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Abstract. We propose an accurate technique for obtaining highly collimated beams,
which also allows testing the collimation degree of a beam. It is based on comparing
the period of two different self-images produced by a single diffraction grating. In this
way, variations in the period of the diffraction grating do not affect to the measuring
procedure. Self-images are acquired by two CMOS cameras and their periods are
determined by fitting the variogram function of the self-images to a cosine function
with polynomial envelopes. This way, loss of accuracy caused by imperfections of
the measured self-images is avoided. As usual, collimation is obtained by displacing
the collimation element with respect to the source along the optical axis. When the
period of both self-images coincides, collimation is achieved. With this method neither
a strict control of the period of the diffraction grating nor a transverse displacement,
required in other techniques, are necessary. As an example, a LED considering paraxial
approximation and point source illumination is collimated resulting a resolution in the
divergence of the beam of δφ = ±1.57 µrad.
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1. Introduction

Highly collimated beams are necessary for many optical experiments and applications,
such as metrology, information processing, instrumentation, lithography, holography,
etc. A simple technique for a rough estimation is auto-collimation, where the collimation
is achieved by comparing the size of the source with its image. Nevertheless, results are
quite imprecise since the intensity distribution of the light beam usually changes as it
propagates. More accurate beam collimation techniques based on different optical effects
have been proposed such as those based on interferometry [1, 2, 3, 4, 5, 6, 7, 8, 9]. Self-
imaging-based methods, also known as Talbot interferometry, use Talbot effect as a
tool to create moiré fringes at the output of a double grating system where the second
grating is placed at a self-image plane of the first one [10, 11, 12], zT = 2lp2/λ, where
l is an integer, p is the period of the grating, and λ is the wavelength [13]. This
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Figure 1. Scheme of the collimation method based on grating self-imaging. When
the beam is not collimated, the period of the self-images changes with the distance.
However, when the beam is collimated, the period of the self-images is equal to that
of the grating. ∆z is the distance between the source s and the focal point of the lens
whose focal length is f and whose principal plane is H, z0 is the distance between
s and H, z1 is the distance from H to the diffraction grating G whose period is p,
z2 = lzT is the distance from G to a CMOS sensor placed at one self-image plane and
finally, pz is the period of the signal acquired by CMOS sensor.

setup has been modified in different ways, by changing the periods of the gratings,
by transverse shifting one of the gratings, etc [14, 15, 16]. Another method consists
of replacing one of the linear gratings by a circular grating [16]. Unlike the former
case, the collimation degree is obtained with a complex analysis of the parabolic fringes
formed at the observation plane. The main advantage is that a continuous transverse
displacement of the grating is not required. On the other hand, a simple technique to
check the collimation degree of a beam through the Lissajous figure produced by a dual
diffractive optical system is shown in [17]. In this case, the second element is formed
by a mask with two diffraction gratings with the same period p, laterally shifted p/4,
and located at a Talbot distance of the first grating. Following, in order to avoid a
continuous movement of the grating, a complex mask is proposed in [18] so that several
points of the Lissajous figure are obtained simultaneously. In both cases the collimation
degree is determined by measuring the ellipticity of the Lissajous figure.

A very simple technique, where only one diffraction grating is required to measure
the collimation degree of the beam, has been recently developed [19]. It takes advantage
of the low cost and small size of photodetectors in CCD and CMOS cameras. A scheme
of the set-up is shown in figure 1.

When the beam passes through the diffraction grating G whose period is p, self-
images with maximum contrast are located at multiples of the Talbot distance zT . The
beam is collimated when the period of the grating and the period of the self-image at
the sensor, pz, are equal. This happens when the distance from the light source s to
the focal point of the lens is null, ∆z = |z0 − f | = 0, where z0 is the distance from the
lens to s and f is the focal length of the collimating lens. Otherwise, the beam is not
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collimated and ∆z is given by

∆z = − f 2

z2p
∆p, (1)

being ∆p = pz − p the variation of pz with respect to the period of the grating. As
a consequence, a precise estimation of the period of the grating and the self-image is
required to determine the collimation point. For this task the variogram function is
used.

