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We perform an analysis of the three-pion systemwith quantum numbers JPC ¼ 1þþ produced in theweak
decay of τ leptons. The interaction is known to be dominated by the axial meson a1ð1260Þ. We build a model
based on approximate three-body unitary and fix the free parameters by fitting it to the ALEPH data on
τ− → π−πþπ−ντ decay. We then perform the analytic continuation of the amplitude to the complex energy
plane. The singularity structures related to the ππ subchannel resonances are carefully addressed. Finally,

we extract the a1ð1260Þ pole position mða1ð1260ÞÞ
p − iΓða1ð1260ÞÞ

p =2 with mða1ð1260ÞÞ
p ¼ ð1209� 4þ12

−9 Þ MeV,

Γða1ð1260ÞÞ
p ¼ ð576� 11þ89

−20Þ MeV.

DOI: 10.1103/PhysRevD.98.096021

I. INTRODUCTION

The internal dynamics of the quantum chromodynamics
(QCD) degrees of freedom manifests itself in the spectrum
of hadron resonances. The mass of a resonance character-
izes the energy of the excitation while its width reflects on
the coupling to the decay channels. The meson spectrum
has been qualitatively elucidated by the quark model [1]
and recently, at least for some states, calculations based on
first principles lattice QCD are becoming available [2,3].
For a majority of states, however, ab initio QCD calcu-
lations of their decay properties, e.g., decay widths,
branching ratios, are not yet available. Pushing such
calculations forward is important given the growing body
of evidence for novel hadronic phenomena [4–10], e.g., the

X, Y, Z states observed in heavy quarkonia [11–13]. Many
of these new states are observed in decays to three-particle
final sates.While hadron scattering involving two stable
particles is rather well understood formally, the method-
ology for incorporating three and more particles is still
being developed both in the infinite volume [14–18] and
finite volume [19–24].
A large number of light meson resonances dominantly

decay to three pions. This includes the enigmatic a1ð1260Þ
resonance, which is the lightest axial vector meson with
JPC ¼ 1þþ. The properties of the a1 resonance are difficult
to assess, due to its large width that is affected by the three-
pion dynamics. The ππ subchannel is dominated by the ρ
resonance whose finite width is expected to be important
for the extraction of the a1 resonance properties. Indeed, a
large part of the a1ð1260Þ peak seen in the invariant mass
distribution of three pions lays below the nominal ρπ
threshold. However, the pole of the resonance was pre-
viously addressed in Lagrangian-based models [25,26],
assuming a stable ρ-meson.
The JPC ¼ 1þþ three-pion state can be observed in the

τ → 3πντ decay as well as in pion diffraction off a proton
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target πp → 3πp. There appears to be a discrepancy in the
a1 resonance parameters extracted from the two reactions
[1,27]. The problem may be related to the presence of a
large, coherent, nonresonant background, known as the
Deck process in pion diffraction [28–31]. This process
happens to dominate in the JPC ¼ 1þþ partial wave and
directly influences the extraction of the a1ð1260Þ resonance
parameters in pion diffraction. Thus, an independent
determination of the a1ð1260Þ resonance properties is
not only relevant for a better understanding of this state
but also to constrain the Deck process, which contributes
significantly to other partial waves including the ones with
the exotic quantum numbers 1−þ [31]. In this paper, we
therefore focus on the τ− → π−πþπ−ντ decay with the aim
of extracting the a1ð1260Þ resonance parameters.
The paper is organized as follows. In Sec. IIwe present our

model, we relate the differential width of τ− → π−πþπ−ντ to
the three-pion scattering amplitude in the 1þþ sector.
In Sec. III we show how the model is constrained by the
fit to ALEPH data. In Sec. IV we explore the analytic
properties of our model for complex values of the 3π
invariant mass squared, establishing the main singularities
of the amplitude, and we determine the location of the
a1ð1260Þ pole. The studies of the systematics are described
in Sec. V. Our conclusions are summarized in Sec. VI.

II. THE REACTION MODEL

We consider the reaction τ → 3πντ and derive an
expression for the differential width which characterizes
the 3π invariant mass spectrum [32–36]. The differential
width is calculated by averaging (summing) over the τ (ντ)
polarizations and integrating the matrix element squared
over the final-state momenta,

dΓ ¼ 1

2mτ
·
1

2

X
λτλν

jAλν;λτ j2dΦ4; ð1Þ

where mτ is the mass of the τ-lepton, mτ ¼ 1776 MeV [1],
the neutrino is considered massless, dΦ4 is the four-body
differential phase space, and λx are the lepton helicities of
the x ¼ τ, ν. The process is dominated by the emission of a
W boson by the leptonic current,

h3πντ; λνjTjτ; λτi ¼ −
GFffiffiffi
2

p V�
udūðpν; λνÞγαð1 − γ5Þ

× uðpτ; λτÞh3πjJ5−α ð0Þj0i; ð2Þ

where h3πντ; λνjTjτ; λτi ¼ Aλν;λτð2πÞ4δ4ðpτ − pν − p3πÞ,
GFV�

ud=
ffiffiffi
2

p
is the Cabibbo-favored weak coupling, p3π ,

pτ, and pν are the four-momenta of three-pion system and
the leptons, u (ū) are the Dirac spinors of the τ (ντ), see
Fig. 1. Because of G-parity conservation the π−πþπ−
system has positive C-parity. Hence, the vector current
ūγαu does not couple it, and can be removed. Since theW−

is heavily off-shell, one should also consider the timelike
polarization, which carries JPC ¼ 0−þ. However, the cor-
responding helicity amplitude is suppressed by the PCAC
[33,37]. This enables us to treat the off-shell W− as purely
axial. The polarization of the real W− provides a complete
basis which we use to expand the hadronic current,

Aλν;λτ ¼
GFffiffiffi
2

p V�
udūðpν; λνÞγαγ5uðpτ; λτÞ

X
Λ
εαðΛÞAΛ; ð3Þ

where εα�ðΛÞh3πjJ5−α ð0Þj0i ¼ AΛð2πÞ4δ4ðpτ − pν − p3πÞ
is the helicity amplitude for the decay of the axial current
to three pions. The squared matrix element summed and
averaged over the ντ and τ helicities, respectively, is

1

2

X
λτλν

jAλν;λτ j2 ¼ G2
FjVudj2ðpα

τp
β
ν þ pβ

τpα
ν − gαβðpτ · pνÞÞ

×
X
Λ;Λ0

εαðΛÞε�βðΛ0ÞAΛA�
Λ0 : ð4Þ

The explicit evaluation of the expression is performed in
the τ-rest frame where pτ · εð0Þ ¼ ðm2

τ − sÞ=ð2 ffiffiffi
s

p Þ, and
pτ · εð�Þ ¼ 0.
Using the recursive relation for the phase space, we split

it into the τ− → W−ντ-phase space dΦ2, and the three-pion
phase space dΦ3: dΦ4 ¼

R
dΦ2dΦ3ds=ð2πÞ, where

ffiffiffi
s

p
is

the invariant mass of the hadronic system. To obtain the
differential width dΓ=ds, we integrate explicitly over the
neutrino angles,

dΓ
ds

¼ G2
FjVudj2
64π2m3

τ
ðm2

τ − sÞ2

×
Z

dΦ3

�
jAþj2 þ jA−j2 þ

m2
τ

s
jA0j2

�
: ð5Þ

Here, one power of the factor ðm2
τ − sÞ follows from the

matrix element in Eq. (4), the other is given by the W−ντ
two-body phase space. The expression for the dΦ3 is given
in Appendix B. The integral is kept in the final expression
to facilitate the further discussion on partial-wave expan-
sion of the amplitude AΛ.
The helicity amplitude AΛ describes the coupling of the

axial current to the three charged pions. The pions are
labeled as follows, π−1 π

þ
2 π

−
3 (see Fig. 1). We use the isobar

model to parametrize the dynamics and explicitly incor-
porate the π−1 π

−
3 Bose symmetry,

AΛ ¼ Að3Þ
Λ þ Að1Þ

Λ ; ð6Þ

where the isobar amplitude AðkÞ
Λ includes only the sub-

channel interaction in a pion pair leaving the pion indexed k
as a bachelor. In Eq. (6), we disregard the π−π− interaction
since it is negligible compared to the dominant ρ-meson in
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the πþπ− subchannel. The pion momenta are denoted by pi
where i ¼ 1, 2, 3 as shown in Fig. 1 and the subchannel
invariant mass squared is denoted as σk ¼ ðpi þ pjÞ2. Here
and below we use the circular convention, i.e., the bachelor
pion has index k such that the ðijkÞ are numbers (123),
(231) or (312).
Each isobar amplitude receives different contributions,

often referred to as decay channels [1]. The importance of
different decay channels can be estimated by the relative
branching fractions of the a1ð1260Þ decay. The latest
measurements were carried out by the CLEO experiment
from τ decay [38,39] and by the COMPASS experiment in
diffractive production [40]. The extraction of branching
ratios is model-dependent and is influenced by the produc-
tion mechanism; however, we get a rough estimate of their
relative importance. The ρπS-wave channel is dominant with
a branching ratio of 60%–80%. The second most important
channel, f0ð500ÞπP-wave, was estimated to contribute less
than 20%. The combined branching ratio to the remaining
channels (ρπD-wave, f2πP-wave, K�K̄S;D-waves) does
not exceed 10%. We thus limit the analysis to the main
ρπS-wave channel. Including other decay channels would
require the introduction of additional parameters for cou-
plings and production strengths, which cannot be fixed by
current publicly available data.
Therefore, we take the isobar amplitude to have the form,

