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Abstract

This work gives a detailed investigation of matrix produetts (MPS) representations for pure
multipartite quantum states. We determine the freedompiresentations with and without transla-
tion symmetry, derive respective canonical forms and pl@eifficient methods for obtaining them.
Results on frustration free Hamiltonians and the generaifoMPS are extended, and the use of
the MPS-representation for classical simulations of quargystems is discussed.
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1 Introduction and Overview

The notorious complexity of quantum many-body systems stena large extent from the expo-
nential growth of the underlying Hilbert space which alloiws highly entangled quantum states.
Whereas this is a blessing fquantum information theoryit facilitates exponential speed-ups in
guantum simulation and quantum computing—it is often magerae forcondensed matter theory
where the complexity of such systems make them hardly toeetay classical means. Fortunately,
physical interactions afecal such that states arising for instance as ground states fromister-
actions are not uniformly distributed in Hilbert space. Ekerit is desirable to have a representation
of quantum many-body states whose correlations are geddra ‘local’ manner. Despite the fact
that it is hard to make this picture rigorous, there is indeedpresentation which comes close to
this idea—thematrix product stat§MPS) representation. In fact, this representation liethat
heart of the power of thdensity matrix renormalization groufpMRG) method and it is the basis
for a large number of recent developments in quantum infaomas well as in condensed matter
theory.

This work gives a detailed investigation of the MPS represi@mn with a particular focus on the
freedom in the representation and on canonical forms. Treafoour work is a generalization of
the results on finitely correlated states(ih [1] to finite sys$ with and without translational invari-
ance. We will mainly discuss exact MPS representationsutitrout and just briefly review results
on approximations in Séd.6. In order to provide a more cotageture of the representation and
its use we will also briefly review and extend various recesuits based on MPS, their parent
Hamiltonians and their generation. The following gives aarview of the article and sketches the
obtained results:

e Sed.2 will introduce the basic notions, provide some examphd give an overview over
the relations between MPS and the valence bond picture conaéand and frustration free
Hamiltonians and finitely correlated states on the other.

e In Sed.3 we will determine the freedom in the MPS represiamtatierive canonical forms
and provide efficient ways for obtaining them. Cases withaitdout translational invari-
ance are distinguished. In the former cases we show that tkeslways a translational
invariant representation and derive a canonical decortiposiof states into superpositions
of ‘ergodic’ and periodic states (as [0 [1]).



e Sed.? investigates a standard scheme which constructs)yoM&S a local Hamiltonian,
which has the MPS as exact ground state. We prove uniquefndble ground state (for
the generic case) without referring to the thermodynanniitjidiscuss degeneracies (spon-
taneous symmetry breaking) based on the canonical decdtiopoand review results on
uniform bounds to the energy gap.

¢ In Sed® we will review the connections between MPS and ssipiegeneration of mul-
tipartite entangled states. In particular we will show thMRS of sufficiently small bond
dimension are feasible to generate in a lab.

¢ In Sed.® we will review the results that show how MPS effidieapproximate many impor-
tant states in nature; in particular, ground states of 1BIllblamiltonians. We will also show
how the MPS formalism is crucial to understand the need ofgeelamount of entanglement
in a quantum computer in order to have a exponential speaslithprespect to a classical
one.

2 Definitions and Preliminaries

2.1 MPS and the valence bond picture

We will throughout consider pure quantum stalgs ¢ cod” characterizing a system oV sites
each of which corresponds todadimensional Hilbert space. A very useful and intuitive wafy
thinking about MPS is the following valence bond constmutti consider theV parties ('spins’)
aligned on a ring and assign two virtual spins of dimendibto each of them. Assume that every
pair of neighboring virtual spins which correspond to diffiet sites are initially in an (unnormal-
ized) maximally entangled staté) = ZaDzl |, ) often referred to as entanglénd Then

apply a map )
D
A=D"3" Ao plida, B 1)

i=1 a,B8=1
to each of theV sites. Here and in the following Greek indices corresponithéovirtual systems.
By writing A; for the D x D matrix with elements4; o, s we get that the coefficients of the final
state when expressed in terms of a product basis are givembyrex productir [A;, A, -+ Aiy].
In general the dimension of the entangled stajeand the map4 can both be site-dependent and
we WriteAEk] for the Dy, x Dy41 matrix corresponding to site € {1, ..., N}. States obtained in
this way have then the form

d
wy = > w[allal Al i, i) )

and are callednatrix product statef?]). As shown in[[7]everystate can be represented in this way
if only the bond dimension®);, are sufficiently large. Hence, Eq.(2) is a representatiostates
rather than the characterization of a specific class. Howeygcally states are referred to as MPS
if they have a MPS-representation with smBll = max; Dj, which (in the case of a sequence
of states) does in particular not grow withh. Note thaty) in Eq.[2) is in general not normalized
and that its MPS representation is not unique. Normalinsa®well as other expectation values of
product operators can be obtained from

N N
WIQSkly) = tr [ BY
k=1 k

B = ST shAM @ Al 3)



N N N []

Figure 1: Computing an expectation value of an MPS is equivalent tdraohthe tensor of the figure, where
bonds represent indices that are contracted. The matrssesiated to each spin are represented by the circles
(the vertical bond of each matrix is its physical index) abdarvables are represented by squares. It is trivial to
see that this contraction can be done efficiently.

2.2 Finitely correlated states

The present work is inspired by the paperdfioitely correlated state§~CS) which in turn gener-
alize the findings of Affleck, Kennedy, Lieb and Tasaki (AKLB]. In fact, many of the results
we derive are extensions of the FCS formalism to finite analdortranslational invariant systems.
For this reason we will briefly review the work on FCS. A FCS iganslational invariant state
on an infinite spin chain which is constructed from a compygtesitive and trace preserving map
E : B(Ha) — B(Ha ® Hp) and a corresponding fixed point density operatoe trg[E(A)].
HereHp = C? is the Hilbert space corresponding to one site in the chaiti?an = CP is an
ancillary system. Am-partite reduced density matrjx, of the FCS is then obtained by repeated
application offE to the ancillary system (initially ir\) followed by tracing out the ancilla, i.e.,

pn = tra [En (A)] . (4)

An important instance arpurely generated=CS whereE(z) = VizV is given by a partial
isometry V. The latter can be easily related to thés in the matrix product representation via
V= ijl Zfﬂzl Ai.a,pla)(Bi]. Expressed in terms of the matricds the isometry condition
and the fixed point relation read

d d

S AAT=1, > AIAA =A, (5)

i=1 i=1

which already anticipates the type of canonical forms forSviliscussed below. As shown in
[4] purely generated FCS are weakly dense within the setldfaislational invariant states on
the infinite spin chain. Moreover, a FCSagyodig i.e., an extreme point within all translational
invariant states, iff the mag(z) = >, Ai:rAI has a non-degenerate eigenvalue 1 (leand A

are the only fixed points in EGJ(5)). Every FCS has a uniguemnigosition into such ergodic FCS
which in turn can be decomposed inig-periodic states each of which corresponds to a root of
unity exp(%m), m =0,...,p— linthe spectrum of. A FCS is pure iff it is purely generated
and 1 is the only eigenvalue éfof modulus 1. In this case the stateeisponentially clustering
i.e., the connected two-point correlation functions dezgyonentially

(S; @171 @ Sipt) — (Si)(Sigt) = (9(|V2|l_1) ; (6)

wherevs (Jv2| < 1) is the second largest eigenvaluefof



2.3 Frustration free Hamiltonians

Consider a translational invariant Hamiltonian on a ring\ofl-dimensional quantum systems

H=> r'(h), ©)

i=1

wherer is the translation operator with periodic boundary condi i.e.7 (@2, z:) = Q@ | zi+1
where sitesV + 1 and1 are identified. The interaction is callédlocal if h acts non-trivially only
on L neighboring sites, and it is said to frastration freewith respect to its ground stat® if the
latter minimizes the energy locally in the sense &t H |¢o) = infs (| H|p) = N infy(d|h|p).
As proven in[[5] all gapped Hamiltonians can be approximatefiustration free ones if one allows
for enlarging the interaction randgeup toO(log V).

For every MPS and FC8 one can easily find frustration free Hamiltonians such thi their
exact ground state. Moreover, thgsgentHamiltonains ard.-local with L ~ 2log D/ log d and
they allow for a detailed analysis of the ground state degeygSe¢.Z]1) and the energy gap above
the ground state (SEc.%#.2). Typically, these Hamiltonings however, not exactly solvable, i.e.,
information about the excitations might be hard to obtain.

2.4 Examples
1. AKLT: The father of all matrix product states is the ground sthtb@AKLT-Hamiltonian

H = Z §i§¢+1 + %(§i§i+1)2 s (8)

where S is the vector of spin-1 operators (i.e., d=3). Its MPS repnégtion is given by
{Ai} = {0",v20",—\/20" } where thes’s are the Pauli matrices.

