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inside the Poincaré disc) are analyzed.

1 Departamento de Fı́sica, Universidad de Guadalajara, 44420 Guadalajara, Jalisco, Mexico
2 Max-Planck-Institut für die Physik des Lichts, Staudtstraße 2, 91058 Erlangen, Germany
3 Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
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1. Introduction

Phase-space approaches often unveil hidden facets of quantum systems and shed light
on their underlying kinematical and dynamical properties [1, 2, 3, 4, 5, 6, 7, 8]. This
type of analysis is now common in many areas, especially for systems with Heisenberg-
Weyl [9, 10, 11, 12, 13, 14] or SU(2) symmetries [15, 16], and has been extended to other
dynamical groups such as SU(N) [17, 18] or E(2) [19, 20, 21, 22, 23, 24].

Following the pioneering work of Moyal [25], Groenewold [26] and Stratonovich [27],
the states of a quantum system in the Hilbert space H that carries an irreducible
representation (irrep) Λ of a dynamical group G can be mapped into functions of a classical
phase-space M , wherein G acts transitively. The structure of the manifold M is closely
related to a set of coherent states {|ζ 〉} labelled with phase-space coordinates ζ ∈M [28].

When coherent states can be constructed as translates of a fixed cyclic vector [29, 30, 31]
two mutually dual maps are naturally defined: they put in correspondence each operator Â
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acting in the Hilbert space of the quantum system, with the so-called Q and P symbols,
respectively, defined as [32, 33, 34]

QA(ζ ) = 〈ζ |Â|ζ 〉 , Â =
∫

dµ(ζ ) PA(ζ ) |ζ 〉〈ζ | , (1.1)

where dµ(ζ ) is the normalized invariant measure on M . These symbols allow the
computation of average values as a convolution

Tr(Âρ̂) =
∫

dµ(ζ )PA(ζ )Qρ(ζ ) , (1.2)

with ρ̂ the density operator for the system.
In theory, Q- and P-maps are both exact and contain complete information about the

system. In practice, however, they are not always suitable for the analysis of quantum
correlations. In particular, the P-symbols may become singular, whereas the Q-symbols
are too smooth and do not exhibit the full quantum interference pattern. Moreover, in the
semiclassical limit, the description of the dynamics in terms of the P- and Q-functions is not
always appropriate: the corrections are of first order in the expansion parameter (whose form
is dictated by the symmetry of the system), which may lead to a considerable reduction of the
timescale over which the semiclassical approximation is valid.

The Wigner map, Â↔WA(ζ ), is free of these difficulties. It satisfies

Tr(Âρ̂) =
∫

dµ(ζ )WA(ζ )Wρ(ζ ) . (1.3)

The Wigner symbol of the density matrix (the so-called Wigner function) is not singular (for
physical states), and has been shown to be very useful for analysis of the quantum states both
in the deep quantum and semiclassical limits [35, 36].

More generally one can introduce a parametrized family of trace-like maps generated by
kernels ŵ(s) (ζ )

W (s)
A (ζ ) = Tr[Â ŵ(s)(ζ )] , (1.4)

where the parameter s has an explicit interpretation in terms of ordering for the Heisenberg-
Weyl algebra, with±1, 0 associated with P-, Q- and Wigner maps respectively [12]. The same
kind of mapping exists for higher symmetries, albeit the parameter s is basically considered
as a duality parameter, in the sense that the average values are computed by integrating s- and
−ssymbols of the observable and the density matrix; that is,

〈Â〉=
∫

dµ(ζ )W (s)
A (ζ )W (−s)

ρ (ζ ) =
∫

dµ(ζ )W (−s)
A (ζ )W (s)

ρ (ζ ) . (1.5)

The Wigner function corresponds to s= 0, so it is self-dual dual in this context. Unfortunately,
the explicit construction of s-ordered maps and, especially, of the Wigner map is not as
transparent as for the Q and P maps.

When the group G is compact, its unitary representations are finite dimensional and the
kernels ŵ(s) can be expanded in a basis of tensor operators {T̂ λ

ν } [37]

ŵ(s)(ζ ) = ∑
λ ,ν

w(s)
λν
(ζ ) T̂ λ

ν , (1.6)
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where λ is a representation label appearing in the decomposition

Λ⊗Λ
∗ =⊕nλ λ , (1.7)

where nλ is the number of times the irrep λ appears in the decomposition and the expansion
coefficients w(s)

λν
(ζ ) can be expressed in terms of harmonic functions and appropriate Clebsch-

Gordan coefficients [38].
When the Hilbert space of states is infinite-dimensional, delicate questions of

convergence must be given careful attention, especially as the maps involve traces over
infinitely many basis states of products of operators that can be formally represented by
infinite-dimensional matrices. In particular, the decomposition of the product on the left hand
side of (1.7) is non longer a direct sum but can include a direct integral of representations
of the continuous type [39, 40] making the construction of the irreducible tensor operators
significantly more laborious and quite nontrivial [41, 42].

