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Gaussian Schell-model beams propagating
through polarization gratings
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The effects of polarization gratings on partially coherent beams are investigated by studying a Gaussian
Schell-model beam impinging on a linear polarizer whose transmission axis varies periodically along one
transverse direction. Analytical expressions for the beam polarization-coherence matrix after the grating are
obtained. In particular, the evolution of the degree of polarization upon propagation is analyzed. Different
behaviors of the output beam, depending on the beam parameters and on the period of the grating, are exhib-
ited. In particular, it is shown that, by suitably choosing the latter quantities, it is possible to obtain not only
any desirable value of the degree of polarization of the output beam but also particular distributions of such
parameters across the transverse sections of the beam. © 2001 Optical Society of America
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1. INTRODUCTION
Polarization gratings (PG’s) are anisotropic optical ele-
ments of increasing interest for many applications, for ex-
ample, measurement of the Stokes parameters by means
of PG’s,1,2 obtaining circularly polarized beams from un-
polarized sources,3 and achieving duplicators and triplica-
tors with 100% of efficiency.4 A further possible applica-
tion that has recently been proposed5 is the process of
synthesizing beams with peculiar characteristics of polar-
ization in their transverse sections.6–10 Up to now, the
effects of PG’s on optical beams have been studied on to-
tally coherent beams. The aim of this paper is to extend
such previous analyses to partially coherent incident
beams. In particular, we use a Gaussian Schell-model
(GSM) source, for which both the optical intensity and the
degree of coherence have Gaussian profile.11 This kind of
source has been proved to be useful in modeling real par-
tially coherent and laser sources (see, for example, Ref. 11
and references therein). Applications of the GSM model
to the case of partially polarized light beams have also
been studied.12,13 In this paper we study a GSM beam
impinging on a linear polarizer whose transmission axis
varies periodically along a transverse coordinate. Ana-
lytical expressions of the beam coherence-polarization
(BCP) matrix14,15 after the PG and upon free propagation
are given. Polarization features, and in particular the
evolution of the local degree of polarization P upon propa-
gation, are investigated as functions of the parameters of
the input beam and of the period of the grating. It is
0740-3232/2001/061399-07$15.00 ©
shown that, for some values of the degree of coherence
and small values of the propagation distance, the degree
of polarization presents maxima and minima. Further-
more, by suitably choosing the characteristics of the PG,
it is possible to obtain not only any value of P of the
propagated beam but even different distributions of such
parameter in a transverse plane, both in the near and in
the far zone.

The paper is structured as follows: In Section 2 we in-
troduce the formalism and definitions to be used. We de-
rive the analytical expressions of the elements of the BCP
matrix just behind the polarization grating (Section 3)
and upon propagation (Section 4). The results concern-
ing the totally coherent, incoherent, and partially coher-
ent cases are presented in Sections 5, 6, and 7, respec-
tively, which also include the main general conclusions
for each case. Finally, in Section 8 brief concluding re-
marks are made.

2. FORMALISM AND DEFINITIONS
For the sake of simplicity, we shall limit ourselves to the
two-dimensional case. Let us recall that, for a quasi-
monochromatic field propagating along the z axis of a
suitable reference frame (x, z), the BCP matrix is defined
as14,15

Ĵ~x1 , x2 , z ! 5 FJxx~x1 , x2 , z ! Jxy~x1 , x2 , z !

Jyx~x1 , x2 , z ! Jyy~x1 , x2 , z !
G , (1)
2001 Optical Society of America
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where

Jpq~x1 , x2 , z !

5 ^Ep* ~x1 , z; t !Eq~x2 , z; t !& ~ p, q 5 x, y !. (2)

The angle brackets denote time average and Ep ( p
5 x, y) is a Cartesian component of the time-dependent
electric field. In addition, the following relationships
among the elements of the BCP matrix hold:

Jxy~x1 , x2 , z ! 5 Jyx* ~x2 , x1 , z !, (3)

uJpq~x1 , x2 , z !u2 < Jpp~x1 , x1 , z !Jqq~x2 , x2 , z !

