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The classical electromagnetic interactions of a nonlinear spinor field are studied in perturbation theory.
When Pauli terms are included, the model describes with reasonable accuracy (within the assumed

approximations) such properties of the nucleons as spin, charge, magnetic moment, and the proton
mass. With no other information one can calculate the proton-neutron mass difference, which comes

out of the wrong sign and of the same size as in quantum electrodynamics.

I. INTRODUCTION

The purpose of this paper is to explore the clas-
sical electrodynamics of a nonlinear spinor field
as a possible model of elementary particles.

Since the work by Hosen' the interaction of elec-
tromagnetism with other classical fields has been
studied by many authors. These attempts have not
been in general very successful, one of the reasons

probably being the lack of satisfactory solutions
for the "free" (noninteracting} classical fields.
The absence of free solutions invalidates the use
of perturbation methods, since the free zero-order
states are a necessary first step for the perturba-
tive procedure.

It has been shown, however, ' that the classical
theory of a spinor field with a positive (ggP self-
interaction provides a satisfactory model for a
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free particle. The presence of fourth-order terms
in the Lagrangian as a dynamical consequence of
spin was first discussed by%eyl, ' and it was shown
along the same lines' that in a certain simple mod-
el of the universe one is led to precisely the same
theory with a (gg)' self-interaction through only the
assumption of generalized covariance for the spin-
or field.

Once solutions of the free spinor equations are
available, it is quite na.tural to study the coupling
of the free spinor and electromagnetic fields. This
was done in Bef. 5 for the particular case in which,
of all four electromagnetic potentials A„, only A,
0 —when the particle is at rest. This model hap-
pens to be spherically separable and soluble (nu-
merically). Assuming that the suppression of the
vector potentials A, (k =1, 2, 3}would not introduce
a drastic change in the solutions, it was shown
that these might roughly describe the physical nu-
cleons. Moreover, the model was proposed as an
interesting test case in which exact and perturba-
tive solutions might be compared.

A classical perturbation theory for the model
proposed in Bef. 5 was developed in Ref. 6. The
numerical results were in complete accordance
with those previously obtained in treating the exact
solutions.

It seems, therefore, that there are grounds to
trust perturbation theory in those cases in which
an exact solution cannot be obtained. Such is in-
deed the general case when the vector electromag-
netic potentials A„are not zero. %e now address
ourselves to this problem. Since we will try to
compare the properties of this model with the
physical nucleons, we will assume the existence
of Pauli terms, so that anomalous magnetic mo-
ments can be included.

%e present in this paper numerical results which
have been obtained under two different approxima. -
tions. One is the above-mentioned perturbative ap-
proa, ch, and another is the multipole expansion. It
turns out that, at any order of e', only a finite
number of multipoles are nonvanishing. This al-
lows the exact calculation of any quantity at a cer-
tain order. For example, in the case of the ground
state of our model only the first partial wave con-
tributes to the energy at order e'.

In Sec. II we derive the equations for the model
and explain the approximations which are made.
Section III contains the numerical results; they
show how a remarkable picture of some of the out-
standing physical features of the nucleon can be
obtained within this simple model. The signifi-
cance of these results is discussed in Sec. IV,
where we compare the assumptions which have
been made to set up the model with those generally
taken to derive similar results.

II. GENERAL DESCRIPTION OF THE MODEL

Our model is based on the Lagrangian

~D + ~EM +~1

where

~EM 4~pv ~
(2)

(3)

gs = -e5$&"gA „—k Q"' gI'&, . (4)

Our notation will be

(o" the Pauli matrices),

A" =(A', A), F„„=s„A„—a„A„

2z

e is the electromagnetic coupling constant, 5 is a
parameter taking the values 0, 1 in order to repre-
sent both charged and neutral solutions, and k is
the coupling constant for the Pauli term. %hen
k =0, we have the case of minimal coupling.