In the cases of locally flat classical phase-space corresponding to, e.g., the underlying
H(1) and E(2) symmetries, sets of s-ordered map can be constructed “by hand”, in order
to satisfy the basic requirements of normalization, invertibility and covariance under group
action.

Except for the previous examples of noncompact symmetries and to the best of our
knowledge, no self-dual maps from operators acting irreducibly in an infinite-dimensional
Hilbert space into Wigner-like functions satisfying the Moyal-Stratanovich postulates have
been discussed in details, even if applications of SU(1,1) Q- and P- functions were discussed
in [43, 44, 45, 46].

In this paper we remedy this situation: we present practical expressions for the s-ordered
Wigner functions of systems with SU(1,1) symmetry using a connection between the Q and
P maps through the action of an operator invariant under the group. Notably, a self-dual
mapping kernel is obtained as a “half-way” operator between ŵ(+) and ŵ(−) [47]. The phase-
space functions are defined on the upper sheet of the two-sheet hyperboloid or equivalently in
the interior of the Poincaré disc.

Beyond this solution to the technical problem of constructing SU(1,1) Wigner functions,
there are several reasons to investigate SU(1,1) states in phase-space: SU(1,1) plays a pivotal
role in connection with what can be called two-photon effects [48, 49, 50, 51]. The topic
is experiencing a revival in popularity due to the recent realization of a nonlinear SU(1,1)
interferometer [52, 53]. According to the proposal of Yurke et al. [54], this device would
allow one to improve the phase measurement sensitivity in a remarkable manner [55, 56]. In
addition, the dynamics of such states strongly depends on the distinct possible plane sections
of the hyperboloid [57].

2. General setup for SU(1,1)

2.1. Coherent states and the coset space SU(1,1)/U(1)

The Lie algebra su(1,1) is spanned by the operators {K̂0, K̂1, K̂2} with commutation relations

[K̂1, K̂2] =−iK̂0 , [K̂2, K̂0] = +iK̂1 , [K̂0, K̂1] = +iK̂2 . (2.1)
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We consider first a Hilbert space H that carries an irrep labelled by the Bargman index
k = 1

2 ,1,
3
2 ,2, . . . of the group G = SU(1,1); the representation k is in the positive discrete

series. This explicitly excludes the single-mode even and odd harmonic oscillator states,
which belong to the k = 1

4 and 3
4 irreps, respectively.

States in the irrep k satisfy

K̂0|k,k+m〉= (k+m)|k,k+m〉 , K̂−|k,k〉= 0 , (2.2)

where m = 0,1, . . . and K̂± =±i(K̂1± iK̂2). Let H ⊂G be the U(1) subgroup of G that leaves
|k,k〉 invariant, up to a phase; H is generated by exponentiating K̂0. The SU(1,1) coherent
states for the positive discrete series are labelled by points ζ in the interior of the Poincaré
disc, |ζ | < 1, {|ζ 〉 ∈H ,ζ ∈M =SU(1,1)/U(1)} and constructed as orbits of the cyclic
vector |k,k〉 [29],

|ζ 〉= D̂(ζ )|k,k〉, D̂(ζ ) = eζ K̂+e− ln(1−|ζ |2)K̂0e−ζ ∗K̂− . (2.3)

The unit disc can be lifted to the upper sheet of the two-sheeted hyperboloid by inverse
stereographic map; this hyperboloid is our classical phase space, where points are
parametrized by the hyperbolic Bloch vector

n = (coshτ,sinhτ cosφ ,sinhτ sinφ)> , (2.4)

and where τ and φ are related to the complex number ζ through ζ = tanh(τ/2)e−iφ .
The symplectic 2-form on the hyperboloid [29]

dω = sinhτ dτ ∧dφ , (2.5)

induces the following Poisson bracket

{ f ,g}= 1
sinhτ

(
∂ f
∂τ

∂g
∂ϕ
− ∂ f

∂ϕ

∂g
∂τ

)
, (2.6)

where f (τ,φ) and g(τ,φ) are smooth functions. In particular, the components n =

(n0,n1,n2)
> of the Bloch vector (2.4) satisfy the relations

{n1,n2}=−n0 , {n2,n0}= n1 {n0,n1}= n2 . (2.7)

In the basis {|k,k+m〉 : m = 0,1, . . .} the coherent states can be expanded as

|ζ 〉= (1−|ζ |2)k
∞

∑
m=0

[
Γ(m+2k)
m!Γ(2k)

]1/2

ζ
m|k,k+m〉 , (2.8)

and resolve the identity for k > 1/2

1̂1 =
2k−1

π

∫
dµ(ζ ) |ζ 〉〈ζ | , (2.9)