2. Majumdar-Gosh The Hamiltonian

H= 2257;(_7}-‘-1 + Gifit2 %)

k3

is such that every ground state is a superposition of tworigie states given by products of
singlets on neighboring sites. The equal weight superipositf these states is translational
invariant and has an MPS representation

01 0 0 0 0
A= 00 -1 ], A=[100 (10)
0 0 O 01 0
3. GHZ statesof the form|y)) = | + +...+) + | — —... =) have an MPS representation

A+ =1 + o, Anti-ferromagnetic GHZ states would correspondito = o *.

4. Cluster statesare unique ground states of the three-body interactfohsfof, 107, » and
represented by the matrices

00 1 -1
we(0 V) (o)

5. W-statesan for instance appear as ground states of the ferromagt%tinodel with strong
transversal magnetic field. A W-state is an equal supeipaosif all translates ofL00 . . . 00).
For a simple MPS representation choqma][k], A[Q’“]} equal to{c™, 1} forall k < N and
{oT 0%, 0%} for k = N. Although the state itself is translational invariant thés no MPS
representation witl) = 2 having this symmetry.



3 The canonical form

The general aim of this section will be to answer the follgyvijuestions about the MPS represen-
tation of a given pure state:

Question 1 Which is the freedom in the representation?
Question 2 Is there any canonical representation?
Question 3 If so, how to get it?

We will distinguish two cases. The general case, or the daggem boundary conditions (OBC)
and the case in which one has the additional properties mdlaional invariance (TI) and periodic
boundary conditions (PBC).

3.1 Open boundary conditions

A MPS is said to be written with open boundary conditions (QBhe first and last matrices are
vectors, that is, if it has the form

y =S AlAR AT AN g, (1)

IN—-1
i1y niN

whereAEm] areD,, X D,,11 matrices withD,; = Dy, = 1. Moreover, if D = max,, D,, we
say that the MPS hg®ond) dimensiorD. The following is shown in[7]:

Theorem 1 (Completeness and canonical form)Any stateyy € C*®Y has an OBC-MPS repre-
sentation of the form E@Ll) with bond dimensior< d'*/2! and

1y, AMAMt — g, foralll <m < N.

2.5, Almltplm= IJA[’"J Al™ forall1 <m < N,

3. Al = AV = 1 and eachA[™ is @ D11 x D1 diagonal matrix which is positive, full
rank and withtr A" =

Thm[d is proven by successive singular value decomposi®WD), i.e., Schmidt decompositions
in v, and thegauge conditions 1.-3can be imposed by exploiting the simple observation that
A Al = Al x) (X1 Al Y) Cif 1.-3. are satisfied for a MPS representation, then we
say that the MPS with OBC is ithe canonical form From the way it has been obtained one
immediately sees that:

e itis unique (up to permutations and degeneracies in the Bitfecomposition),
o Al™l s the diagonal matrix of the non-zero eigenvalues of thaced density operater,, =

1, N [9) (4],
e any state for whichnax,, rank(p,) < D can be written as a MPS of bond dimension D.

This answers questiohb 2 did 3. Quesdiion 1 will be answettbdhve next theorem which shows
that the entire freedom in any OBC-MPS representation isrgby ‘local’ matrix multiplications.

Theorem 2 (Freedom in the choice of the matrices) et us take a OBC-MPS representation

Z BYBE .. BV IBN i iy

21 ZN 1

.....

Then, there exist (in general non-square) matritgsZ; with Y;Z; = 1 such that, if we define

A[l] — B[1]Z1 A[N] = YNle[N]
A =y, B"™z, for1<m<N (12)



the canonical form is given by

Wy =" AAL - ATIA i i), (13)
Proof. We will prove the theorem in three steps.
STEP 1.First we will find the matrices4£J] verifying relation [I2) but just with the property
S AU AU g
To this end we start from the right by doing SVB, = >, UL AN Y AN with
U= AN ynitaries and\ N~V diagonal. Thatis!"! = Zy_, AN, with Zn_1 = UN-HAN=1
Clearlyz AN AINIT — 1 and Zy_, has a left inverse. Now we cat" "1 = BN Yz,
and make another SVEELY 1) — = UET AN AN Thatis

a,i,B
BNz, = BINU g AN
wherey", AV THAINTUT — 1 andZy o = UV P AN has left inverse.

We can go on getting relationls {12) to the last step, wheresonply defmesAEl] = BZ[” Zy.
From the construction one gets Eg](13) and mtAEj]AEj” = 1 foreveryl < j < N. The case
j = 1 comes simply from the normalization of the state:

_ _ (1] [N N]T AWt
1= (W) = Z Ajp o A . ZAH i1 0
L1 5ot N
where in the last equality we have used thgt A7 AT = 1for1 < j < N.

STEP 2Now we can assume that this verify Zi BZU]BZU” — 1. Diagonalizingy", B! B!
we geta unitar)V[” and a positive diagonal matrix!) such thay", BT Bl = v Ay [0F,

Calling A" = BV we have bottﬁ: A AT = 1 andy”, A“”A[” Al

Now we dlagonahz@ BETy ANy B[ I = RIAPIYEIT and definea!? = v Ui BRIy 12
to have bothy ", AP AP — 1 andy", A[2”A A = A2l We keep on with this procedure to
the very last step where we simply defuztéN] = NI BINT s AINTAINIT — g s trivially

verified andy", AINTAIN=UAINT — AINT — 1 comes, as above, from the normalization of the
state. Moreover, by construction we have the relafiah (h2)Bg.[13).

STEP 3.At this point we have matriceg;, Z; with Y;Z; = 1 such that, if we definelgj] by
(I2), we getD, x D;+1 matrices verifying the conditions 1, 2 and 3 of Theofém 1 whthpossible
exception that the matrices"”’ are not full rank. Now we will show that we can redefikig, Z;
(and henceD;, Agﬂ) to guarantee also thfsll rank condition.

We do it by induction. Let us assume the¢ ! is full rank and theD, .1 x D;, positive
diagonal matrixAl! is not. Then, calling

Dﬁ'l o rank(A[JJ) » Fi= (15j+1|ODy‘+175j+1) ’

we are finished if we updaté; asZ; P, Y; asP;Y; (and henceD, 1 asD;41, AP asAV!P],
At asp; AU and ALl as Py A PT) The only non-trivial part is to prove that[”A 1

ti+1
A[J]PTP AEJE For that, calling” = 1p,,, — P} P;, itis enough to show thaﬂ”C = 0. Since

J+1

05. 0
]le+1 - P]TP] = < 6+1 ]l - ) I
Djt1=Djt1

0=cAVlc = Z CAEj]TA[j_I]AEj]C.

we have

SinceA"~1 is positive and full rank we get”/C' = 0. 0



3.2 Periodic boundary conditions and translational invarance

Clearly, if the A’s in the MPS in Eq[{R) are the same, i.e., site-independ&h@(: A;), then the
state is translationally invariant (TI) with periodic balary conditions (PBC). We will in the fol-
lowing first show that the converse is also true, i.e., thateV| state has a TI MPS representation.
Then we will derive canonical forms having this symmetrgadiss their properties and show how
to obtain them. An important point along these lines will kemaaonical decomposition of Tl states
into superpositions of TI MPS states which may in turn betemitas superpositions of periodic
states. This decomposition closely follows the ideasoffid will later, when constructing parent
Hamiltonians, give rise to discrete symmetry-breaking.

3.2.1 Site independent matrices

Before starting with the questioh$[d, 2 ddd 3, we will see thatan use Tl and PBC to assume
the matrices in the MPS representation to be site indepéndibat is, if the state is Tl, then there
is also a Tl representation as MHs.

Theorem 3 (Site-independent matrices)Every Tl pure state with PBC on a finite chain has a
MPS representation with site-independent matrLaé’g] = A, e,

W)= > tr(Ai e Agy)lin - in) (14)

If we start from an OBC MPS representation, to get site-irthejent matrices one has (in general)
to increase the bond dimension frathto N D (note theN-dependence).

Proof. We start with an OBC representation of the state with sitnEddentAEm] and consider
the matrices (fob <i < d—1)

0o Al
) 0o AP
B;i=N N c..
0 AN
AN 0
This leads to
d—1
tr(Bil . BiN)|il7 e 7'LN> =
D yeeny in=0
1 N—-1 d—1
1 N . .
=y > ARl i),
=0 i1,...,in=0
wherei; = i;_n if j > N. Due to Tl ofy this yields exactly Eq.(14). 0

To explicitly show theN-dependence of the above construction we consider theplarticase
of theW-state|10...0) + |01...0) 4+ --- 4 |0...01). In this case the minimal bond dimension
is 2 as a MPS with OBC. However, if we want site-independent roedriit is not difficult to show
that one needs bigger matrices. In fact, we conjecture tleagize of the matrices has to grow with
N (Appendix(8).