AðkÞ
Λ ¼ CðkÞaðsÞfρðσkÞNΛðΩk;ΩijÞ; ð7Þ

where CðkÞ ¼ h1; μi; 1; μjj1; 0i ¼ �1=
ffiffiffi
2

p
is the Clebsch-

Gordan coefficient relating the two pion with isospin
projection μi;j ¼ �1 to ρ0 isospin states, thus, the sign
depends on the index k. The aðsÞ denotes the dynamical
part of the amplitude a1 → ρπS-wave in the canonical basis
[41,42], fρðσÞ is a parametrization for the ρ-meson decay
amplitude, and NΛðΩk;ΩijÞ is the angular decay function
for the decay chain a1 → ρπ, ρ → ππ,

NΛðΩk;ΩijÞ ¼
ffiffiffi
3

p X
λ

D1�
ΛλðΩkÞD1�

λ0ðΩijÞ: ð8Þ

The angles Ωk ¼ ðθk;ϕkÞ are the polar and the azimuthal
angles of the vector p⃗i þ p⃗j in the 3π helicity frame, i.e.,
the center-of-mass (CM) frame with the axis orientation
fixed by the production kinematics. TheΩij ¼ ðθij;ϕijÞ are

the spherical angles of the pion i in the helicity frame of the
isobar ðijÞ. Detailed discussion on the decay function in
Eq. (8) can be found in the Appendix B.
The line shape of the ρ-meson is given by the customary

Breit-Wigner amplitude with dynamical width [40,43]

fρðσÞ ¼ N
F1ðpðσÞRÞ

m2
ρ − σ − imρΓρðσÞ

;

ΓρðσÞ ¼ Γρ
pðσÞ
pðm2

ρÞ
mρffiffiffi
σ

p F2
1ðpðσÞRÞ

F2
1ðpðm2

ρÞRÞ
;

F2
1ðpRÞ ¼

ðpRÞ2
1þ ðpRÞ2 ; ð9Þ

where pðσÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ=4 −m2

π

p
is the pion break-up momen-

tum, the function F1ðpRÞ combines the threshold factor
pðσÞ and the customary Blatt-Weisskopf barrier factor with
size parameter R ¼ 5 GeV−1. We use in the analysis
mπ ¼ 139.57 MeV, mρ ¼ 775.26 MeV [1]. For conven-
ience we fixN so that the phase-space integral ρðsÞ defined
below in Eq. (12a) approaches the two-body phase space
asymptotic value, 1=8π, in the limit s → ∞, i.e.,

Z
∞

4m2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=σ
q

jfρðσÞj2dσ ¼ 16π2: ð10Þ

The normalization for fρðσÞ fixes the normalization
of aðsÞ.
Using Eqs. (6) and (7) to substitute the amplitude AΛ in

Eq. (5), we get the expression for the differential width in
terms of the dynamic amplitude aðsÞ.

dΓ
ds

¼ G2
FjVudj2
64π2m3

τ

�
2þm2

τ

s

�
ðm2

τ − sÞ2jaðsÞj2ρðsÞ: ð11Þ

where ρðsÞ is the effective ρπ phase space. We will consider
two models for ρðsÞ’s:

ρSYMMðsÞ ¼
1

2

Z
dΦ3jfρðσ1ÞN0ðΩ1;Ω23Þ

− fρðσ3ÞN0ðΩ3;Ω12Þj2; ð12aÞ

ρQTBðsÞ ¼
Z

dΦ3jfρðσ1ÞN0ðΩ1;Ω23Þj2: ð12bÞ

The expression in Eq. (12a) strictly follows from
Eqs. (6), (7), and (11). The label SYMM is introduced
to emphasize the symmetrization between the decay
channels, i.e., the ρπ channels k ¼ 1 and 3. The relative
minus sign comes from the symmetry of the isospin
coefficient in Eq. (7). The integral in Eq. (12a) is the
same for all helicities Λ due to the properties of the
Wigner d-functions, therefore we set Λ ¼ 0 for simplicity.
The interference term is only significant at low energy,

FIG. 1. Diagram for the decay τ− → π−πþπ−ντ. The momenta
of the τ lepton and ντ are denoted by pτ and pν. The pions
momenta are labeled by pi, i ¼ 1, 2, 3. s is the invariant mass of
the three pions.
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where the overlapping region of the two ρ-mesons
contributes to a substantial fraction of the Dalitz plot.
The ρQTB (quasi-two-body) in Eq. (12) is a simplified
phase space where the interference term is neglected. In
this case, the integrals of the two decay chains squared are
identical, which cancels the 1=2 factor in front. This
model treats the ρ-meson as quasistable and the inter-
action between the ρπ as a two-body interaction. The
simplification is suggested and discussed in Ref. [44] to
treat the multiparticle final states. The same approxima-
tion is commonly used to account for 4π channel in the
ππ=KK̄ coupled-channels problem [45,46]). Finally, as
shown in Fig. 2, the interference is rather small. Since this
model is simpler, we would like to test it as an alternative.
Our model for the decay amplitude is constrained by

the approximate three-body unitary [29,44]. Turning
general 3-body unitarity into some practically useful
equations is cumbersome and not complete yet. A
significant progress in this direction has been made in
Refs. [14–17]. In particular, one can separate the genuine
three-body unitary from the subchannel unitarity related
to rescattering between different isobars. These processes
modify the line shape of the subchannel amplitudes
[47–53]. A good example is the ρπ-dynamics studied
in the 1−− sector in the decay of ω=ϕ [48,50], where
the final-state interaction were found to shift and skew the
ρ-meson peak. Conversely, in our models we focus on the
3-body resonance dynamics, and simplify the problem by
neglecting the effects of the rescattering on the isobar
line shapes. We introduce the ρπ elastic scattering isobar

amplitude tðsÞ, to impose the unitarity constraints for the
amplitude aðsÞ:

2ImaðsÞ ¼ t�ðsÞρðsÞaðsÞ; ð13aÞ

2ImtðsÞ ¼ t�ðsÞρðsÞtðsÞ; ð13bÞ

where ρðsÞ is the effective phase space given by Eq. (12a)
or Eq. (12b). The factor of 2 in the left-hand side of
Eq. (13) is kept for convenience.
The unitarity equations (13) can be satisfied by a certain

choice of the parametrization.

tðsÞ ¼ g2

m2 − s − ig2CðsÞ=2 ; aðsÞ ¼ αðsÞtðsÞ; ð14Þ

where CðsÞ is an analytic function constrained by condition
ImiCðsÞ ¼ ρðsÞ. To describe the amplitude dominated by
a single resonance, we added a first order polynomial
ðm2 − sÞ=g2 to the denominator of tðsÞ, which is equivalent
to have the K-matrix with a single pole [42]. The numerator
function αðsÞ is supposed to incorporate the singularities
specific to the production process into the amplitude aðsÞ.
The final state interaction required by unitarity is accounted
for by the multiplicative form of the production amplitude
in Eq. (14). It diminishes the differences between different
possible production mechanisms, e.g., resonant vs non-
resonant production of ρπ. In the case at hand we use
α ¼ const. There are two common constructions for CðsÞ
which both satisfy unitarity:
(1) The models with CðsÞ ¼ ρðsÞ will be called non-

dispersive. These models have left-hand singular-
ities on the physical sheet inherited from the phase
space, which are not motivated by physics.

(2) The dispersive models have CðsÞ ¼ ρ̃ðsÞ, with

iρ̃ðsÞ ¼ l0 þ
s
π

Z
∞

9m2
π

ds0
ρðs0Þ

s0ðs0 − s − iϵÞ ; ð15Þ

where the subtraction constant l0 is chosen such that
the real part of iρ̃ðsÞ is zero at the point ðmρ þmπÞ2.
The function iρ̃ðsÞ has no singularities other than the
unitarity cut as guaranteed by the Cauchy integral
theorem. It is analogous to the Chew-Mandelstam
function for the two-body scattering amplitude [29].