The period of the diffraction grating can be known with high accuracy.
Nevertheless, a tiny change of the temperature, which induces a dilation of the grating,
sensor, opto-mechanical components, etc, or slight rotations of the grating or the CMOS
camera, may change the period of the grating and the self-images. These small variations
in the period of the grating are very prejudicial for determining the collimation of the
light beam. Therefore, a more robust procedure is required.

In this work, we propose a self-imaging technique with a single diffraction grating
where neither transverse displacement of the grating nor a strict control of its period
are required. The collimated beam is achieved by measuring the period of two different
self-images with two CMOS cameras or two linear arrays of photodetectors. We use
the variogram function to determine the period of the self-images with high accuracy.
We take advantage of the property that imperfections on the intensity distribution
appears in the variogram as a polynomial variation of the envelopes. When both self-
images present the same period, the beam results collimated. As we demonstrate in the
following sections, the results show high accuracy and the collimation position can be
found easily and rapidly.

2. Beam collimation technique

Let us consider the two cameras scheme depicted in figure 2. A point and monochromatic
incident light source s, whose mean wavelength is λ, illuminates a system formed by a
lens whose focal length is f , an amplitude diffraction grating whose nominal period is
p, a beam splitter BS and a couple of CMOS cameras, Cz2 and Cz3. The distance from
the source s to the lens L is z0, from L to G is z1, and the distances from G to Cz2
and Cz3 are z2 and z3, respectively. Thus, a system with two arms for the simultaneous
measurement of the self-images of the same area of G is configured.

The intensity distributions at z2 and z3 distances are obtained using Fresnel
approach, [17],

I (x3, z2) ∝ I0
∑

n,n′ ana
∗
n′ exp

[
i q
1+αz2

(n− n′)x3
]

exp
[
−i q2

2k
(n2 − n′2) z2

1+αz2

]
,

I (x3, z3) ∝ I0
∑

n,n′ ana
∗
n′ exp

[
i q
1+αz3

(n− n′)x3
]

exp
[
−i q2

2k
(n2 − n′2) z3

1+αz3

]
,
(2)

where an are the Fourier coefficients of the grating, ∗ indicates complex conjugate,
q = 2π/p, k = 2π/λ, n and n′ are integers, i =

√
−1 is the imaginary unit, I0 is

the intensity distribution of the input beam, z2 and z3 represent distances from the
grating to the hypothetical observation planes, x3 is the coordinate parallel to G, and
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Figure 2. Experimental setup for beam collimation. s is the light source which is
moved with a stepper motor along the optical axis, L is a converging lens whose focal
length is f , G is an amplitude Ronchi diffraction grating whose nominal period is p ,
BS is a beam splitter, Cz2 y Cz3 are two CMOS cameras, z0 is the distance between s
and L, ∆z = |z0 − f |, z1 is the distance from L to G, and z2 and z3 are the distances
from G to Cz2 and Cz3 respectively.

α = 1/z1 − 1/(z1 − z21∆z/f 2) ≈ −∆z/f 2 is the collimation degree. The collimation
degree depends linearly on the distance ∆z from the light source to the focal point of
the lens. According to equation (2), the collimation degree of the light beam affects
both to the period and location of the self-images [17]. Considering the first exponential
terms in equation (2), the periods of the fringes at Cz2 and Cz3 are given by

pz2 = (1 + αz2) p,

pz3 = (1 + αz3) p,
(3)

respectively. Then, even when the period of the grating p is unknown, we can obtain
the collimation degree through the quotient between both expressions,

α = − pz2 − pz3
pz2z3 − pz3z2

. (4)

Considering the definition of the collimation degree, α ≈ −∆z/f 2 of the light source,
we obtain

∆z = −αf 2 =
pz2 − pz3

pz2z3 − pz3z2
f 2. (5)

It is important to notice that the CMOS cameras can be placed within an interval
around the Talbot planes as long as the visibility of the fringes is high enough to
determine the period [20]. This is not usually a problem since self-images remain quasi
constant along a range around every Talbot plane [18]. To obtain collimation, ∆z = 0,
we need that the period of the fringes at both observations planes is the same. According
to equation (5), when the distances z2 and z3 are different, this can be fulfilled only if
pz2 = pz3 = p.
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3. Experimental results

