power of the Wald-type test under the contiguous alternative hypotheses decreases as the non-

centrality parameter decreases and for any fixed d it happens as β increases. However, as we can see from Table

2, the loss in contiguous power of the Wald-type test is not very significant for smaller positive values of β.

Now let us examine the robustness of this Wald-type test based on the results derived in the present paper.

19



Table 2: Asymptotic Power of the MDPDE based Wald-type test of (49) 5% level of significance for different δ

and β.

β

d 0 0.01 0.1 0.3 0.5 0.7 1

0 0.050 0.050 0.050 0.050 0.050 0.050 0.050

2 0.516 0.516 0.508 0.463 0.408 0.354 0.287

3 0.851 0.851 0.844 0.800 0.735 0.662 0.553

4 0.979 0.979 0.977 0.962 0.932 0.887 0.797

5 0.999 0.999 0.999 0.997 0.991 0.978 0.937

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note that the influence function of the minimum DPD functional T β here under the null θ = θ0 is given by

IF(x,T β , Fθ0
) =



(1 + β)3/2(x1 − µ1)

(1 + β)3/2(x2 − µ2)

(1+β)5/2σ1

(1+β2)

(
(2+β2)(x1−µ1)2

σ2
1

− β2(x2−µ2)2

σ2
2

− 2
)

(1+β)5/2σ2

(1+β2)

(
(2+β2)(x2−µ2)2

σ2
2

− β2(x1−µ1)2

σ2
1

− 2
)

(1 + β)3/2 (x1−µ1)(x2−µ2)
σ1σ2


e
− β2

(
(x1−µ1)2

σ2
1

+
(x2−µ2)2

σ2
2

)
−



0

0

β(1+β)2

(1+β2) σ1

β(1+β)2

(1+β2) σ2

0


.

Using the result derived in Section 3, the first order influence function of the Wald-type test statistic Wβ is zero

at the null and its second order influence function at the null is given by

IF2(x,Wβ , Fθ0
) =

2(1 + 2β)5/2

(1 + β)2σ2
1σ

2
2

(x1 − µ1)2(x2 − µ2)2e
−β
(

(x1−µ1)2

σ2
1

+
(x2−µ2)2

σ2
2

)
.

Clearly, this influence function is unbounded at β = 0, but whenever β > 0 it is bounded implying the robustness

of the corresponding test statistics. Figure 2 shows the plot of this influence function for some particular β. It

is clear from the figures that the extend of the influence function over the contamination point x = (x1, x2)T

decreases as β increases. this fact can also bee seen by looking at the gross-error sensitivity of the test statistics

given by

γ∗β =


2n(1+2β)5/2

√
β(1+β)2 e−

√
β , if β > 0,

∞, if β = 0.

Clearly γ∗β decreases as β increases implying that the extent of robustness of the MDPDE based Wald-type test

statistics increases.

Next, we shall consider the level and power stability of the present test. As shown in Section 4.2, the

level influence function of any order will be zero at the null hypothesis. Hence the level of the Wald-type test,

constructed using asymptotic distribution, will be robust under infinitesimal contamination. On the other hand,

if we consider the contamination proportion and the difference of alternatives ρn from null converges to zero at

the same rate of n−1/2 (ρn = n−1/2d), the power influence function of this test is given by

PIF(x,Wβ , Fθ0)K∗1

(
ζ
−5/2
β d

) (1 + β)3/2ζ
−5/2
β d

σ1σ2
(x1 − µ1)(x2 − µ2)e

− β2

(
(x1−µ1)2

σ2
1

+
(x2−µ2)2

σ2
2

)
,
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(a) β = 0 (b) β = 0.1

(c) β = 0.3 (d) β = 1

Figure 2: Influence function of Wald-type test statistics for testing of (49) at the null for different values of β

(Here we have taken µ1 = µ2 = 0 and σ1 = σ2 = 1).
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where K∗p (s) is as defined in 3.

Again, it is clear that the above power influence function of the MDPDE based test statistic is bounded for

all β > 0 and unbounded at β = 0 (see Figure 3). This justifies the power robustness of the proposed MDPDE

based Wald-types tests with β > 0 over the usual Wald test at β = 0.

(a) β = 0 (b) β = 0.1

(c) β = 0.3 (d) β = 1

Figure 3: Power influence function of Wald-type test of (48) at 5% level of significance and d = 3 for different

values of β.

6.3 Test for the General Linear Hypothesis in Fixed-design Linear Regression

Models

The robust minimum DPD estimators under the fixed-design Linear Regression Models are considered in Ghosh

and Basu (2013), who have also derived their asymptotic and robustness properties in great detail (also see

Ghosh and Basu (2015a)). Indeed, Ghosh and Basu (2013) considered a general class of models based on the
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non-homogeneous data and developed the theory of the MDPDE under that general set-up; the linear regression

with pre-fixed (given) covariates comes as a special case of the general set-up. Under the same general set-up

of independent but non-homogeneous data, Ghosh and Basu (2015b) have developed the divergence based tests

of different kind of statistical hypothesis and discussed their properties and application in the fixed-design

linear regression model. A nice study about robust M-type testing procedures for linear models can be seen in

Markatou et al. (1991). Here, we briefly mention the corresponding Wald type test for only the class of general

linear hypothesis and discuss their influence robustness following the theory developed in this paper.