We note that the first construction with CðsÞ ¼ ρðsÞ
resembles the Breit-Wigner amplitude with a dynamical
width [1]. In contrast, the dispersive amplitudes do not have
the unmotivated left-hand cut generated by ρ in Eq. (12a).
For all models, the structure of CðsÞ ensures unitarity and
extends the applicability of Eq. (14) from threshold to
energy regions where higher-lying resonances or/and non-
elastic channels become significant.

FIG. 2. The phase space ρðsÞ calculated for different models.
The black solid line shows the symmetrized ρSYMM from
Eq. (12a). The dashed curve represents ρQTB from Eq. (12b),
which neglects the interference between the two ρπ decay chains.
For reference we draw the two-body ρπ phase space given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs − ðmρ þmπÞ2Þðs − ðmρ −mπÞ2Þ
q

=ð8πsÞ with a solid red

line. Due to the chosen normalization in Eq. (10), all functions
approach the same asymptotic limit. The dotted line shows the
difference in the interference terms calculated in two different
ways for sþ iϵ as discussed in Sec. IV B.
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To summarize, the final expression for the differential
cross section is.

dΓ
ds

¼ 1

s

�
1 −

s
m2

τ

�
2
�
1þ 2s

m2
τ

�
cρðsÞ

jm2 − s − ig2CðsÞ=2j2 :

ð16Þ
Equation (16) follows from Eq. (11). The constant c
absorbs all energy-independent numerical factors; m, g,
and c are real parameters which are fitted to data. The four
models we are going to test are summarized in Table I. Our
primary model is SYMM-DISP, which is the one that
incorporates the most of physical arguments. The SYMM
model contains additional left-hand singularities with
respect to SYMM-DISP. The QTB and QTB-DISP models
do not include the interference between the two decay
chains, but are much simpler to calculate on the real axis
and continue to the complex plane. The CðsÞ is calculated
using the same ρðsÞ as in the numerator of Eq. (16), which
is either ρQTB or ρSYMM as given in Table I.

III. FIT RESULTS AND RESONANCE
PARAMETERS

The largest public data set for τ → 3πντ was collected by
the ALEPH experiment in 2005 [54].1 The distribution
dΓ=ds is binned in 0.025 GeV2 bins and normalized by the
measured branching ratio. We fit 103 data points in the
range 0.38 GeV2 ≤ s ≤ 2.94 GeV2. We minimize the χ2-
function taking into account the covariance matrix provided
in Ref. [54],

χ2ðc;m; gÞ ¼ ðD⃗ − M⃗ðc;m; gÞÞTC−1
statðD⃗ − M⃗ðc;m; gÞÞ;

ð17Þ

where D⃗ is a vector of ALEPH data points, M⃗ðc;m; gÞ is a
vector of the model predictions calculated for the centers of
the bins. The matrix Cstat is the covariance matrix of the
statistical errors. The systematic uncertainties are smaller
than the statistical ones by a factor 5, and can be neglected.
Nonzero correlations among different bins are introduced

by the unfolding procedure. It is worth noticing the 3π
spectrum does not show the expected random noise. As
discussed in the follow up analysis of the ALEPH [55], the
problem appears because the errors of the unfolding
procedure were not correctly propagated. Hence, the
absolute value of χ2 we obtained does not have a strict
statistical meaning. However, we assume that for the model
characterization based on relative χ2 values, the problem
should not be critical.
The gradient minimization is performed using the

NLopt optimizer and the ND_MMA algorithm [56]
with the automatic differentiation provided by the
ForwardDiff.jl-package [57]. The minimum we find
is always stable and isolated, as checked by repeating the
minimization from different starting values. Fits to the
ALEPH data set are shown in Fig. 3, and the fit parameters
and χ2 values are shown in Table I. The nondispersive
models are not consistent with the data, with χ2 at least
three times worse than we have obtained for the dispersive
models. In particular, they fail to reproduce the line
shape around the peak and in the threshold region, and
we do not consider them any further. On the other hand,
the dispersive models show a good agreement with data,
obtaining χ2=n:d:f: ¼ 94=100 and χ2=n:d:f: ¼ 61=100
for the SYMM-DISP and QTB-DISP, respectively.
In the next section we will perform the analytic con-

tinuation of the amplitude to the second sheet and search
for the a1ð1260Þ resonance pole. For comparison with the
PDG [1], we first provide the customary Breit-Wigner
parameters, that can be extracted on the real axis. We
remind the reader that these are expected to be reaction-
dependent, and do not provide an unambiguous charac-
terization of the resonance. We define the Breit-Wigner
mass squared m2

BW as the value of s when the denominator
of the amplitude tðsÞ in Eq. (14) becomes purely imaginary.
The value of the denominator at this point gives the Breit-
Wigner width, as it is equal to −imBWΓBW. For QTB-DISP
we get theBreit-Wignermass andwidth as ð1246� 3Þ MeV
and ð394� 5Þ MeV; for SYMM-DISP, ð1254� 3Þ MeV
and ð461� 8Þ MeV, where the errors are statistical only.

IV. ANALYTIC CONTINUATION
THE POLE POSITION

Once the amplitude is fixed on the real axis, its analytic
structure is unambiguously defined and can be explored.
Unitarity introduces a branch cut along the real axis from

TABLE I. Summary of the models discussed in Sec. II. The numerator and denominator refer to Eq. (16).

Model ρðsÞ in the numerator CðsÞ in the denominator χ2=n:d:f: m (GeV) g (GeV)

SYMM-DISP ρSYMMðsÞ ρ̃SYMMðsÞ 94=100 1.205 6.64
SYMM ρSYMMðsÞ ρSYMMðsÞ 663=100 1.230 6.65
QTB-DISP ρQTBðsÞ ρ̃QTBðsÞ 68=100 1.223 7.45
QTB ρQTBðsÞ ρQTBðsÞ 344=100 1.236 7.42

1An updated analysis was published in 2014 [55]. The main
difference is related to the use of a new method to unfold detector
effects from the mass spectra. However, the data were binned into
wider bins with variable bin size, which makes it less straightfor-
ward to use. For this reason we stick to data of [54].
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the 3π threshold to infinity, which opens a nontrivial
Riemann topology or sheet structure. The first Riemann
sheet is the one containing the physical values of the
amplitude slightly above the real axis. By construction,
the amplitudes in the dispersive models contain no other
singularity on the first sheet than the unitarity cut. Resonance
poles are expected to lie on the second sheet, which is
connected to the physical axis from below. The unitarity
conditionEq. (13b) gives us a relationon the real axis that can
be used to continue the amplitude in the complex s-plane.
The real-axis relation followed from Eq. (13) reads

t−1I ðsþ iϵÞ − Δt−1ðsÞ ¼ t−1I ðs − iϵÞ ¼ t−1II ðsþ iϵÞ; ð18Þ

where Δt−1ðsÞ≡ t−1I ðsþ iϵÞ − t−1I ðs − iϵÞ ¼ −iρðsÞ is the
discontinuity across the cut, s is real, ϵ is an infinitesimal
positive number, and the Roman subscript indicates the
Riemann sheet. Thus, t−1II ðsÞ ¼ t−1I ðsÞ þ iρðsÞ and the pole
positions are determined by t−1II ðsÞ ¼ 0. The first sheet
amplitude, t−1I ðsÞ, is straightforward to calculate in the
complex plane using the dispersive integral in Eq. (15).
Continuation of the discontinuity, however, is more chal-
lenging since it is not explicitly analytical expression, as
Eq. (12a) contains amodulus operator. Therefore, we need to
find an analytic function which coincides with the disconti-
nuity on the real axis. All singularities of the discontinuity
−iρðsÞ will be present in the second sheet amplitude
according to Eq. (18). Among those, we expect the reflection
of the ρπ unitarity cut, which is pushed into the second sheet
due to the unstable nature of the ρ-meson.