The key to find the collimation point with accuracy is to measure
self-images simultaneously until both match. In the experimental setup depicted in

figure 2 we have used an IR LED model AP2012SF4C whose wavelength is λ = 880 nm,
a converging lens whose diameter is D = 17 mm and focal length is f = 40 mm, a
diffraction grating G whose nominal period is p = 100 µm with a manufacturing error
of 3 µm/m, and two Imaging Source cameras model DMK72BUC02 whose pixel size
is 2.2 µm × 2.2 µm whose chips have been considered equal. Also, a high-precision
stepper motor whose minimum incremental motion is 0.3 µm is used to move the
light source along the optical axis and place it at the focal plane of the lens. We
have chosen as distances to the self-images (distances from the grating to the cameras)
z2 = 2p2/λ = 22.72 mm and z3 = 5p2/λ = 56.81 mm but other distances would be also
valid provided that z2 6= z3. Notice that we have used one even self-image and one odd
self-image. This fact does not influence the result since, despite the contrast is inverse
between them, the period behavior is the same. Furthermore, the perpendicularity to
the optical axis and the alignment of the slits of the self-images respect to the rows or
columns of the sensors have been checked. An example of the intensity distribution
and fringes profile acquired by both CMOS cameras is shown in figure 3. In this
case the beam is not collimated. On the other hand, to minimize errors due to non-
perpendicularity between cameras, we have used cube beam splitters and reflections of
the beam to align them with high accuracy.

The intensity distribution of the self-images usually presents imperfections which
are harmful for determining the period as we can see in figures 3(c) and (d) where the
integration over columns of the intensity is not perfectly sinusoidal. As a consequence,
we have chosen the variogram function in order to accurately determine the period of the
self-images [19]. It has been proven as a very useful technique for improving the quality
of fringes and eliminating residual noise in optical imaging and other areas [21, 20]. The
variogram function is defined as [22]

2γ(h) =
〈
[I (x+ h)− I (x)]2

〉
x
, (6)

where 〈〉x is the spatial average with respect to x, I (x) is the intensity at x, and h is the
distance between two measured points. In the case of a regularly sampled signal, such
as the signal obtained with a linear array of photodiodes, equation (6) becomes [20]

2γ (h = n∆x) =
1

N − n

N−n∑
i=1

(Ii+n − Ii)2 , (7)

where N is the total number of pixels, Ii = I (i∆x) is the intensity detected in the pixel
i and ∆x is the distance between two adjacent pixels of the discrete variogram.

The variogram of a periodic signal is also periodic with the same period than the
original signal. In addition, due to the averaging process performed in equation (6), the
variogram function is much smoother than the original intensity distribution. Influence
of grating defects on the visibility of the fringes has been reported by the authors in
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Figure 3. (a) and (b) Intensity distribution obtained with both CMOS cameras and
(c) and (d) examples of an intensity profile obtained as a vertical integration of the
intensity carpets, at an arbitrary position of the light source when z2 = 22.72 mm

and z3 = 56.81 mm, respectively. Both intensity profiles present imperfections that
can cause a loss of accuracy in the measurement of the collimation distance. x and y
represent the pixels of the CMOS sensors being the pixel size 2.2 µm× 2.2 µm.

previous works [23, 24]. An example is shown in figure 4 where the variogram function
has been obtained for two sections of figure 3. Although the profile intensity distribution
at the self-images is quite fluctuating, figures 4(a) and 4(b), the variogram function is
very smooth, solid line in Figs. 4(c) and 4(d).

Noise and random fluctuations in the experimental signal are translated into the
variogram as a variation of its envelopes. A possible way to obtain the period of the
variogram is by determining the location of the minima using a polynomial fitting [19].
Nevertheless, it is possible to obtain better results when the complete variogram function
is used. We have checked several solutions and we have found that the best option to fit
the variogram in this particular case is by using a periodic function where the envelopes
are third power polynomials

