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I. INTRODUCTION

This research treats the noise reduction of vector chaotic time series corrupted by observational noise of large

amplitude. The aim is to isolate the deterministic component of the signal. The goal is more than merely detecting

chaos. A totally or partially cleaned signal can be used for accurate short term forecasting of its deterministic

component, and to improve the forecasting of its probable long term behaviour.

Early research on noise reduction [1–8] was based on local linear estimations of the unknown dynamics using least

squares methods. The algorithms proposed in these papers showed the possibility of separating the signal from the

noise for time series of large lengths and low or moderate noise amplitudes. These algorithms have two intrinsic

limitations that can be insubstantial for noises of small amplitude but which may be crucial for the analysis of chaotic

time series corrupted by noises of moderate or large amplitudes:

(i) The inaccuracy of the least squares method in the local estimation of the dynamics was recognized already in the

early literature on noise reduction [7, 9]. All the nonparametric algorithms were, however, based on this method.

(ii) All noise reduction algorithms use an iterative procedure that takes the output of the algorithm as the input in

the next iteration. If the method is to be efficient there must be a significant difference between the noise levels of the

outputs of the first and the final iterations. For time series corrupted by noises of large amplitude the neighbourhoods
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used in estimating the local dynamics in the early iterations must contain a significant fraction of the data points,

whereas in the final iterations the use of big neighbourhoods is clearly inappropriate, due to the errors caused by

nonlinearities. In order to design an efficient algorithm it is crucial to have efficient criteria for determining the

optimal sizes of the neighbourhoods to be used in the local estimations of the dynamics at each iteration.

Issue (i) above was addressed in our previous paper [10] using the theory of measurement error models [11]. This

theory gives unbiased and consistent estimators which, for Gaussian errors, are those of maximum likelihood. Such

estimators can be regarded as a local linear projection onto an optimal linear subspace, with respect to a metric that

incorporates the information contained in the error covariance matrix. K. Judd [12] has pointed out the failure of

the maximum likelihood methods to identify the true trajectory of a chaotic dynamical system specially in the case

of large noise. Judd has also observed that the residuals present too many outliers, and in general their distribution

is not consistent with the original distribution of the noise. Our results confirm such observation, the kurtosis of the

residuals are considerably higher that the given by the Gaussian distribution. We overcome this difficulty through an

smoothing device based on averaging multiple estimations of the value of each clean data point.

In this paper we address the issue of overcoming the basic limitation (ii) pointed out above. Our adaptive neigh-

bourhoods technique is based on a statistical test with null computational cost. At a given iteration it determines

from the properties and level of the remaining noise a single uniform size and shape for the neighbourhoods of all

data points. The criterion used for determining the neighbourhoods is to keep their sizes as small as possible while

guaranteeing, with a given confidence level, that the relevant information is contained in the neighbourhoods. As the

number of iterations increases, the noise level decreases, and the sizes of the neighbourhoods reduce accordingly, thus

minimizing the errors due to nonlinearity. Another issue addressed when constructing the neighbourhoods is that of

determining their optimal shapes. Our algorithm is designed for vector time series, and if the degree of uncertainty

in the observed state variables is different then the appropriate neighbourhoods will be nonspherical. They should be

instead ellipsoids for which the semiaxial lengths are related to the uncertainties in the corresponding coordinates.

The results that we obtain with our algorithm are good for noises of small and medium amplitudes. Furthermore

they are remarkable for short length time series corrupted by noises of large amplitude: we obtain a noise reduction of

up to 84% for a Henon time series of only 500 data points with a 300% noise to signal ratio. Such a result is achieved

because the algorithm takes full advantage of the heteroskedasticity of the noise (the noise to signal ratio is 10% in

the first component and 300% in the second component of the time series). The lower level of uncertainty in the first

coordinate allows noise reduction in the second coordinate out of reach for existing algorithms, which have until now
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not been used to analyse chaotic noisy time series with noise to signal ratios in such a large range.

Kern, Steeb and Stoop [13] have also proposed an adaptive neighbourhood criterion. At each iteration and for each

point they take neighbourhoods of different sizes and choose that which optimizes the quality of the best linear fit to

the local dynamics. They showed their method to be advantageous only in the case of noises of medium amplitudes,

but for noises of small or large amplitudes they do not find justified the high computational cost required.