~ p, q 5 x, y !. (4)

The degree of polarization can be evaluated at a typical
point (x, z) starting from the elements of the BCP matrix
evaluated for the points x1 5 x2 5 x and is given by11

P~x, z !

5 H @Jxx~x, x, z ! 2 Jyy~x, x, z !#2 1 4uJxy~x, x, z !u2

@Jxx~x, x, z ! 1 Jyy~x, x, z !#2 J 1/2

.

(5)

In addition, we can define an equivalent mutual intensity
of the beam as14

Jeq~x1 , x2 , z ! 5 Jxx~x1 , x2 , z ! 1 Jyy~x1 , x2 , z !. (6)

In particular, the optical intensity, say, I(x, z), is given
by

I~x, z ! 5 Jeq~x, x, z !. (7)

In fact, if no anisotropic elements are used, all propaga-
tion, diffraction, and interference phenomena will be cor-
rectly described by replacing the beam written in terms of
the BCP matrix by the beam describable in scalar terms,
when its mutual intensity is given by Eq. (6).16

It should be noted that application of the BCP formal-
ism to radiated fields that are not describable by the
beam model requires some caution. This approximation
applies when the z component of the field can be neglected
and the light is quasi-monochromatic. The need for a
complete vectorial treatment for certain cases, such as
blackbody radiation,17 has been demonstrated.11,18

3. GAUSSIAN SCHELL-MODEL BEAMS
AFTER THE POLARIZATION GRATING
Let us now consider, for simplicity, an unpolarized GSM
source at the plane z 5 0, whose BCP matrix is of the
form

Ĵs~x1 , x2! 5 Jsc~x1 , x2 , 0 !F1 0

0 1G , (8)

where

Jsc~x1 , x2 , 0 ! 5 I0 expS 2
x1

2 1 x2
2

4sI0

2 D expF2
~x1 2 x2!2

2sm0

2 G ,

(9)

is the usual mutual intensity of a GSM source in the sca-
lar case. Here I0 is a constant intensity factor and sI0

2

and sm0

2 are the variances of the transverse intensity pro-
file and of the degree of coherence of the source, respec-
tively. The subscript sc denotes that Jsc coincides with
the mutual intensity of a scalar GSM source.

Now we will study the case of a PG placed at the source
plane. The PG that we are going to consider is a linear
polarizer in which the angle between the transmission
axes and x axis is a linear function of x. The BCP matrix
of the beam at the output of the PG is evaluated as
follows,15

Ĵ~x1 , x2 , 0 ! 5 Jsc~x1 , x2 , 0 !F C1
2 C1S1

C1S1 S1
2 G

3 F1 0

0 1GF C2
2 C2S2

C2S2 S2
2 G , (10)

where

Cj 5 cos~gxj!, Sj 5 sin~gxj! ~ j 5 1, 2!,
(11)

with g 5 p/L, L being the period of the grating. With
use of Eqs. (10) and (11), the elements of Ĵ(x1 , x2 , 0) turn
out to be

Jxx~x1 , x2 , 0 ! 5
1
2 Jsc~x1 , x2 , 0 !cos@g ~x1 2 x2!#

3 $cos@g ~x1 2 x2!#

1 cos@g ~x1 1 x2!#%, (12)

Jyy~x1 , x2 , 0 ! 5
1
2 Jsc~x1 , x2 , 0 !cos@g ~x1 2 x2!#

3 $cos@g ~x1 2 x2!#

2 cos@g ~x1 1 x2!#%, (13)

Jxy~x1 , x2 , 0 ! 5
1
2 Jsc~x1 , x2 , 0 !cos@g ~x1 2 x2!#

3 $sin@g ~x1 1 x2!#

2 sin@g ~x1 2 x2!#%. (14)

They represent a partially coherent source with a nonuni-
form state of polarization. The field is linearly polarized
at any point on the source plane, but the polarization azi-
muth depends on the transverse coordinate. Accord-
ingly, the degree of polarization of the emerging field is
unitary everywhere across the transverse section. This
can be easily verified by using Eq. (5) with Eqs. (12)–(14).
In Section 4 we will study the propagation features of the
beam radiated by such a source.