Suppose we are given a fixed n × p design matrix, where the i-th value of the p covariates are denoted as

xi = (xi1, . . . , xip)
T for i = 1, . . . , n. Consider the fixed-design linear regression model

yi = xTi ϑ+ εi, i = 1, . . . , n, (51)

where the error εi’s are assumed to be i.i.d. normal with mean zero and variance σ2 and ϑ = (ϑ1, . . . , ϑp)
T

denote the vector of regression coefficients. Then, for each i, yi ∼ N (xTi ϑ, σ
2) which are clearly independent

but not identically distributed.

Following Ghosh and Basu (2013), we can derive the
√
n-consistent MDPDE θ̂β = (ϑ̂

T

β , σ̂
2
β)T of the pa-

rameters θ = (ϑT , σ2)T with tuning parameter β, which are asymptotically independent normally distributed

under conditions (R1)–(R2) of Ghosh and Basu (2013). In particular, if ϑ0 and σ2
0 are the true values of the

parameters then we have

√
n(XTX)1/2(ϑ̂β − ϑ0)

L−→
n→∞

Np
(

0, ζ
3/2
β σ2

0

)
, (52)

√
n(σ̂2

β − σ2
0)

L−→
n→∞

N (0, 4ζ
5/2
β κ1

βσ
4
0), (53)

where ζβ and κ1
β are as defined Section 6.2 and X = [x1 x2 · · · xn]T .

Now, let us consider the class of general linear hypothesis on ϑ with unspecified σ as given by

H0 : LTϑ = l0 against H1 : LTϑ 6= l0, (54)

where the p × r matrix L is known with rank r(≤ p) and l0 is a known r-vector. Due to full row rank of

the matrix L, there exists a true parameter value ϑ0 satisfying the null hypothesis LTϑ0 = l0. In particular,

this general class of linear hypothesis consider the popular problem of testing the significance of the model

H0 : ϑ = ϑ0 where r = p, l0 = ϑ0 (usually a zero vector) and L = Ip, the identity matrix of order p. Also the

test of significance of any one regression component H0 : ϑj = ϑ0j belongs to the class of hypothesis (54) with

r = 1, l0 = ϑ0j and L is p-vector of zeros except the j-th component which is 1.

In the notation of Section 2.2, here we have mT (θ) = mT
(
ϑ, σ2

)
= LTϑ − l0 and M (θ) = M

(
ϑ, σ2

)
=LT 0r

0Tp 0

. Hence, the Wald-type test for this general linear hypothesis in (54) is given by

Wn(ϑ̂β , σ̂
2
β) =

n

ζ
3/2
β σ̂2

β

(LT ϑ̂β − l0)T
(
LT (XTX)−1L

)−1

(LT ϑ̂β − l0), (55)
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which asymptotically follows χ2
r distribution under the null hypothesis. Also, under the contiguous alternative

H∗1n in (21), given by LTϑ = l0 + n−1/2δ, the asymptotic distribution of the test statistics Wn(θ̂β , σ̂
2
β) is

non-central chi-square with the non-centrality parameter ωβ defined as

ωβ = ζ
−3/2
β σ−2

0 δT
(
LT (XTX)−1L

)−1

δ.

Now, let us derive the influence functions of the above Wald-type test statistics. However, as noted in

Ghosh and Basu (2013, 2015b), in this case of non-homogeneous observations, the corresponding statistical

functional and the influence functions will depend on the sample size through the given values of covariates

xi’s. In particular, we need to assume that the true distributions of each yi are (possibly) different, say Hi

(i = 1, . . . , n), depending on the given values of xi. Then, the statistical functional corresponding to the

Wald-type test (55) is given by

Wβ (H1, . . . ,Hn) = ζ
−3/2
β

(
LTT ϑβ(H1, . . . ,Hn)− l0

)T (LT (XTX)−1L
)−1

Tσβ (H1, . . . ,Hn)

(
LTT ϑβ(H1, . . . ,Hn)− l0

)
,

where T ϑβ and Tσβ are the statistical functionals corresponding to the MDPDEs ϑ̂β and σ̂2
β , as defined in Ghosh

and Basu (2013). Since there are n many different distributions, we can assume the contamination in any one of

these distributions or in all the distributions. Corresponding influence functions of the MDPDEs are derived in

Ghosh and Basu (2013). Using them and following the arguments used to proof Theorem 1, we get the influence

functions of the proposed Wald type test. In particular, at the null hypothesis, the first order influence function

is zero for any kind of contamination and the second order influence function at the null is given by

IF2(ti;Wβ , Fθ0) = 2(1 + β)3ζ
−3/2
β σ−2

0 (ti − xTi ϑ0)2xTi Dxie
− β(ti−x

T
i ϑ0)2

σ2
0 , θ0 = (ϑT0 , σ

2
0)T ,

if the contamination is only in i-th direction at the point ti, and

IF2(t1, . . . , tn;Wβ , Fθ0
) = 2(1 + β)3ζ

−3/2
β σ−2

0

n∑
i=1

(ti − xTi ϑ0)2xTi Dxie
− β(ti−x

T
i ϑ0)2

σ2
0 ,

if there is contamination in all the directions at the points ti’s. Here

D = (XTX)−1L
(
LT (XTX)−1L

)−1

LT (XTX)−1.