Eficient noise reduction algorithms based also on local linear projections into optimal linear subspaces are those

developed for speech enhancement. The method consists on mimizing the signal distorsion while the residual noise

energy is maintained below some given threshold [14–16]. For this type of time series, almost periodic, a method for

the automatic detection of the best neighbourhood size, based on recurrence plots, is the given in [17].

The paper is organized as follows. In Section II we describe our algorithm, focusing attention on the local linear

estimation of the dynamics using the theory of measurement error models, and on the adaptive neighbourhoods

method. Section III presents some results obtained by our algorithm for Henon and Lorenz time series corrupted by

noises of large noise to signal ratio.

II. THE ALGORITHM

We assume that the observed time series {Xi, i = 1, ..., N} ⊂ Rde is the sum of an unknown deterministic time

series {si, i = 1, ..., N} and an unknown i.i.d. stochastic time series {ei, i = 1, ..., N} with null mean. Then Xi =

si + ei, 1 ≤ i ≤ N, and si+1 = f(si), where f : M ⊂ Rde → M is an unknown smooth chaotic dynamics. The aim of

noise reduction algorithms is the separation of the deterministic component of the time series from the observational

noise.

The noise level in the jth component of the observed time series is

(NL)j :=

√√√√√√
∑N

i=1

(
(ei)j

)2

∑N
i=1

(
(si)j

)2 , j = 1, ..., de (1)

where (si)j and (ei)j denote the jth components of si and ei respectively. We denote by NL the vector whose

components are (NL)j , j = 1, ..., de.

The algorithm we design takes as input data the vector time series {Xi, i = 1, ..., N} instead of a scalar time series

as do most existing noise reduction algorithms.
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A. Local estimations of the dynamics and noise reduction

The principal technique used in noise reduction algorithms is local orthogonal projection of the data on optimal

linear subspaces, which is equivalent to finding the best local linear estimations of the unknown dynamics. This

technique is also used in the forecasting problem, for the estimation of the Lyapunov spectrum [18, 19], and for the

estimation from a time series of the degrees of freedom of a dynamical system [20].

Let si be any point of the clean time series, and let Ui be a small neighbourhood of si. Since f is a differentiable

dynamics,

f(s)− f(si) ≈ Df(si)(s− si), for s ∈Ui

where Df(si) is the tangent map of f at si. The tangent space y =f(si) + Df(si)(s− si) is the best de-dimensional

linear subspace of R2de through (si, f(si)) for the data points {(s, f(s)), for s ∈Ui}. Such data points are arbitrarily

close to this tangent space when the size of Ui is sufficiently small. In [21] it is shown how to estimate Df(si) from a

time series and what are the conditions guaranteeing that such estimations converge to the tangent map.

The effect of the noise is to separate the observed data points from the tangent spaces. Then the noise can

be partially removed by projecting the observed data points on the best de-dimensional linear subspaces through

(〈Xi〉 , 〈Xi+1〉) where 〈Xi〉 = 1
#Ui

∑
j:Xj∈Ui

Xj , #Ui denotes the number of points within Ui, and Ui is now a small

neighbourhood of Xi. Since the errors have null mean, the point (〈Xi〉 , 〈Xi+1〉) is likely to be closer to (si, si+1)

than the point (Xi,Xi+1) is, and it is better to seek the best linear subspace through (〈Xi〉 , 〈Xi+1〉) rather than that

through (Xi,Xi+1) (see Fig. 1).

A fact to be considered is that the unknown dynamics is chaotic. Then a small ball Bi centred at si is mapped

by f onto an ellipsoid centred at si+1 with the principal axes oriented in the directions of the unstable manifold at

si. Therefore a local estimation of f based on the data points (Xj − 〈Xi〉 ,Xj+1 − 〈Xi+1〉), for Xj ∈ Ui is likely to

be good on the unstable manifold and poor on the stable manifold. Reciprocally the ball Bi is mapped by f−1 onto

an ellipsoid centred at si−1 and with the principal axes oriented in the directions of the stable manifold at si. This

indicates that in order to obtain good estimations of the clean values of the time series using local estimations of the

dynamics we should incorporate information about the past, the present, and the future as was already pointed out

by Grassberger et al [3].