4. FREE PROPAGATION AFTER THE
POLARIZATION GRATING
We will use the Fresnel propagation formula19 to evaluate
the BCP elements of the beam described by Eqs. (12)–(14)
at any plane z 5 constant. Then, for each element Jpq of
the BCP matrix, we have
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Jpq~x1 , x2 , z !

5 EEJpq~j1 , j2 , 0 !K* ~x1 , j1 , z !

3 K~x2 , j2 , z !dj1dj2 ~ p, q 5 x, y !, (15)

where the propagation kernel is19

K~x, j, z ! 5 A2i

lz
expS i

2pz

l
D expF ip

lz
~x 2 j!2G ,

(16)

l being the wavelength.
From Eqs. (12)–(16) and after lengthy but straightfor-

ward calculations, we obtain the following BCP matrix for
the propagated beam:

Ĵ ~s, t, z ! 5 Jsc~s, t, z !Fhxx~s, t, z ! hxy~s, t, z !

hxy* ~s, t, z ! hyy~s, t, z !
G , (17)

with s 5 (x1 1 x2)/2, t 5 x1 2 x2 and

Jsc~s, t, z ! 5 Jsc~x1 , x2 , z !, (18)

where

Jsc~s, t, z !

5 I0

exp~2idzst !

Fz
expS i

dzst

Fz
2 D expF2

~as2 1 bt2!

Fz
2 G (19)

is the mutual intensity of the GSM beam,20 which has
been written in the form of Eq. (19) for simplicity in the
calculations. Here

Fz
2 5 1 1

~lz/p!2

4sI0

2 S 1

4sI0

2 1
1

sm0

2 D , (20)

a 5
1

2sI0

2 , (21)

b 5
1

8sI0

2 1
1

2sm0

2 , (22)

dz 5
2p

lz
. (23)

The elements inside the matrix in Eq. (17) are
hxx~s, t, z ! 5
1

4
1

1

8 HexpS 2
4ag2

dz
2Fz

2 D G1S 4ags

dzFz
2 ,

2gt

Fz
2 D

1 expF2
~a 1 4b!g2

dz
2Fz

2 G
3 FexpS 2idzgs 2 4bgt

dzFz
2 D

3 G1F2ags

dzFz
2 ,

~dzt 1 2g!g

dzFz
2 G

1 expS 22igdzs 1 4bgt

dzFz
2 D

3 G1F2ags

dzFz
2 ,

~dzt 2 2g!g

dzFz
2 G GJ , (24)

hyy~s, t, z ! 5
1

4
1

1

8 HexpS 24
ag2

dz
2Fz

2D G1S 4ags

dzFz
2 ,

2gt

Fz
2 D

2 expF2
~a 1 4b!g2

dz
2Fz

2 G
3 FexpS 2igdzs 2 4bgt

dzFz
2 D

3 G1F2ags

dzFz
2 ,

~dzt 1 2g!g

dzFz
2 G

1 expS 22igdzs 1 4bgt

dzFz
2 D

3 G1F2ags

dzFz
2 ,

~dzt 2 2g!g

dzFz
2 G GJ , (25)

hxy~s, t, z ! 5
1

8i XexpF2
~a 1 4b!g2

dz
2Fz

2 G
3 H expS 2igdzs 2 4bgt

dzFz
2 D

3 G1F2ags

dzFz
2 ,

~dzt 1 2g!g

dzFz
2 G

2 expS 22igdzs 1 4bgt

dzFz
2 D

3 G1F2ags

dzFz
2 ,

~dzt 2 2g!g

dzFz
2 G J

2 expS 2
4ag2

dz
2Fz

2 D G2S 4ags

dzFz
2 ,

2gt

Fz
2 D C, (26)

and

G 6 ~x, y ! 5 exp~2x !exp~iy ! 6 exp~x !exp~2iy !. (27)