(for k = 1/2, the limit k→ 1/2 must be taken in the final expressions), where the invariant
measure is given by

dµ(ζ ) =
d2ζ

(1−|ζ |2)2 =
1
4

sinhτdτdφ , d2
ζ = dReζ dImζ . (2.10)
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SU(1,1) coherent states are not orthogonal; their overlap in the discrete irrep k is given by

|〈ζ |ζ ′〉|2 =
(

1+n ·n′

2

)−2k

, (2.11)

where n ·n′ is a pseudo-scalar product on the hyperboloid,

n ·n′ = coshτ coshτ
′− cos(φ −φ

′)sinhτ sinhτ
′ ≡ coshξ . (2.12)

2.2. The kernels

The SU(1,1) quantization kernels ŵ(s)(ζ ), generating dual maps according to (1.5), are
operators labelled by points of M =SU(1,1)/U(1). Their explicit form depends on the
representation index k, but we will not explicitly write this dependence to avoid burdening
the notation. The boundary kernels ŵ(±)(ζ ) define direct and inverse projections on the set of
coherent states (2.8) [22]:

Â =
2k−1

π

∫
dµ(ζ )PA(ζ ) |ζ 〉〈ζ | ,

(2.13)

PA(ζ ) = Tr[Âŵ(+)(ζ )] , QA(ζ ) = Tr[Âŵ(−)(ζ )] ,

and ŵ(−)(ζ ) = |ζ 〉〈ζ |.
In Appendix A we show that there is a class of s-parametrized kernels that are connected

to ŵ(±)(ζ ) through the following relations:

ŵ(s)(ζ ) =
2
π

∫
dµ(ζ ′)

∫
dλ λ tanh(πλ )Φ

1
2−

s
2

k (λ )P− 1
2+iλ (ζ

′−1
ζ )ŵ(+)(ζ ′) ,

=
2
π

∫
d(ζ ′)

∫
dλ λ tanh(πλ )Φ

− 1
2−

s
2

k (λ )P− 1
2+iλ (ζ

′−1
ζ )ŵ(−)(ζ ′) ,

(2.14)

where Φk(λ ) is

Φk(λ ) =
(2k−1)|Γ(2k− 1

2 + iλ )|2

Γ2(2k)
λ�1∼ λ

4k−3/2e−πλ , (2.15)

and P− 1
2+iλ (x) is the Legendre function [58, 59] with P− 1

2+iλ (ζ
′−1ζ ) = P− 1

2+iλ (n ·n
′). The

invariant integration of the SU(1,1) covariant kernels ŵ(±)(ζ ) does warrant the covariance of
the family ŵ(s)(ζ ).

By construction, the kernels (2.14) satisfy the overlap relation
2k−1

4π
Tr[ŵ(s)(ζ )ŵ(−s)(ζ ′)] = δ (ζ ′,ζ ) = δ (coshτ−coshτ

′)δ (φ−φ
′) , (2.16)

and the normalization conditions

Tr[ŵ(s)(ζ )] = 1 ,
2k−1

π

∫
dµ(ζ ) ŵ(s)(ζ ) = 1̂1 . (2.17)

In particular, the Wigner symbol (s = 0) of an operator Â is related to Q- and P- symbols by

WA(ζ )≡ Tr[Âŵ(0)(ζ )]

=
2
π

∫
dµ(ζ ′)g(+)

k (ζ ′−1
ζ )PA(ζ

′) =
2
π

∫
dµ(ζ ′)g(−)k (ζ ′−1

ζ )QA(ζ
′) , (2.18)
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where

g(±)k (ζ ′−1
ζ ) =

∫
∞

0
dλ λ tanh(πλ ) Φ

± 1
2

k (λ )P− 1
2+iλ (n ·n

′) . (2.19)

In consequence, the Wigner symbols satisfy the normalization
2k−1

π

∫
dµ(ζ )WA(ζ ) = 1 . (2.20)

The map (1.4) generated by the kernels in (2.14) is invertible in the standard sense:

Â =
2k−1

π

∫
dµ(ζ )W (s)

A (ζ ) ŵ(−s)(ζ ) . (2.21)

The self-duality condition of the Wigner map is obviously satisfied here and average values
are computed in accordance with equation (1.3):

〈Â〉= 2k−1
π

∫
dµ(ζ )WA(ζ )Wρ(ζ ) . (2.22)

We note that the equations (2.14) can also be formally represented in the compact form

ŵ(s)(ζ ) = Φ
1
2−

s
2

k (L 2) ŵ(+)(ζ ) = Φ
− 1

2−
s
2

k (L 2) ŵ(−)(ζ ), (2.23)

with

Φk(L
2) =− πL 2

cos(π
√

1/4+L 2)

2k−2

∏
m=1

[
1− L 2

m(m+1)

]
, (2.24)

and L 2 is the Laplace operator on the hyperboloid [60]