This is done by taking the best de-dimensional linear subspace Ti (according to a criterion described below) for the

data points {Zj − 〈Zi〉 : Zj := (Xj−1,Xj ,Xj+1), Xj ∈ Ui} and then projecting the points Zj − 〈Zi〉 onto Ti. Then
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the estimation of

zj := (sj−1, sj , sj+1) (2)

obtained from the neighbourhood Ui is

ẑi
j = 〈Zi〉+ PTi

(Zj − 〈Zi〉) (3)

where PTi
Z denotes the orthogonal projection, with respect to the metric used to obtain Ti, of the vector Z onto Ti.

The optimization criterion is the minimization of the mean square distance of the points Zj − 〈Zi〉 to the subspace,

taking as the metric that induced by Σ̂−1
3 where Σ̂−1

3 is the empirical covariance matrix of the errors (ej−1, ej , ej+1)

contained in Zj , and then

Ti := arg min
T

∑
j: Xj∈Ui

vt
j Σ̂−1

3 vj (4)

where vj := Zj −〈Zi〉−PT(Zj −〈Zi〉) and PTZ := arg minu∈T(u− Z)tΣ−1
3 (u−Z) (see Appendix A). The distance

induced by Σ−1
3 , called the Mahalanobis distance in the statistical literature, takes into account that the independent

variables sj in the underlying linear model in the variables (sj−1, sj , sj+1) are also measured with error, and exploits

in the optimal way the information about the structure of the error, in particular the degree of uncertainty in each of

the coordinates of the time series. The solution of (4) gives unbiased and consistent estimators of the parameters of

the model [11], which are also those of maximum likelihood if the errors are Gaussian.

If Σ3 is a multiple of the identity matrix, (4) is called the orthogonal least squares solution, and the Mahalanobis

distance coincides with the Euclidean distance. Hegger and Schreiber [4] have also proposed a noise reduction algorithm

for vector time series based on local orthogonal projections onto optimal linear subspaces, but taking as the metric on

R3de one that gives almost all the weight to the de-central coordinates of the data points. This weight is the same for

the de-coordinates, so all the individual coordinates are treated as they have the same degree of uncertainty. In the

case of scalar time series, Grassberger et al [3] have proposed a metric which is designed to exploit the characteristics

of the embedded time series, and Cawley and Hsu [1] use the Euclidean metric.

B. The adaptive neighbourhood construction

In the case of a clean time series, Ti is obtained as in (4) using the neighbourhood {sj : (sj − si)t(sj − si) ≤ r2
0},

where r0 is fixed (and should tend to zero as N tends to infinity). For the estimation of a de-dimensional linear

subspace there are needed at least de + 1 points sj such that the corresponding vectors zj − 〈zi〉 (see (2)) are linearly
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independent. The value of r0 must guarantee this condition. Furthermore, since f is not a linear function the clean

data do not belong to the tangent spaces, and the estimates of Ti have more statistical robustness if the number of

points used is greater than de + 1.

For noisy time series, the optimal subspace obtained using the neighbourhood {Xj : (Xj−Xi)t(Xj−Xi) ≤ r2
0} may

be far from the optimal linear subspace for the clean data. This is due to the noise, which introduces false neighbours

in the neighbourhoods, and it separates points which are close in the clean time series. The neighbourhoods must be

sufficiently large as to guarantee that a significant portion of the data within them corresponds to close neighbours

for the clean time series. It is desirable to eliminate from the neighbourhoods as many false neighbours as possible.

Furthermore, the sizes of such neighbourhoods should be reduced in accordance with the noise reduction occurring

as the iterative process progresses.

On the other hand, since the uncertainties of the individual coordinates of the time series may be different, the

Euclidean distance is not the most appropriate for the construction of the neighbourhoods. We use the distance

induced by Σ̂−1
1 where Σ̂1 is the estimate of the de×de covariance matrix of the error in the time series X. This gives

a neighbourhood of the form {X : (X −Xi)tΣ̂−1
1 (X −Xi) ≤ r} where r is a value which depends on the noise level

and on the value r0 we consider suitable in the case of N noise-free data points. The value of r is fixed as small as

possible while guaranteeing, with a given confidence level 1 − α0, that the relevant information is contained in the

neighbourhoods (see in Appendix B the details). Fig. 1 shows these neighbourhoods at two points of a noisy Henon

time series.