Although elementary, Eqs. (24)–(26) cannot be read in a
simple way. In order to obtain some more-immediate re-
sults, let us derive the expression of the equivalent mu-
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tual intensity. Starting from Eqs. (17)–(27) it is possible
to obtain the expression of the equivalent mutual inten-
sity Jeq(s, t, z), that is,

Jeq~s, t, z ! 5 Jxx~s, t, z ! 1 Jyy~s, t, z ! (28)

5 Jsc~s, t, z !F1

2
1

1

4
expS 2

4ag2

dz
2Fz

2 D
3 G1S 4ags

dzFz
2 ,

2gt

Fz
2 D G ,

and of the optical intensity, that is,

Ieq~x, z ! 5 Jeq~x, 0, z ! (29)

5
I0

2Fz
expS 2ax2

Fz
2 D F1 1 expS 24ag2

dz
2Fz

2 D
3 coshS 4agx

dzFz
2 D G .

Note that this expression can be expressed as the sum of
three decentered Gaussians, corresponding to the three
beams diffracted by the PG. Furthermore, from the defi-
nition in Eq. (6) and from Eqs. (17)–(26) the degree of po-
larization turns out to be

P~x, z !

5 H @hxx~x, 0, z ! 2 hyy~x, 0, z !#2 1 4uhxy~x, 0, z !u2

@hxx~x, 0, z ! 1 hyy~x, 0, z !#2 J 1/2

.

(30)

Equation (30) gives the degree of polarization at any point
in the half-space after the polarization grating.

A rather simple expression of the degree of polarization
can be given in the far-field limit. In such a case it is con-
venient to introduce the angular variables us 5 (x1
1 x2)/(2z) and u t 5 (x1 2 x2)/z. Then the analytical
expressions for the elements of the BCP matrix at the far
field are given by

hxx
~`!~us , u t! 5

1

4
1

1

2
expF2

~a 1 4b!g2

4ab
G

3 coshS gpus

bl
D coshS 2gpu t

al
D

1
1

4
expS 2

g2

b
D coshS 2gpus

bl
D (31)

hyy
~`!~us , u t! 5

1

4
2

1

2
expF2

~a 1 4b!g2

4ab
G

3 coshS gpus

bl
D coshS 2gpu t

al
D

1
1

4
expS 2

g2

b
D coshS 2gpus

bl
D (32)
hxy
~`!~us , u t! 5

1

4i H expS 2
g2

b
D sinhS 2gpus

bl
D

2 2 expF2
~a 1 4b!g2

4ab
G

3 sinhS 2gpu t

al
D coshS gpus

bl
D J . (33)

From the above equations the degree of polarization at
the far field turns out to be

P~u!

5

H4 expFg2~3a 2 4b!

2ab
Gcosh2S gpu

bl
D 1 sinh2S 2gpu

bl
D J 1/2

expS g2

b
D 1 coshS 2gpu

bl
D .

(34)

In the following we will study the influence of the pa-
rameters of the GSM beam and the PG characteristics on
the evolution of the degree of polarization with respect to
z.

5. FULLY COHERENT BEAM
In this section we study the polarization characteristics of
fully coherent Gaussian beams passing through a PG.
Such a case corresponds to the set sm0

→ ` in the previ-
ous formulas. As was pointed out above, the degree of
polarization is unitary at any point on the plane z 5 0.
When the beam propagates along the z axis, the degree of
polarization P changes depending on the period of the
grating and on the beam width. Figure 1 shows the be-
havior of P as a function of z for x 5 0 and for different
values of L/sI0

. It is clear from this figure that when
L @ sI0

the degree of polarization is approximately equal
to 1 for any value of z. This is not surprising, because in
such limit the PG behaves as a simple linear polarizer

Fig. 1. Degree of polarization P for an incident fully coherent
beam on axis versus z for different values of L/sI0