L 2 =
∂ 2

∂τ2 + cothτ
∂

∂τ
+

1
sinh2

τ

∂ 2

∂ϕ2 . (2.25)

The function g(−)k in equation 2.19 is singular, as one can see using the asymptotic
behavior in (2.15). This makes it inconvenient for calculations. In practice, the Wigner
functions of physical states can be numerically generated only from the P-function; i.e., in
terms of the g(+)

k function.
It is worth noting that the relations (2.14) allow one to express the star product of s-

parametrized symbols [26]; i.e.,

W (s)
f g =W (s1)

f ∗W (s2)
g , (2.26)

in the integral form [38]

W (s)
f g =

∫
dµ(ζ1)dµ(ζ2)Ls,s1,s2(ζ ,ζ1,ζ2)W

(s1)
f (ζ1)W (s2)

g (ζ2) , (2.27)

where

Ls,s1,s2(ζ ,ζ1,ζ2) = Tr[ŵ(s)(ζ ) ŵ(s1)(ζ1) ŵ(s2)(ζ2)] . (2.28)

In particular, the Wigner symbol of a product of two operators can be conveniently represented
in terms of the convolution of the corresponding P-symbols according to

W (0)
f g = Φ

− 1
2

k (L 2)

(
2k−1

π

)2 ∫
dµ(ζ1)dµ(ζ2)Pf (ζ1)Pg(ζ2)〈ζ2|ζ 〉〈ζ |ζ1〉〈ζ1|ζ2〉 . (2.29)
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3. Examples of Wigner functions

3.1. Coherent states

The Wigner function for SU(1,1) coherent states is fairly easy to obtain using equation (2.18),
since the P-function of a coherent state |ζ0〉, is a δ -function on the hyperboloid:

P|ζ0〉(ζ ) =
4π

2k−1
δ (ζ ,ζ0) =

4π

2k−1
δ (coshτ− coshτ0)δ (φ −φ0) . (3.1)

Then, the corresponding Wigner function is

W|ζ0〉(ζ ) =
2

2k−1
g(+)

k (ζ−1
0 ζ ) . (3.2)

In the particular case of the lowest weight state |ζ0〉= |k,k〉 the Wigner function is

W|k,k〉(ζ ) =
2

2k−1

∫
∞

0
dλ λ tanh(πλ )Φ

1
2
k (λ ) P− 1

2+iλ (coshτ) . (3.3)

In figure 1 we plot the Wigner functions of equation (3.3) of the ground state |k,k〉 as a
distribution on the Poincaré disc for two irreps with k = 1 and k = 5 respectively. The
distribution becomes narrower as k increase. The difference in the scale is due to the
normalization factor ∼ 2k−1 appearing in (2.17).

A more interesting case is the Wigner function for the superposition of two SU(1,1)
coherent states:

|Ψ〉= α|ζ0〉+β |ζ1〉 . (3.4)

The corresponding Wigner functions exhibits interference and has the form (see Appendix B)

W|Ψ〉(ζ ) = |α|2W|ζ0〉(ζ )+ |β |
2W|ζ1〉(ζ )+2Re[αβ

∗Wζ0ζ1
(ζ )] , (3.5)

(a) (b)

Figure 1. Plots of the SU(1,1) Wigner function of the ground state |k,k〉 on the Poincaré disc
a) k = 1; b) k = 5.
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(a) (b)

Figure 2. Plots of the SU(1,1) Wigner function of the cat states in equation ( 3.7) on the
Poincaré disc a) even superposition; b) odd superposition; in both cases k = 5

where Wζ0ζ1
(ζ ) is

Wζ0ζ1
(ζ ) =

2(1−|ζ0|2)k(1−|ζ1|2)k

(2k−1)(1−ζ0ζ ∗1 )
2k g(+)

k

(
2(1−ζ ∗ζ0)(1−ζ ∗1 ζ )

(1−|ζ |2)(1−ζ0ζ ∗1 )
−1
)
. (3.6)

The Wigner function allows to visualize the interference pattern appearing in phase-
space discription of pure states superposition, and thus distinguish them from mixed states.
In figure 2 we plot the Wigner function of even and odd superpositions of SU(1,1) coherent
states (cat-like states)

|Ψ〉= N√
2
(|ζ0〉± |−ζ0〉) , (3.7)

where N = (1+ cosh−2k
τ0)
−1/2.

The analytical expression for the Wigner function reads

W|Ψ〉(τ,φ) =
N2

2k−1

∫
∞

0
dλ λ tanh(πλ )Φ

1
2
k (λ )

[
P− 1

2+iλ (coshξ+)

+ P− 1
2+iλ (coshξ−)±

2
cosh2k

τ0
ReP− 1

2+iλ (z(τ,φ))
]
, (3.8)

with

coshξ± = coshτ coshτ0∓ cosφ sinhτ sinhτ0 ,

(3.9)

z(τ,φ) =
coshτ− i sinhτ0 sinhτ sinφ

coshτ0
.