From now on we suppose that we are dealing with a MPS of the forfg.[14) with the
matricesA; of size D x D. In cases where we want to emphasize the site-independérice o
matrices, we say the state is Tl represented or simply a TI.MPS

*In a similar way other symmetries can be restored in the septation. For example if the state is reflection symmetric
then we can find a representation with = AiT and if it is real in some basis then we can choose one withAealBoth
representations are easily obtained by doubling the bomemionD. For the encoding of other symmetries in thé&s we

refer to [1[6[24].



3.2.2 MPS and CP maps

There is a close relation (and we will repeatedly use it) eetwa Tl MPS and the completely
positive mapS acting on the space d? x D matrices given by

E(X)=> AXA (15)

One can always assume without loss of generality that theagpéhinas spectral radius equal to
which implies by [8, Theorem 2.5] that has a positive fixed pointAs in the FCS case stated in
Eq.[8) the second largest eigenvaluegodietermines the correlation length of the state and as we
will see below the eigenvalues of magnitude one are closgitad to the terms in the canonical
decomposition of the state. Note tfaandEy = 3. A; ® A, have the same spectrum as they are
related via

(BilE(|ar){az])|B2) = (B1, B2| Ex1lon, az) . (16)

Since the Kraus operators of the cp nfapre uniquely determined up to unitaries, it implies
that £ uniquely determines the MPS up to local unitaries in the @aysystem. This is used in
to find the fixed points of a renormalization group procedan quantum states. There it is
made explicit in the case of qubits, where a complete claasidin of the cp-maps is known. To be
able to characterize the fixed points in the general case asnolfind the reverse relation between
MPS and cp maps. That is, given a MPS, which are the posSiltfeat can arise from different
matrices in the MPS representation? It is clear that a camglelution to questiofl 1 will give
us the answer. However, though we will below provide the @ndwthe generic case, this is far
from being completely general. As a simple example of hofedkht the cp-map$ can be for the
sameMPS, let us take an arbitrary cp-m&gX) = 3. A; X Al and consider the associate MPS
for the case o particles:[¢) = 3, . tr(Ai, Ai,)|iriz). Now translational invariance means
permutational invariance and hence it is not difficult towghbat there exist diagonal matricéy
such thaty) = 37, . tr(Dy, Di,)liriz). This defines a new cp-map(X) = 3, D; X D] with
diagonal Kraus operators, for which e.g many of the addjtivonjectures are trug[10].

3.2.3 The canonical representation

In this section we will show that one can always decomposentiteices of a TI-MPS to eanonical
form. Subsequently we will discuss a generic condition Basewhich the next section will answer
questiod® concerning the uniqueness of the canonical form.

Theorem 4 (TI canonical form) Given a Tl state on a finite ring, we can always decompose the
matricesA; of any of its TI| MPS representations as

MA; 0 0
A; = 0 47 0 |,
0 0 e
wherel > X\; > 0 for everyj and the matricesAZ in each block verify the conditions:
1.3, AlATT = 1.
2. 3, AJTA7 A7 = A7, for some diagonal positive and full-rank matrics.
3. 1is the only fixed point of the operaté; (X) = >, A7 X AJT,

If we start with a TI MPS representation with bond dimensi@nthe bond dimension of the
abovecanonical forms < D.



Proof. We assume w.l.0.g. that the spectral radiug @ 1 (this is where the\; appear) and
we denote byX a positive fixed point of. If X is invertible, then callingB; = X‘%AiX% we
have}", B; B! = 1 and hence condition 1.

If X is not invertible and we writé&X' = " A.|a)(al, and we callPr the projection onto the
subspaceR spanned by théx)’s, then we have thatl; Pr = PrA; Pr for everyi. To see this, it
is enough to show that;|a) € R for everyi, |a). If this does not happen for some|3), then
3o, Aala) (@] — s A [B)(BIAT # 0. But, sincel", Aala)(a] = 32,30, Aadila)(a]Al, we

have obtained that
Y Aadilay(alAl 20,
(1,0)#(5.8)
which is the desired contradiction.
If we call R* the orthogonal subspace Bf we can decompose our state as

vy = Z trr(Aiy - Aiy)|in - in) +
Q15 siN
+ >t (i e Ay )in - in).
i1, i N

On the one hanérr(A;, - - - Aiy ) is given by
tl"(PRAil cee AiN PR) = tl"(PRAZ'lPR cee PR,AiN PR)

which corresponds to a MPS with matricBs = PrA; Pr of sizedim(R) x dim(R). On the
other hand

trRJ-(Ail"'AiN) = tI"(PRJ_Ail--'AiNPRJ_)
= tI'(PRJ_AilpRJ_"'PRJ_AZ'NPRJ_)

sinceAd;Pp1 = PrAiyPri + Pri Aiy Pri and thePr in the first summand goes through all
the matrices4;; to finally cancel withPr. . Then we have also matricés = Pr. A; Pr. of
S|zed1m(RL) x dim(R™*) such that we can write out original state with the followifigx D

matrices
B; 0
0o C; )

For each one of these blocks we reason similarly and we endithpblock-shaped matrices
with the property that each block satisfiem the Theorem. Let us now assume that for one of the
blocks, the mapX — ", B; XBT has a fixed poinIX # 1. We can supposﬁ’ self-adjoint and
then diagonalize i\ = >~ Ao |a><a| with A\; > --. > \,. Obviously, + X is a positive
fixed point that is not full rank, and this allows us (reasgnas above) to decompose further the
block B; in subblocks until finally every block satisfies both propstl and 3 in the Theorem. By
the same arguments we can ensure that the only fixed poine afual mapX — >, BJXBZ- of
each block is also positive and full rank, and so, by chooaimgdequate unitady and changing
B; to UB;U', we can diagonalize this fixed point to make it a diagonaltp@sfull-rank matrix
A, which finishes the proof of the Theorem. [

Note that ThnLLY gives rise to a decomposition of the statedrguperposition of TI MPS each
of which has only one block in its canonical form and a respecp-mapS; with a non-degenerate
eigenvalue 1 (due to the uniqueness of the fixed point). Thaifimg argument shows that in cases
where&; has other eigenvalues of magnitude one further decompnsitto a superposition of
periodic states is possible.

Examples of states with such periodic decompositions{fer 2) are the anti-ferromagnetic
GHZ state and the Majumdar-Gosh state.

10



Theorem 5 (Periodic decomposition)Consider any Tl staté: € C?®~which has only one block
in its canonical TI MPS representation (THin.4) with respecD x D matrices{ A;}. If £(X) =
> AiXAZT hasp eigenvalues of modulus one, thep if a factor of N the state can be written as
a superposition op p-periodic states each of which has a MPS representationlatid dimension
D. If pis no factor, then) = 0.

Proof. ~ The theorem is a consequence of the spectral propertieseoéghmaps, which
were proven in[[l1]. There it is shown that if the identity i®thnly fixed point of€, then there
exists ap € N such that{wk}kzl,,,p with w = exp % are all eigenvalues &f with modulus 1.

Moreover, there is a unitary = > "7 _, Wk Py, where{ P} is a set of orthogonal projectors with
> P = 1 such tha€ (X Pr) = £(X)P,—1 forall D x D matrixesX (and cyclic indext). Itis
straightforward to show that the latter implies that

Vj, k: Aij = Pk_lAj . (17)

Exploiting this together with the decomposition of the &ad. ..] = >, tr[FP ... P] leads to a
decomposition of the stafey) = > 7_, [x) where each of the staté¢s,) in the superposition
has a MPS representation with site-dependent matri¢es= Py ;14 Pr+;. Hence, eachy)y)
is p-periodic and, sincé, P, = d;,; Pi;, non-zero only ifp is a factor of V. O

3.2.4 Generic cases

Before proceeding we have to introduce tgenericconditions on which many of the following
results are based on. The first condition is relateidjectivity of the map

Tp:X o Y tr[XAy Ay ] Jin.. i), (18)

Note thatl';, is injective iff the set of matrice§A;, --- A;, : 1 < 1,...,ir < d} spans the entire
space ofD x D matrices. Moreover, i}, AiAI = 1 then evidently injectivity of";, implies
injectivity of 'y, for all L’ > L. To see the relation to ‘generic’ cases consideandomly chosen
matricesA;. The dimension of the span of their produets - - - A;, is expected to grow ag”

up to the point where it reachd3®. That is, for generic cases we expect to have injectivity for
L > 211;’;3. This intuition can easily be verified numerically and rigasly proven at least for

d = D = 2. However, in order not to rely on the vague notion of ‘gerierétses we introduce the

following:
Condition C1: There is a finite numbek, € N such thafl'r, is injective.
We continue by deriving some of the implications of condit©1 on the TI canonical form:

Proposition 1 Consider a Tl state represented in canonical MPS form ([hmif4condition
C1lis satisfied fof.o < N, then

1. we have only one block in the canonical representation.

2. if we divide the chain in two blocks of consecutive spins. R],[R+1... N], both of them
with at leastLo spins, then the rank of the reduced density operator g is exactlyD?.