For the continuation to the complex s-plane, we need to
evaluate fρðσÞ and f�ρðσÞ in Eqs. (12a) and (12b) for

complex argument σ. Along the physical axis fρðσÞ ¼
fðIÞρ ðσ þ iϵÞ and the analytic function fðIIÞρ ðσ þ iϵÞ coin-
cides with f�ρðσÞ due to the Schwarz reflection principle
and the continuity of the Riemann sheet structure, since

f�ρðσÞ ¼ fðIÞ�ρ ðσ þ iϵÞ ¼ fðIÞρ ðσ − iϵÞ
¼ fðIIÞρ ðσ þ iϵÞ: ð19Þ

A. Analytic continuation of the QTB-DISP model

We start with the QTB-DISP model, whose analytic
continuation is simpler than the one of the SYMM-DISP
model. The discontinuity across the unitarity cut is given by
−iρQTB in Eq. (12b). The angular integrals in the phase
space can be solved analytically due to the properties of the
Wigner D-functions. We obtain

ρQTBðsÞ¼
1

2πð8πÞ2s
Z ð ffiffi

s
p

−mπÞ2

4m2
π

fðIIÞρ ðσ1ÞfðIÞρ ðσ1Þ
ffiffiffiffiffiffiffiffiffiffi
λ1λs1

p
σ1

dσ1;

ð20Þ
where we used the definition λi ¼ λðσi; m2

π; m2
πÞ, λsi ¼

λðs; σi; m2
πÞ, with λ being the Källén triangle function

λðx;y;zÞ¼x2þy2þz2−2ðxyþyzþzxÞ. Using Eq. (19),

we replaced jfρðσ1Þj2 by the analytic expression fðIIÞρ ðσ1Þ
fðIÞρ ðσ1Þ. The function fðIÞρ ðσ1Þ does not have singularities

FIG. 3. Fit to ALEPH data with the four models described in the text. The models differ by either including the effect of interference
between two ρπ decay channels (SYMM) or not (QTB), and either using the dispersive integral over the phase space (DISP), or not.
The lower panels show the normalized residues.
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apart form cuts on the real axis, while the fðIIÞρ ðσ1Þ contains
the pole of the ρ-meson in the complex plane. For complex
values of s, the integral for the ρQTBðsÞ in Eq. (20) has the
upper endpoint in the complex plane, which requires a
prescription for the path of integration. The value of the
integral does not depend on the path of integration, unless
there are singularities of the integrand in the complex plane.
The integrand is plotted for complex values of σ1 in
Fig. 4. It has four branch points in the σ1-variable: 0,
σth ¼ 4m2

π , σlim ¼ ð ffiffiffi
s

p
−mπÞ2, and ð ffiffiffi

s
p þmπÞ2, coming

from the product of the Källén functions,2 and the reso-

nance pole of the ρ-meson at σp ¼ ðmðpoleÞ
ρ − iΓðpoleÞ

ρ =2Þ2.3
Singularities of the integral arise when the upper integration
endpoint touches one of the singularities of the integrand.
The ρ-meson pole in the integrand transforms into a branch
singularity in the integral function. We find the branch point
sρπ by checkingwhen the upper integration endpoint touches

the ρ-meson pole; sρπ ¼ ðmðpoleÞ
ρ þmπ − iΓðpoleÞ

ρ =2Þ2. It is
indeed a branch singularity, because for every s there are
several ways to connect the integration limits in Eq. (20)
(see for example the solid and the dotted paths in the left
panel of Fig. 4) which yield integral values differing by the
residual of integrand in the ρ-meson pole. Practically, the
choice of the integration path determines the location of
the ρπ branch cut in the complex s-plane as the loci of s
values, for which the integration path goes through the pole.
To demonstrate the evolution of the cut in the s-plane we
consider the three different paths given in Eq. (21a):

CðstraÞ
σ ∶ σth → σlim ð21aÞ

CðrectÞ
σ ∶ σth → Reσlim → σlim; ð21bÞ

CðhookÞ
σ ∶ σth → 5Reσlim → σlim: ð21cÞ

The corresponding ρπ cut locations are shown in the right

panel of Fig. 4. The pathCðhookÞ
σ rotates the ρπ cut such that it

opens up a larger area of the closest unphysical sheet and is
used in the following for finding poles and illustration
purposes.
The amplitude tðsÞ in the complex s-plane for the

QTB-DISP model is shown in the left panel of Fig. 5.
Naively, one would expect a single pole in the com-
plex plane, originating from the single K-matrix pole,
g2=ðm2 − sÞ, present in Eq. (14). In contrast to this expect-
ation, two poles are observed. Furthermore, both are rather
close to the physical region. The correspondence between
the K-matrix poles and the complex poles can be estab-
lished by varying the coupling g. In the limit g → 0 the
complex poles should approach the real axis at the
position of the corresponding K-matrix poles. We find

FIG. 4. The left plot shows the complex plane of the integrand of Eq. (20), for s ¼ 0.6 − 0.35i GeV2. The red circular markers are the
square-root branch points, the crosses indicate positions of the poles. The integration paths from Eq. (21) are shown by the solid lines
with arrows. The right plot presents the location of the ρπ cut for the different integration paths.

2The branch points are connected by cuts. Since the integral is
calculated numerically it is important to make sure that the
integration path does not cross any cut between the integration
end points. To illustrate the cut choice shown in Fig. 4, we write

ffiffiffiffiffiffiffiffiffiffi
λ1λs1

p
¼ ffiffiffiffiffi

σ1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ1 − 4m2
π

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

s
p

−mπÞ2 − σ1

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

s
p þmπÞ2 − σ1

q
:

For real values of s, this expression has two short branch
cuts on the real axis: one between 0 and σth, and the other
between the points ð ffiffiffi

s
p �mπÞ2. When s is complex the first

s-independent cut remains, while the second one splits into two
straight cuts to the right with the branching points ð ffiffiffi

s
p �mπÞ2

as shown in Fig. 4.
3For the ρ-meson the pole parameters are very close to the

Breit-Wigner parameters mðpoleÞ
ρ ≈mρ, Γ

ðpoleÞ
ρ ≈ Γρ.
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that the deep pole approaches the real axis at s ¼ m2 ¼
ð1223 MeVÞ2 (see Table I with the fit results), while the
left pole goes to s ¼ 0. Due to these observations, we
identify the deep pole with a1ð1260Þ-pole label, i.e.,
corresponding to a resonance, and the left pole with a
“spurious”-pole, i.e., an artifact from our parametrization
in Eq. (14). This exercise also helps us to understand the
origin of the spurious pole: it is the 1=s singularity in ρQTB
[see Eq. (20)]. Clearly, this pole is an integral part of the
model. In Appendix Awe consider variations of the model
attempting to get rid of the spurious pole. We show that
its effect on the real axis is indeed required by the data.
It effectively parametrizes the unphysical sheet singular-
ities, e.g., the left-hand cuts related to the cross channel
exchanges between pions in the final state. For now, we
conclude by extracting the positions of the a1ð1260Þ
resonance pole in the QTB-DISP model. We use the
convention sp ¼ ðmp þ iΓp=2Þ2, obtaining

QTB�DISP∶mða1ð1260ÞÞ
p ¼ð1166�6ÞMeV;

Γða1ð1260ÞÞ
p ¼ð798�26ÞMeV: ð22Þ

For the error estimation we used the bootstrap technique
[58,59]: 1000 sets of pseudodata were generated using the
original data and the covariance matrices, with the
correlations taken into account in the Gaussian approxi-
mation. By refitting the pseudo data sets, we collect
samples of the parameters, which we use to estimate their
uncertainties. The distributions of the mass and width of
the pole obtained from the bootstrap are Gaussian to a
good approximation. The fit results and the calculated
error ellipses are shown in Fig. 9. The mean values of the
bootstrap sample for the pole positions differ from the real
data fit results by < 0.2σ which indicate a good consis-
tency and negligible bias of the bootstrap method [59].

B. Analytic continuation of the SYMM-DISP model

The evaluation of the discontinuity given by Eq. (12a)
for complex s is more complicated since the angular
integrals cannot be solved completely, see Appendix B.
We start by casting ρSYMMðsÞ in the form:

ρSYMMðsÞ ¼ ρQTBðsÞ − ρINTðsÞ; ð23Þ
where the first term in the sum is the phase-space factor in
the QTB-DISP model, the second term is the interference

contribution given by Eq. (B16). Substituting fρ → fðIÞρ

and f�ρ → fðIIÞρ in Eq. (B16) we get:

ρINTðsÞ ¼
1

2πð8πÞ2s
Z

σlim

4m2
π

dσ1

Z
σþ
3
ðσ1;sÞ

σ−
3
ðσ1;sÞ

dσ3

×
fðIIÞρ ðσ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1 − 4m2

π

p fðIÞρ ðσ3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ3 − 4m2

π

p

×
Wð ffiffiffi

s
p

;
ffiffiffiffiffi
σ1

p
;

ffiffiffiffiffi
σ3

p Þ
ðð ffiffiffi

s
p þ ffiffiffiffiffi

σ1
p Þ2 −m2

πÞðð
ffiffiffi
s

p þ ffiffiffiffiffi
σ3

p Þ2 −m2
πÞ
:

ð24Þ
The function Wða; b; cÞ is a multivariable polynomial
defined in Eq. (B14). Omitting constant factors, the
function fρðσÞ is given by

fρðσÞ ∝
ffiffiffiffiffiffiffiffiffiffi
FðσÞp

m2
ρ − σ − imρΓðσÞ

; ΓðσÞ ∝ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

π − σ
p

ffiffiffi
σ

p FðσÞ;

FðσÞ ∝ σ − 4m2
π

σ − 4m2
π þ 4=R2

: ð25Þ

A right-hand cut is introduced by i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