SU(1,1) covariant s-parametrized maps 9

(a) (b)

Figure 3. Plots of the SU(1,1) Wigner function of the excited states on the Poincaré disc a)
|k,k+1〉 ; b) |k,k+2〉; in both cases k = 1

The last term in equation (3.8) describes the interference pattern. We point out that this pattern
becomes more pronounced (i.e., the number of oscillatons increases) as the representation
index k grows.

3.2. Number states

The Wigner function of the SU(1,1) number states

|k,k+m〉=

√
Γ(2k)

m!Γ(m+2k)
K̂m
+|k,k〉, (3.10)

is obtained in Appendix B and given by

W|m〉(ζ ) =
Γ(2k)

(2k−1)πm!Γ(m+2k)

∫
∞

0
dλ λ tanh(πλ )Φ

1
2
k (λ )

×
∫

dτ
′dφ
′
δ (τ ′)[cosh4(τ ′/2)L ′2]m[cosh4k(τ ′/2)P− 1

2+iλ (coshξ )], (3.11)

where coshξ = coshτ coshτ ′ − cos(φ − φ ′)sinhτ sinhτ ′ and where L ′2 is the Laplace
operator in the hyperboloid, which acts on the primed variables.

The Wigner function of the first excited state is

W|1〉(ζ ) =
1

(2k−1)k

∫
∞

0
dλ λ tanh(πλ ) Φ

1
2
k (λ )(2k−1/4−λ

2)P− 1
2+iλ (coshτ)

=
1

(2k−1)k

(
2k+

∂ 2

∂τ2 + cothτ
∂

∂τ

)
g(+)

k (coshτ) . (3.12)

Figure 3 illustrates the Wigner functions of the states |k,k + 1〉 and |k,k + 3〉 in the
representation with k = 1.
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4. Applications: su(1,1) dynamics

In quantum optics the su(1,1) algebra naturally appears in the analysis of the non-degenerate
parametric amplifier, with

K̂+ = â†b̂†, K̂− = âb̂, K̂0 =
1
2(â

†â+ b̂†b̂+ 11) , (4.1)

and where â and b̂ are the standard boson operators. The coherent states (2.8) form a
convenient (but overcomplete) basis in each Hilbert space with a fixed difference ∆n of
excitations between the modes a and b. The SU(1,1)-irreducible subspaces are carrier
spaces for irreps labelled by k = 1

2(1 + |∆n|). The evolution generated by Hamiltonians
in the enveloping algebra of (4.1) can be suitably described as dynamics of SU(1,1)
quasidistributions on the hyperboloid or equivalently on the Poincaré disc.

The phase-space evolution on the hyperboloid generated by su(1,1) Hamiltonians
significantly differs from the dynamics on the two-dimensional sphere, the homogeneous
space for SU(2): while any Hamiltonian linear on the SU(2) generators is equivalent to
Ĥ = ω Ŝz, there are compact and non-compact orbits in the case of the SU(1,1) systems.
In general, the dynamics of an initial state |ψ0〉 induced by an operator Tg corresponding to a
irrep of an element

g =

(
α β

β ∗ α∗

)
, |α|2−|β |2 = 1 , (4.2)

of the SU(1,1) leads to an appropriate transformation of the Wigner function argument

WTg|ψ0〉(ζ ) =W|ψ0〉

(
−α∗ζ +β

β ∗ζ −α

)
, (4.3)

as a consequence of the Wigner function covariance under group transformations [29].
In particular, in case of compact evolution, the Hamiltonian

Ĥ = χK̂0 , (4.4)

generates rotation around the z-axis, and yields

W|ζ0〉(ζ |t) =W|ζ0〉(e
iχt

ζ ) , (4.5)

or, equivalently,

W|ζ0〉(τ,φ |t) =W|ζ0〉(τ,φ −χt) . (4.6)

Any Hamiltonian SU(1,1) equivalent to that in equation (4.4) leads to a rotation of the initial
distribution along an ellipse obtained as an intersection of the hyperboloid and an inclined
plane.

The noncompact evolution is generated by SU(1,1) Hamiltonians equivalent to

Ĥ = χK̂2 . (4.7)

For instance, the phase-space dynamics of the state |ζ0 = tanhτ0/2〉 governed by (4.7) leads
to

W|ζ0〉(ζ |t) =W|ζ0〉

(
ζ cosh χt

2 + sinh χt
2

ζ sinh χt
2 + cosh χt

2

)
, (4.8)
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which explicitly exhibits a boost generated by (4.7), e.g.