2γ (h) =
(
a1 + b1h+ c1h

2 + d1h
3
)
−
(
a2 + b2h+ c2h

2 + d2h
3
)

cos

(
2π

p
h

)
,(8)
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Figure 4. (a) and (b) two sections of Figs. 3(c) and 3(d), (c) and (d) variogram
functions (red solid line) obtained from (a) and (b), respectively and their fittings to
equation (8) (blue •). (e) and (f) are the residuals of the fitting for both cases.
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where ak, bk, ck, dk, (k = 1, 2), and p are free parameters. The fittings are shown in
Figs. 4(c) and 4(d) (blue •). The R-square parameters are R2 = 0.9995 for the first
case and R2 = 0.9994 for the second case, values that are kept or increased throughout
the experiment. In Figs. 4(e) and 4(f) we can also see the residuals of the experimental
variograms to equation (8). The root mean squared error (RMSE) is 0.24 g.l.2 and
0.19 g.l.2 respectively. For this example, we have obtained that the periods of both
self-images result pz2 = 100.39 µm and pz3 = 100.31 µm. Using equation (4), we obtain
that the collimation degree is α = −2.26 ·10−8 µm−1 and the distance between the light
source to the focal plane for this particular case is ∆z = 36.12 µm.

In order to obtain a highly collimated beam, the earlier process has been repeated
for different positions of the light source. For this, we have displaced s with respect to
the collimating lens using the linear stepper motor along 200µm. We have determined
the period of the self-images for each location (100 measurements into the interval
z = 27.68− 27.88 mm where these values are arbitrary absolute positions of the linear
stepper motor along z-axis). In figure 5(a), the variation of the experimental periods,
pz, of each image acquired by both cameras is shown. Since the distances of the two
CMOS cameras to the grating are different, the slopes of the p(z) functions are different
and both figures coincide for a certain distance zc that corresponds to the unknown
collimation position, ∆z = 0.
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Figure 5. Variation of the experimental period of each self-image with the distance
in both cameras. Green ◦ are the experimental period measured by Cz2, purple ∗
are the experimental period measured by Cz3. (a) 100 measurements into the interval
z = 27.68 − 27.88 mm where z values are arbitrary absolute positions of the linear
stepper motor along z-axis, (b) 150 measurements around the approximate point of
intersection of (a), zc ≈ 27.784 mm, that is, ∆z′ = zc ± 25 µm and pz is the
period of the self-images. The collimation position (red +) is obtained through the
intersection of the linear fittings of both experimental data sets (black solid lines) being
zc = −1.3± 0.3 µm. Blue dashed lines represent the 95 % confidence intervals.

In figure 5(a) this position is zc ≈ 27.784 µm. Once the approximated point of
intersection is known, a new set of 150 experimental measurements is obtained around
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Camera m (µm/mm) n (µm) R2 RMSE (nm)

Cz2 1.44± 0.06 100.0005± 0.0008 0.9388 5.3

Cz3 3.46± 0.05 100.0030± 0.0007 0.9904 4.9

Table 1. Goodness of the fittings shown in figure 5(b) for the measurements of both
sensors. m is the slope, n is the intercept, R2 is the square of the correlation between
the response values and the predicted response values, and RMSE is the root mean
square of the error.

zc, that is, ∆z′ = zc±25 µm, figure 5(b). Note that since both lines have slopes different,
a final device could carry out the beam collimation with a few points around zc. This
reduces execution time to a few seconds with a current computer.

Since an increment of accuracy is desired, a least squares fitting of the experimental
values, ◦ and ∗ in figure 5(b), to a linear equation is performed [25], black solid lines in
figure 5(b),

p′i = mi(z − 〈z〉) + ni, (9)

beingm and n free parameters, 〈z〉 the mean of z, and i = 1, 2. Also, the 95 % confidence
intervals for goodness of each fitting (blue dashed lines) are shown. The results of the
linear fittings are shown in table 1. In both cases, the quality parameters indicate good
fittings, being the R-square close to 1 and the root-mean-square deviations relatively
small.