Proof. The first assert is evident, since aliywhich has only entries in the off-diagonal blocks
would lead tol'z, (X) = 0. To see the other implication we take adQrMPS

¥) = Do tr(Ai e Aig)li - in),

and introduce a resolution of the identity

D

D alAiy - AigB)(BlAigyy - Avgla)ia - in) =
a,B=111,....ix
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D
= Z [®o,8)|Va,5), Where
a,f=1

|Bog) = Z (@] Ai, - Aip|B)i1 -+ -ir),

159t R

, Z (BlAig - Aiy|a)|irsrl---in).

i1,--iR

[Va,5)

It is then sufficient to prove that bofj®.. 5)} and{|¥. g)} are sets of linearly independent vec-
tors. But this is a consequence of C1: Let us take complex Btsnb s suchthad” | ; ca,5(Pa,6) =
0 (the same reasoning for th& . 3)). This is exactly

T | caplBal| =
a3
By C1 we have tha}_ , ; ca,5/3)(al = 0 and hence., s = 0 for everya, j. [

Now we will introduce a second condition for which we assumleovg. the spectral radius of
£ to be one:

Condition C2: The map® has only one eigenvalue of magnitude one.

Again this is satisfied for ‘generic’ cases as the set of cpaweith eigenvalues which are degen-
erated in magnitude is certainly of measure zero. It is shiovfi] that this condition isssentially
equivalent (AppendikA) to condition C1. In particular C8aimplies that there is just one block in
the Tl canonical representation (Tli.4) of the MRS = iy E(Ai - Ag )i i)

Moreover, condition C2 implies that, for sufficiently largg we can approximat&®’ (which
corresponds t&” via Eq.[I8)) by|R)(L|; where|R) corresponds to the fixed point &f(that is,
the identity), and L| to the fixed pointA of the dual map.

Introducing a resolution of the identity as above, we haeg(th) = >°_ ;|Va,5)|V3s,q), with

[as) =iy iy (@l - Auy [B)lir i ). But now
2

(WasWar 00 = (1€ % (18)(B)|) = Nada,ar 8,5,

up to corrections of the ordéw |N/2 (wherews is the second largest eigenvalueg9f This implies

that with increasingVv
Z \/WNI a.8) [¥8.a)
Ve Vs
becomes the Schmidt decomposmon associated to half afttaim. Hence we have proved the
following.

Theorem 6 (Interpretation of A) Consider a TI MPS state. In the generic case (condition C2),
the eigenvalues of its reduced density operator with rasfedalf of the chain converge with
increasingN to the diagonal matrix\ ® A with A from the TI canonical form (Thid.4).

3.2.5 Uniqueness
We will prove in this section that the Tl canonical form in THhis unique in the generic case.

Theorem 7 (Uniqueness of the canonical form)Let

d—1
W)=Y tr(Bi-- Biy)lin---in)

i1,e.in=0

12



be a Tl canonicalD-MPS such that (i) condition C1 holds, (ii) the OBC canoniegdresentation
of |¢) is unique, and (ii)N > 2Ly + D* (a condition polynomial inD). Then, if|y) admits
another TI canonicaD-MPS representation

d—1

)= Y (G Cig)lin---in),

there exists a unitary matri/ such thatB; = UC,; U for everyi (which implies in the case where
A is non-degenerate thd?; = C; up to permutations and phases).

To prove it we need a pair of lemmas.

Proposition 1 LetT, S be linear maps defined on the same vector spaces and supposkeie
exist vectors, ..., Y, such that

e T(Yy) = S(Yit1) foreveryl < k <n-—1,
e Yi,...,Y,_ arelinearly independent,
o Y, =30"1 MY
Consider a solution: # 0 of the equatiom\;z" ' + - -- + \,,_1z = 1, and define
w1 =iz
p2 = Mz + Aoz

Pn—1 = Az 4 A= 1.

Then, ifY’ = 3721 ju Vi, we have that” # 0 andT(Y) = 25(Y).
Proof. Clearly

TY) = i T (Yi) = inS(Yk+1) =

n—2 n—1
=5 <Z HEYkt1 + Z )\kYk> =
k=1 k=1
=SAYi+ Qe +p)Ya+ -+ (A1 + pn2)Yn 1),

and this last expression is exactif)G(Y) by the definition of theu's. Moreover, sincgi,—1 = 1
andYi, ..., Y, are linearly independent we have that# 0. O

The following lemma is a consequence|ofl[11, Theorem 4.4.14]

Proposition 2 If B, C' are square matrices of the same sizex n, the space of solutions of the
matrix equation

W({IC®1) =B L)W
is S ® M,, whereS is the space of solutions of the equati&t' = BX.

We can prove now Theore 7.

Proof. By Propositior L we know that the matricﬂg] in the canonical OBC representation
of [») are of dimensiorD? x D? forany Ly < j < N — Lo (in particular there are at least* of
suchj’s). From the TI MPS representation |af) we can obtain an alternative OBC representation
by noticing that

W)= > BB ®1)- (Bixy @ DO lin i),

13



wherebE” is the vectorl x D? that contains all the rows d8;, that is,
b = (B;(1,1), B;(1,2), ..., Bi(1,D), Bi(2,1),...),
andbEN] is the vectorD? x 1 that contains all the columns &f;, that is,
O"T = (Bi(1,1), Bi(2,1),..., Bi(D,1), Bi(1,2),...).

Doing the same with thé’s we have also

d—1
)= > @)(Cu®1) (Ciy ® eilin i),

i1, i =0

Using now Theorerfl]2 and the fact that betwdanand N — L, both AE”, (B: ® 1) and
(C; ® 1) are D* x D? matrices, we can conclude that there exist invertibfe x D? matrices
Wi ... Wpa such thatVy, (C; ® 1) = (B; ® 1)W1 for everyl < k < D* — 1.

Now taken such that¥7, ..., W, are linearly independent biit,, = "7~ A\ W. Letus
definex andu, . . ., pn—1 asin Lemm&W andV = S 7~ 1, Wj.. By Lemmdl we havél # 0
andW (C; ® 1) = (£ B; @ 1)W for everyi. Now, LemmdZR implies that there exigt# 0 such
that RC; = L B; R for everyi.

We can use now that = 3", BJAB; to prove thaty", Cf RTARC; = ﬁRTAR. Since

the completely positive may — >, CjXCi is trace preserving (anB"AR # 0) one has that
lz|? = 1.

Now, from1 = 3. C;C], we obtain thaf", B; RR' B! = RR'. Since theB;’s have only
one box (Propositiofil 1) we conclude tHaR™ = 1 so thatR is a unitary. m

3.2.6 Obtaining the canonical form

In the previous section we have implicitly used the “freetidhat one has in the choice of the
matrices in the generic case. In this section we will make éhplicit (answering questidd 1) and
will use it to show how to obtain efficiently the canonicalfotanswering questidd 3).

Let us take a Tl statpy) € C?®V such that the rank of all the reduced density operators is
bounded byD?. Clearly it can be stored using a MPS with OBCNfl D? x D? matrices. If we
are in the generic case and this state has a canonical foifyingrcondition C1, it would be very
convenient to have a way of obtaining it, since it allows usttre the state using onty D x D
matrices!

In this section we will show how the techniques developedasalfow us to do it by solving an
independent ofV system ofO(D®) quadratic equations witt(D*) unknowns.

We will assume that the problem has a solution, that is, tie $tas a Tl canonical form with
condition C1. We will also assume that we are in the generse da the sense that the OBC
canonical form is unique (no degeneracy in the Schmidt D@owsition). Then, the algorithm to
find it reads as follows:

We start with theD? x D? matricesAl“o*!1 .. AF0+P" of the OBC canonical form.

We solve the following system (S) of quadratic equationsh unknowsY;, Z,11, B;, j =
Lo+1,...,Lo+ D" i=1,...,d(Y;, Z; areD? x D? matrices and3; D x D matrices).

Yiz; =1 Vj

> BBl =1

and we have the following.
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Theorem 8 (Obtaining the TI canonical form) Consider any Tl statg)) with unique OBC canon-
ical form and such that the rank of each reduced density dpefaf successive spins) is bounded
by D2
1. If there is a TI MPS representation verifying condition, @ien the above systems (S) of
quadratic equations has a solution.
2. Any solution of (S) gives us a D-MPS representation df)), that is related to the canonical
one by unitariesd; = UB;UY).

Proof. We have seen in the previous Section that the canonicalseptaion is a solution for
(S). Now, if B;’s are the solution of (S) and;’s are the matrices of the canonical representation,
we have, reasoning as in the proof of Theofém 7, that thestssam? # 0 and anr # 0 such that
RB; = L A;R for everyi. Using thaty", B;B] = 1, thatA = 3_, ATAA; and thatl is the only
fixed point of X — 3. AiXAZ we can conclude, as in the proof of Theolgim 7, thas unitary.