W|ζ0〉(τ,φ = 0|t) =W|ζ0〉(τ +χt,φ = 0) . (4.9)

5. Concluding remarks

In this work we have developed a basic and practical setup for a consistent introduction of
the Wigner map for the quantum systems with SU(1,1) symmetry group acting irreducibly
in a corresponding Hilbert space. The Wigner function generated by the kernels (2.18)
allow to faithfully represent states of quantum systems with underlying SU(1,1) symmetry
as distributions on the upper sheet of the hyperboloid or the Poincaré disc.

In the framework of our approach, the Wigner kernel can be formally obtained both from
Q and P kernels. In a manner reminiscent of the Heisenberg-Weyl group, the transformation
taking from ŵ(−)(ζ ) to ŵ(0)(ζ ) is singular. Thus, a practical way of obtaining the Wigner
function is from the P-function of the corresponding state.
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Appendix A. Properties of ŵ(s)

We start with a full set of Perelomov-type coherent states {|ζ 〉 ∈ H } generated from
a fiducial state |ψ0〉 and labelled by coordinates ζ of M , a homogeneous space of the
dynamical symmetry group G = SU(1,1). We further assume that H carries an irrep Λ

in the positive discrete series of SU(1,1), labelled by the Bargman indexk = 1
2 ,1,

3
2 ,2, . . . .

Here, M = SU(1,1)/U(1) where U(1) is the subgroup generated by K̂0.
The Q-and P-kernels ŵ(±)(ζ ), are connected through the relation

ŵ(−)(ζ ) =
2k−1

π

∫
dµ(ζ ′)|〈ζ ′|ζ 〉|2 ŵ(+)(ζ ′) , (A.1)

where dµ(ζ ) is the invariant measure (2.10). They satisfy the duality relation

2k−1
4π

Tr[ŵ(+)(ζ ′)ŵ(−)(ζ )] = δ (ζ ,ζ ′) = δ (coshτ
′− coshτ)δ (φ ′−φ) . (A.2)

Following the general ideas of [47] we observe that

δ (coshτ−coshτ
′)δ (φ−φ

′)=
1

2π

∞

∑
n=−∞

∫
dλ λ tanh(πλ )uλ

n (ζ )u
λ∗
n (ζ ′) , (A.3)

where

uλ
n (ζ ) =

1
2π

∫ 2π

0
dθ [coshτ− sinhτ cos(θ −φ)]−

1
2+iλ einθ
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= (−1)n Γ(1
2 + iλ )

Γ(1
2 + iλ +n)

Pn
− 1

2+iλ (coshτ)einφ , (A.4)

are the harmonic functions on the upper sheet of the hyperboloid M = SU(1,1)/U(1). The
functions uλ

n (ζ ) are eigenfunctions of the Laplace operator L 2 (2.25) on the hyperboloid

L 2uλ
n (ζ ) =−

(
λ

2 +
1
4

)
uλ

n (ζ ) , (A.5)

and satisfy the following sum rule [58], defining the zonal functions on SU(1,1)/U(1):
∞

∑
n=−∞

uλ
n (ζ )u

∗λ
n (ζ ′) = P− 1

2+iλ (coshξ ) , (A.6)

and coshξ has been defined in (2.12).
The harmonic functions of equation (A.4) also satisfy the orthogonality condition

λ tanh(πλ )
∫

dτdφ sinhτ uλ
n (ζ )u

λ ′∗
n′ (ζ ) = 2πδnn′δ (λ −λ

′). (A.7)

The expansion of a function f (ζ ) on a hyperboloid on the basis of uλ
n (ζ ) has thus the form

f (ζ ) =
∞

∑
n=−∞

∫
dλλ tanh(πλ )uλ

n (ζ ) fnλ , fnλ =
∫

dµ(ζ )uλ∗
n (ζ ) f (ζ ) . (A.8)

The functions uλ
n (ζ ) are nothing but the representation of elements of the basis of the principal

continuous series, labelled by −1
2 + iλ , [29]

K̂0|λ ,n〉= n|λ ,n〉 , K̂±|λ ,n〉=
(
±1

2 ∓ iλ +n
)
|λ ,n〉 , (A.9)

with n ∈ Z and uλ
n (ζ ) = 〈ζ |λ ,n〉.