C. Further details of the algorithm

Estimation of Σ1 and Σ3.

An estimate Σ̂3 of the sample covariance matrix of the errors in {Zj , j = 2, ..., N − 1} is needed for the estimation

of the subspaces Ti. An estimate Σ̂1 of the sample covariance matrix of the errors in {Xj , j = 1, ..., N} is needed

in constructing the neighbourhoods Ui. We estimate the errors at iteration k > 1 from the corrections made by the

algorithm at such an iteration.

Let {ŝk
i , i = 1, ..., N} be the cleaned time series at iteration k, which is also the input time series at iteration k + 1,

and let ŝ0
i = Xi, i = 1, ..., N. At the first iteration we take Σ̂1 = I where I is the de × de identity matrix, and as Ui

the neighbourhoods which contain a fixed percentage NP of the data points, corresponding to the points closest to

Xi in the Euclidean distance. The value of NP we choose depends on an a priori estimation of the noise level. At
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iteration k + 1, k > 1, we take as Σ̂1 the sample covariance matrix of the estimated errors

êk
j := ŝk

j − ŝk−1
j , j = 1, ..., N, (5)

at iteration k, and as Σ̂3 the sample covariance matrix of its 3-embedding.

Minimum and maximum number of neighbours

We check that all the neighbourhoods Ui contain at least a given number Nmin ≥ de + 1 of neighbours, where

Nmin is a parameter of the algorithm. It applies to the final iterations mainly to compensate the reduced sizes of the

confidence ellipsoids that for large noise amplitudes and large k result from the underestimation of the real errors

by the estimated errors given by (5). This is because expression (5) reflects the convergence of the outputs of the

algorithm, but does not incorporate the remaining errors contained in such outputs.

In the results of the next section the value of Nmin taken at a given iteration is Nmin := max{0.014N,Nmean− sN}

where Nmean and sN are the sample mean and the sample standard deviation of the distribution of the number of

points within each Ui at that iteration.

Another parameter of the algorithm is the maximum Nmax of the number of points permitted to be contained in a

neighbourhood Ui. It serves to ensure that at initial iterations and for noise levels larger than 100%, the neighbourhoods

do not contain too large a fraction of the data points. In the results of Section III we take Nmax = 0.25N.

Embedding space

We have assumed that the dimension d of the space on which the unknown dynamics f is defined coincides

with the number de of coordinates of the observed noisy time series (see in [20, 22] how to estimate d when it is

unknown). However our algorithm can be adapted to the case d 6= de. Assume that the observed time series {Xi,

i = 1, ..., N} ⊂ Rde satisfies Xi = g(si) + ei where {ei, i = 1, ..., N} ⊂ Rde is an unknown i.i.d. stochastic time series,

si+1 = f(si), i = 1, ..., N − 1, where f : M ⊂ Rd → M is the unknown smooth dynamics, and g : M ⊂ Rd → Rde

is an unknown smooth vector function or observable. Then Ti will be the best d-dimensional subspace instead of

the best de-dimensional subspace (i.e. the matrix B in expression (A1) in Appendix A has as columns the vectors

{w3de−d+1, ...,w3de}). Furthermore if d > de and 3de < 2d + 1 then the working space R3de (i.e. the 3-embedding of

the time series) must be replaced by R(2m+1)de with m such that (2m + 1)de > 2d + 1 in order to guarantee we have

a good reconstruction [23] of the unknown dynamics.
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III. NUMERICAL RESULTS

In this section we show the results obtained applying our algorithm to time series generated by Hénon and Lorenz

dynamics corrupted by noise. The Hénon map is given by the equations

x1(k + 1) = 1− ax1(k)2 + x2(k), x2(k + 1) = bx1(k), (6)

and we take the parameter values a = 1.4 and b = 0.3. The Lorenz dynamics is defined by

x′1 = σ(x2 − x1), x′2 = x1(R− x3)− x2 , x′3 = x1x2 − bx3,

The equations were integrated using a fourth order Runge-Kutta algorithm with an integration step of ∆t = 0.001.