O

4 Parent Hamiltonians

This section pretends to extend the results of the semiparj&] to the case of a finite chain. That
is, we will study when a certain MPS is thaiqueground state of certaigappedocal hamiltonian.
However, since we deal with a finite chain, the argumentsnging]] for the “uniqueness” part are
no longer valid, and we have to find a different approach. Athéprevious section we will start
with the case of OBC and then move to the case of Tl and PBCelfighp” part we will simply
sketch the original proof given if[1].

4.1 Uniqueness
4.1.1 Uniqueness of the ground state under condition C1 in thcase of OBC

Let us take a MPS with OBC given in the canonical fqim = 3>°, . AE] e A£]§1|i1 SN,
Let us assume that we can group the spins in blocks of corgearies in such a way that, in
the regrouped MP$)) = 3°, Bﬁ] e B%]h’l ---in), every set of matriceﬁfllj] verifies

condition C1, that is, generates the corresponding spatewfces. If we calh; ;11 the projector
onto the orthogonal subspace of

{ > t(xBYBUH) : X arbitrary},
RS
then

Theorem 9 (Uniqueness with OBC) |} is the unique ground state of the local Hamiltonieh=
Z]' hj 1.

Proof. Any ground statés) of H verifies thath; ;11 ® 1|¢) = 0 for everyy, that is

6= S (X7 BYBE i i), (19)

wherel(j,j + 1) is the set of indices; ... 41,4512 .. im.

Mixing (@9) for j and;j + 1 and using condition C1 foBY T gives

J bl _ pli+2] i+t
Xiga+n B = By X142

Using now thafy”, Bz[j]BZ[j_'” = 1 and callingyy; =3, X}'éil’jH)Bg” we get
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| . o
6y = > (Vi saaBY e BET i i)

Using the trivial fact that blocking again preserves cdnditC1 one can easily finish the argu-
ment by induction. We just notice that in the last step onaiolst

|p) = Z XBE] Bz[j\j]hl i),

D1yt M

whereX is just a number that, by normalization, has talbgiving |¢) = |¢) and hence the result.
O

4.1.2 Uniqueness of the ground state under condition C1 witfil and PBC

To obtain the analogue result in the case of Tl and PBC onepgaly the same argument. However,
since we do not have any more vectors in the first and lastiposjtwe need to refine the reasoning
of the last step. Moreover, using the symmetry we have nowcan decrease a bit the interaction
length of the Hamiltonian, fror2L, to Lo + 1.

Let us be a bit more concrete. Given our ringMéfd-dimensional quantum systems,< N
and a subspac# of " we denoteHs = SN 7'(hs), wherehs is the projection onto
S+ [, 1f we start with a MPSy)) = D iy T(Ai - Ag)in - i) with property C1, we
will consider L > Lo and, as before, the subspagé (or simply G.) formed by the elements
Dy iy, (XA - Ay fin - -dg). Itis clear thattg, [¢) = 0 and thatHg, is frustration

free. Moreover, ifN > 2Ly andL > Lo, then
Theorem 10 (Uniqueness with Tl and PBC) |¢) is the only ground state dfg, .

Proof. Reasoning as in the case of OBC one can easily see that anydgstate{¢) of Hg,
is in Gn, that is, has the formip) = -, tr(X A - Aiy)liz---in). Since there is no
distinguished first positiorj¢) can also be written

|¢> = Z tr(Ail o 'AiLO YAiL0+1 o 'AiN)|i1 T iN)'

By condition C1,XA;, -~ A;; = Ay --- Ay Y foreveryiy, ... ir,. But, also by condition
C1, Ay, -+ Aip, generates the whole spacelofx D matrices. Henc&l = Y which, in addition,
commutes with4;, --- A;, foreveryis,...,ir,. This means thak' commutes with every matrix
and henceX = A1 and|¢) = |¢). [

4.1.3 Non-uniqueness in the case of two or more blocks

In the absence of condition C1 in our MPS, we cannot guaramtigieness for the ground state of
the parent Hamiltonian. There are two different propettiied can lead to degeneracy. One is the
existence of a periodic decomposition (Theofdm 5), thathegapen even in the case of one block.
This is the case of the Majumdar-Gosh model (Sedfion 2). Thergroperty is the existence of
more than one block in the canonical form (Thim.4). As we vék delow, this leads to a stronger
version of degeneracy that is closely related to the numblelocks. In particular, we are going to
show that whenever we have more than one block, the MP8vsrthe unique ground state of a
frustration free local Hamiltonian (ThiIL1). In additiohgte exists one local Hamiltonian which
has the MPS as ground state and with ground space degenepaalyte the number of blocks

TFor all the reasonings it is enough to consiflerc?®r —, ca®r positive such thaker b = S. We takeh = Py, for
simplicity.
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(Thm[12). That is, a number of blocks greater than one carespond to a spontaneously broken
symmetry [6].

In all this section we need to assume that we have conditiom@#ach block. For a detailed
discussion of theeasonabilityof this hypothesis see Appendi¥ A.

Let us take a TI MP$¢) with b(> 2) blocks A}, ..., A? in the canonical formsize(A}) >

... > size(A?), and condition C1 in each block. Let us célh = max;{L{"}, which will be
logarithmic inV for thegenericcase. Clearlyp) = Z?:l | 45), where

| ai) :/\? ST (Al AL i in).

Moreover, w.l.o.g. we can assume that the stdfes) are pairwise different. The following
lemmas will take care of the technical part of the section.

Proposition 3 Given anyD x D matricesC # 0 and X there exist matrices;, S; such that
X =5, RiCS;.

Proof. By the polar decomposition, it is easy to find matridesF, G, H (with G, H invert-
ible) suchthaPC'F = |1)(1]andGX H = > | |0)(i|. Clearly> " | |4)(i] = > i~ Pi|1)(1] P,
where P; is the matrix obtained from the identity by permuting thetfead thei-th row. So
R; = G_lpiE andS; = FPiH_l. 0

Proposition 4 If L > 3(b—1)(Lo + 1), the surr@;’.:1 gfj is direct.

Proof. We group the spins i8(b — 1) blocks of at leastLo + 1 spins each and then use
induction. First the caske= 2.

We assume on the contrary that there eXist” # 0 such that
> (AL XAL AL ivigis) = Y tr(A] YA AL iriais).
11,12,13 11,12,13
If we consider now an arbitrary matriX, by C1 and Lemm@&]3, there exist complex numbers

Wiy, Piy such thatZ = 37,57, i, pi, AL X AL CallingW = 32,57, i, pi, A7 Y A7
we have thad ", tr(ZAj,)|is) = 3, tr(WAZ)|ia).
This means tha@, ., C G- ,. Sincesize(A}) > size(A?), this implies thasize(A}) =
size(A?) and thatg’L“Ol+1 = gfjﬂ. But now, taking the local Hamiltoniaf ;1 = Hg a2
L

0+1 Lo+1

by Theoreni ID, bothy 41 ) and|¢ 42) should be itonly ground state; which is the desired contra-
diction.

b+1

P w’? =0, where

Now the induction step. Let us start wijh

A] . . . . . .
g3b(L0+1) = w; = Z tI'(Agl WJAg2 e AJ )|21 e ’Lgb>.

3b

We want to prove thai’? = 0 for every;. So let us assume the opposite, talgich thai?’7 £ 0

and callw; = <]1[12] ®thb+1 ® 11[4,“31,]) (wj;). We have tha’[Z;’.:1 w; = 0, and, by the
(3]

induction hypothesis, eaah; = 0. Now

Wy =Y tr(A] WAL X] AL - AL iy i),

115--+,23p
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with Xf3 # 0 for someis (TheoreniID). Moreover, we can use condition C1 and Lefmagatto
complex numberg;, , pi, such thatl = 37, 37, . uf, pi, Al WAL
Hence,0 = 3, . tr(X] AJ --- Al )ia---is) for everyis, which implies by C1 the
contradictionX;, = 0. [
Finally the results,

Theorem 11 (Degeneracy of the ground space viIif N > 3(b — 1)(Lo + 1) + Land H =
>, 7'(h) is any translationally invariant frustration freé-local Hamiltonian on our ring ofV
spins that hase) as a ground state (that ig/|¢) = 0), then|¢ 4, ) is also a ground state dff for
everyj.

In particular H has more than one ground state.

Proof. Oneha®) = (h®1)|¢) = 3, (h@1)|d ;). Since(h®@ 1)[¢ ;) € (C1)* 0 gd’ .,
we can use Lemnid 4 to get the desired conclusiar® 1)|¢ 4;) = 0 for everyj. [

Theorem 12 (Degeneracy of the ground space vZ)here exists a local HamiltoniaH acting on
L > 3(b—1)(Lo+1)+1 spins such that its ground space is exagtdy(H) = span{|¢ 45 ) }1<j<s.