It is easy to see that a differential operator Φ̂Λ(ζ ), depending explicitly on the
Bargman index k that labels the representation Λ and returning the squared coherent state
overlap |〈ζ ′|ζ 〉|2 from δ (ζ ′,ζ ) should be invariant under group transformations: given
Φ̂Λ(ζ )δ (ζ

′,ζ ) = |〈ζ ′|ζ 〉|2, then, by transitivity of |〈ζ ′|ζ 〉|2 and δ (ζ ,ζ ′) we have

Φ̂Λ(gζ )δ (gζ
′,ζ )= |〈gζ

′|ζ 〉|2 = |〈ζ ′|g−1
ζ 〉|2 = Φ̂Λ(ζ )δ (ζ

′,g−1
ζ )= Φ̂Λ(ζ )δ (gζ

′,ζ ), (A.10)

where g ∈ SU(1,1). Thus, the operator Φ̂Λ(ζ ) ≡ Φ̂k(ζ ) is conveniently expressed as a
function Φk of the operator L 2 , the differential realization of the quadratic Casimir C2 on
the hyperboloid:

Φ̂k(ζ ) = Φk(L
2). (A.11)

Explicitly, for the square of the scalar product of two SU(1,1) coherent states in the
representation labelled with k = 1/2,1,3/2, ... we have

2k−1
4π
|〈ζ ′|ζ 〉|2 =

2k−1
4π

(
1+ coshξ

2

)−2k

= Φ̂k(L
2)δ (coshτ− coshτ

′)δ (φ −φ
′)

=
1

2π

∫
dλ λ tanh(πλ )P− 1

2+iλ (coshξ )Φk(λ ). (A.12)

In consequence, equation (A.1) can be rewritten as

ŵ(−)(ζ )=
2
π

∫
dµ(ζ ′)ŵ(+)(ζ ′)

∫
dλ λ tanh(πλ )P− 1

2+iλ (coshξ )Φk(λ ) .(A.13)
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The inversion of equation (A.12) is given by [58]

Φk(λ ) =
2k−1

2

∫
∞

1
dx
(

1+ x
2

)−2k

P− 1
2+iλ (x). (A.14)

The above integral can be exactly computed with the result

Φk(λ ) =
(2k−1) |Γ

(
2k− 1

2 + iλ
)
|2

Γ2(2k)
, (A.15)

and its normalization follows from equation (A.12)
2

2k−1

∫
dλ λ tanh(πλ )Φk(λ ) = 1. (A.16)

Formally, one can represent equation (A.13) in an operational form

ŵ(−)(ζ ) = Φk(L
2)ŵ(+)(ζ ), (A.17)

where Φk(L
2) is given in equation (2.24). Now, we can formally introduce s-parametrized

kernels ŵ(s)(ζ ) related to ŵ(±)(ζ ) as

ŵ(s)(ζ ) =
2
π

∫
dµ(ζ ′)ŵ(+)(ζ ′)

∫
dλ λ tanh(πλ )P− 1

2+iλ (coshξ )Φ
1
2−

s
2

k (λ )

=
2
π

∫
dµ(ζ ′)ŵ(−)(ζ ′)

∫
dλ λ tanh(πλ )P− 1

2+iλ (coshξ )Φ
− 1

2−
s
2

k (λ )

(A.18)

that satisfy the overlap relation
2k−1

4π
Tr[ŵ(s)(ζ )ŵ(−s)(ζ ′)] = δ (ζ ′,ζ ) = δ (coshτ−coshτ

′)δ (φ−φ
′′).(A.19)

In particular, the self-dual Wigner kernel, s = 0, is obtained from ŵ(±)(ζ ) kernels by

ŵ(0)(ζ ) =
2
π

∫
dλ λ tanh(πλ )Φ

1/2
k (λ )

∫
dµ(ζ ′)ŵ(+)(ζ ′)P− 1

2+iλ (coshξ )

= Φ
1/2
k (L 2)ŵ(+)(ζ ) ,

(A.20)

ŵ(0)(ζ ) =
2
π

∫
dλ λ tanh(πλ )Φ

−1/2
k (λ )

∫
dµ(ζ ′)ŵ(−)(ζ ′)P− 1

2+iλ (coshξ )

= Φ
−1/2
k (L 2)ŵ(−)(ζ ) .

In this way, ŵ(0)(ζ ) automatically satisfies the self-duality condition
2k−1

4π
Tr[ŵ(0)(ζ )ŵ(0)(ζ ′)] = δ (coshτ− coshτ

′)δ (φ −φ
′) . (A.21)

Since the kernels ŵ(±)(ζ ) satisfy the normalization conditions (2.17), one obtains from
equation (A.21)

Tr[ŵ(0)(ζ )] = Φ
1/2
k (L 2)Tr[ŵ(+)(ζ )] = 1, (A.22)

since Φk(L
2)1 = 1. In addition, using the self-adjoitness of Φk(L

2) one has
2k−1

π

∫
dµ(ζ )ŵ(0)(ζ ) =

2k−1
π

∫
dµ(ζ )Φ

1/2
k (L 2)ŵ(+)(ζ ) =

2k−1
π

∫
dµ(ζ )ŵ(+)(ζ ) = 1̂1 .

(A.23)
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It is straightforward to obtain the average of the Wigner kernel over the coherent states; i.e.,
the Q-function of the Wigner kernel

〈ζ ′|ŵ(0)(ζ )|ζ ′〉= 2
2k−1

∫
dλ λ tanh(πλ )P− 1

2+iλ (coshξ )Φ
1/2
k (λ ), (A.24)

which is a convergent integral.