Next we consider the level and power influence functions of the proposed Wald-type test. As in Section

4.2, it follows that the level influence function is always zero implying the level robustness of the proposal. For

power influence function, we again consider the alternatives H∗1n : LTϑ = l0 +n−1/2δ and proceed as in Section

4.2 to obtain the PIF for different types of contamination. In particular, for contamination only in the i-th

direction at the point ti we get

PIF(ti;Wβ , Fθ0
) =

K∗r (ωβ)(1 + β)3/2

ζ
3/2
β σ2

0

[
δTDPxi

]
(ti − xTi ϑ0)e

− β(ti−x
T
i ϑ0)2

2σ2
0 ,

where

DP =
(
LT (XTX)−1L

)−1

LT (XTX)−1
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Similarly, if the contamination is assumed to be in all the directions at the points tis (i = 1, . . . , n), the

corresponding power influence function is given by

PIF(t1, . . . , tn;Wβ , Fθ0
) =

K∗r (ωβ)(1 + β)3/2

ζ
3/2
β σ2

0

δTDP

n∑
i=1

xi(ti − xTi ϑ0)e
− β(ti−x

T
i ϑ0)2

2σ2
0 .

Clearly, the power influence function is bounded for all β > 0 implying robustness and unbounded at β = 0

implying the non-robust nature of the classical Wald test.

Remark 14 For the testing of significance of regression model (H0 : ϑ = 0p) we have r = p, l0 = 0p and

L = Ip, the identity matrix of order p. In this case the Wald-Type test statistic (55) simplifies to

Wn(ϑ̂β , σ̂
2
β) =

n

ζ
3/2
β σ̂2

β

ϑ̂
T

β (XTX)ϑ̂β ,

which is asymptotically χ2
p under the null hypothesis. Under the contiguous alternatives H∗1n, its asymptotic

distribution becomes the non-central chi-square with p degrees of freedom and non-centrality parameter ωβ =

ζ
−3/2
β σ−2

0 δT (XTX)δ. Noting that the asymptotic distribution under the contiguous alternatives depends on

the tuning parameter β only through the quantity zetaβ and examining its form, one can easily check that the

asymptotic contiguous power of the proposed Wald-type tests decreases only slightly with increasing values of β

so that the power loss under pure data is not significant at small positive values of β.

On the other hand, under contamination we gain high robustness with these positive values of β. For

illustrations, we have presented (Figure 4) the form of the second order influence function of the tests and the

power influence function for various values of β under contamination in one direction (say i-th). In this special

case, they have the simplified form (with ϑ0 = 0p)

IF2(ti;Wβ , Fθ0) = 2(1 + β)3ζ
−3/2
β σ−2

0

[
xTi (XTX)−1xi

]
t2i e
− βt

2
i

σ2
0 ,

and

PIF(ti;Wβ , Fθ0) =
K∗r (ωβ)(1 + β)3/2

ζ
3/2
β σ2

0

[
δTxi

]
tie
− βt

2
i

2σ2
0 .

It is clear from the figure that the influence functions are bounded for all β > 0 and their maximum values

decreases as β increases implying the increasing robustness.
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(a) IF of the test statistics with xT
i (XTX)−1xi = 1 (b) PIF with δTxi = 1 and δT (XTX)δ = 3

Figure 4: Influence functions of MDPDE based Wald-type test of (54) with σ0 = 1 for different values of β

(solid line: β = 0, dotted line: β = 0.3, dashed-dotted line: β = 0.5, dashed line: β = 1).

7 On the Choice of Tuning Parameter β

After deriving several important properties of the Wald-type test, a natural question that arises from the

point of view of a practitioner is what value of the tuning parameter should be used for a particular dataset.

For the MDPDE the role of the tuning parameter β has been well studied in the literature, which indicates

that robustness increases with β, but efficiency decreases at the same time. So β is selected that gives a

trade-off between robustness and efficiency of the estimator. However, a small positive value of β is generally

recommended that provides enough robustness with a slight loss in efficiency (see Basu et al., 1998 and Basu

et al., 2011). Broniatowski et al. (2012) have reported that values of β ∈ [0.1, 0.25] are often reasonable choices.