It was proved in Ref. 2 that the Lagrangian Z~
provides a satisfactory theory for spinorial parti-
cles with rest mass. In Ref. 6 the case 5=1, k =0
was studied under the simplifying assumption A'
=0, i.e., neglecting the magnetic effects. In the
present paper these effects are also considered.

The field eq,uations are

In contrast to the simplified models considered
in Refs. 2 and 5, these general equations admit no

stationary solutions which are separable in spheri-
cal coordinates when the system is at rest at the
origin.

In general, if no separable solutions can be
found, the method to follow is to expand the func-
tions in a multipole series and write equations for
the coefficients of each partial wave. These equa-
tions, however, are nonlinear and difficult to
solve.

In our particular case we have found separable
solutions for those equations (5) which would cor-
respond to e =0. This means that the lack of sepa-
rable solutions is related in this model to the ex-
istence of electromagnetism. Therefore, if an ex-

a„F""=ePy" g —e 8„(Q""p),
(5}

k
fy"B&g —m/+2k(pg}g —ey"A„g —e cr"'F„,g=0.
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pansion in powers of the coupling constant e is in-
troduced for each of the functions in (3), the lowest
order in e (corresponding to e =0) should still be
separable, and the nonseparable multipole expan-
sions should be considered as electromagnetic
corrections.

As we said in the Introduction, the reliability of
perturbation theory has been established in Ref. 6
for the special case in which AoeO, A, =O (k=1, 2,
3). There is no reason for doubting that it holds in
the general case whenA, w0, to be considered
presently.

Our approach to the problem will essentially
consist in writing down a multipole expansion for
each order of perturbation in the coupling con-
stant e. However, since the natural dimensionless
quantity in this theory is not e but c =e' j2Xm', the
relevant orders of perturbation w'ill also be in e",
and before we come to the multipole expansions
we must express the fields in the form

g=e ' '(g +eg, + ~ ~ ~ ),

2am'
A = (eA' + ~ ~ ~ ).

As was shown in Ref. 6, the free parameter ru,

which is supposed to adjust itself to the mini~urn
energy, should also be expanded in the form

(d =(d + 6'4) +' '
0

%e will not go into the details concerning this
expansion again here. Let it only be recalled that

can be easily determined and that ~0 is known

from the free case.
Substitution of these expansions in the general

equations (5) gives in the successive orders 0, 1, 2
in c

fr so4o+ooor 4o ~So+2~(koto)Co=0~

Cl A,"-5/or" go +
2 s„(goo ""

go) =0,

ly ~a 4i + VOy 4i + 4piy 40

+ 2~(40441 lo4140 714000)

—5r"A'„go — g "'E'„„$o=0. (9)

One way to obtain the equations of motion for
each partial wave would be, of course, to substi-
tute in these equations the multipole expansions of
each field. This procedure is, however, extremely
tedious. It is far simpler in practice to use a
method advocated by Finkelstein et al. ' in a simi-
1"r problem, adapting it to the special case of
perturbation theory.

We first substitute the expansion (6) in the total
Lagrangian density, and split it in the form

&=&o@o 4o)+«i(A'o)+&'&o@i 0i)+' '

It is understood that the expression for the term
2„ includes, besides the highest-order fields
[g„,o, $„,o if n is even, or A&„,»~, if n is odd] and
their first derivatives, also the lower-order fields.
The variation of any particular term 8„ in the ex-
pansion of Z will provide the equations for the
fields of highest order contained in it, while all
the other (lower-order) fields are supposed al-
ready determined by the variation of S„Z„.. . , up
to 2„,. It can be easily checked that one thus ob-
tains the same equations (7), (8), and (9) already
derived, and in general the equations for any or-
der.