π − σ
p

. In addition,
there are two branch points: one at σ ¼ 0 from the phase
space in the width ΓðσÞ, and another one at σ ¼ 4m2

π − 4=R2

FIG. 5. Analytic continuation of the amplitude tðsÞ in Eq. (14) for different models: QTB-DISP (Left plot), SYMM-DISP (Right plot).
Lines indicate the jtðsÞj equipotential levels. The poles of the amplitude are the bright spots. The red dots indicate branch points
corresponding to the opening of decay channels.
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due to the Blatt-Weisskopf factor in the numerator. The
break-up momentum singularity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ − 4m2

π

p
in the numer-

ator of fðσÞ is canceled by the same factor which arises from
the angular function (see Eq. (24)). The parametrization of
fρðsÞ in Eq. (25) contains 5 poles, as one can count by the
order of the polynomial which would give zeros of the
denominator. They correspond to the ρ-meson poles at
ðmρ � iΓρ=2Þ2, and three spurious poles lying far away
from the physical region as shown in Fig. 4. The integration
endpoints of the σ3 variable, σ�3 ðσ1; sÞ, describe the border
of the Dalitz plot for fixed value of s (Fig. 6, left panel),

σ�3 ðσ1; sÞ ¼
sþ 3m2

π − σ1
2

�
ffiffiffiffiffiffiffiffiffiffi
λ1λs1

p
2σ1

: ð26Þ

As soon as s becomes complex the endpoints depart from
the real axis and move into the complex plane. The
trajectories of the σ�3 as functions of σ1 moving from
4m2

π to ð ffiffiffi
s

p
−mπÞ2 are nontrivial. As shown in Fig. 6,

while σ1 moves along the CðhookÞ path (see Eq. (21c)), the
σ−3 circles around the branch point 4m2

π . When σ3 crosses
the unitarity cut, the sheet, on which it is evaluated, must
be changed. However, if the σ1 path goes exactly through
the point ðs −m2

πÞ=2, σ−3 just touches the branch point
4m2

π , (indeed, σ−3 ððs −m2
πÞ=2; sÞ ¼ 4m2

π). In that case we
are allowed to stay on the same sheet. Therefore, there are
two ways to calculate ρINT for a complex argument (see
Appendix C for more details):
(1) ρð1ÞINT: We choose a special path in σ1,

CðspecÞ
σ ∶ σth → ðs −m2

πÞ=2 → σlim; ð27Þ

the σ�3 always stay on the same sheet and can be
connected with a straight (undistorted) path.

(2) ρð2ÞINT: We let σ−3 circle around the branch point,
changing sheets of fðσ3Þ appropriately. When
σ1 ¼ σth, the integration limits σ�3 coincide. For
certain values of σ1, σ−3 changes the sheet and,
therefore, when σ1 is in its upper limit σlim, the
positions of σ�3 coincide, but they are on the different
sheets. The integration path must be detoured around
the branch point as shown in Fig. 7.

The first option provides a unique continuation of
Eq. (B16), however, the integration contour is bound to
pass through ðs −m2

πÞ=2 which is nonanalytic point of the
integrand (see Appendix C). The integrand in the second
option stays analytic on the integration contour, but in the

limit of real s, the function ρð2ÞINT deviates from the original
expression in Eq. (B16). For s ¼ Resþ iϵ, we change the
sheet of σ−3 when σ1 > ðs −m2

πÞ=2, in contrast to the first
option. The mismatch is calculated by integrating the
discontinuity across the σ3 unitarity cut over the shaded
area of Fig. 6.

ρð1ÞINTðsþ iϵÞ−ρð2ÞINTðsþ iϵÞ

¼
Z ð ffiffi

s
p

−mπÞ2

ðs−m2
πÞ=2

dσ1

Z
σth

σ−
3
ðσ1;sÞ

dσ3
½fðIÞρ ðσ3þ iϵÞ−fðIÞρ ðσ3− iϵÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ3−4m2
π

p

×
fðIIÞρ ðσ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1−4m2

π

p Wð ffiffiffi
s

p
;

ffiffiffiffiffi
σ1

p
;

ffiffiffiffiffi
σ3

p Þ
ðð ffiffiffi

s
p þ ffiffiffiffiffi

σ1
p Þ2−m2

πÞðð
ffiffiffi
s

p þ ffiffiffiffiffi
σ3

p Þ2−m2
πÞ
:

ð28Þ

FIG. 6. Integration paths in the complex σ-plane: while σ1 is moving along the path σth → σlim, the integration endpoints
σþ3 ðs; σ1Þðσ−3 ðs; σ1ÞÞ are traveling in the complex plane along the lines shown by black solid (dashed) curve The left plot shows the
integration ranges of σ1 and σ3 for a real value of s ¼ 1.5 GeV2. The red line is the straight integration path in σ1. The yellow circles
indicate the border of the integration domain when the integration endpoints in σ3 coincide. In the right plot, the same lines are shown in
the complex σ plane combined for σ1 and σ3 when s ¼ 1.5 − 0.6i GeV2. The points 4m2

π and ð
ffiffiffi
s

p
−mπÞ2 are shown by the small orange

dots. While σ1 moves along the contour CðhookÞ indicated by the red line, the integration limits σ�3 follow the dashed and the solid lines
analogously to the left plot. The shaded area indicates the additional contribution to the phase-space integral discussed in Eq. (28).
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The difference is practically negligible as shown in
Fig. 2. The impact on the fit parameters and the values
of the amplitude in the complex plane is a few orders
of magnitude smaller than the statistical uncertainties.

For the following discussion we use ρð2ÞINTðsÞ for the reason
that the ρπ-cut can be rotated in the same way as before
by using CðhookÞ path in σ1. Interestingly, an analogous
problem appears in relation to the Khuri-Treiman
equations (see Appendix in Ref. [14], Sec. IV in
Ref. [60]). Reference [61] gives arguments in favor of
the first option.
As soon as the discontinuity is known for the whole

complex plane, the amplitude on the unphysical sheet can
be computed according to Eq. (18). The contour plot on the
right panel of Fig. 5 presents the closest unphysical sheet of
the amplitude, which is smoothly connected to the real axis.
We find two poles and identify them as the a1ð1260Þ

resonance pole and the left “spurious” pole as shown in
Fig. 5. for the same reasoning as in Sec. IVA. The pole
parameters are

SYMM� DISP∶ mða1ð1260ÞÞ
p ¼ ð1209� 4Þ MeV;

Γða1ð1260ÞÞ
p ¼ ð576� 11Þ MeV: ð29Þ

The statistical errors are obtained from a bootstrap analysis
as described above in Sec. IVA. The combined results are
presented in Fig. 9.

V. SYSTEMATIC UNCERTAINTIES

The description of three-particle resonances is a diffi-
cult problem because of the complicated structure of final-
state interactions, which induces an interplay between
different decay channels. The latter manifests itself in the

FIG. 7. The complex sheets of the isobar amplitude fρðσÞ and f�ρðσÞ. The left plot shows the analytic continuation of the function

fρðσÞ above and below the real axis. The function for positive imaginary part is the same as fðIÞρ ðσÞ; it is continuously connected to

fðIIÞρ ðσÞ plotted for the negative imaginary part of σ. The right plot shows the analytic continuation of f�ρðσÞ, where the sheets are
inverted. The lines are jfρðσÞj equipotential surfaces. The circular spots are the poles (see also red crosses in the left plot of Fig. 4). The
markers on the real axis are the branch points of the left-hand cuts: the square marker shows the branch point from the break-up
momentum located at σ ¼ 4m2

π , the diamond marker the σ ¼ 0 branch point, the circular marker indicates the branch point related to the
Blatt-Weisskopf factors in the numerator of the fρðσÞ in Eq. (25).