: (a) 2, (b) 3,
(c) 4, (d) 5, (e) 7, (f) 10, and (g) 30. The value of the wavelength
is l 5 2p 3 1024 mm.
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and the emerging field is almost uniformly linearly polar-
ized everywhere. On the other hand, by suitably choos-
ing the value of L/sI0

it is possible to obtain in the far
field any desired value of P at the center of the beam (see
Fig. 1). For sufficiently small values of L/sI0

it is pos-
sible to completely depolarize the beam on the axis.
When L further decreases, the P parameter shows an in-
creasingly complex behavior, presenting zeros for some
values of z. Such behavior is evidenced in Fig. 2, where P
is shown for a small value of L/sI0

, presenting a seem-
ingly strange behavior. To demonstrate this, in Fig. 2 we
represent P versus z for L/sI0

5 1 and for different val-
ues of x/xL , with xL 5 lz/L. The degree of polarization
for small values of z shows maxima and minima. This
behavior can be explained in a simple way as follows. In
order to give an intuitive physical explanation, let us as-
sume for simplicity that sI0

→ `. The latter can be
thought of as the superposition of two mutually uncorre-
lated circularly polarized plane waves with opposite helic-
ity (see Fig. 3). Let us consider separately the effect of
the PG on each component wave. The first one gives rise
to two circularly polarized plane waves corresponding to
the zero and the first diffraction order, which propagate
along different directions with opposite helicity.1 As a
consequence, the superposition of the two orders produces
a linearly, although nonuniformly, polarized transversal
pattern, whose azimuth changes linearly with the trans-
verse coordinate. Such pattern shifts transversally, as z
increases, along an angle fixed by the propagation direc-
tions of the diffraction orders. In particular, across the
plane z 5 0, the polarization pattern reproduces the
structure of the PG. Exactly the same occurs for the
other component of the incident field, but the correspond-
ing pattern shifts in the opposite direction. Thus, across
certain planes, the polarization states of one pattern co-
incide with those of the other one at any point [see Fig.
4(a)]. In these cases the degree of polarization of the re-
sulting field is unitary across the whole transverse plane.
On the other hand, planes will exist where the polariza-
tion states of the two patterns are orthogonal to each

Fig. 2. Degree of polarization P for an incident fully coherent
beam versus z for different values of x/xL : (a) 0, (b) 0.2, (c) 0.3,
(d) 0.5, (e) 0.7, (f) 1, and (g) 3. L/sI0

5 1 and l 5 2p

3 1024 mm.
other [see Fig. 4(b)], so that, since the component plane
waves are mutually uncorrelated, the degree of polariza-
tion is expected to vanish at any point. It is easy to cal-
culate that L2/l is the distance between the planes with
maximum (or minimum) values of P. This takes account
of the behavior of the degree of polarization shown in Fig.
2. There, owing to the finite transverse extension of the
incident Gaussian beam, the diffracted orders overlap
only in a finite range of z values. For higher values of z
the degree of polarization shows a more regular behavior.
In particular, for small values of x the field turns out to be
unpolarized, whereas for larger values of x the degree of
polarization approaches 1. This is explained by the fact
that the zero order is completely unpolarized, whereas

Fig. 3. Effect of the polarization grating on circularly polarized
incident beams.

Fig. 4. Superposition scheme of two polarization patterns giving
rise to a (a) maximum value and (b) a minimum value of P.

Fig. 5. Degree of polarization P versus x/xL for different values
of z: (a) 0, (b) 0.3 m, (c) 3.2 m, (d) 6.4 m, (e) 12 m, and (f) 30 m.
L/sI0

5 1 and l 5 2p 3 1024 mm.
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the 61 orders are completely polarized1 and, at a suitable
distance from the PG, the diffracted orders are spatially
separated. This is demonstrated by Fig. 5, where the dis-
tribution of the degree of polarization is plotted across dif-
ferent transverse planes. In particular, the degree of po-
larization varies with the transverse coordinate x, and its
behavior depends on the propagation distance z. This
figure suggests the possibility of synthesizing a light
beam endowed with unconventional local polarization fea-
tures.

6. INCOHERENT BEAM
In the case of an incoherent beam, it is possible to obtain
a simple expression for the BCP matrix. On placing
sm0

5 0 into Eqs. (17)–(26) we have

Ĵ ~s, t, z !