In case the fields appearing in a certain Z„do
not admit solutions which can be separated in
spherical coordinates, one can write for these a
multipole expansion. But instead of substituting
this expansion in the equations of motion, the al-
ternative method, which happens to be quite sim-
pler, is to substitute this expansion in the Lagran-
gian and integrate it over the sphere. The result-
ing Lagrangian density can be varied with respect
to the remaining radial functions.

For this particular kind of solution, the three
first 2„ in 2 are

&.= ofi Nor' S.4 - (S.P.)r' 41 + ~odor '4. - (~-~&ok'.0.

flu,or's~4o+4r's. 0, —(soli)r'4-(s. 0o)r'4ij

~1'4r 4 ~o(For 41 fir 4) (~ ~ 4'IIO)(4041 41 4) Por 40A o 4 pv 1 4~ 40 40 Jl& &

&o =aft 4gr Soka —(eo4g)r 4)j+~o4gr 0g
- ~4Ai+~i@or 6+Ar 4o)+ ~2@iki@oko+Qo~i+A~o) ~

(12)
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Equations (7) are obtained from Zo. It was
shown in Ref. 2, where we refer for more details,
that they admit a separable solution of the form

0'= p 0/, +g 0/,
where

g( )(t
4(I 1/2

cos6
4JJ

1/2
2/ j 1 ~ (IS)

corresponding to an S», state.
From iC)o we obtain (8), which can be completely

separated with 2'„ taking the simple form

A'„=(A(r), V(r) sin&sin(t), -V(r) sine cos(t), 0). (13)

Substitution in (S) gives

dr2 r dr ' g' m 'g' 2-

2
+-———

2 V= 2&f.g. + g-.g.'+f.f.—'+
I

The functions g» g, appearing in Z, no longer ad-
mit separable solutions of the corresponding equa-
tions (9}. We therefore use our method, i.e. , sub-
stitute in 2, the exact expression for gp $0 A

p

and an expansion of tI, in spinorial spherical har-
monics:

Once it is integrated over the angles, the result-
ing expression (which is fairly simple because of
the orthonormal property of the angular functions)
is varied with respect to the radial functions g;,
f;, A;, and h;.

The system of equations thereby obtained is, of
course, linear, and each partial wave would be un-
coupled with the rest if the nonlinear X(gg)' term
were absent. More precisely, the system decou-
ples in an infinity of two-dimensional subsystems
each one containing the two waves with the same
values of l~, coupled to g, .

Moreover, only the S„.and D3/2 waves are cou-
pled to (, by the electromagnetic interaction. It
follows that only three waves (S»„Dsf„D5f,) are
nonvanishing; the rest are zero.

The equations for these three waves, which can
be easily obtained by the method explained above,
are the following:

f, ' ~ f, ~ I —,44—(f—gg+. )lg; , 44/ gf—t, —g.g)g, ,—;4/,& — —.g. —~;g.v' —i A') =0,2 2 2

, g' [+m +(d+o2A(3fo —go')]f)-4/4fo g, g, +((4)) —5A}f, +';5goV — (-,' f,V'4goA') -=0,

f, ' — f, +[I ~.+2-/(f. '-g.'))g, +-', &g.(f.f2 g.g;)+r~g. (f-.f -g.g;)+' &f.V —3- V-ao~'+ap—

g,
' —g, I, 24(f*-g))f+ ,'4f ,(f /,,*-g,g) ,'4f (f f, --gg)-egg & — —f& gf. —}=4, '

f, ' + f, + [ m —(d, + &2(—f,' 'g) j g, + ", &g.-(fof 2
- g—.g, }+ ", /4g. (f.f, —g;g, ') = o, -

r

g, ' — g, +[~2+~.+»-(f.'- g.')Ii, + +&f.(f.f, -g.g, }+ ', &fo(f.i, -g.g, ) =o.
'r

(21)

As stated above, the equation for the D», wave
does not contain electromagnetic terms. How-

ever, the wave does not vanish because of the
source terms.