Proof. The hamiltonian will befZs with S = P, gf’, andL > 3(b—1)(Lo + 1) + 1. For

m > L,
e (EBQ?S) n <EBQT‘2"> ©Cl = PG,
j j j
In fact, if |¢) € C* @ (D, A n (D, 62"y ® C*, we have simultaneously that
W)= > (Al CLAL - Al Yir--imi1) and
W)= > (D] ALAL Al i im) -

Lemmd32 and condition C1 allows us to identify for everyi, im,+1

Al =Dl Al

Tm+41 1 tm+1
. . o . — , o o
Calling £/ =37, C} A} and using thap>, A7 A" =1,wegetd] Cj =A]  E'A],
which implies thatg) € @, G/’

Then one can easily follow the lines of the proof of Theofed(dssumingV > L + Lo) to
conclude thaker(Hs) = span{|¢4;) }1<j<b. [

4.2 Energy gap

If the ground state energy is zero (which can always be aetiby a suitable offset), thenergy
gap~ above the ground space is the largest constant for which

H?> > ~H . (20)

If in additon H = 3, 7(h) is frustration free and has interaction lengttby taking any
p > L and grouping the spins in blocks pfone can define an associaetbcal interaction in the
regrouped chain byt i1 = Hipisr,... 2y (= 3005779 (h)). The newhamiltonian F
verifies

m—1

i=0
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Moreover, callingP to the projection ontder(h), there exists a constant, (that is exactly the
spectral gap ofi[; .. 5p,)) such thath > ~Yop (1 — P).

Therefore, to study the existence of an energy gap in a locabL$tration free Hamiltonian,
it is enough to study the case of a nearest neighbor interaéfi = >, 7 (Piiy1) whereP is a
projector. In this situation, KnabET12] gave a sufficiembdition to assure the existence of a gap,
namely that the gap, of fl[lm,nﬂ] is bigger than}—L for somen.

In the particular case of the parent hamiltonian of an MPSyammore refined argument was
provided in [1] to prove the existence of a gap under condit@il. The idea reads as follows.
CIearIyﬁQ > I:I + Zz P7;71'+1Pi+171'+2 + P7;71'+2Pi+171'+1. By the proof of Theorerﬂo,

Piiv1 =111 59 @ (1 = Pg,,) ® Lip(it2)+1...N]-

Then a technical argument proves tﬂa’ti_‘_lpi_‘_l’i_‘_g + Pi,H-QPH-l,H-l > _O(Vg)(Pi,H-l +

Piy1.i12), Wherew, is the second largest eigenvalueofThis givesi? > (1 — O(v%))H, which
concludes the argument.

5 Generation of MPS

The MPS formalism is particularly suited for the descriptinf sequential schemes for the gener-
ation of multipartite states. Consider for instance a clwispins in a pure product state. Two
possiblesequentialways of preparing a more general state on the spin chain #rer ¢o let an
ancillary particle (the head of a Turing machine) interacjugentially with all the spins or to make
them interact themselves in a sequential manner: first spiithl2 then 2 with 3 an so on.

Clearly, many physical setups for the generation of muitiastates are of such sequential
nature: time-bin photons leaking out of an atom-cavity eystatoms passing a microwave cavity
or laser pulses propagating through atomic ensembles. Weegiin the following that the MPS
formalism provides the natural language for describinghssehemes. This section reviews and
extends the results obtained in[13]. A detailed applicatibthe formalism to particular physical
systems can be found in [13,114].

5.1 Sequential generation with ancilla

Consider a spin chain which is initially in a product sttg®” € HZ"™ with Hz ~ C? and an
additional ancillary system in the state;) € Ha ~ C”. Let), ﬁwa sla,4)(3,0] be a
general stochastic operation &4 ® Hp applied to the ancillary s&sftem and théh site of the
chain. This operation could for instance correspond to saedh of a measurement or to a unitary
interaction in which casg_, AEkHAEk] = 1. If we let the ancillary system interact sequentially
with all N sites and afterwards measure the ancilla in the $tate, then the remaining state on

H%’N is (up to normalization) clearly given by the MPS

(pr|AR - AP Al o) in -+ in). (21)

21

|¥)

I

By imposing different constraints on the allowed operatiand thus on thd’s) we can distinguish
the following types of sequential generation schemes fog puultipartite states:

1. Probabilistic schemesarbitrary stochastic operations with/z=dimensional ancilla are al-
lowed.

2. Deterministic schemeshe interactions must be unitary and thedimensional ancilla must
decouple in the last step (without measurement).
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3. Deterministic transition scheméfor d = 2): Here we consider an enlarged ancillary system
Ha = CP @ CP ~ CP @ C? (corresponding e.g. t® ‘excited’ and D ‘ground state’
levels) and a fixed interaction of the form

)0 —  |9)]0)[1)s ,
[©)[0)[0)s —  |)|0)[0)5 -

Moreover, we allow for arbitrary unitaries oK _4 in every step and require the ancilla to
decouple in the last step.

Theorem 13 (Sequential generation with ancilla) The three sets of multipartite states which can
be generated by the above sequential schemes with ancdlalbequal to the set of states with
OBC MPS representation with maximal bond dimendibn

Note that the proof of this statement n[13] (based on sulsegsingular value decompositions)
also provides aecipefor the generation of any given state (with minimal resosyc&his idea has
been recently exploited ih [15] to analyze the resourcedettéor sequential quantum cloning.

5.2 Seguential generation without ancilla

Let us now consider sequential generation schemes withwillea The initial state is again a
product|0)®Y ¢ C*®N and we perform first an operation affecting the sites 1 antle?) 2 and 3
up to one betweeV — 1 andN. Again we may distinguish between probabilistic and deteistic
schemes and as before both classes coincide with a certaihMesS:

Theorem 14 (Sequential generation without ancilla) The sets of pure states which can be gen-
erated by a sequential scheme without ancilla either detg@stically or probabilistically are both
equal to the class of states having an OBC MPS representatithrbond dimensioD < d.

Proof. Let us denote the map acting on skte@ndk + 1 by U, Then fork < N — 1 we
can straight forward identify the matrices in the MPS regneation by "’ (i, B|U™ |a, 0)

o, T

where fork = 1 we havea = 0, i.e., AE” are vectors. From the last map with coefficients
(i, U™ =], 0) we obtain thed’s by a singular value decomposition @y, 5), such that4 ™!
is again a set of vectors. Hence, all states generated iw#lyiare OBC MPS wittD < d.

Conversely, we can generate every such MPS determinligtinad sequential manner without
ancilla. To do this we exploit Thin.13 and use the &ite 1 as ‘ancilla’ for thek'th step (i.e., the
application of a unitary/*)) followed by a swap between site+ 1 andk + 2. N — 1 of these
steps are sufficient since the last step in the proof for theraénistic part in Thni. 113 is just a swap
between the ancilla and sif€é. [

6 Classical simulation of quantum systems

We saw in Sectiof]2 that if a quantum many-body state has a Mp®sentation with sufficiently
small bond dimensiorD, then we can efficiently store it on a classical computer aaddutate
expectation values. The practical relevance of MPS reptasiens in the context of classical
simulation of quantum systems stems then from two factsMéhy of the states arising in con-
densed matter theory (of one-dimensional systems) or goaintformation theory either have such
a smallD MPS representation or are well approximated by one; an®(ig can efficiently obtain
such approximating MPS.

The following section will briefly review the most importamgsults obtained along these lines.
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6.1 Properties of ground states of spin chains

The main motivation for introducing the class of MPS was ta finclass of wavefunctions that
capture the physics needed to describe the low-energyrsd#dtral quantum Hamiltonians. Once
such a class is identified and expectation values of allsiatée class can be computed efficiently,
itis possible to use the corresponding states in a variatimethod. The very successful renormal-
ization group methods, first developed by Wilson|[17] andragfined by White [18], are precisely
such variational methods within the class of matrix procuiates([18, 20, 21].