We largely agree with this view, although tentative outliers and heavier contamination may require a larger

value of β in some cases. Apart from a fixed choice of the tuning parameter, one may dynamically select an

optimum value of β based on the real data. Hong and Kim (2001) and Warwick and Jones (2005) have provided

some data driven choices of β for the MDPDE. In case of hypothesis testing the optimality criteria are different

from the estimation case. Here the asymptotic power against the contiguous alternative may be regarded as a

measure of efficiency of the test, which decreases with β. On the other hand, the robustness of the test against

contamination increases as β increases. Therefore, our suggestion in this regard is to choose an optimum value

of β that gives a suitable trade-off between the asymptotic power against the contiguous alternative and a

robustness measure, see Ghosh and Basu (2015c) for details. As the robustness of the Wald-type test statistic

depends primarily on the robustness of the estimators, another simple criterion to choose an optimum value of

β is to focus on the same optimum value for the estimator.

To avoid selecting a unique and specific tuning parameter, one may construct a test combining a set of

Wald-type tests corresponding to different β. Lavancier and Rochet (2014) have derived a general procedure to
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combine a set of estimators. This idea of constructing combined tests might be incorporated.

8 Concluding Remarks

Basu et al. (2015) have proposed the Wald-type test statistics based on the minimum density power divergence

estimators. They have observed strong robustness properties of the tests by using extensive simulation results.

In this paper we have given proper theoretical foundations behind the robustness properties of the Wald-type test

statistics. The influence function analysis is carried out to observe the effect of an infinitesimal contamination

on the test statistics. To justify the stability of the level and power under a contaminated distribution we have

studied the level and power influence functions. It is shown that the level influence function of a Wald-type test

statistic is zero, so the level of the test remains unchanged in infinitesimal contamination. For the contiguous

alternative the power influence function is bounded whenever the influence function of the MDPDE is bounded.

Other than location-scale parameters for the normal model we have shown some examples where the power

influence functions are bounded, and it gives the theoretical justification behind the stability of the power

function. On the other hand, the power influence functions of the classical Wald tests are unbounded, and as a

result they exhibit poor power in contaminated data. We have also proposed the chi-square inflation factor to

measure the robustness property with respect to the model assumption, and studied its infinitesimal change for

the Wald-type test statistics. On the whole, we hope that this research establishes that the tests proposed by

Basu et al. (2015) not only perform well in practise, but also have theoretically sound robustness credentials.

Acknowledgements: The authors would like to acknowledge the comments of the three referess, since they

helped improving the paper.
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A Appendix

There is some overlap between the Lehmann and Basu et al. conditions. In the following we present the

consolidated set of conditions which are the useful ones in our context.

A.1 Lehmann and Basu et al. conditions

(LB1) The model distributions Fθ of X have common support, so that the set X = {x|fθ(x) > 0} is independent

of θ. The true distribution H is also supported on X , on which the corresponding density h is greater

than zero.

(LB2) There is an open subset of ω of the parameter space Θ, containing the best fitting parameter θ0 such that

for almost all x ∈ X , and all θ ∈ ω, the density fθ(x) is three times differentiable with respect to θ and

the third partial derivatives are continuous with respect to θ.

(LB3) The integrals
∫
f1+β
θ (x)dx and

∫
fβθ (x)h(x)dx can be differentiated three times with respect to θ, and

the derivatives can be taken under the integral sign.

(LB4) The p× p matrix Jβ(θ), defined in (6), is positive definite.

(LB5) There exists a functionMjkl(x) such that |∇jklVθ(x)| ≤Mjkl(x) for all θ ∈ ω, where Vθ(x) =
∫
f1+β
θ (y)dy−(

1 + 1
β

)
fβθ (x) and Eh[Mjkl(X)] = mjkl <∞ for all j, k and l.

A.2 Proof of Theorem 1

The second order influence function of W 0
β (·) is given by

IF2(x,W 0
β , G) =

∂2W 0
β (Gε)

∂ε2

∣∣∣∣∣
ε=0

,

and

∂2W 0
β (Gε)

∂ε2

∣∣∣∣∣
ε=0

= 2IFT (x,T β , G)Σ−1
β (θ0)IF(x,T β , G)

+ 2(T β(G)− θ0)TΣ−1
β (θ0)IF2(x,T β , G).

As T β(Fθ0) = θ0, we obtain

IF2(x,W 0
β , Fθ0

) = 2IFT (x,T β , Fθ0
)Σ−1

β (θ0)IF(x,T β , Fθ0
).

The second order influence function of (29) is given by

IF2(x,Wβ , G) =
∂2Wβ(Gε)

∂ε2

∣∣∣∣
ε=0

,
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and

∂2Wβ(Gε)

∂ε2

∣∣∣∣
ε=0

= 2IFT (x,T β , G)M(T β(G))
(
MT (T β(G))Σβ(T β(G))M(T β(G))

)−1

MT (T β(G))IF(x,T β , G)

+ 2mT (T β(G))
∂

∂ε

((
MT (T β(Gε))Σβ(T β(Gε))M(T β(Gε))

)−1

MT (T β(Gε))IF(x,T β , Gε)

)∣∣∣∣
ε=0

+ 2mT (T β(G))
∂

∂ε

((
MT (T β(Gε))Σβ(T β(Gε))M(T β(Gε))