Finally, the intersection of both fittings has been estimated and, thus, the resolution
in the collimation distance of the IR-LED has been obtained. The intersection point is
given by solving the system of equations consisting of p′1 = p′2,

m1(z − 〈z〉) + n1 = m2(z − 〈z〉) + n2. (10)

For this calculation, we have used the Python module Pycse which has the
advantage of providing the error directly through the propagation of uncertainties [26].
The collimation point is located at zc = −1.3 ± 0.3 µm. Following, we may calculate
the minimum beam divergence that we can obtain for a point source. Since the lens
equation is given by

1

s′
− 1

s
=

1

f
, (11)

where s = −f+δzc and δzc is the uncertainty in the location of the source, the divergence
of the IR-LED is given by

δφ =
D

2s′
≈ Dδzc

2f 2
, (12)

being D = 17mm and f = 40mm the diameter and the focal distance of the lens,
respectively. Thus, the resolution in the divergence of the beam results δφ = ±1.57 µrad.
Classical methods in which the interference is generated by, for example, a plane-
parallel plate, are fairly simple and precise. More recently, Chang in [?] proposes a
collimation testing and calibration using a heterodyne Moiré method. This method
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is fast, relatively simple and achieves a positioning accuracy close to ±7 µm. On the
other hand, the technique proposed by Disawal is based on Lau effect and achieves
collimation of incoherent beams with an accuracy of ±1 µm [?]. Talbot interferometry
is used suitably modified by Patorsky to prevent the continued displacement of the
second grating. In this case, the accuracy is ±20 µm [16]. Also based on the Talbot
effect, Wang obtained accuracy of ±10−7 rad when he collimates monochromatic beams
with a lens of focal distance f = 50 mm [?]. With respect to our previous work, The
resolution in the divergence of the beam obtained with the proposed method represents
a remarkable result compared to [19, 18] where the divergence of the beam is 10 µrad

and 4.16 µrad, respectively.
As a remark, when the light source presents a finite size, l, then the divergence

of the beam is increased by the term δφ = l/2f ′, which cannot be reduced with this
technique. In this case, our technique produce the optimum divergence for extent light
sources.

Note that to reach the collimation distance a high number of measurements as in
figure 5 is not required. To reduce the execution time to a few seconds we can perform
the following procedure:

(i) In the first place, we determine the period of the two self-images acquired with
cameras for an unknown location ∆z(1), and following we estimate the value ∆z for
this location using equation (5).

(ii) Then, we move to this location and we determine again the periods pz2, pz3 and
∆z(2).

(iii) We repeat step (ii) until the periods pz2, pz3 are close enough with respect the
uncertainty in the location.

4. Conclusions

In this work, we present a dual self-image based collimation technique which consists of
the comparison of periods of two different self-images produced by a single diffraction
grating and acquired by two CMOS cameras at two different Talbot distances. Then,
variations in the period of the diffraction grating produced by rotations, temperature
variation, etc, do not affect to the measuring technique. We have used the variogram
function in order to reduce the uncertainty in the estimation of the experimental periods
due to random fluctuations. Afterwards, the accuracy in the experimental measure of the
periods is increased by fitting the complete variogram to a certain experimental function.
Finally, each set of experimental periods is fitted to a straight line. As a consequence
the collimation point is obtained by determining the intersection of both fittings. Unlike
other methods, neither a strict knowledge of the period of the diffraction grating nor
a transverse displacement of the grating are needed. As an example of application of
the technique, an IR LED is used as light source and two CMOS cameras are used to
acquire the self-images produced by the diffraction grating of period p = 100 µm at
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z2 = 2p2/λ = 22.72 mm and z3 = 5p2/λ = 56.81 mm. As collimation element, a lens
whose diameter is D = 17 mm and whose focal length is f = 40 mm has been used.
With this experimental setup we have achieved a resolution in the divergence of the
beam of δφ = ±1.57 µrad.

Acknowledgments

The authors thank to O. J. Casas for his valuable comments. This work has been
supported by project DPI2011-27851 of the Ministerio de Economía y Competitividad
of Spain and the SEGVAUTO-TRIES Tecnologías 2013 CM S2013/MIT-2713 program
of the Comunidad de Madrid.

References

[1] M.V.R.K. Murty. The use of a single plane parallel plate as a lateral shearing interferometer with
a visible gas laser source. Appl. Opt., 3(4):531–534, 1964.

[2] D. Joyeux and Y. Cohen-Sabban. High magnification self-imaging. Appl. Opt., 21(4):625–627,
1982.

[3] M.P. Kothiyal and R.S. Sirohi. Improved collimation testing using talbot interferometry. Appl.
Opt., 26(19):4056–4057, 1987.

[4] K. Patorski. I the self-imaging phenomenon and its applications. Prog. Optics, 27:1–108, 1989.
[5] A.R. Ganesan and P. Venkateswarlu. Laser beam collimation using talbot interferometry. Appl.