Appendix B. Wigner functions of some number states and superpositions

In this Appendix we obtain the Wigner functions of the number states and nondiagonal
projector on the coherent states. In order to obtain the Wigner function of the SU(1,1) number
states

|k,k+m〉=

√
Γ(2k)

m!Γ(m+2k)
K̂m
+|k,k〉, (B.1)

we notice that

K̂m
+|k,k〉〈k,k|K̂n

− =
2k−1

π

∫
K̂m
+|ζ 〉〈ζ |K̂n

−P|k,k〉(ζ )

=
2k−1

π

∫
dµ(ζ )

[
Dm

L (K̂+)Dn
R(K̂−)|ζ 〉〈ζ |

]
P|k,k〉(ζ ), (B.2)

where

DL(K̂+) = (1−|ζ |2)2k
∂ζ (1−|ζ |2)−2k , DR(K̂−) = (1−|ζ |2)2k

∂ζ ∗(1−|ζ |2)−2k, (B.3)

and

P|k,k〉(ζ ) =
2

2k−1
1

sinhτ
δ (τ) (B.4)

is the P-symbol for the lowest weight state |k,k〉 of irrep k.
In consequence, the P-function corresponding to the matrix element |k,k+m〉〈k,k+ n|

has the form

Pmn(ζ ) =
(−1)m+n

(1−|ζ |2)2k−2 Nk;mn ∂
m
ζ

∂
n
ζ ∗[(1−|ζ |

2)2k−2 P|k,k〉(ζ )],

(B.5)

Nk;mn =
Γ(2k)√

m!n!Γ(m+2k)Γ(n+2k)
.

Substituting the above expression into equation (2.18) and integrating by parts we obtain after
simplification the Wigner symbol of |k,k+m〉〈k,k+n|,

Wmn(ζ ) =
Nk;mn

(2k−1)π

∫
∞

0
dλ λ tanh(πλ )Φ

1
2
k (λ )

×
∫

dτ
′dφ
′
δ (τ ′)∂ m

ζ ′∂
n
ζ ′∗

[
cosh4k(τ ′/2)P− 1

2+iλ (coshξ )
]
, (B.6)

where

∂ζ = eiφ cosh2(τ/2)∂τ +
i
2

eiφ coth(τ/2)∂φ ,

(B.7)

∂ζ = e−iφ cosh2(τ/2)∂τ −
i
2

e−iφ coth(τ/2)∂φ .
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The Wigner function of the state (B.1) is immediatly obtained from (B.6).
In order to compute the symbol Wζ0ζ1

(ζ ) of the nondiagonal projector |ζ0〉〈ζ1| we note
that

|ζ0〉〈ζ1| = (1−|ζ0|2)k(1−|ζ1|2)k

×
∞

∑
m,n=0

[
Γ(m+2k)
m!Γ(2k)

]1/2[
Γ(n+2k)
n!Γ(2k)

]1/2

ζ
m
0 ζ
∗n
1 |k,k+m〉〈k,k+n|. (B.8)

Recalling that the P-symbol of the matrix element |k,k + m〉〈k,k + n| is given in
equation (B.5), we obtain the P-symbol of |ζ0〉〈ζ1|:

Pζ0ζ1
(ζ ) = (1−|ζ0|2)k(1−|ζ1|2)k(1−|ζ |2)−2k+2

× exp(−ζ0∂ζ −ζ
∗
1 ∂ζ ∗)[(1−|ζ |2)2k−2P|k,k〉(ζ )] . (B.9)

Substituting the above into equation (2.18) and integrating by parts yelds

Wζ0ζ1
(ζ ) =

4
(2k−1)π

∫
∞

0
dλ λ tanh(πλ ) Φ

1
2
k (λ )(1−|ζ0|2)k(1−|ζ1|2)k

×
∫

dµ(ζ ′)
δ (τ ′)

sinhτ ′
exp(ζ0∂ζ ′+ζ

∗
1 ∂ζ ′∗)[(1−|ζ ′|2)−2kP− 1

2+iλ (coshξ )], (B.10)

where now

coshξ =
2|1−ζ ∗ζ ′|2

(1−|ζ |2)(1−|ζ ′|2)
−1 . (B.11)

Integrating equation (B.10) over µ(ζ ′) yields

Wζ0ζ1
(ζ ) =

2
2k−1

(1−|ζ0|2)k(1−|ζ1|2)k

(1−ζ0ζ ∗1 )
2k

×
∫

∞

0
dλλ tanh(πλ )Φ

1
2
k (λ )P− 1

2+iλ

(
2(1−ζ ∗ζ0)(1−ζ ∗1 ζ )

(1−|ζ |2)(1−ζ0ζ ∗1 )
−1
)
. (B.12)
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