5 2J sc
inc~s, t, z !

3 F 1 1 expS 2

2p2sI0

2

L2 D 0

0 1 2 expS 2

2p2sI0

2

L2 D G , (35)

where Jsc
inc(s, t, z) is the mutual intensity of the beam ra-

diated by a planar incoherent Gaussian source. From
Eq. (35) the state of polarization turns out to be the same
everywhere in the space; i.e., the output beam is uni-
formly polarized. The degree of polarization P can be
evaluated as

P 5 expS 2

2p2sI0

2

L2 D . (36)

This value agrees with that of Eq. (34) evaluated for sm0

5 0, but Eq. (36) is valid for every point in the half-space
z . 0, not only in the far field. It should be noticed that
P depends only on the ratio L/sI0

. In particular, as for
the coherent case, when L @ sI0

the state of polarization
of the output beam is linear. In the opposite limit the
BCP matrix tends to the unity matrix; i.e., the output
beam is completely unpolarized. These results can be
physically justified if the field emerging from the PG is
thought of as the superposition of mutually uncorrelated
cylindrical waves radiated by each element of the grating
having polarization azimuths dictated by the structure of
the PG and whose amplitude is fixed by the source size.

7. PARTIALLY COHERENT BEAM
The case of an incident partially coherent beam is much
more complicated and varied than the cases treated
above. Therefore we shall limit ourselves to giving re-
sults for some particular cases.

In Fig. 6, P is represented versus z for different values
of the degree of coherence, with x 5 0 and L/sI0

5 1. As
the degree of coherence increases, the number of maxima
and minima increases, too. In the central region, inde-
pendent of the degree of coherence, the beam at the far
Fig. 6. Degree of polarization P at x/xL 5 0 versus z for differ-
ent values of the degree of coherence sm0

: (a) 0.1 mm, (b) 1 mm,
(c) 2 mm, (d) 3 mm, and (e) `. L/sI0

5 1 and l 5 2p

3 1024 mm.

Fig. 7. Degree of polarization P at x/xL 5 0.5 versus z for dif-
ferent values of sm0

: (a) 0.1 mm, (b) 1 mm, (c) 2 mm, (d) 3 mm,
(e) 10 mm, and (f) `. L/sI0

5 1 and l 5 2p 3 1024 mm.

Fig. 8. Degree of polarization P for a partially coherent incident
beam versus x/xL at z 5 10 m for different values of sm0

: (a) 0.1
mm, (b) 0.25 mm, (c) 0.5 mm, (d) 0.7 mm, (e) 1 mm, (f) 2 mm, and
(g) `. L/sI0

5 1 and l 5 2p 3 1024 mm.
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field is completely unpolarized. This behavior is not the
same as for other points x/xL , where the value of P at the
far field depends on sm0

(see, for example, Fig. 7 for x/xL

5 0.5).
Furthermore, the uniformity of the degree of polariza-

tion at the transverse section of the beam changes with
the degree of coherence, as well. In Fig. 8, P is plotted
versus x/xL for z 5 10 m. The distribution of values of P
changes from a constant value for the incoherent beam to
the distribution shown by the solid curve, which corre-
sponds to the fully coherent case.

8. CONCLUSIONS
The effects of PG’s on partially coherent beams have been
investigated by studying a Gaussian Schell-model beam
impinging on a linear polarizer, whose transmission axis
varies periodically along one transverse direction. The
field emerging from the PG turns out to be partially co-
herent and with a nonuniform state of polarization. The
propagated beam in the paraxial approximation is given
in terms of its BCP matrix both in the near and in the far
field. We have shown that the polarization characteris-
tics of such a beam do not remain constant along z. In
particular, the degree of polarization P of such a beam
upon propagation has been analyzed, and it has been
shown that, by varying the characteristics of the GSM
beam and of the grating, it is possible to modify the local
degree of polarization, giving rise to a beam with a distri-
bution of P that changes not only from one point to an-
other but also upon propagation.
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