In the case of 1-D systems (i.e. spin chains) with local axtgons, the low-energy states indeed
exhibit some remarkable properties. First, ground states hy definition extremal local properties
(as they minimize the energy), and hence their local prasedetermine their global ones. Let us
consider any local Hamiltonian @f spins that exhibits the property that there is a unique gioun
state|..) and that the gap i&\(IV). Let us furthermore consider the case wh@V) decays
not faster than an inverse polynomial ¥ (this condition is satisfied for all gapped systems and
for all known critical translationally invariant system3)hen let us assume that there exists a state
|vappr) that reproduces well the local properties of all nearegghit®r reduced density operators:
[|Pappr — pez|| < 6. Then it follows that the global overlap is bounded by

No
tbea) = [Wappr)I” < <7

A(N)

This is remarkable as it shows that it is enough to reproduedacal properties well to guarantee
that also the global properties are reproduced accurafetya constant global accuraey it is
enough to reproduce the local properties well to an accufdlgt scales as an inverse polynomial
in the number of spins. This is very relevant in the contextasfational simulation methods: if the
energy is well reproduced and if the computational effogeba better accuracy in the energy only
scales polynomially in the number of spins, then a scalabiearical method can be constructed
that reproduces all global properties well (here scalatdam essentially a polynomial methﬁi)

Second, there is very few entanglement present in grourndsstd spin chains, even in the
case of a critical system. The relevant quantity here isudystarea-laws: if one considers the
reduced density operater, of a contiguous block of. spins in the ground state of a spin chain
with N > L spins, how does the entropy of that block scale ithThis question was first studied
in the context of black-hole entropy [22] and has recentisaated a lot of attentiori [28, 24, 25].
Ground states of local Hamiltonians of spins seem to havetbgerty that the entropy is not an
extensive property but that the leading term in the entrapy scales as the boundary of the block
(hence the name area-law), which means a constant in thetageD system[[25, 26]:

o c 1
5o = § (143 ) ox(® (22)
HereS,, is the Renyi entropy
e _ 1 @
§%(p) = = log (Trp"),

cis the central char@mndg the correlation length. This has a very interesting physiezaning: it
shows that most of the entanglement must be concentrateddtbe boundary, and therefore there
is much less entanglement than would be present in a randamtwqu state (where the entropy
would be extensive and scale likg. The area law{22) is mildly violated in the case of 1-D cati
spin systems wherghas to be replaced with, but even in that case the amount of entanglement is
still exponentially smaller than the amount present in @oam state. This is very encouraging, as

tOf course this does not apply to global quantities, like @mytr where one needs exponential accuracy in order to have
closeness

§We note that EJ.{22) has been proven for critical spin ch@mnparticular the XX-model with transverse magneticaldiel
[26]) which are related to a conformal field theory. A geneeaiult is still lacking.
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one may exploit the lack of entanglement to simulate thesterys classically. Indeed, we already
proved that MPS obey the same propeltyi [24].

The existence of an area law for the scaling of entropy isnatély connected to the fact that
typical quantum spin systems exhibit a finite correlatiorgth. In fact, it has been recently proven
[27] that all connected correlation functions between twacks in a gapped system have to de-
cay exponentially as a function of the distance of the blockst us therefore consider a 1-D
gapped quantum spin system with correlation lerggth.. Due to the finite correlation length, it
is expected that the reduced density operatos obtained when tracing out a block of length
lag > Ecorr IS €qual to

PAB ™~ pa® pB (23)
up to exponentially small correctiofls The original ground statgbapc) is a purification of this
mixed state, but itis of course also possible to find anothgfipation of the formvy ac,) ®|Ysc,.)
(up to exponentially small corrections) with no correlagovhatsoever betweetiand B; hereC
and C,. together span the original bloeK. Since different purifications are unitarily equivalent,
there exists a unitary operatidi- on the blockC' that completely disentangles the left from the
right part:

IAa®@Uc ® Ic|aBe) ~ |Yac,) ® |¥se,.)-

This implies that there exists a tensds . s with indices1 < i,a,8 < D (whereD is the
dimension of the Hilbert space @f) and stategy2), [4), |w§> defined on the Hilbert spaces
belonging toA, B, C such that

[YaBc) = D Asa,slba) W) 05
i,

Applying this argument recursively leads to a matrix praduate description of the state and gives
a strong hint that ground states of gapped Hamiltonians aterepresented by MPS. It turns out
that this is even true for critical systems.

6.2 MPS as a class of variational wavefunctions

Here we will review the main results 6f[29], which give artatgl bounds for the approximation of
a state by a MPS that justify the choice of MPS as a reasonkdss of variational wavefunctions.
We consider an arbitrary sta¢) and denote by

the eigenvalues of the reduced density operators

Pk = Tricp a2, N[N (Y],
sorted in decreasing order.
Theorem 15 There exists a MP§)p) with bond dimensio such that

N-1

1) = o)l <2 ) e(D)

k=1

wheree (D) = Y,

Ystrictly speaking, Hastings theorem does not imply theditgliof equation[[2B), as it was shown [n]28] that orthogonal
states exist whose correlation functions are exponentiddise to each other; although it would be very surprisirag ground
states would exhibit that property, this prohibits to tura present argument into a rigorous one.
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This shows that for systems for which thg D) decay fast inD, there exist MPS witlsmall D
which will not only reproduce well the local correlationsi¢h as energy) but also all the nonlocal
properties (such as correlation length).

The next result relates the derived bound to the Renyi eigsay the reduced density operators.

Given a density matrip, we denote as beforg D) = >, | A; with \; the nonincreasingly
ordered eigenvalues pf Then we have

Theorem 16 If 0 < o < 1, thenlog(e(D)) < =2 (S"(p) —log %)

The two results together allow us to investigate the contjmrtal effort needed to represent
critical systems, arguable the hardest ones to simlljats MPS. The key fact here is the area-law
(22), which for critical systems reads

- _C 1
5 = (1 5 ) ox(t) (24)
for all « > 0 (c the central charge).

Let us therefore consider the Hamiltonian associated tdtiaairsystem, but restricted L
sites. The entropy of a half chain (we consider the grount $ta.) of the finite system) will
typically scale as in eq[(24) but with an extra term thatestike1/L. Suppose we want to get
that|||te) — [¥p)]|* < €o/L with ¢o independent of.[. If we call D, the minimalD needed
to obtain this precision for a chain of lenglti, the previous two results combined yield

Theorem 17

2 o0 ehe
Dy < est <L7>1 L%HTQ
(1—a)eo

This shows thaD only has to scale polynomially if to keep the accuracy, /L fixed; in other
words, there exists an efficient scalable representatiogrimund states of critical systems (and
hence also of noncritical systems) in terms of MPS. This iery etrong result, as it shows that
one can represent ground states of spin chains with onlynpoijal effort (as opposed to the
exponential effort if one would do e.g. exact diagonal@ali

The above result was derived from a certain scaling of thekbRenyi entropy withn < 1.
In fact, fora > 1, i.e., in particular for the von Neumann entropy & 1), even a saturating
block entropy does in general not allow to conclude thatestatre efficiently approximable by
MPS [16]. Conversely, a linear scaling for the von Neumantnogy, as generated by particular
time evolutions, rules out such an approximability![16].

6.3 \Variational algorithms

Numerical renormalization group methods have since lomg b@own to be able to simulate spin
systems, but it is only recently that the underlying streestaf matrix product states has been
exploited. Both NRG, developed by K. Wilson_[17] in the '7@sd DMRG, developed by S.
White [18] in the '90s, can indeed be reformulated as vamgti methods within the class of MPS
[21,[20]. The main question is how to find the MPS that minirsilee energy for a given spin
chain Hamiltonian: given a Hamiltonial acting on nearest neighbours, we want to find the MPS
|1) such that the energy

(Y[H|)

(W)

is minimized. If|y) is a TI MPS, then this is a highly complex optimization prableThe main
trick to turn this problem into a tractable one is to breaktthaslational symmetry and having site-

dependent matrice&ﬁk] for the different sping; indeed, then the functional to be minimized is a

IlFor non—critical systems, the renormalization group flowxpected to increase the Renyi entropies in the UV direction
The corresponding fixed point corresponds to a criticalesysvhose entropy thus upper bounds that of the non—critiwal o
**We choose thé /L dependence such as to assure that the absolute error isiegtebservables does not grow.
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multiquadratic function of all variables, and then one cae thhe standard technique of alternating
least squares to do the minimizatién][21]. This works botthecase of open and closed boundary
conditions, and in practice the convergence of the methegdsllent. The computational effort of
this optimization scales @8*d? in memory and similarly in time (for a single site optimizat).

But what about the theoretical worst case computationalptexity of finding this optimal
MPS? It has been observed that DMRG converges exponenfiégaiiyto the ground state with a
relaxation time proportional to the inverse of the gapof the system[[30]. For translationally
invariant critical systems, this gap seems to close onlyrmohially. As we have proven that
D only have to scale polynomially too, the computational ffor finding ground states of 1-D
guantum systems is polynomiaP). This statement is true under the following conditionsthB
a-entropy of blocks in the exact ground state grow at mostridgaically with the size of the block
for somea < 1; 2) the gap of the system scales at most polynomially witlsyistem size; 3) given
a gap that obeys condition 2, there exists an efficient DMR&4dlgorithm that converges to the
global minimum. As the variational MPS approaChl[21] is esisdly an alternating least squares
method of solving a non-convex problem, there is a priori nargntee that it will converge to the
global optimum, although the occurrence of local minimaxsgé be unlikely[[3D]. But still, this
has not been proven and the worst-case complexity couldngelP-hard, as multiquadratic cost
functions have been shown to lead to NP-hard probl@sl].

6.4 Classical simulation of quantum circuits

In the standard circuit model of quantum computation a setnifry one and two-qubit gates is
applied to a number of qubits, which are initially in a pureduct state and measured separately
in the end. In the cluster state model a multipartite stapgepared in the beginning and the com-
putation is performed by applying subsequent single-quisidsurements. For both computational
models the MPS formalism provides a simple way of understanaihy a large amount of en-
tanglement is crucial for obtaining an exponential spegdyith respect to classical computations.
The fact that quantum computations (of the mentioned tygeghvcontain too little entanglement
can be simulated classically is a simple consequence obtlwving observations (see al$a[33]):

1. Let|y) € c®" have a MPS representation with maximal bond dimengionBy Eq.[3)
the expectation values of factorizing observables arauiited by a product oN D? x D?
matrices. Hence, their calculation as well as the samplindpe respective measurement
outcomes and the storage of the state requires only polyieesources iV and D.