)−1
)∣∣∣∣

ε=0

MT (T β(G))IF(x,T β , G)

+mT (T β(G))
∂2

∂ε2

((
MT (T β(Gε))Σβ(T β(Gε))M(T β(Gε))

)−1
)∣∣∣∣

ε=0

m(T β(G))

= 2IFT (x,T β , G)M(T β(G))
[
MT (T β(G))Σβ(T β(G))M(T β(G))

]−1

MT (T β(G))IF(x,T β , G)

= 2
(
uθ (x) fβθ0

(x)− ξ (θ0)
)T
J−1
β (θ0)M(θ0)

(
MT (θ0)Σβ(θ0)M(θ0)

)−1

×MT (θ0)J−1
β (θ0)

(
uθ (x) fβθ0

(x)− ξ (θ0)
)
,

As T β(Fθ0
) = θ0, we obtain

IF2(x,Wβ , Fθ0
) = 2IFT (x,T β , Fθ0

)M(θ0)
(
MT (θ0)Σβ(θ0)M(θ0)

)−1

×MT (θ0)IF(x,T β , Fθ0).

A.3 Proof of Theorem 3

Let us denote the quadratic form of a symmetric matrix Ap×p as qA(z) = zTAz. We shall frequently use the

following result that

qA(z + h) = qA(z) + 2hTAz + qA(h), (56)

where z and h are two vectors in Rp. Using θ∗n = T β(FPn,ε,x) and equation (56), with z = θ̂β−θ∗n and

h =θ∗n−θ0, we get

W 0
n(θ̂β) = qnΣ−1

β (θ0)(θ̂β − θ0) = qnΣ−1
β (θ0)

(
(θ̂β − θ∗n) + (θ∗n − θ0)

)
= qnΣ−1

β (θ0)(θ̂β − θ
∗
n) + 2n(θ̂β − θ∗n)TΣ−1

β (θ0)(θ∗n − θ0) + qnΣ−1
β (θ0)(θ

∗
n − θ0),

i.e.,

W 0
n(θ̂β) = W 0

n(θ∗n) + qnΣ−1
β (θ0)(θ̂β − θ

∗
n) + 2n(θ̂β − θ∗n)TΣ−1

β (θ0)(θ∗n − θ0). (57)

Let us consider θ∗n as a function of εn = ε/
√
n, i.e. θ∗n = f(εn). A Taylor series expansion of f(εn) at εn = 0

gives

f(εn) =

∞∑
k=0

1

k!

εk

n
k
2

∂kf(εn)

∂εkn

∣∣∣∣
εn=0

= θn + ε√
n
IF (x,T β , Fθn) +

∞∑
k=2

1
k!

(
ε√
n

)k
IFk (x,T β , Fθn) .

Therefore, we get

√
n(θ∗n − θn) = εIF (x,T β , Fθ0

) + op(1p),

√
n(θ∗n − θ0 − n−1/2d) = εIF (x,T β , Fθ0) + op(1p),
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and thus

√
n(θ∗n − θ0) = d+ εIF (x,T β , Fθ0

) + op(1p)

= d̃ε,x,β(θ0) + op(1p). (58)

So, in (57), both summands are given by

W 0
n(θ∗n) = d̃

T

ε,x,β(θ0)Σ−1
β (θ0)d̃ε,x,β(θ0) + op(1),

2
√
n(θ̂β − θ∗n)TΣ−1

β (θ0)
√
n(θ∗n − θ0) = 2

√
n(θ̂β − θ∗n)TΣ−1

β (θ0)
(
d̃ε,x,β(θ0) + op(1p)

)
.

and hence according to the shape of (56), (57) is equal to

W 0
n(θ̂β) = qΣ−1

β (θ0)

(√
n(θ̂β − θ∗n) + d̃ε,x,β(θ0)

)
+ op(1).

As
√
n(θ̂β − θ∗n)

L−→
n→∞

N (0p,Σβ(θ0)), (59)

we get

W 0
n(θ̂β)

L−→
n→∞

χ2
p (δ) .

with δ = d̃
T

ε,x,β(θ0)Σ−1
β (θ0)d̃ε,x,β(θ0). This proves the first part of the theorem.

Finally, the second part of the theorem follows from th infinite series expansion of the non-central distribution

function (and density) in terms of that of the central chi-square variables;

βW 0
n
(θn, ε,x) = lim

n→∞
PFPn,ε,x(W 0

n(θ̂β) > χ2
p,α)

∼= P (χ2
p (δ) > χ2

p,α) = 1− Fχ2
p(δ)

(
χ2
p,α

)
=

∞∑
v=0

Cv

(
d̃ε,x,β(θ0),Σ−1

β (θ0)
)
P
(
χ2
p+2v > χ2

p,α

)
.