The values used for the sampling time τ and the parameters σ,R, and b are given in Table II.

In all the examples below, we use uncorrelated and heteroskedastic errors with Gaussian distributions. For the

construction of the neighbourhoods we take α0 = 0.01 (see Appendix B).

We quantify the noise removed by the algorithm using the pointwise distance between the clean s and the cleaned

ŝ time series

dP (s, ŝ) :=

(
1
N

N∑
i=1

(‖ŝi − si‖2)
2

)1/2

.

If dP (s, ŝ) < dP (s,X) then the noise level in ŝ is less than the noise level in the input time series X. The percentage

of global pointwise noise reduction is Rp := 100
(
1− dP (s,bs)

dP (s,X)

)
and that corresponding to the jth coordinate is

(RP )j := 100
(
1− dP ((s)j ,(bs)j)

dP ((s)j ,(X)j)

)
where

dP ((s)j , (ŝ)j) :=

(
1
N

N∑
i=1

((ŝi)j − (si)j)
2

)1/2

, j = 1, ..., de.

Notice that these measures require knowledge of the clean time series. We use such knowledge only to quantify

the noise level reduction. This information is used neither in the noise reduction scheme nor in deciding when the

algorithm must stop. Thus the algorithm may work on data generated by an unknown process. The stopping criterion

we use is related to our adaptive neighbourhood construction. As the iterations increase, the remaining noise level

and the size of the neighbourhood Ui must decrease. A clear indication that further iterations of the algorithm will

not reduce the remaining noise is the stabilization of the mean number of points in the neighbourhoods.

We focus our attention on time series of short lengths corrupted by noises with large amplitudes. We intend

to show through numerical experiments that the combination of the measurement error theory and the adaptive
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neighbourhood construction allows us to reduce noises having large amplitudes in one of the components especially if

the other components of the time series are corrupted by noises of smaller amplitudes.

The results for a Henon time series corrupted by noise of large amplitude (up to 300%) in the second component

and by noise of small or moderate amplitude in the first component are shown in Table I. For short length time series

and high noise levels the results of the algorithm depend strongly on the realization of the error term, and also on

the clean time series considered. Thus the noise level reduction achieved by any noise reduction algorithm must be

understood in terms of the distribution of the output of the algorithm. For this reason we give as results the sample

mean 〈(Rp)2〉 and the sample standard deviation s(Rp)2 of (Rp)2 obtained from 50 noisy time series.

The results show values of 〈(Rp)2〉 higher than 80% in all the cases. These values increase with N whereas s(Rp)2

decreases with N. For noise levels (NL)2 up to 200% the 〈(Rp)2〉 achieves values greater than 90% for time series

with N = 5000. The results are very good even for time series of only 500 data points, although they present greater

variability. For instance, for N = 500 and NL = (5%, 200%) we obtain 〈(Rp)2〉 = 85.00% and s(Rp)2 = 3.14, and the

50 values of (RP )2 belong to the interval (72.2%, 89.62%).

Fig. 2 show the output of the algorithm for one of the 50 noisy time series corresponding to a noise level NL =

(10%, 300%) and N = 500. The figure shows that even for a time series having such a large noise level and such a

short length the algorithm is able to recover a significant part of the geometric structure of the clean time series.

The use of adaptive neighbourhoods is more relevant for noises of large amplitude. Then the mean number of

neighbours in the initial iterations may be close to Nmax whereas in the final iterations it is stabilized and close to

Nmin. For instance, for a Henon time series with N = 1000 and NL = (10%, 300%), the mean number of neighbours

in Ui at the first iteration is Nmax = 250 and at iteration 20 this mean number is only 25.

Another measure of noise reduction standard in the noise reduction literature is based on the deviation of the time

series from the deterministic behaviour. It assumes that the dynamics f is known and is defined through

ddyn(ŝ) :=

(
1

N − 1

N−1∑
i=1

(‖ŝi+1 − f(ŝi)‖2)
2

)1/2

. (7)

If ddyn(ŝ) < ddyn(X) then the cleaned time series emulates better the dynamics than does the input time series.