FIG. 8. The change of the χ2 is plotted against the ρ-meson parameters in Eq. (9): the mass mρ, the width Γρ and the Blatt-Weisskopf
size parameter R. The vertical lines indicate the estimated values where the minimum is found.
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modification of the isobar line shape and the presence of
interference terms. The importance of three-body effects
is readily seen in the difference of SYMM-DISP and
QTB-DISP pole positions, cf. Eqs. (29) and (22).
Knowing that the interference between two ρπ decay
channels must be present, we now focus on systematic
studies of SYMM-DISP, keeping QTB-DISP for a mere
comparison. The largest systematic uncertainty is the
dependence of the a1ð1260Þ pole position on the line
shape of the subchannel resonance ρ. In principle, we
know that final-state interactions shift and skew the ρ
peak. The scale of the ρ-meson mass shift can be estimated
from the studies of ω=ϕ decays using Khuri-Treiman
equations [48,50]. Figure 3 of Ref. [48] suggests a shift of
the real and imaginary parts of the isobar amplitude of the
order of 10 MeV before and after final-state interactions
are taken into account. To estimate the effect on the
a1ð1260Þ pole position, we vary the parameters of fρðσÞ in
Eq. (9), i.e., the mass mρ, the width Γρ and the Blatt-

Weisskopf radius R, performing a χ2 scan over each
parameter, while keeping the others at their nominal
values (Fig. 8). The new pole position obtained for the
parameter value which minimizes the χ2 for each scan is
then used to estimate the systematic error for the pole
position of the main fit. The results of these studies are
summarized in Table II (see fit studies #2–7, were #4 was
introduced as an additional intermediate point outside of
the minimum). The a1ð1260Þ pole position is extracted,
the results for the pole mass and width are represented in
Fig. 9 by open ellipses.
We perform an additional test of the influence of

heavier resonances, as the a1ð1640Þ, by excluding the
region s > 2 GeV2 from the fit. The fit quality does not
change substantially, but get slightly worse due to the
reduction of the degrees of freedom (see #1 in Table II).
The values for the pole position are shown in Fig. 9 and
included to the systematic error of our final result.
The final systematic uncertainties are found by assigning

the maximal deviation of the pole position in the systematic
studies to the main fit SYMM-DISP:

mða1ð1260ÞÞ
p ¼ ð1209� 4þ12

−9 Þ MeV;

Γða1ð1260ÞÞ
p ¼ ð576� 11þ89

−20Þ MeV:

where the first uncertainty is statistical and the second
systematic.

VI. CONCLUSIONS

In this paper we have presented a new analysis of the
lightest isovector axial-vector resonance a1ð1260Þ
decaying to three charged pions. Despite the fact that
the corresponding JPC ¼ 1þþ partial wave dominates the
hadronic weak decay of τ leptons as well as diffractive
reactions of high-energy pions, the parameters of the
a1ð1260Þ are still poorly known. While the latter reactions
suffer from an irreducible background due to nonresonant
processes, the system of three pions produced in τ decay
provides a very clean access to axial-vector resonances.

TABLE II. The values m, g and χ2 for fits described in Sec. V. For scans over parameters mρ, R and Γp we present the values of m, g
and χ2 obtained in the minimum in the profile χ2 plots shown in Fig. 8.

QTB-DISP SYMM-DISP

# Fit studies m, GeV g, GeV χ2=n:d:f: m, GeV g, GeV χ2=n:d:f:

1 s < 2 GeV2 1.232 7.6 53=62 1.200 6.57 81=62
2 R0 ¼ 3 GeV−1 1.211 7.00 18=100
3 m0

ρ ¼ mρ þ 10 MeV 1.207 6.85 83=100
4 m0

ρ ¼ mρ − 10 MeV 1.204 7.23 37=100
5 m0

ρ ¼ mρ − 20 MeV 1.217 7.01 30=100
6 Γ0

ρ ¼ Γρ þ 5 MeV 1.223 7.45 66=100
7 Γ0

ρ ¼ Γρ − 30 MeV 1.205 6.79 36=100

FIG. 9. Extracted a1ð1260Þ pole positions in the models
QTB-DISP and SYMM-DISP. The ellipses show the 2σ contour
of the systematic uncertainties obtained by the bootstrap method.
The results of the systematic tests are shown by the open ellipses.
The numerical labels correspond to the indices of the studies
described in Table II.
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Compared to a two-particle system, however, the system of
three interacting particles exhibits additional phenomena,
such as 3-particle rescattering or interference between
different decay chains. These 3-body effects are taken into
account using reaction models constraining the dynamics in
the total invariant mass, however, without imposing sub-
channel unitarity. We have considered four analytic models
of an isolated resonance decaying to three pions via the ρπ
channel. All these models satisfied approximate three-body
unitary, but differ by the left-hand singularities and the
treatment of the interference between the two ρπ decay
channels. Using the τ− → π−πþπ−ντ data from ALEPH
[54], we found that the dispersive models, having no left-
hand singularities on the physical sheet, fit the data
clearly better.
In order to find the pole position corresponding to

the a1ð1260Þ resonance, we have explored the analytic
structure of the amplitude and performed its analytic
continuation into the complex plane of the three-pion
invariant mass squared, a challenging, and technically
demanding task, requiring us to use a prescription for
the integration paths in the two-pion invariant mass
squared. We have searched for the singularities in the
closest unphysical sheet, and have identified a pole as the
a1ð1260Þ resonance. The mass and width of the a1ð1260Þ
are given in terms of its pole position in the main SYMM-
DISP model:

mða1ð1260ÞÞ
p ¼ ð1209� 4þ12

−9 Þ MeV;

Γða1ð1260ÞÞ
p ¼ ð576� 11þ89

−20Þ MeV:

The dominant source of systematic errors is the sensitivity
to the details of the subchannel interactions. The sim-
plified QTB-DISP model, which neglects the interference
between the two ρπ-channels, results in a significantly
different pole position and a larger systematic uncertainty.
This analysis can be extended by further advancing the

theoretical framework and constraining the model by fitting
the Dalitz decay variables. This will be possible when the
data from Belle II or BES III become available. In addition,
the results from this analysis will help to better constrain
the nonresonant background in diffractive reactions, as
measured by the COMPASS experiment.
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APPENDIX A: STUDIES OF THE
SPURIOUS POLE

Performing the analytical continuation in Sec. IV we
have shown that, in addition to the expected a1ð1260Þ pole,
there is a spurious pole rather close to the physical region.
At first, the spurious pole looks surprising, however, it is
clearly present in every Breit-Wigner-like model of a
resonance decaying to particles of different masses.
Indeed, the denominator of the Breit-Wigner amplitude
with energy-dependent width decaying to two scalar
particles in an S-wave reads:

DBWðsÞ ¼ m2 − s − imΓðsÞ;

ΓðsÞ ¼ g2

16πm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðm1 þm2Þ2Þðs − ðm1 −m2Þ2

p
Þ

s
:

ðA1Þ
When m1 ≠ m2, the equation DBWðsÞ ¼ 0 has 4 complex
roots, which we can identify by the order of the polynomial
which gives those roots:

ð16πsðm2 − sÞÞ2 þ g4ðs − ðm1 þm2Þ2Þ
× ðs − ðm1 −m2Þ2Þ ¼ 0 ðA2Þ

Since all coefficients of the polynomial are real, the poles
appear in conjugated pairs above and below the real axis.
The two Breit-Wigner poles below the real axis are
analogous to the a1ð1260Þ and the spurious pole. To
demonstrate this further, we draw the complex plane of
the 1=DBWðsÞ function with m ¼ 1.2 GeV, g ¼ 7.8 GeV,

TABLE III. Extension of Table I with the models from Appendix A. We added the last column to present
additional parameters which enter in the models.

Model
ρðsÞ in the
numerator

CðsÞ in the
denominator χ2=n:d:f: m, MeV g, GeV h, m02 GeV2

sQTB� DISPð2Þ ρQTBðsÞ ρ̃QTBðsÞ 979=100 1.915 17.94

sQTB� DISPð3Þ ρQTBðsÞ ρ̃QTBðsÞ 67=100 1.075 9.27 0.578

sQTB� DISPð4Þ ρQTBðsÞ ρ̃QTBðsÞ 42=100 1.229 6.01 −39.3, 0.0
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m1 ¼ mρ, m2 ¼ mπ in Fig. 10. We find that the spurious
pole has no influence on the physical region as long as the
resonance is far from threshold and rather narrow. Both
poles become important for the real axis physics when the
studied resonance is close to threshold or/and wider.
The spurious pole is a feature of Breit-Wigner-like

models. It is generated by the 1=s singularity of the phase
space in Eqs. (A1) and (20). In order to remove it, we try
to exclude the 1=s factor from the dispersive term.
Following the studies of QTB-DISP, we consider a new
model for scattering and production amplitudes t̂ðsÞ ¼
tðsÞ=s and âðsÞ ¼ aðsÞ=s, and modify the unitarity equa-
tions accordingly.