A.4 Proof of Theorem 6

Let us consider the expression of βW 0
n
(θn, ε,x) as obtained in Theorem 3. Note that, by definition

PIF(x,W 0
β , Fθ0

) =
∂

∂ε
βW 0

n
(θn, ε,x)

∣∣
ε=0

∼=
∞∑
v=0

∂

∂ε
Cv

(
d̃ε,x,β(θ0),Σ−1

β (θ0)
)∣∣∣
ε=0

P
(
χ2
p+2v > χ2

p,α

)
∼=
∞∑
v=0

{
∂

∂t
Cv

(
t,Σ−1

β (θ0)
)∣∣∣

t=d̃0,x,β(θ0)

}T {
∂

∂ε
d̃ε,x,β(θ0)

∣∣∣
ε=0

}
P
(
χ2
p+2v > χ2

p,α

)
,

where the last step follows from the chain rule. But d̃0,x,β(θ0) = d and routine differentiations yield

∂

∂ε
d̃ε,x,β(θ0) = IF(x,T β , Fθ0

),

and
∂

∂t
Cv (t,A) =

(
tTAt

)v−1

v!2v
(
2v − tTAt

)
Ate−

1
2 tTAt.

Combining these and simplifying, we get the theorem.
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A.5 Proof of Theorem 7

Let us denote θ∗n = T β(FPn,ε,x). Using equation (56), with z = m(θ̂β)−m(θ∗n) and h = m(θ∗n), we get

Wn(θ̂β) = qΣ∗−1
β (θ̂β)(

√
nm(θ̂β)) = qΣ∗−1

β (θ̂β)

(√
n(m(θ̂β)−m(θ∗n)) +

√
nm(θ∗n)

)
= qΣ∗−1

β (θ̂β)

(√
n(m(θ̂β)−m(θ∗n))

)
+ 2n

(
m(θ̂β)−m(θ∗n)

)T
Σ∗−1
β (θ̂β)m(θ∗n) + qΣ∗−1

β (θ̂β)

(√
nm(θ∗n)

)
,

where Σ∗β(θ0) = MT (θ0)Σβ(θ0)M(θ0)., i.e.,

Wn(θ̂β) = Wn(θ∗n) + qΣ∗−1
β (θ̂β)

(√
n(m(θ̂β)−m(θ∗n))

)
+ 2n

(
m(θ̂β)−m(θ∗n)

)T
Σ∗−1
β (θ0)m(θ∗n). (60)

Now, as in the proof of Theorem 3, we can show that

√
n(θ∗n − θ0) = d+ εIF (x,T β , Fθ0

) + op(1p)

= d̃ε,x,β(θ0) + op(1p). (61)

Using a Taylor series expansion, we get

m(θ∗n) = m(θ0) +MT (θ0) (θ∗n − θ0) + o (||θ∗n − θ0||) . (62)

As m(θ0) = 0r, from (61) it follows that

√
nm(θ∗n) = MT (θ0)d̃ε,x,β(θ0) + op(1r).

Further, since (59) holds, a similar Taylor series expansion of (62) yields

√
n
(
m(θ̂β)−m(θ∗n)

)
L−→

n→∞
N (0r,Σ

∗
β(θ0)) (63)

and
√
nΣ
∗− 1

2

β (θ̂β)
(
m(θ̂β)−m(θ∗n)

)
L−→

n→∞
N (0r, Ip).

Thus, we get

qΣ∗−1
β (θ̂β)

(√
n(m(θ̂β)−m(θ∗n))

)
L−→

n→∞
χ2
r.

Also, from (61) we have

Wn(θ∗n) = d̃
T

ε,x,β(θ0)M(θ0)Σ∗−1
β (θ̂β)MT (θ0)d̃ε,x,β(θ0) + op(1)

= d̃
T

ε,x,β(θ0)M(θ0)Σ∗−1
β (θ0)MT (θ0)d̃ε,x,β(θ0) + op(1),

2
√
n
(
m(θ̂β)−m(θ∗n)

)T
Σ∗−1
β (θ̂β)

√
nm(θ∗n) = 2

√
n
(
m(θ̂β)−m(θ∗n)

)T
Σ∗−1
β (θ̂β)MT (θ0)

(
d̃ε,x,β(θ0) + op(1r)

)
= 2
√
n
(
m(θ̂β)−m(θ∗n)

)T
Σ∗−1
β (θ0)MT (θ0)d̃ε,x,β(θ0) + op(1p).

Hence

Wn(θ̂β) = qnΣ∗−1
β (θ0)

([
m(θ̂β)−m(θ∗n)

]
+

1√
n
MT (θ0)d̃ε,x,β(θ0)

)
+ op(1).

As it holds (59), we get

Wn(θ̂β)
L−→

n→∞
χ2
r(δ),
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the non-central chi-square distribution with degrees of freedom r and non-centrality parameter δ = d̃
T

ε,x,β(θ0)M(θ0)Σ∗−1
β (θ0)MT (θ0)d̃ε,x,β(θ0).

This proves the first part of the theorem.