The percentage of global dynamical noise reduction is Rdyn := 100
(
1− ddyn(bs)

ddyn(X)

)
and that corresponding to the jth

coordinate is (Rdyn)j := 100
(
1− (ddyn(bs))

j

(ddyn(X))
j

)
where

(ddyn(ŝ))j :=

(
1

N − 1

N−1∑
i=1

(
(ŝi+1)j − (f(ŝi))j

)2
)1/2

, j = 1, ..., de.

If f is unknown a measure R̂dyn of the dynamical noise reduction is obtained by replacing f in (7) by its local linear
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estimations.

The values of 〈Rp〉 , 〈Rdyn〉 , and 〈(Rdyn)2〉 for the time series of Table I differ slightly from 〈(Rp)2〉 and are omitted

for the sake of clarity. The only significant difference is for NL = (50%, 300%), where the values of 〈Rp〉 and 〈Rdyn〉

are around 60% and 70% respectively, which are values significantly smaller than the values of 〈(RP )2〉 in Table I.

We have tested in all these examples that the stopping criterion based on the stabilization of the mean number

of points within the neighbourhoods gives results analogous to those obtained using as the stopping criterion the

stabilization of RP or Rdyn, which criteria require knowledge of the clean time series or f. A stopping criterion based

on the stabilization of R̂dyn, which does not require additional information, gives poorer results because R̂dyn stabilizes

at high values even when Rp and Rdyn indicate that the algorithm is still able to reduce a significant part of the

remaining noise.

Our algorithm estimates very effectively the initial noise levels in each of the components of a noisy time series.

Such estimations are given by (̂NL)j :=
√PN

i=1((Xi−bsi)j)
2

PN
i=1((bsi)j)

2 , j = 1, ..., de. For instance, the mean of the values of

((̂NL)1, (̂NL)2) obtained from 50 noisy time series of 1000 data points with an initial noise levels NL = (2%, 100%)

are N̂L = (2.012%, 100.803%) and the corresponding standard deviations are (0.074, 2.89).

Some results obtained for Lorenz time series are shown in Table II. These two examples differ in the values of the

parameters in the Lorenz dynamics, and in the sampling times. In both cases NL = (100%, 10%, 5%) so the noise

level is large in the first component and moderate in the other two components. In fact, since the mean value of

the z component of the clean time series is not zero, (NL)3 = 5% is equivalent to 15% noise level in terms of the

standard deviation of z in the clean time series. In this case f is unknown and the values of 〈Rdyn〉 and 〈(Rdyn)1〉

of the table are obtained by approximating f using the fourth order Runge-Kutta method used to generate the clean

time series. The values of the dynamical noise reduction are significant greater than the values of pointwise noise

reduction, achieving values of 〈(Rdyn)1〉 close to 95% for the second set of parameters, for all the lengths considered.

Fig. 3 show the output of one of the noisy time series of Table II. It can be seen that the algorithm is able to recover

a significant part of the geometric structure and the dynamics of the clean time series.

IV. CONCLUSIONS

We have proposed a noise reduction algorithm that combines the measurement error models theory with an adaptive

neighbourhoods selection based on a statistical test. The algorithm works efficiently for short time series corrupted

by noises of large amplitude. The results could be improved were consideration of nonlinearity effects added to our
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adaptive neighbourhood method. The size of the neighbourhoods should be fixed as a compromise between the effects

of nonlinearity (see [3]) and the amount of information in the neighbourhoods.

Our results show the possibility of detection and forecasting of deterministic scalar time series of small amplitudes

buried in observational noises of amplitudes much larger than that of the signal if they are coupled through a smooth

dynamical system to other state variables which can be observed with lower uncertainties. The high performance of

our algorithm for short length time series gives hope that the scope of application of this method might extend to

research in the social sciences.

APPENDIX A: TECHNICAL DETAILS

(i) Estimation of the best subspaces and the projection matrix

The solution of (4) is (see Appendix in Ref. [10]) Ti := span{Σ̂3w1, ..., Σ̂3wde} where {w1, ....,w3de} is an or-

thonormal basis of eigenvectors of the matrix MZZ := 1
#Ui

∑
j: Xj∈Ui

(Zj − 〈Zi〉)(Zj − 〈Zi〉)t in the metric of Σ̂3,

i.e.