It is easy to show that only the lowest wave S»,
contributes to the energy at order e. This is be-
cause of the orthogonality properties of the angu-
lar functions. In fact, g, appears in the expres-

r

sion of the energy at order e [see Eq. (28)J only in
the integrals

I ('4 01+('/) 0'o}d X4

(Noko)4'oA (()1(t'o) d &4

to which D„, and D», do not contribute. On the
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other hand, S„,is independent of the other two.
For these reasons we include in our calculations
only the first wave. Though this amounts to ne-
glecting some first-order terms in the value of
the spinors, the energy of the ground state will be
exact at order e.

We mill nom write down the uncoupled equations
for the wave gpg2 which have been used in the nu-
merical calculations after the following convenient
changes in functions and variables are performed:

rn
(got fot kit f 1) 2g (Got Fot Glt E1) 1

We mill be interested in three types of solutions,
namely the "normal" type, with 5w0, 4 =0, the
"proton" type, 50, kc.0, and the "neutron" type,
5 =0, kw0.

For all three cases our main interest is in
evaluating the energy at rest and the magnetic mo-
ment. Other relevant quantities will be the total
charge and spin. In the classical theory of fields
all these quantities must be calculated as volume
integrals of the corresponding densities. The total
electric charge is, in lowest order of the dimen-
sionless constant c,

(A, V) =m(8, g),
p=mr,

2m
q = jodV=, 5e (G,'+ F,')p'dp. (26)

Fo'+ —Fo+(1 —Ao+Fo' —Go')Go =0,2

p

G, '+(1+A, +F,' —G,')E, =0,
(23)

With this notation the equations which determine
G„E, and 8, V are

In the case 5 =0, corresponding to the neutron
model, Eq. (26) gives, of course, zero electric
charge. There is, however, a conserved current
as a consequence of gauge invariance of the first
kind. This invariance provides a conserved bary-
onic charge or normalization which in lowest order
is common to the "normal, " proton, and neutron
models. As we will immediately see, the normal-
ization must be

8"~ -8'+k(O ' '}—11 0, 't', O+, ' -G, )=t, (}
2 2

(24)
27T

(G,'+E,')p'dp =5
0

(27)

2 2 2V" + -V' —
2 V+25GpEp k GOGo +EOEO + Eo 0

The equations for E, and G, are

in order to have the experimentally known spin
S = —'6.

The definition of spin comes from the spin vector

F, '+ —F, + (1 —Ao+F(} —3Go )G, —A,G(}+2G(}EoF,

~ k(O(t - l 1',kt} -k(l O, — '; O,kt - -', )1= O(},

SA 2~s jk ~ ij

mhere

G, '+[(1+Ao)+3F, —Go ]F, +A, Fo —2GoFoG,

—5(Eo8 —
o Go'U)+k( —,'Eo'O' ——,'GoS') =0.

d'r(x'7"- x'T").

Using the energy-momentum tensor

T"'=F" E', +-,'E„„F""g '+-,'f[gy 5'q+gy 5"q (s"q)y q -(s y)y"ql-

5 (T(y ()W'-+T-(y'(CW ) f(((o' (C-E. '+&"'0E.")+~(44)'r (28)

we find in our case, always in lomest order of e,

S, =S2 =0,

So= o (Go +Eo )p dp,
A. m

so, in fact, the normalization (27) gives the cor-
rect spin. As a consequence of (27) we also see
that the total electric charge is q= eh.

We need not assume in our present classical
treatment that 8 is a new physical constant, i.e.,
a quantum of action as is postulated in quantum
mechanics. All we really do is adjust the charge
and spin of the model to the physical nucleon val-
ues.

Once the normalization is fixed the two relevant
quantities in which we are interested are the mag-
netic moments in lowest order and the energy in-
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eluding first-order corrections.
The magnetic moment is given by

SR=-,' rxj d'r
- Y

where ~, the current density, is

i'=«4r'0+
2

s„(W" 0').
ke

Using our definitions (22) we get in lowest order

45 F,G,p'dp+k (F,'+3G,')p'dp
0 0

1 2w ppgp
[45FOGop +k(Fo + 3GO )] p dpp, »,Am 3 m

(28)

where m~ is the proton mass, and p, ~ is a nuclear
magneto n.