2. A gate applied to two neighboring sites increases theeatie bond dimension (Schmidt
rank) at most by a factai® and the MPS representation can be updated wifly(D) re-
sources.

3. A gate applied to two qubits, which atsites apart, can be replaced &iy— 1 gates acting
on adjacent qubits. In this way we can replace a circuit incivldach qubit line is crossed
or involved by at mosL two-qubit gates by one where each qubit is affected only logaatt
4L nearest neighbor gates.

A trivial implication of 1. is that measurement based quanttomputation (such as cluster state
computation) requires more than one spatial dimension:

Theorem 18 (Simulating 1D measurement based computationsfonsider a sequence of states
with increasing particle numbeN for which the MPS representation has maximal bond dimension
D = O(poly(N)). Then every measurement based computation on these saatbs simulated
classically withO(poly(IN)) resources.

f1n fact, it can be showr [32] that a variant of DMRG leads to IN®d instances in intermediate steps. However, one has
to note that (i) such a worst case instance might be avoidedtdnging from a different initial point and (ii) convergento the
optimum at the end of the day does not necessarily requiren§iriie optimum in every intermediate step.
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This is in particular true for a one-dimensional clustetestéor whichD = 2 is independent olV.
Similarly, if the initial states are build by a constant nienbf nearest neighbor interactions on a
two-dimensionah x log n lattice, the measurements can be simulated witly(n) resources.

Concerning the standard circuit model for quantum compriain pure states the points 1.-3.
lead to:

Theorem 19 (Simulating quantum circuits) If at every stage thé/-partite state in a polynomial
time circuit quantum computation has a MPS representatitth W = O(poly(N)), then the

computation can be simulated classically wjibiy(IN) resources. This is in particular true if
every qubit-line in the circuit is crossed or involved by atstO(logN) two-qubit gates.

For more details on the classical simulation of quantunudisove refer to[[38] and [34] for mea-
surement based computation as well as for the relation leetaentracting tensor networks and the
tree width of network graphs. The general problem of comitnigdensor networks was shown to be
P complete in[[35]. In[[35] a simple interpretation of measneat based quantum computation
in terms of the valence bond formalism is provided, whichttedew resources i [37].
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A An open problem

The main open problem we left open is tleasonabilityof assuming condition C1 in the blocks
of the canonical form. Since condition C2 is known to imply o sufficiently largeL, [I] and
we do have C2 in each block by construction, it only remainshtow howbig Lo can be. (We
are neglecting complex eigenvaluesébf modulusl. The reason is that, by Thinh.5, they can be
avoided by grouping the spins into blocks or simply consideV prime.) In the generic case this
Lo can be takerLo = 222 | + 1. However there are cases in whith ~ O(D?). For instance
Ag =P |i +1)(i], A1 = |2)(D|. Our conjecture is that this is exactly the worst case.

Conjecture 1 There exists a functiofi(D) such that for any sequence bf x D matricesA;
verifying C1 for somd.o, Lo can be takery (D).

Conjecture 2 f(D) ~ O(D?).
We have been able to prove both in a particular (but geneagg:c

Proposition 2 If Aq is invertible, thenLo can be takerD?.
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Proof. Take anr and callS,. C {0,...,d — 1}" to a maximal set of indices for which
{Ai, -+ A}y ,....imyes IS linearly independent. It is then sufficient to prove tihet cardinalities
#S,..1 > #8S,, whenever#tS, < D? . If not, using thatA, is invertible, we can assume that
Sr+1 =5, X {0} NOWA»L'1 oo AiT+2 =

) J2ondrdl A AL _
Aiy § Cig,eiyipan Aja AJT+1A0 =

(42, 2Jr+1)ESy

J25-ndr41 K1y kp 2
Z Cig,oyipyo Z ci117J'2~»,jT+1Ak1 - Ag, A,
(25 dr+1)ESr (k1s.-skr)ESE
which implies that one can tak&-2 = S» x {0} x {0} and hencetS,+2 = #Sr+1 = #5Sr.
We can continue the reasoning and prove that, in #8&, = #.5, for everyk > r; which is the
desired contradiction. m

A particular case of this proposition occurs when one of tlagrizes in the canonical decom-
position is hermitian. To see that one can group the spintoitkb of two. The new matrices are
A;; = A;A;, and the canonical condition, A? = 1 readsy . A;; = 1. Now, by doing a unitary
operation in the physical system on can assumeAhat > Ay = 1 (up to normalization) and
therefore we are in the conditions of Proposifion 2.

The conjectures, if true, can be used to prove a couple afEsitieg results, one concerning the
MPS representation of the W-state, and the other conceth@égpproximation by MPS of ground
states of gapped hamiltonians

A.1 W state

The W-state can be written with matric@sx 2 in the OBC representation. However, this repre-
sentation does not respect the symmetry of the state. What éfsk instead for representations of
this kind?

Let us start with a permutational invariant one, that is, wi diagonal matrices. By the
permutational invariance ¢V ), it can be written as a sufy. > %' 6, |z, )®Y. Callinga, to a
N-throot of§, andA; = >, an (ian)|n)(n|,

2

|[Wh) = Z tr(As, - Ay )i - in).

i1,enin=1
with the matricesA; diagonal and of sizéN + 1) x (N + 1).
Of course we would be interested in a representation withHlemmatrices. The surprising

consequence of Conjecturk 2 is that this is impossible éver sk for a Tl representation; that
is, one with site-independent matrices (not necessardgatial):
Corollary 1 If we assume Conjectu@ 2 afid/n) = 32 ’ tr(Aq, -+ Aiy)|ér -+ -in) for
D x D matricesA4;, thenD = O (Nl/S).

Proof. By ConjecturéR, we have condition C1 by blocks with = O(D?). Let us assume
that & > 3(b — 1)(Lo + 1), where (as usua is the number of different blocks in the canonical

form. We can break the chain in two parts, each one havingrat3¢b — 1)(Lo + 1) spins and
decompose the state A&'n) = 37 ;_; |®a,5)[Ta,5), Where

Pag) = > (a]Ai, - Aig]B)ir - ir)

i1, iR
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Was) = D (BlAig-- Aiyla)lirgr - in).
] genny 1R

If we call S; to the set of positions of thgth block in the canonical form di¥x) and.S =
US;, we claim that the set§|®. 5) } (a,8)cs and{|Pa,8)}(a,8)cs are both linearly independent.
This implies that the rank of the reduced density operater facing out the particles ..., R is
> S | D? beingD; x D; the size of the-th block.

We know that in the case ¢FVx ), this rank is2, so we get exactly two blocks of sizex 1. It
is trivial now to see that this is impossible. Therefofe,< 3(b— 1)(Lo + 1) and hence the result.

So it only remains to prove the claim. Fax, 5) € S; let us take complex numbets s such
thaty" , ;ca,s|®a,s) = 0; which is exactly

b
Ztr([ > Ca,6|ﬂ><a|] Al A i ir) = 0.
(

04;[3)65_7‘

By Lemmal#4 the sum ip is direct, so each summand(s Finally, by condition C1 by blocks
Z(aﬁ)esj ca,3|B){a] = 0 for everyj and hence, s = 0 for every(a, 3) € S;. 0

A.2 Approximation of ground states by MPS

As we saw in SeCl6, one of the big open questions in condenagdntheory is to mathematically
explain the high accuracy of DMRG. Since DMRG can be seen asiational method in the class
of MPS, it is crucial to prove that any ground state of a gagpedl Hamiltonian can be efficiently
approximated by a MPS of low bond dimensifh Despite the important recent advances in this
direction (see Sdd.6) the problem is still unsolved. An intguat step has been done by Hastigns,
who has recently reduced this problem to the case in whickifimiltonian is frustration fre¢ [5].
This highlights the importance of the following dichotomy

Theorem 20 (Dichotomy for the size of the MPS)If Conjecturd 2 holds andl y = Zf\’zl Ti(h)
is a local TI Hamiltonian which is frustration free for every, then the bond dimensial of any
of its exact ground states, viewed as a MPS, is:

(i) either independent oWV
(i) or > O(N3)

Proof. Let us take the canonical decomposition of a ground dtateof H acting onN
particles

|¢>:_ > (A Aiy)lin e in).

If (i) does not hold, by Conjecturg 2V > 3(b — 1)(Lo + 1) + L (L the interaction length of
H). Now, by Lemmé}4, the products of the l@$t— L matrices generate the whole space of block
diagonal matrices. This immediately implies that the sanadricesA; give us a ground state of
Hy/ forany N’ > N. Thatis,D is independent oiV. m
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