MZZwj = λjΣ̂3wj , j = 1, ..., 3de and wjΣ̂3wk = δjk, j, k = 1, ..., 3de

where λ1 ≥ ... ≥ λ3de are the corresponding eigenvalues. Such a basis of eigenvectors is given by the columns of the

matrix QΛ−1/2H, where Q is a matrix whose columns are an orthonormal basis of eigenvectors of Σ̂3 (in the Euclidean

metric), Λ is the diagonal matrix of eigenvalues of Σ̂3, and the columns of H are an orthonormal basis of eigenvectors

of the matrix Λ−1/2QtMZZQΛ−1/2.

The matrix of the projection onto the subspace Ti is I− Σ̂3BBt where I is the 3de× 3de identity matrix and B is

the matrix whose columns are {w2de+1, ...,w3de}. Then (3) can be written as

ẑi
j = Zj − Σ̂3BBt(Zj − 〈Zi〉) for Xj ∈ Ui (A1)

(ii) The problem of multiple 3de-dimensional estimations

Since any point Xj belongs to many neighbourhoods Ui, we take the average of all the values {ẑi
j : Xj ∈ Ui} (see

(3)) as the final estimation of zj , i.e.

ẑj :=
1

#{i : Xj ∈ Ui}
∑

{i:Xj∈Ui}

ẑi
j , j = 2, ..., N − 1. (A2)

This is a 3de-dimensional time series that is not the 3-embedding of a de-dimensional time series, so there remains

the problem of estimating the deterministic part of the observed time series.
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(iii) The estimation of the deterministic component

Let (ẑj)i denote the ith coordinate of ẑj , j = 2, ..., N − 1. Since ẑj = (ŝj−1 ,̂sj ,̂sj+1) this time series gives as

estimations of (sj)i, j = 3, ..., N − 2, the three values (ẑj−1)2de+i, (ẑj)de+i, and (ẑj+1)i. These are the estimations

of sj obtained from the past, the present, and the future. We take a weighted average of these three values as the

estimation of (ŝj)i , i = 1, ..., de, with weights wi
l , l = 1, ..., 3 related with the sample variances of the coordinates of

the corrections ε := Z− ẑ and then

(ŝj)i =
3∑

l=1

wi
l

(
ẑj−1+(l−1)

)
(3−l)de+i

for j = 3, ..., N − 2; i = 1, ..., de. (A3)

This cleaned time series {ŝj , j = 1, ..., N} will be the input time series in the next iteration of the algorithm.

The combination of the averages (A2) and (A3) increases the statistical robustness of the estimations, without

requiring controls for avoiding large corrections as do many noise reduction algorithms. These smoothing devices

partially overcome the problems of the maximum likelihood estimates pointed out by K. Judd [12].

APPENDIX B: THE ADAPTIVE NEIGHBOURHOOD CONSTRUCTION

If we assume that the errors {ei} have a N(0,Σ1) distribution then (Xi − si)tΣ−1
1 (Xi − si) has a χ2-distribution

with de degrees of freedom, and

{X : (X−Xi)tΣ−1
1 (X−Xi) ≤ χ2

de(α0)}

provides a 100(1− α0)% confidence ellipsoid for si, where χ2
de(α0) is the number such that Pr{χ2

de > χ2
de(α0)} = α0.

Since in general Σ1 is unknown, it is replaced by the sample covariance matrix Σ̂1. Let T 2 := (Xi−si)tΣ̂−1
1 (Xi−si).

Then (N−de)
de (N−1)T

2 is distributed (see [24] page 176) as an F distribution with degrees of freedom de and N − de.

A 100(1− α0)% confidence ellipsoid for si is given by

{
X : (X−Xi)tΣ̂−1

1 (X−Xi) ≤
de (N − 1)

N − de
Fde;N−de(α0)

}
=X :

de∑
j=1

(
(Y −Yi)j√

f0dj

)2

≤ 1


where Y : = MtX, (Y)j is the jth coordinate of Y, M is a matrix whose columns are an orthonormal basis of

eigenvectors of Σ̂1, {dj , j = 1, ..., de} are the eigenvalues of Σ̂1, and f0 := de (N−1)
N−de Fde;N−de(α0). It is an ellipsoid

centred at Xi, whose axes are the eigenvectors of Σ̂1 and with jth semi-axis of length
√

f0 dj(see Fig. 4(a)). Since

we want a confidence ellipsoid for the points {sj : (sj − si)t(sj − si) ≤ r2
0} we take 2

√
f0 dj +r0 as the length of the
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jth semi-axis instead of
√

f0 dj (see Fig. 4(b)), and therefore

Ui :=

X :
de∑

j=1

(
(Y −Yi)j

2
√

f0dj + r0

)2

≤ 1

 ⊂ Rde (B1)

is the neighbourhood of Xi that we consider.