Before me deal with the rest energy, for which,
as we just mentioned, first-order corrections mill
be included, it must be stressed that we leave out
for the moment the important question of higher-
order corrections to the electric and baryonic
charges and to the spin. Et should be kept in mind

that the situation is quite similar in this respect
for the physical charge and for the spin. The two-
fold aspect of charge, as a coupling constant e,
and as the integral of the fourth component of the
electric current, which me have called q, is mell
known. Less known is the close analogy which ex-
ists classically between the coupling constant e ap-
pearing in the definition of the generalized deriva-
tive 8„-8 „-ieA „and the "coupling constant"
which must be used to define the generalized co-
variant derivative for a spinor field."As a con-
sequence, one can also define spin as a coupling
constant (-,

' in our case) or as the integral of the
fourth component of a conserved current.

ln this case the question of higher-order cor-
rections to the total spin is on the same footing as
that of higher-order corrections to the total elec-
tric charge. We intend to analyze these questions
in a future publication. For the phenomenological
purposes of this paper we will see that first-or-
der normalization is sufficient to fit the data with
very good accuracy.

If we include first-order corrections, from the
energy-momentum tensor (28) we get for the ener-
gy E = f„T«dV, E =E, + eE„where

p2dp[A (F 2+G a)+&(F a G a)a]
40

p'dp[Ai(FD'+Go') +2AO(FOFi+GoGi) +2(Fo' —Go')(FOES —GOGi)]
2v (

Q

(3o)

+ &PI2p2+2+lI2p2+2IU+r p My 2++ 2}p2 I P Q grp2 (31)

Up to this approximation the energy is not
changed if we include first-order corrections in
the normalization (27), i.e., if we write

g =,(I, +2eI, ),
2m

A. m

where

Io I'0 +Go p dp

I, = {I',I', +G,G, }p'dp
0

(I, is evaluated at A, corresponding to the mini-
mum energy). This normalization provides a sec-
ond-order equation for the quantity A. m2, since
e =e'/2Am'. For the relevant solution, up to or-
der e' the old e mould go over to the nem value
e —2e'(I, /I, ) with the new normalization. As a
consequence of this change in e, the energy E =E,
+ eE, would only get a correction of second order,
which me can neglect.

We therefore see that the mass difference be-
tween the proton and neutron models can be es-
tablished in first order using the same baryonic
norm (in zero order) for both models.

III. NUMERKAL RESULTS

In this section we present the numerical solu-
tions which have been obtained to the equations,
and the fit to experimental quantities.

At this stage of the theory, which is rather un-
refined, me have not judged it necessary to keep
an exact control of numerical precision. Our
quoted calculations are, at any rate, always sup-
posed reliable to within a, 1% error, and are in
general much better.

For Eq. (23) we find the system with a, minimum
energy at A, =0.936. We obtain for this value Fo
=(2»!Am)3. 7548. For comparison, for the values
A, =0.934 and A, =0.938 one gets respectively EQ
= (2»/xm)3 7554 and E. „=(2»/xm)3. 7555.

Once A, is fixed, and correspondingly the func-
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tions G, and F„one solves Eci. (24) with boundary
values such that

constants of the baryons.
For the dimensionless constant e = e'/2Am' we

use the normalization

and

1
for p -~.

P

In practice, what is done is to choose arbitrary
values of 8(0) and%)'(0), which gives 8- C and
'0 —Dp for p- ~. From these, the "good" physical
initial conditions are 8(0) —C and v'(0) -D, be-
sides '0 (0) = 0.