Opt., 32(16):2918–2920, 1993.
[6] J. Choi, G.M. Perera, M.D. Aggarwal, R.P. Shukla, and M.V. Mantravadi. Wedge-plate shearing

interferometers for collimation testing: use of a moiré technique. Appl. Opt., 34(19):3628–3638,
1995.

[7] J.S. Darlin, M.P. Kothiyal, and R.S. Sirohi. A phase-conjugate twyman-green interferometer with
increased sensitivity for laser beam collimation. J. Mod. Opt., 45(11):2371–2378, 1998.

[8] D. Malacara. Optical Shop Testing. Wiley Series in Pure and Applied Optics. Wiley, 2007.
[9] S. Prakash, S. Rana, S. Prakash, and O. Sasaki. Automated collimation testing using a temporal

phase shifting technique in talbot interferometry. Appl. Opt., 47(31):5938–5943, 2008.
[10] D.E. Silva. A simple interferometric method of beam collimation. Appl. Opt., 10(8):1980_1–1982,

1971.
[11] S. Yokozeki, K. Patorski, and K. Ohnishi. Collimation method using fourier imaging and moiré

techniques. Opt. Commun., 14(4):401–405, 1975.
[12] K.V. Sriram, M.P. Kothiyal, and R.S. Sirohi. Self-referencing collimation testing techniques.

Optical Engineering, 32(1):94–100, 1993.
[13] H.F. Talbot. Lxxvi. facts relating to optical science. no. iv. The London and Edinburgh

Philosophical Magazine and Journal of Science, 9(56):401–407, 1836.
[14] C. Shakher, S. Prakash, D. Nand, and R. Kumar. Collimation testing with circular gratings. Appl.

Opt., 40(8):1175–1179, 2001.
[15] L. Huang and X. Su. Method for acquiring the characteristic parameter of the dual-spiral moiré

fringes. Opt. Lett., 33(8):872–874, 2008.
[16] K. Patorski, K. Pokorski, and M. Trusiak. Circular–linear grating talbot interferometry with moiré

fresnel imaging for beam collimation. Opt. Lett., 39(2):291–294, 2014.
[17] L.M. Sanchez-Brea, F.J. Torcal-Milla, F.J. Salgado-Remacha, T. Morlanes, I. Jimenez-Castillo,

and E. Bernabeu. Collimation method using a double grating system. Appl. Opt., 49(17):3363–
3368, 2010.



Dual self-image technique for beam collimation 13

[18] F.J. Torcal-Milla, L.M. Sanchez-Brea, and J.M. Herrera-Fernandez. Lissajous figure-based single-
frame collimation technique. Sensors and Actuators A: Physical, 233:259 – 266, 2015.

[19] L.M. Sanchez-Brea, F.J. Torcal-Milla, J.M. Herrera-Fernandez, T. Morlanes, and E. Bernabeu.
Self-imaging technique for beam collimation. Opt. Lett., 39(19):5764–5767, 2014.

[20] L.M. Sanchez-Brea, F.J. Torcal-Milla, and E. Bernabeu. Variogram-based method for contrast
measurement. Appl. Opt., 46(22):5027–5033, Aug 2007.

[21] L.M. Sanchez-Brea and E. Bernabeu. Estimation of the standard deviation in three-dimensional
microscopy by spatial statistics. J. Microscopy - Oxford, 218:193–197, 2005.

[22] N.A.C. Cressie. Statistics for Spatial Data, revised edition, volume 928. Wiley, New York, 1993.
[23] L.M. Sanchez-Brea and F. J. Torcal-Milla. Near-field diffraction of gratings with surface defects.

Applied Optics, 49(11):2190–2197, 2010.
[24] F.J. Torcal-Milla, I. Harder, and N. Lindlein. Effect of fabrication errors on the diffraction pattern

produced by sawtooth gratings. Applied optics, 49(9):1599–1606, 2010.
[25] IEC BIPM, ILAC IFCC, IUPAP IUPAC, and OIML ISO. Evaluation of measurement data–guide

for the expression of uncertainty in measurement. jcgm 100: 2008, 2008.
[26] John Kitchin. pycse: First release, 2015.