We refine this neighbourhood slightly by removing from Ui those points which are neighbours only due to the noise.

We construct a neighbourhood Vi ⊂ R3de of Zi using the same procedure we use to build the neighbourhood Ui of

Xi, and we remove from Ui the points Xj for which Zj = (Xj−1,Xj ,Xj+1) /∈ Vi.

A parameter needed for the construction of the neighbourhoods Ui at each iteration is r0. In the results of Section

III we take r0 = rmean + sr where rmean and sr are the sample mean and the sample standard deviation of the

distribution of radii corresponding to the minimum radius r needed to get 0.014N neighbours in the balls centred at

Xi, i = 1, ...N, and with radius r with respect to the Euclidean metric. Since the noise is reduced as the iterations

increase, the value of r0 decreases.
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TABLE I: Sample mean 〈(RP )2〉 and sample standard deviation s(RP )2(in brackets) of (RP )2 for Henon time series corrupted

by Gaussian noise with the noise to signal levels in each component given in the first row of the table.

NL = (2%, 100%) NL = (5%, 200%) NL = (10%, 300%) NL = (50%, 300%)

N = 500
83.28

(2.38)

85.00

(3.14)

84.21

(3.96)

80.66

(2.96)

N = 1000
87.34

(2.06)

87.83

(2.35)

86.68

(2.91)

81.82

(2.57)

N = 5000
92.46

(1.22)

90.73

(1.04)

88.31

(1.50)

82.92

(1.51)

TABLE II: Sample means and sample standard deviations (in brackets) of (RP )1, (Rdyn)1, (RP ), and (Rdyn) in Lorenz time

series corrupted by Gaussian noises with the noise to signal levels in each component given in the first row of the table.

NL = (100%, 10%, 5%)

σ = 16, R = 45.92, b = 4, τ = 0.03

NL = (100%, 10%, 5%)

σ = 10, R = 28, b = 8/3, τ = 0.02

N 〈(RP )1〉 〈(Rdyn)1〉 〈RP 〉 〈Rdyn〉 〈(RP )1〉 〈(Rdyn)1〉 〈RP 〉 〈Rdyn〉

1500
76.73

(7.54)

86.65

(7.43)

69.70

(13.9)

83.94

(8.13)

79.80

(3.05)

94.03

(1.15)

73.79

(4.3)

86.47

(1.32)

3000
78.83

(5.49)

88.21

(3.63)

71.86

(11.78)

74.47

(2.77)

81.79

(2.34)

94.74

(0.53)

76.23

(3.85)

87.13

(0.75)

5000
81.10

(1.08)

89.79

(0.70)

74.78

(1.12)

86.91

(0.72)

82.32

(1.73)

94.90

(0.81)

77.01

(1.99)

87.27

(0.74)
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FIG. 1: Confidence ellipsoids for α0 = 0.1 at two points of a Henon time series with N = 5000 data points corrupted by

Gaussian noise with NL = (1%, 40%). Observe the difference between the clean (blue circles) and the noisy data (black

squares) at which the neighbourhood is constructed and the convenience of taking the best linear subspaces through the mean

points of the neighbourhoods instead of taking them through the observed noisy points.
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FIG. 2: (a) Noisy and (b) Clean and cleaned time series of a Henon time series with N = 500 corrupted by Gaussian noise

with NL = (10%, 300%).
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FIG. 3: (a) Clean, (b) noisy, and (c) cleaned time series of 1500 data points generated by Lorenz dynamics (σ = 10, R = 28, b =

8/3, and sampling time τ = 0.02) corrupted by Gaussian noise with NL = (100%, 10%, 5%).



19

FIG. 4: (a) Confidence ellipsoid for si, and (b) confidence ellipsoid for B(si, r0).