The next ecluations to be solved are (25), which
contain the as yet undetermined constant A, . It
has been proved in Ref. 6 that the energy in first
order is independent of A, . The wave functions G,
and I, depend of course on A„which may be
easily determined as we will see later, if their
shape is needed.

It may be easily seen that the energy in first or-
der, E, +~E„can be written with E, in the form

2'
E, = —(A5'+B5k+Ck'+ DA, ).

D should be exactly zero if we have chosen A, cor-
responding exactly to the minimum energy. In
fact we get the following numerical constants for
A, =0.936:

A =11.922, a = -6.102,

C = -0.1075, D =0.00226.

For comparison we also give the values corre-
sponding to A, =0.934,

A =12.388, 8 = -6.189,

C =-0.0935, D = -0.665,

and to A, =0.938,

A = 11.436, 8 = -6.014,

C = -0.1216, D =0.763.

We now start fitting the model to the physical

E = 3.7786 MeV.
2r

Am
(32)

We getm=908. 2 MeVh ', A. =2.786x10 '5 MeV '.
With these values and the knowledge of g„we

get the magnetic moment from (29). The result is
1.04 nuclear magnetons, which differs by less
than 1% from the normal magnetic moment corre-
sponding to a Dirac particle of "bare" mass 908.2
MeV (1.03 magnetons).

The picture one obtains in this first model-is a
system which, aside from higher-order electro-
magnetic corrections, has the normal charge,
spin, and magnetic moment, i.e., those corre-
sponding to a Dirac particle. In other words, the
nonlinearity does not affect these quantities in an
appreciable way. The total rest energy is rela-
tively more affected, since it is not mB=908.2

MeV, but E = 938.2 MeV, of which 5.96 are of elec-
tromagnetic origin, and 932.30 are mechanic"
(not electromagnetic).

We now consider the proton and neutron cases,
5=1,0, kw0.

The parameter ~ has already been fixed. We de-
termine A. and m from the observed proton mass,
and k from the observed magnetic moment of each
particle. For the proton one gets m=913.7

(E,'+G,')p'dp =h
A. m

corresponding to A, =0.936. Since the value of the
integral is 3.6576, and q=el, we find e =0.00199.
We will take e =0.002.

Once z is fixed, we still have to adjust the pa-
rameters m and A. in order to describe the proton
and neutron. Before this, however, it is interest-
ing to consider the case of a particle with a pro-
ton mass and without anomalous magnetic mo-
ment. A. and m can be deduced, once Xm' is
known, if we adjust the total rest energy E =E,
+eE, to the proton mass 938.2 MeV through

TABLE I. Numerical results for the "normal, "' proton, and neutron models.

Electromagnetic
mas s Bare mass Total mass m (MeV ') A. (MeV 2@)

"Normal"
model

Proton
model

Neutron
model

5.96 MeV

0.28 MeV

-0.17 MeV

932.30 MeV 938.26 MeV 0

937.98 MeV 938.26 MeV 1 ~ 798

937.98 MeV 937.81 MeV -1.964

908.2

913.7

913.7

2.786 x 10

2.753x10 '

2.753 x 10
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FIG. 3. Same as in Fig. 2, when Pauli terms are
added besides the minimal electromagnetic coupling.
The magnitude of the Pauli interaction is fixed by the
proton anomalous magnetic moment.

i fermi

FIG. 1. Shape of the functions Eo, Co corresponding
tO the bare field $0 at itS yrliri&mum energy.

MeV k ', A. = 2.753 & 10 '5 MeV, and k = 1.798.
This value of k is surprisingly close to the one
normally used in the linear quantum theory (1.793).

In contrast with the case considered before (a
charged baryon with no anomalous magnetic mo-
ment) the contribution to the total energy coming
from electromagnetic sources is here very small.
It goes down to 0.28 MeV, compared with 5.96
MeV which we got before. This depression is due
to the opposing effects of the electric and magnetic
fields.