Second part of the theorem follows from above using the infinite series expansion of the non-central distri-

bution function (and density) in terms of that of the central chi-square variables:

βWn
(θn, ε,x) = lim

n→∞
PFPn,ε,x(Wn(θ̂β) > χ2

r,α)

∼= P (χ2
r,δ > χ2

r,α) = 1− Fχ2
r(δ)(χ

2
r,α)

=

∞∑
v=0

Cv

(
MT (θ0)d̃ε,x,β(θ0),Σ∗−1

β (θ0)
)
P
(
χ2
r+2v > χ2

r,α

)
.

A.6 Proof of Theorem 8

The proof is similar to that of Theorem 6, considering the expression of βWn
(θn, ε,x) from Theorem 7. We

omit the detailed calculation for brevity.

A.7 Proof of Theorem 10

Let us denote Jβ,g(θ), Kβ,g(θ), ξβ,g(θ), Σβ,g(θ) as Jβ,ε,y(θ), Kβ,ε,y(θ), ξβ,ε,y(θ), Σβ,ε,y(θ) respectively,

when g = fε,y. The infinitesimal change in the CSIF at the model is given by

∂

∂ε
c̄β,ε,y(θ) =

1

p
trace

(
Σ−1
β (θ)

∂

∂ε
Σβ,ε,y(θ)|ε=0

)
.

Now

∂

∂ε
Σβ,ε,y(θ) =

∂

∂ε
J−1
β,ε,y(θ)Kβ,ε,y(θ)J−1

β,ε,y(θ) + J−1
β,ε,y(θ)

∂

∂ε
Kβ,ε,y(θ)J−1

β,ε,y(θ)

+ J−1
β,ε,y(θ)Kβ,ε,y(θ)

∂

∂ε
J−1
β,ε,y(θ)

= −J−1
β,ε,y(θ)

∂

∂ε
Jβ,ε,y(θ)Σβ,ε,y(θ) + J−1

β,ε,y(θ)
∂

∂ε
Kβ,ε,y(θ)J−1

β,ε,y(θ)

−
(
J−1
β,ε,y(θ)

∂

∂ε
Jβ,ε,y(θ)Σβ,ε,y(θ)

)T
, (64)

where

∂

∂ε
Jβ,ε,y(θ) =

∫ (
Iθ(x)− βuθ(x)uTθ (x)

)
(∆y − fθ(x)) fβθ (x)dx

= fβθ0
(y)
(
Iθ(y)− βuθ(y)uTθ (y)

)
−
∫ (

Iθ(x)− βuθ(x)uTθ (x)
)
f1+β
θ (x)dx

= βJβ(θ) + fβθ0
(y)
(
Iθ(y)− βuθ(y)uTθ (y)

)
−
∫
Iθ(x)f1+β

θ (x)dx, (65)

and

∂

∂ε
Kβ,ε,y(θ) =

∫
uθ(x)uTθ (x)f2β

θ (x) (∆y − fθ(x)) dx− ∂

∂ε
ξβ,ε,y(θ)ξTβ,ε,y(θ)− ξβ,ε,y(θ)

∂

∂ε
ξTβ,ε,y(θ)

= uθ(y)uTθ (y)f2β
θ (y)−

∫
uθ(x)uTθ (x)f2β+1

θ (x)dx− ξβ,ε,y(θ)
∂

∂ε
ξTβ,ε,y(θ)−

(
ξβ,ε,y(θ)

∂

∂ε
ξTβ,ε,y(θ)

)T
.

(66)
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Since

∂

∂ε
ξβ,ε,y(θ) =

∫
uθ(x)fβθ (x) (∆y − fθ(x)) dx = uθ(y)fβθ (y)−

∫
uθ(x)f1+β

θ (x)dx

= uθ(y)fβθ (y)− ξβ(θ),

ξβ,ε,y(θ)
∂

∂ε
ξTβ,ε,y(θ) =

∫
uθ(x)fβθ (x) ((1− ε)fθ0(x) + ε∆y) dx

(
uθ(y)fβθ (y)− ξβ(θ)

)T
,

ξβ,0,y(θ)
∂

∂ε
ξTβ,ε,y(θ)

∣∣∣
ε=0

= ξβ(θ)
(
uθ(y)fβθ (y)− ξβ(θ)

)T
= ξβ(θ)uTθ (y)fβθ (y)− ξβ(θ)ξTβ (θ),

we get from equation (66)

∂

∂ε
Kβ,ε,y(θ)|ε=0 = uθ(y)uTθ (y)f2β

θ (y)−
∫
uθ(x)uTθ (x)f2β+1

θ (x)dx

− ξβ,0,y(θ)
∂

∂ε
ξTβ,ε,y(θ)

∣∣∣
ε=0
−
(
ξβ,0,y(θ)

∂

∂ε
ξTβ,ε,y(θ)

∣∣∣
ε=0

)T
= uθ(y)uTθ (y)f2β

θ (y)−Kβ(θ)− ξβ(θ)uTθ (y)fβθ (y)− uθ(y)ξTβ (θ)fβθ (y) + ξβ(θ)ξTβ (θ)