2Imt̂ðsÞ ¼ t̂�ðsÞðsρQTBðsÞÞt̂ðsÞ; ðA3aÞ

2ImâðsÞ ¼ t̂�ðsÞðsρQTBðsÞÞâðsÞ; ðA3bÞ

where sρðsÞ is free of the 1=s singularity. The para-
metrization which satisfies the unitarity constraints is

âsQTB�DISPðkÞ ðsÞ ¼ c0

K−1
k ðsÞ − isρ̃QTBðsÞ=2

; ðA4Þ

where the index k gives the number of parameters in the
function K−1

k ðsÞ, the models are labeled sQTB� DISPðkÞ.
The function sρðsÞ has a ∼s1 asymptotic behavior, there-
fore the dispersive integral must be subtracted twice. The
integrand is thus the same as in Eq. (15), but the integral is
multiplied by an extra factor of s as in Eq. (A4). To make
the dispersive integral independent of the subtraction
points we must consider a polynomial of order k ≥ 2.
We consider three forms of functions KkðsÞ,

K2ðsÞ ¼ g2=ðm2 − sÞ; ðA5Þ

K3ðsÞ ¼ g2=ðsðm2 − sÞ þ hÞ ðA6Þ

K4ðsÞ ¼ g2=ðm2 − sÞ þ h0=ðm02 − sÞ ðA7Þ

The K2ðsÞ and K4ðsÞ are inspired by the K-matrix
approach with one and two poles, respectively, while
K3ðsÞ is a special two-pole model which exactly coincides
with QTB-DISP when h ¼ 0.
The models sQTB� DISPðkÞ are fitted to the data

giving parameters presented in Table III. In Fig. 11 we
show the continuation of the sQTB� DISPð2Þ model,

FIG. 10. Analytic continuation of the amplitude 1=DBWðsÞ
from Eq. (A1). Lines indicate the jDBWj equipotential levels. The
poles of the amplitude are the bright spots. The red dots indicate
branch points for channel openings.

FIG. 11. tðsÞ in the model sQTB� DISPðkÞ. Lines indicate equipotential levels for the jt̂sQTB�DISPðkÞ ðsÞj function from Eq. (A4). The
poles of the amplitude are the yellow spots. The red dots indicate branch points for channel openings: 3π-branch point and ρπ-branch
point. The complex plane for the model sQTB� DISPð2Þ (the models model sQTB� DISPð3Þ) fitted to the data is shown in the left
(right) plot. The quality of the fit is indicated in the legend box on the right.
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fitted to data. The spurious pole is no longer present.
However, the quality of the fit is not acceptable: the best
χ2=n:d:f: is equal to 979=100. When we increase the
freedom by taking the model sQTB� DISPð3Þ the fit
quality significantly improves to yield a χ2=n:d:f: ¼
67=100. Quite spectacularly, the picture of the complex
plane is changed back: the place of the spurious pole
is taken by the explicit pole introduced in the K-function
(see the right plot of Fig. 11). The next relaxation of the
setup in sQTB� DISPð4Þ overfits the data and gives
χ2=n:d:f: ¼ 42=100. However, the positions of the reso-
nance and spurious poles do not change much.
The position of the spurious pole was investigated for all

systematic studies we performed in Sec. V as shown in
Fig. 12.

APPENDIX B: ANALYTICAL SIMPLIFICATION
OF THE PHASE-SPACE INTEGRAL

In this Appendix we demonstrate how the integrals in the
phase-space factor ρðsÞ Eq. (12a) can be simplified using
the properties of the Wigner D-functions.

ρðsÞ ¼ 1

2

Z
dΦ3jfρðσ1ÞN0ðΩ1;Ω23Þ

− fρðσ3ÞN0ðΩ3;Ω12Þj2; ðB1Þ

We start by explicitly defining the angles in the decay
functions N0ðΩk;ΩijÞ given by Eq. (8). The three-pion
center-of-mass (CM) frame is oriented by the direction of
W in τ decay (W helicity frame). The momentum vector of
the τ defines the xz plane, a.k.a. the production plane.Ωk ¼
ðθk;ϕkÞ denotes the polar and azimuthal angles of the
vector p⃗i þ p⃗j in the CM-frame. The Ωij ¼ ðθij;ϕijÞ are
the spherical angles of the pion i in the helicity frame of
the isobar ðijÞ. This helicity frame is obtained from the CM

frame by active rotation R−1ðΩkÞ and boost along the
z-axis. Equivalently, we can notice that the boost does not
change azimuthal orientation, therefore, the y-axis direction
e⃗y in the helicity frame can be found by e⃗0z × e⃗z, where e⃗0z is
the original orientation of the CM z-axis.
We write the phase-space differential through the two

pairs of spherical angles.

dΦ3 ¼
dσ1
2π

1

8π

ffiffiffiffiffiffi
λs1

p
s

dΩ1

4π

1

8π

ffiffiffiffiffi
λ1

p
σ1

dΩ23

4π

¼ dσ3
2π

1

8π

ffiffiffiffiffiffi
λs3

p
s

dΩ3

4π

1

8π

ffiffiffiffiffi
λ3

p
σ3

dΩ12

4π
; ðB2Þ

where we used λi ¼ λðσi; m2
π; m2

πÞ, λsi ¼ λðs; σi; m2
πÞ, with

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ yzþ zxÞ the Källén tri-
angle function. The decay functions are conveniently
normalized:

Z
dΩk

4π

dΩij

4π
jN0ðΩk;ΩijÞj2 ¼ 1: ðB3Þ

Nowwe can expand the squared expression in Eq. (B1), use
the normalization property, and combine the squared terms,

ρSYMMðsÞ¼
1

2πð8πÞ2s
Z

jfρðσ1Þj2
ffiffiffiffiffiffiffiffiffiffi
λ1λs1

p
σ1

dσ1
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ρQTBðsÞ

−
Z

dΦ3fρðσ1Þf�ρðσ3ÞN0ðΩ1;Ω23ÞN�
0ðΩ3;Ω12Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ρINTðsÞ

;

ðB4Þ

where we used the observation that the last integral is real.
Indeed, the term transforms to itself under complex

FIG. 12. Extracted pole positions in the models QTB-DISP and SYMM-DISP: the resonance poles are on the right, the spurious poles
are on the left. The ellipses show the 2σ contours of the statistical uncertainties obtained by the bootstrap method. The results of the
systematic tests are shown by the open ellipses. The numerical labels correspond to the indexes of the systematic tests described in
Table II.
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conjugation due to the 1 ↔ 3 symmetry of the differential
phase space and the relation N0ðΩk;ΩijÞ ¼ −N0ðΩk;ΩjiÞ
following from

Dl
λ0ðΩjiÞ ¼ dlλ0ðπ − θijÞe−iλðπþϕ23Þ

¼ ð−1Þlþλdlλ0ðθijÞð−1Þλe−iλϕ23

¼ ð−1ÞlDl
λ0ðΩijÞ; ðB5Þ

for l ¼ 1, which has to be used for both terms N0ðΩ3;Ω12Þ
and N0ðΩ1;Ω23Þ.
The interference term can be further simplified by

integrating over three angular variables. The NΛðΩ3;Ω12Þ
contains a product of Wigner D-functions which can be
written as

D1�
ΛλðΩ3ÞD1�

λ0ðΩ12Þ¼D1�
Λλðϕ3;θ3;ϕ12Þd1λ0ðθ12Þ

¼
X
λ0
D1�

Λλ0 ðϕ1;θ1;ϕ23Þd1λ0λðθ̂13Þd1λ0ðθ12Þ;

ðB6Þ

where θ̂13 is the angle between p⃗1 and p⃗3 in CM-frame.
One can understand the relation in the following way.
The D1�

ΛλðΩ3Þ ¼ D1�
Λλðϕ3; θ3; 0Þ and D1�

λ0ðΩ12Þ ¼ D1�
λ0ðϕ12;

θ12; 0Þ represent the rotations ½Rzðϕ3ÞRyðθ3Þ�−1 and
½Rzðϕ12ÞRyðθ12Þ�−1. The first transformation rotates the
3π system in the CM-frame such that the momentum p⃗1 þ
p⃗2 ¼ −p⃗3 is aligned to the z-axis. When the system is
boosted to the (12) rest frame (helicity frame), the second
transformation aligns p⃗1 to z-axis (we remind that Ω12

stands for the spherical angles of the particle 1 in the (12)
helicity frame). Since the rotation Rzðϕ12Þ commutes with
the boost along z-axis, we can combine the three rotations in
CM-frame, R−1

z ðϕ12ÞR−1
y ðθ3ÞR−1

z ðϕ3Þ. The combined trans-
formation has a clear meaning: it brings the 3π system to the
x-z plane such that p⃗3 points to −z-direction. The trans-
formation R−1

z ðϕ23ÞR−1
y ðθ1ÞR−1

z ðϕ1Þ also brings the
3π system to the xz-plane while p⃗1 is aligned with
−z-direction. The difference between the results of the
transformations is a rotation about y-axis, represented by
d1λ0λðθ̂13Þ. In that way, the function D�1

Λλðϕ1; θ1; θ23Þ appears
in both decay functions in the interference term in Eq. (B4).
This allows us to solve three angular integrals analytically.
The expression for ρINT is simplified as follows:

ρINTðsÞ ¼
1

ð8πÞ2s
Z

dσ1
2π

d cos θ23
2

f�ρðσ3Þfρðσ1Þ
ffiffiffiffiffiffiffiffiffiffi
λ1λs1

p
σ1

×
X
λ;λ0

d1λ0ðθ23Þd1λλ0 ðθ̂13Þd1λ00ðθ12Þ: ðB7Þ

All angles can be expressed through the invariants,

cos θ23 ¼
σ1ðσ3 − σ2Þffiffiffiffiffiffiffiffiffiffi

λ1λs1
p ;

sin θ23 ¼
2

ffiffiffiffiffi
σ1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðs; σ1; σ3Þ

p
ffiffiffiffiffiffiffiffiffiffi
λ1λs1

p ; ðB8Þ

cos θ12 ¼
σ3ðσ2 − σ1Þffiffiffiffiffiffiffiffiffiffi

λ3λs3
p ;

sin θ12 ¼
2

ffiffiffiffiffi
σ3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðs; σ1; σ3Þ

p
ffiffiffiffiffiffiffiffiffiffi
λ3λs3

p ; ðB9Þ

cos θ̂13 ¼
2sð2m2

π − σ2Þ þ ðsþm2
π − σ1Þðsþm2

π − σ3Þffiffiffiffiffiffiffiffiffiffiffiffi
λs1λs3

p ;

sin θ̂13 ¼
2

ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðs; σ1; σ3Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffi
λs1λs3

p : ðB10Þ

where we introduced the Kibble function ϕ as it enters all
sin θ expressions [62],

ϕðs; σ1; σ3Þ ¼ σ1σ2σ3 −m2
πðs −m2

πÞ2;
σ2 ¼ sþ 3m2

π − σ1 − σ3: ðB11Þ

We combined the d-functions in Eq. (B7) and get the
expressions for the angular part through invariants [63]:

X
λ;λ0

d1λ0ðθ23Þd1λλ0 ðθ̂13Þd1λ00ðθ12Þ ¼ cosðθ12 þ θ̂13 − θ23Þ

¼ Hð ffiffiffi
s

p
;

ffiffiffiffiffi
σ1

p
;

ffiffiffiffiffi
σ3

p Þ
λ1=21 λ1=23 λs1λs3

; ðB12Þ

where Hð ffiffiffi
s

p
;

ffiffiffiffiffi
σ1

p
;

ffiffiffiffiffi
σ3

p Þ is a polynomial in
ffiffiffiffiffi
σ1

p
,

ffiffiffiffiffi
σ3

p
, andffiffiffi

s
p

. The expression Hð ffiffiffi
s

p
;

ffiffiffiffiffi
σ1

p
;

ffiffiffiffiffi
σ3

p Þ is further factorized
[64] and cancels terms zeros of the denominator which
otherwise would be pole singularities in the physical reason.

Hðs; σ1; σ3Þ ¼ ffiffiffiffiffiffiffiffiffi
σ1σ3

p ð ffiffiffi
s

p
−

ffiffiffiffiffi
σ1

p
−mπÞð

ffiffiffi
s

p
−

ffiffiffiffiffi
σ1

p þmπÞ
× ð ffiffiffi

s
p

−
ffiffiffiffiffi
σ3

p
−mπÞð

ffiffiffi
s

p
−

ffiffiffiffiffi
σ3

p þmπÞ
×Wð ffiffiffi

s
p

;
ffiffiffiffiffi
σ1

p
;

ffiffiffiffiffi
σ3

p Þ; ðB13Þ

with the polynomial Wð ffiffiffi
s

p
;

ffiffiffiffiffi
σ1

p
;

ffiffiffiffiffi
σ3

p Þ given by
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Wða; b; cÞ ¼ −4m6
π þ 4m2

πs2 − 4m4
πabþ 4m2

πa3b − 4m4
πacþ 4m2

πa3c − 9m4
πbcþ 8m2

πa2bcþ a4bcþ 14m2
πab2c

þ 2a3b2cþ 9m2
πb3c − a2b3c − 4ab4c − 2b5cþ 14m2

πabc2 þ 2a3bc2 þ 12m2
πb2c2 − 6ab3c2 − 4b4c2

þ 9m2
πbc3 − a2bc3 − 6ab2c3 − 5b3c3 − 4abc4 − 4b2c4 − 2bc5: ðB14Þ

The angular function from Eq. (B12) is simplified to its final form

cosðθ12 þ θ̂13 − θ23Þ ¼
Wð ffiffiffi

s
p

;
ffiffiffiffiffi
σ1

p
;

ffiffiffiffiffi
σ3

p Þ
ðð ffiffiffi

s
p þ ffiffiffiffiffi

σ1
p Þ2 −m2

πÞðð
ffiffiffi
s

p þ ffiffiffiffiffi
σ3

p Þ2 −m2
πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ1 − 4m2

πÞðσ3 − 4m2
πÞ

p : ðB15Þ

The final expression for the interference term is

ρINTðsÞ ¼
1

2πð8πÞ2s
Z

σlim

4m2
π

dσ1

Z
σþ
3
ðσ1;sÞ

σ−
3
ðσ1;sÞ

dσ3

×
f�ρðσ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1 − 4m2

π

p fρðσ3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ3 − 4m2

π

p

×
Wð ffiffiffi

s
p

;
ffiffiffiffiffi
σ1

p
;

ffiffiffiffiffi
σ3

p Þ
ðð ffiffiffi

s
p þ ffiffiffiffiffi

σ1
p Þ2 −m2

πÞðð
ffiffiffi
s

p þ ffiffiffiffiffi
σ3

p Þ2 −m2
πÞ
:

ðB16Þ

APPENDIX C: THE DALITZ PLOT INTEGRAL
IN THE COMPLEX PLANE

To address the issues of the evaluation of Eq. (B16) for
complex values of s, we consider a simplified version of
the problem:

XðsÞ ¼
Z

σlim

σth

dσ1

Z
σþ
3
ðσ1;sÞ

σ−
3
ðσ1;sÞ

dσ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ3 − 4m2
π

p ; ðC1Þ

where σth ¼ 4m2
π , σlim ¼ ð ffiffiffi

s
p

−mπÞ2, σ�3 ðσ1;sÞ¼
ðsþ3m2

π−σ1Þ=2�λ1
1=2λs1

1=2=ð2σ1Þ. Similar to Eq. (B16)
this expression contains two nested integrals with the
same limits. The integrand has a branch point at 4m2

π ,
the integration paths have to be modified in order to avoid
crossing the cut. The position of the σ�3 are shown in
Fig. 13 for s ¼ Resþ iϵ. We observe that the σþ3 has
always positive imaginary part and stays far from the
branch point σ3 ¼ 4m2

π . The σ−3 circles around the
branch point changing the sheet of the integrand. When
σ1 ¼ σlim, the σ3 endpoints nearly coincide, σ�3 ðσlimÞ ¼
mπð

ffiffiffi
s

p þmπÞ � iϵ, however, they are on the different sides
of the integrand cut. In other words, if a straight line

FIG. 13. The left (right) plot presents the real (imaginary) part of the σ�3 as a function of σ1 for a fixed value of sþ iϵ. The σ1 is
changed linearly between the integration limits. The zoomed plots show how the σ−3 passes the real axis first below the branch point
σth ¼ 4m2

π , then returns above the branch point performing the circling. The red line indicates the closest point on the σ1-path to the
ðs − 1Þ=2 since it does not go exactly through it.
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integration in σ3 is done, we should observe a singularity
related to the circling in the complex σ1 plane. The inner
integral can be solved analytically.

XðsÞ ¼ 2

Z
σlim

σth

dσ1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σþ3 ðσ1; sÞ − 4m2

π

q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ−3 ðσ1; sÞ − 4m2

π

q �
; ðC2Þ

where the first term does not give problems near the physical
region since σþ3 stays away from 4m2

π . However, the second
square root has two branch points at ðs −m2

πÞ=2 in the σ1
plane. (Another example of a simple function with two
adjoined square root branch points is

ffiffiffiffiffi
z2

p
.)

σþ3 ðσ1; sÞ − 4m2
π ¼ 0 → ðσ1 − ðs −m2

πÞ=2Þ2 ¼ 0 ðC3Þ

Figure 14 shows the σ1 plane, where we see that a straight
connection between σth and σlim is not allowed by the
presence of the cut. Here, two options arise:
(1) Xð1Þ: we draw the σ1 path directly through the branch

point ðs −m2
πÞ=2 (the point P in Fig. 13 can be

aligned with the branch point ðs −m2
πÞ=2). The

point σ1 ¼ ðs −m2
πÞ=2 is special because when

the path goes through it, the σ−3 does not circle
the branch point but just touches it.

(2) Xð2Þ: we go analytically under the cut taking
any arbitrary path. Xð2Þ corresponds to the function
which we would obtain connecting the points σ�3
properly, i.e., avoiding 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ3 − 4m2

π

p
cut.

The two options give two different analytical functions.
Additional discussions on the subject can be found in
Refs. [14,60].
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