DEL

With the same values of A and m, we determine
k for the neutron case (5 =0), so that the total
magnetic moment [Eq. (29)] of the system coin-
cides with the physical value. We obtain k = -1.964,
also very close to -1.913, the number used in
quantum mechanics.

The electromagnetic energy for this solution is
-0.17 MeV, and the total energy at rest is 937.81
MeV.

The difference in energy between the proton and
neutron models is m~-m„=0. 45 MeV. This re-
sult is very close to what is obtained in quantum
electrodynamics when use is made of the experi-
mentally determined form factors. In our deter-
mination we have made no use of the form factors,
and have simply adjusted the model with the ob-
servable magnetic moments and the charge.

A resume of our results is given in Table I. We
also show in Figs. 1-4 the shapes of the different
fields g, A „. The generally accepted value for the
nucleon radius, 0.8 F, approximately coincides
with the limit zone where the nonlinear effects
start to be appreciable. Outside this region the
theory is very approximately linear.

g, v NEUTRON MODEL

0.5-

O.S

I fermi

FIG. 2. Shape of the radial components of the electro-
magnetic potentials in first order of perturbation and
lowest multipole, corresponding to $0 as a source with
minimal interaction.

FIG. 4. Radial components for the neutron model
electromagnetic potentials produced by the Pauli inter-
action. Their size is fixed by the neutron anomalous
magnetic moment.
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Some relevant features of the solutions are the
comparatively smaller electrostatic fields of the
proton-type solution compared with the "normal"
case, and the small internal electromagnetic
structure of the neutron-type solution.

In Fig. 5 we show the different energies for the
three values of A,: 0.934, 0.936, 0.938. The en-
ergies vary linearly with A„but for each line
(corresponding to a certain value of A, ) only that
point is significant where the line is tangent to its
envelope. For the minimum (A, =0.936) the actual
values for A, in the "normal, " proton, and neutron
models are respectively 0.8, 0.6, 0.1. These are
the values which provide the actual physical waves
when inserted in Eq. (25).

5.780-

5.7 75

3.757-
PROTON MODEL

IV. CONCLUSIONS

We have obtained stable localized solutions for
the system of interacting Dirac and Maxwell fields,
including anomalous Pauli terms. Within the ap-
proximations which have been made, the localized
objects provide a remarkably simple and accurate
picture of many of the properties of the proton
and neutron when the parameters appearing in the
ordinary interacting Lagrangian are adjusted to
the physical observables.

In particular, within the accuracy which can be
expected from the approximations that have been
made, we obtain the right spin, charge, rest en-
ergy, and magnetic moment, and a reasonable
size of the proton. For the neutron, with no other
adjustment than making the charge zero a.nd chang-
ing the anomalous magnetic moment, we get a
similar picture, except for the rest energy, which
comes out incorrect. The mass difference m~
-m„=0.45 MeV coincides (within our expected
accuracy) with the result obtained in quantum
electrodynamics. In our case, however, we need
not make use of other physical information, such
as the form factors, which must be borrowed
from observation in order to obtain the quantum-
electrodynamical result.

Since we have not introduced pseudoscalar, vec-
tor, or other fields in the model, no effects or
properties in which these fields are supposed to

5.755

75'. NE UT

0.954 0.936 0.938

FIG. 5. Tangents to the three curves describing the
dependence of the energy with A = Ap+ EAg for the "nor-
mal, "proton, and neutron models. The physical parti-
cles are supposed to be described by that value of A
which corresponds to the minimum energy. In each
case this value is fixed by the point where the horizon-
tal tangent touches its envelope. Since Ap is already
known, one easily obtains A~ = (A —Ap}f E'.
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intervene can be expected to appear. Among these
is probably the real mass difference m~-m„. On
the other hand, one gets the general impression
that those effects depending on the "mechanical"
(self-energy) and electromagnetic properties of
the nucleons are well described by the model.
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