= −Kβ(θ)− ξβ(θ)uTθ (y)fβθ (y)− uθ(y)ξTβ (θ)fβθ (y) + uθ(y)uTθ (y)f2β
θ (y) + ξβ(θ)ξTβ (θ)

= −Kβ(θ)−
(
ξβ(θ)− uθ(y)fβθ (y)

)(
ξβ(θ)− uθ(y)fβθ (y)

)T
. (67)

Using (65) and (67), we get

J−1
β (θ)

∂

∂ε
Jβ,ε,y(θ)Σβ(θ) = βΣβ(θ) + fβθ0

(y)J−1
β (θ)

(
Iθ(y)− βuθ(y)uTθ (y)

)
Σβ(θ)

− J−1
β (θ)

∫
Iθ(x)f1+β

θ (x)dxΣβ(θ), (68)

and

J−1
β (θ)

∂

∂ε
Kβ,ε,y(θ)|ε=0 J

−1
β (θ) = −Σβ(θ0)

− J−1
β (θ)

(
ξβ(θ)− uθ(y)fβθ (y)

)(
ξβ(θ)− uθ(y)fβθ (y)

)T
J−1
β (θ), (69)

respectively. Combining (64), (68), (69) we get

Σ−1
β (θ)

∂

∂ε
Σβ,ε,y(θ)|ε=0 = −2βIp − Jβ(θ0)K−1

β (θ0)

(
fβθ0

(y)
(
Iθ(y)− βuθ(y)uTθ (y)

)
+

∫
Iθ(x)f1+β

θ (x)dx

)
Σβ(θ)

−Σβ(θ)

(
fβθ0

(y)
(
Iθ(y)− βuθ(y)uTθ (y)

)
+

∫
Iθ(x)f1+β

θ (x)dx

)
Jβ(θ0)K−1

β (θ0)

− Ip − Jβ(θ0)K−1
β (θ0)

(
ξβ(θ)− uθ(y)fβθ (y)

)(
ξβ(θ)− uθ(y)fβθ (y)

)T
J−1
β (θ),

and thus the theorem follows from

trace

(
Σ−1
β (θ)

∂

∂ε
Σβ,ε,y(θ)|ε=0

)
= − (2β + 1) p− trace

((
ξβ(θ)− uθ(y)fβθ (y)

)(
ξβ(θ)− uθ(y)fβθ (y)

)T
K−1
β (θ)

)
− 2trace

((
fβθ0

(y)
(
Iθ(y)− βuθ(y)uTθ (y)

)
+

∫
Iθ(x)f1+β

θ (x)dx

)
J−1
β (θ)

)
and taking into account

IF2(y,W 0
β , Fθ0

) = trace

((
ξβ(θ)− uθ(y)fβθ (y)

)(
ξβ(θ)− uθ(y)fβθ (y)

)T
K−1
β (θ)

)
.
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A.8 Proof of Theorem 13

From (64), (68), (69) we get

Σ∗−1
β (θ0)

∂

∂ε
Σ∗β,ε,y(θ0)

∣∣
ε=0

= −βIr

−Σ∗−1
β (θ0)MT (θ0)J−1

β (θ0)

(
fβθ0

(y)
(
Iθ0(y)− βuθ0(y)uTθ0

(y)
)
−
∫
Iθ0(x)f1+β

θ0
(x)dx

)
Σβ(θ0)M(θ0)

−MT (θ0)Σβ(θ0)

(
fβθ0

(y)
(
Iθ0

(y)− βuθ0
(y)uTθ0

(y)
)
−
∫
Iθ0

(x)f1+β
θ0

(x)dx

)
J−1
β (θ0)M(θ0)Σ∗−1

β (θ0)

− Ir −Σ∗−1
β (θ0)MT

β (θ0)J−1
β (θ0)

(
ξβ(θ0)− uθ0(y)fβθ0

(y)
)(
ξβ(θ0)− uθ0(y)fβθ0

(y)
)T
J−1
β (θ0)M(θ0),

and thus the theorem follows from

trace

(
Σ−1
β (θ0)

∂

∂ε
Σβ,ε,y(θ0)|ε=0

)
= − (2β + 1) r

− trace

((
ξβ(θ0)− uθ0

(y)fβθ0
(y)
)(
ξβ(θ0)− uθ0

(y)fβθ0
(y)
)T
J−1
β (θ0)M(θ0)Σ∗−1

β (θ0)MT (θ0)J−1
β (θ0)

)
− 2trace

((
fβθ0

(y)
(
Iθ0(y)− βuθ0(y)uTθ0

(y)
)
−
∫
Iθ0(x)f1+β

θ0
(x)dx

)
Σβ(θ0)M(θ0)Σ∗−1

β (θ0)MT
β (θ0)J−1

β (θ0)

)
and taking into account

IF2(y,Wβ , Fθ0
)

= trace

((
ξβ(θ0)− uθ0

(y)fβθ0
(y)
)(
ξβ(θ0)− uθ0

(y)fβθ0
(y)
)T
J−1
β (θ0)M(θ0)Σ∗−1

β (θ0)MT (θ0)J−1
β (θ0)

)
.
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